

iText in Action

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

iText in Action
CREATING AND MANIPULATING PDF

BRUNO LOWAGIE

M A N N I N G

Greenwich
(74° w. long.)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co.
Cherokee Station Copyeditor: Tiffany Taylor
PO Box 20386 Typesetter: Denis Dalinnik
New York, NY 10021 Cover designer: Leslie Haimes

ISBN 1932394796

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 10 09 08 07 06
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

 To my wife, Ingeborg
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

brief contents

PART 1 INTRODUCTION ..1

1 ■ iText: when and why 3

2 ■ PDF engine jump-start 30

3 ■ PDF: why and when 73

PART 2 BASIC BUILDING BLOCKS97

4 ■ Composing text elements 99

5 ■ Inserting images 135

6 ■ Constructing tables 162

7 ■ Constructing columns 193

PART 3 PDF TEXT AND GRAPHICS221

8 ■ Choosing the right font 223

9 ■ Using fonts 257

10 ■ Constructing and painting paths 283
vii

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

viii BRIEF CONTENTS
11 ■ Adding color and text 325

12 ■ Drawing to Java Graphics2D 356

PART 4 INTERACTIVE PDF ...393

13 ■ Browsing a PDF document 395

14 ■ Automating PDF creation 425

15 ■ Creating annotations and fields 464

16 ■ Filling and signing AcroForms 501

17 ■ iText in web applications 533

18 ■ Under the hood 562
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

contents

preface xix
acknowledgments xxi
about this book xxiii

PART 1 INTRODUCTION .. 1

1 iText: when and why 3
1.1 The history of iText 5

How iText was born 5 ■ iText today 7
Beyond Java 9

1.2 iText: first contact 10
Running the examples in the book 11
Experimenting with the iText toolbox 12

1.3 An almost-true story 14
Some Foobar fiction 15 ■ A document daydream 16
Welcoming the student 18 ■ Producing and
processing interactive documents 23 ■ Making the
dream come true 28

1.4 Summary 29
ix

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

x CONTENTS
2 PDF engine jump-start 30
2.1 Generating a PDF document in five steps 31

Creating a new document object 32 ■ Getting a DocWriter
instance 35 ■ Opening the document 37 ■ Adding
content 42 ■ Closing the document 46

2.2 Manipulating existing PDF files 48
Reading an existing PDF file 49 ■ Using PdfStamper
to change document properties 54 ■ Using PdfStamper to
add content 55 ■ Introducing imported pages 60 ■ Using
imported pages with PdfWriter 61 ■ Manipulating existing
PDF files with PdfCopy 64 ■ Concatenating forms with
PdfCopyFields 66 ■ Summary of the manipulation classes 67

2.3 Creating PDF in multiple passes 68
Stamp first, then copy 69 ■ Copy first, then
stamp 70 ■ Stamp, copy, stamp 71

2.4 Summary 72

3 PDF: why and when 73
3.1 A document history 74

Adobe and documents 75 ■ The Acrobat family 77
The intellectual property of the PDF specification 78

3.2 Types of PDF 79
Traditional PDF 80 ■ Tagged PDF 80 ■ Linearized
PDF 81 ■ PDFs preserving native editing
capabilities 81 ■ PDF types that became an ISO
standard 81 ■ PDF forms, FDF, and XFDF 83 ■ XFA
and XDP 84 ■ Rules of thumb 84

3.3 PDF version history 85
Changing the user unit 86 ■ PDF content
and compression 88 ■ Encryption 90

3.4 Summary 95
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

CONTENTS xi
PART 2 BASIC BUILDING BLOCKS 97

4 Composing text elements 99
4.1 Wrapping Strings in text elements 100

The atomic building block: com.lowagie.text.Chunk 101
An ArrayList of Chunks: com.lowagie.text.Phrase 103
A sequence of Phrases: com.lowagie.text.Paragraph 104

4.2 Adding extra functionality to text elements 105
External and internal links:
com.lowagie.text.Anchor 106 ■ Lists and ListItems:
com.lowagie.text.List/ListItem 107 ■ Automatic bookmarking:
com.lowagie.text.Chapter/Section 109

4.3 Chunk characteristics 111
Measuring and scaling 111 ■ Lines: underlining and
striking through text 112 ■ TextRise: sub- and superscript 115
Simulating italic fonts: skewing text 116 ■ Changing font
and background colors 117 ■ Simulating bold fonts:
stroking vs. filling 117

4.4 Chunks and space distribution 118
The split character 119 ■ Hyphenation 120
Changing the CharSpace ratio 121

4.5 Anchors revisited 122
Remote Goto 123 ■ Local Goto 124

4.6 Generic Chunk functionality 125
Drawing custom backgrounds and lines 125 ■ Implementing
custom functionality 126 ■ Building an index 127

4.7 Making a flyer (part 1) 129

4.8 Summary 134

5 Inserting images 135
5.1 Standard image types 136

BMP, EPS, GIF, JPEG, PNG, TIFF, and WMF 137
TIFF with multiple pages 139 ■ Animated GIFs 139

5.2 Working with java.awt.Image 140
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xii CONTENTS
5.3 Byte arrays with image data 143
Raw image data 144 ■ CCITT compressed
images 145 ■ Creating barcodes 146 ■ Working
with com.lowagie.text.pdf.PdfTemplate 147

5.4 Setting image properties 147
Adding images to the document 147 ■ Translating, scaling,
and rotating images 151 ■ Image masks 156

5.5 Making a flyer (part 2) 158
Getting the Image instance 158 ■ Setting the border, the
alignment, and the dimensions 159 ■ The resulting PDF 160

5.6 Summary 161

6 Constructing tables 162
6.1 Tables in PDF: PdfPTable 163

Your first PdfPTable 163 ■ Changing the width
and alignment of a PdfPTable 164 ■ Adding
PdfPCells to a PdfPTable 167 ■ Special PdfPCell
constructors 176 ■ Working with large tables 178
Adding a PdfPTable at an absolute position 182

6.2 Alternatives to PdfPTable 186

6.3 Composing a study guide (part 1) 189
The data source 189 ■ Generating the PDF 190

6.4 Summary 192

7 Constructing columns 193
7.1 Retrieving the current vertical position 194

7.2 Adding text to ColumnText 197
Different ways to add text to a column 197 ■ Keeping paragraphs
together 199 ■ Adding more than one column to a page 201

7.3 Composing ColumnText with other building blocks 206
Combining text mode with images and tables 207 ■ ColumnText
in composite mode 209

7.4 Automatic columns with MultiColumnText 211
Regular columns with MultiColumnText 211 ■ Irregular
columns with MultiColumnText 213

7.5 Composing a study guide (part 2) 216

7.6 Summary 219
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

CONTENTS xiii
PART 3 PDF TEXT AND GRAPHICS 221

8 Choosing the right font 223
8.1 Defining a font 224

Using the right terminology 225 ■ Standard Type 1 fonts 226
8.2 Introducing base fonts 231

Working with an encoding 232 ■ Class BaseFont and Type 1
fonts 233 ■ Embedding Type 3 fonts 238 ■ Working with
TrueType fonts 239 ■ Working with OpenType fonts 243

8.3 Composite fonts 248
What is Unicode? 248 ■ Introducing Chinese, Japanese,
Korean (CJK) fonts 251 ■ Embedding CIDFonts 252
Using TrueType collections 254

8.4 Summary 255

9 Using fonts 257
9.1 Other writing directions 258

Vertical writing 258 ■ Writing from right to left 260
9.2 Sending a message of peace (part 1) 262

9.3 Advanced typography 264
Handling diacritics 265 ■ Dealing with ligatures 268

9.4 Automating font creation and selection 271
Getting a Font object from the FontFactory 271
Automatic font selection 276

9.5 Sending a message of peace (part 2) 279

9.6 Summary 282

10 Constructing and painting paths 283
10.1 Path construction and painting operators 284

Seven path construction operators 284 ■ Path-painting
operators 286

10.2 Working with iText’s direct content 294
Direct content layers 295 ■ PdfPTable and
PdfPCell events 296
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xiv CONTENTS
10.3 Graphics state operators 303
The graphics state stack 303 ■ Changing the
characteristics of a line 305

10.4 Changing the coordinate system 313
The CTM 313 ■ Positioning external objects 316

10.5 Drawing a map of a city (part 1) 321
The XML/SVG source file 321 ■ Parsing the SVG file 323

10.6 Summary 324

11 Adding color and text 325
11.1 Adding color to PDF files 326

Device colorspaces 326 ■ Separation
colorspaces 328 ■ Painting patterns 329
Using color with basic building blocks 334

11.2 The transparent imaging model 335
Transparency groups 336 ■ Isolation and
knockout 338 ■ Applying a soft mask to an image 340

11.3 Clipping content 341

11.4 PDF’s text state 344
Text objects 344 ■ Convenience methods to
position and show text 350

11.5 The map of Foobar (part 2) 353

11.6 Summary 355

12 Drawing to Java Graphics2D 356
12.1 Obtaining a Java.awt.Graphics2D instance 357

A simple example from Sun’s tutorial 358 ■ Mapping
AWT fonts to PDF fonts 362 ■ Drawing glyph shapes
instead of using a PDF font 365

12.2 Two-dimensional graphics in the real world 368
Exporting Swing components to PDF 368 ■ Drawing
charts with JFreeChart 371
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

CONTENTS xv
12.3 PDF’s optional content 374
Making content visible or invisible 374 ■ Adding structure
to layers 375 ■ Using a PdfLayer 378 ■ Optional
content membership 380 ■ Changing the state of a layer
with an action 382 ■ Optional content in XObjects
and annotations 384

12.4 Enhancing the map of Foobar 385
Defining the layers for the map and the street names 386
Combining iText and Apache Batik 388
Adding tourist information to the map 389

12.5 Summary 392

PART 4 INTERACTIVE PDF... 393

13 Browsing a PDF document 395
13.1 Changing viewer preferences 396

Setting the page layout 397 ■ Choosing the
page mode 398 ■ Viewer options 399

13.2 Visualizing thumbnails 401
Changing the page labels 402 ■ Changing the
thumbnail image 404

13.3 Adding page transitions 405

13.4 Adding bookmarks 407
Creating destinations 407 ■ Constructing an outline
tree 409 ■ Adding actions to an outline tree 410 ■ Retrieving
bookmarks from an existing PDF file 411 ■ Manipulating
bookmarks in existing PDF files 413

13.5 Introducing actions 415
Actions to go to an internal destination 415 ■ Actions to
go to an external destination 417 ■ Triggering actions
from events 418 ■ Adding JavaScript to a PDF
document 420 ■ Launching an application 420

13.6 Enhancing the course catalog 421

13.7 Summary 424
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xvi CONTENTS
14 Automating PDF creation 425
14.1 Creating a page 426

Adding empty pages 426 ■ Defining page
boundaries 427 ■ Reordering pages 431

14.2 Common page event functionality 432
Overview of the PdfPageEvent methods 432 ■ Adding a header
and a footer 433 ■ Adding page X of Y 435 ■ Adding
watermarks 438 ■ Creating an automatic slide
show 440 ■ Automatically creating bookmarks 442
Automatically creating a table of contents 443

14.3 Alternative XML solutions 445
Writing a letter on company stationery 445 ■ Parsing a
play 451 ■ Parsing (X)HTML 456 ■ Using HtmlWorker
to parse HTML snippets 458

14.4 Enhancing the course catalog (part 2) 461

14.5 Summary 463

15 Creating annotations and fields 464
15.1 Introducing annotations 465

Simple annotations 465 ■ Other types of
annotations 470 ■ Adding annotations to a
chunk or image 474

15.2 Creating an AcroForm 475
Button fields 476 ■ Creating text fields 482
Creating choice fields 486

15.3 Submitting a form 488
Choosing field names 488 ■ Adding actions to
the pushbuttons 491 ■ Adding actions 496

15.4 Comparing HTML and PDF forms 498

15.5 Summary 500

16 Filling and signing AcroForms 501
16.1 Filling in the fields of an AcroForm 502

Retrieving information about the fields (part 1) 503
Filling fields 505 ■ Retrieving information from
a field (part 2) 508 ■ Flattening a PDF file 510
Optimizing the flattening process 511
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

CONTENTS xvii
16.2 Working with FDF and XFDF files 514
Reading and writing FDF files 514 ■ Reading XFDF files 517

16.3 Signing a PDF file 518
Adding a signature field to a PDF file 518 ■ Using
public and private keys 520 ■ Generating keys and
certificates 521 ■ Signing a document 523

16.4 Verifying a PDF file 529

16.5 Summary 532

17 iText in web applications 533
17.1 Writing PDF to the ServletOutputStream: pitfalls 534

Solving problems related to content type-related problems 536
Troubleshooting the blank-page problem 537 ■ Problems with
PDF generated from JSP 542 ■ Avoiding multiple hits per
PDF 543 ■ Workaround for the timeout problem 545

17.2 Putting the theory into practice 550
A personalized course catalog 550 ■ Creating a learning
agreement form 553 ■ Reading an FDF file in a JSP page 559

17.3 Summary 561

18 Under the hood 562
18.1 Inside iText and PDF 563

Factors of success 563 ■ The file structure of a PDF
document 564 ■ Basic PDF objects 569
Climbing up the object tree 570

18.2 Extracting and editing text 574
Reading a page’s content stream 574 ■ Why iText
doesn’t do text extraction 576 ■ Why you shouldn’t use
PDF as a format for editing 578

18.3 Rendering PDF 581
How to print a PDF file programmatically 581
Printing a PDF file in a web application 583

18.4 Manipulating PDF files 584
Toolbox tools 585 ■ The learning agreement (revisited) 587

18.5 Summary 590
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xviii CONTENTS
appendix A: Class diagrams 591

appendix B: Creating barcodes 602

appendix C: Open parameters 618

appendix D: Signing a PDF with a smart card 621

appendix E: Dealing with exceptions 624

appendix F: Pdf/X, Pdf/A, and tagged PDF 630

appendix G: Resources 638

 index 642
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

preface
I have lost count of the number of PCs I have worn out since I started my
career as a software developer—but I will never forget my first computer.

 I was only 12 years old when I started programming in BASIC. I had to
learn English at the same time because there simply weren’t any books on
computer programming in my mother tongue (Dutch). This was in 1982. Win-
dows didn’t exist yet; I worked on a TI99/4A home computer from Texas
Instruments. When I told my friends at school about it, they looked at me as if
I had just been beamed down from the Starship Enterprise.

 Two years later, my parents bought me my first personal computer: a
Tandy/Radio Shack TRS80/4P. As the P indicates, it was supposed to be a port-
able computer, but in reality it was bigger than my mother’s sewing machine.
It could be booted from a hard disk, but I didn’t have one; nor did I have any
software besides the TRSDOS and its BASIC interpreter. By the time I was 16, I
had written my own word-processing program, an indexed flat-file database
system, and a drawing program—nothing fancy, considering the low resolu-
tion of the built-in, monochrome green computer screen.

 I don’t remember exactly what happened to me at that age—maybe it was
my delayed discovery of girls—but it suddenly struck me that I was becoming
a first-class nerd. So I made a 180-degree turn, studying Latin and math in
high school and taking evening classes at a local art school. I decided that I
wanted to become an artist instead of going to college. As a compromise with
xix

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xx PREFACE
my parents, I studied civil architectural engineering at Ghent University. In my
final year, I bought myself a Compaq portable computer to write my master’s
thesis. It was like finding a long-lost friend! After I earned my degree as an archi-
tect, I decided that it was time to return to the world of computers.

 In 1996 I enrolled in a program that would retrain me as a software engineer.
I learned and taught a brand-new programming language, Java. During my
apprenticeship, I was put in charge of an experimental broadband Internet
project. It was my first acquaintance with the Web. This expertise resulted in dif-
ferent assignments for the Flemish government. One of my tasks was to write an
R&D report on standard Internet–intranet tools for GIS applications. That’s when
I wrote my first Java servlets.

 I returned to Ghent University as an employee in 1998. When I published my
first Free/Open Source Software library, I knew I had finally found my vocation.
Now I have had the chance to write a book about it. I tried to give this book the
personal touch I often miss when reading technical writings. I hope you will
enjoy reading it as much as I have enjoyed writing it.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

acknowledgments
Many people have made it possible for me to write this book. First of all, I
would like to thank my wife, Ingeborg, and my children, Inigo and Jago, for
being patient with me, for giving me the time to write, and for keeping me in
touch with the “real world” (reminding me to eat, drink, and sleep).

 On behalf of all iText users, I would like to thank Paulo Soares, who started
working on iText in the summer of 2000. Thanks to his efforts, a relatively
simple Free/Open Source library was changed into a powerful PDF product.
Paulo is currently in charge of most of the new developments, including the
.NET port iTextSharp. I would also like to thank Mark Hall, who is responsible
for the capability iText has to produce documents in RTF. Numerous people
contributed valuable code, fixed bugs, added new features, and posted useful
answers on the mailing list. The list of names is just too long to sum up.
Thank you all for making iText the library it is today!

 Thanks also to all of my current and former colleagues at Ghent Univer-
sity, especially Bernard Becue, Professor Geert De Soete, Luc Verschraegen,
Mario Maccarini, Jurgen Lust, and Evelyne De Cordier. Thanks for support-
ing iText and for making my job worthwhile.

 I would like to thank all the people at Manning Publications for giving me
the opportunity to write this book, starting with publisher Marjan Bace,
Megan Yockey, Blaise Bace, Jackie Carter, Lianna Wlasiuk, Karen Tegtmeyer,
Mary Piergies, Tiffany Taylor, Katie Tenant, Denis Dalinnik, Dottie Marsico,
xxi

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xxii ACKNOWLEDGMENTS
and Olivia DiFeterici. Special thanks go to my development editor, Howard
Jones. I am just a craftsman piling up material—Howard is the real artist, the
sculptor who shaped it into a book.

 Sincere thanks to the people who reviewed this book. Their remarks and sug-
gestions at different stages of the manuscript were valuable to me in making this
a better book: Stanley Wang, Paulo Soares, Barry Klawans, Jurgen Lust, Mark
Hall, Bernard Becue, Bill Ensley, Leonard Rosenthal, Kris Coolsaet, Pim Van
Heuven, Rudi Vansnick, Steve Appling, Mario Maccarini, Justin Lee, Stuart
Caborn, Jan Van Campenhout, Alan Dennis, Oliver Ziegermann, Xavier Le
Vourch, Doug James, Carl Hume, and Chris Dole. Special thanks to Mark Storer
who did a final technical proofread of the book, just before it went to press.

 Last, but not least, I would like to thank you, the people who are using iText.
You are the ones who have kept me going! Many of you have sent me nice little
notes of appreciation. I really like those notes, be they from a student who used
iText successfully in a school project or from a developer working for a multina-
tional who integrated iText with the software of a worldwide project. Thanks! I
couldn’t have written this book without your encouragement.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

about this book
This book will teach you about PDF, Adobe’s Portable Document Format, from
a Java developer’s point of view. You’ll learn how to use iText in a Java/J2EE
application for the production and/or manipulation of PDF documents. Along
the way, you’ll become acquainted with lots of interesting PDF features and
discover e-document functionalities you may not have known about before.

 In addition to the many small code samples, this book includes lots of
XML-based, ready-made solutions that can easily be adapted and integrated
into your projects.

 If you’re a .NET developer using the C# or J# port of iText, iTextSharp
or iText.NET, you can also benefit from this book, but you’ll have to adapt
the examples.

How to use this book
You can read this book chronologically, starting with the introductory part 1.
Part 2 describes useful basic building blocks, and part 3 gets into iText’s core
PDF functionality. You’ll finish with part 4, which discusses the interactive fea-
tures of PDF.

 If you haven’t convinced your project manager yet that PDF is the way to go,
you’ll certainly benefit from reading chapters 1 and 3. It sums up some reason-
able arguments that will help you help your manager make policy decisions
regarding e-documents. Section 1.3 contains a roadmap to the ready-made
xxiii

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xxiv ABOUT THIS BOOK
solutions that are demonstrated throughout the book. The main function of this
section is to offer you a menu composed of a series of screenshots, showing all
kinds of documents: documents with flowing text, graphics, bookmarks, and so
on. If you see something you like, you can use this book as a kind of ‘cookbook’
and jump to the ‘recipe’ that was used to create a similar document.

 Readers who are new to iText will need to take the “Hello World” crash course
in chapter 2. This chapter shows that iText can be used in many different ways.
The first three chapters often refer to sections in parts 2, 3, and 4, where you’ll
find an in-depth explanation of the specific functionality that is being intro-
duced in one of the many “Hello World” examples.

 You can also read the book in random order or thematically, starting from the
table of contents or the roadmap in chapter 1. Once you’re well acquainted with
iText, you’ll probably use the book as a reference manual, browsing for the many
small standalone code samples that can be applied directly to your own code.

Roadmap
Part 1 consists of three chapters which introduce the history of iText and the
basics of creating and manipulating PDF documents. These chapters give you a
bird’s-eye view of PDF in general and iText in particular. You’ll get acquainted
with different aspects of PDF by first looking at different screenshots and then
making a series of small “Hello, World” files demonstrating the concept of PDF
creation and manipulation using iText. Chapter 1 also discusses in greater detail
how to use and navigate the book.

 Part 2 consists of four chapters that explain the building blocks which are
used to construct a document, such as phrases, paragraphs, chapters, and sec-
tions. A document can also contain images, tables, and columns. Chapters 4
through 7 explain how iText implements these structures, and the examples at
the end of each chapter demonstrate how they fit together.

 Part 3 goes to the core of iText and PDF. This part is meant to serve as a refer-
ence manual for the reader, explaining how to create the actual content of a docu-
ment and answering many practical questions: How do I choose a font? How do
I draw a dashed line? How do I make an image transparent? How do I translate
a Swing component to PDF? Chapters 8 through 12 answer these and many other
questions, further illustrating them with plenty of examples.

 The last six chapters of the book make up part 4, “Interactive PDF,” and they
deal with meta content. The following questions are answered: How do I add
bookmarks to a file? How do I add headers, footers, or a watermark? How do I
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

ABOUT THIS BOOK xxv
add comments or a file attachment? How do I create and fill a form? And above
all, how do I create a PDF file in a web application? The syntax and design of
PDF are discussed.

Who should read this book?
This book is intended for Java developers who want to enhance their projects
with dynamic PDF document generation and/or manipulation. It assumes you
have some background in Java programming.

 For reasons of convenience, most of the examples are constructed as stand-
alone command-line applications. If you want to run these examples in a web
application, you should know how to set up an application server, where to put
the necessary Java archive files (jars) and resources, and how to deploy a servlet.

 The same goes for XML. Although this book could have used database tables,
XML was preferred as the technology-independent format to store the data
needed for the ready-made solutions. You should be familiar with Simple API for
XML (SAX) parsers and how to use them.

 Knowledge of the Portable Document Format isn’t necessary, because this
book will explain a good deal of the PDF functionality and syntax where needed.
The PDF Reference (Adobe Systems Inc.) is a good companion for this book, for
those who want to know every detail about PDF internals.

Code conventions
First use of technical terms is in italic. The same goes for emphasized terms and
mathematical variables. Source code in listings or in text is in a fixed width font.
Java packages, method names, directories, parameters, and XML elements and
attributes are also presented using fixed width font. Some code lines can be in
bold fixed width font for emphasis. Code that appears in italic fixed width
font is a placeholder, and you should replace it according to your needs.

 Code annotations accompany many of the source code listings, highlighting
important concepts. In some cases, annotations correspond to explanations that
follow the listing.

Software requirements and downloads
iText is a Free/Open Source Software library created by Bruno Lowagie and Paulo
Soares, protected by the Mozilla Public License (MPL). You can download it from
http://www.sourceforge.net/projects/itext/ or http://www.lowagie.com/iText/.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xxvi ABOUT THIS BOOK
 All jars are compiled with the Java Development Kit (JDK) 1.4. If you need
iText to run in another Java Runtime Environment (JRE), it’s safest to download
the source code and recompile the library with the corresponding JDK.

 You can download the source code of the small standalone examples, as well
as the ready-made solutions, from itext.ugent.be/itext-in-action/. You can also
download the source code for the examples in the book from www.manning.com/
lowagie. All examples have been tested with iText 1.4.

Author Online
Your purchase of iText in Action includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.
com/lowagie. This page provides information on how to get onto the forum
once you are registered, what kind of help is available, and the rules of con-
duct on the forum. Manning’s commitment to our readers is to provide a
venue where a meaningful dialogue among individual readers and between
readers and the author can take place. It is not a commitment to any specific
amount of participation on the part of the author, whose contribution to the
AO remains voluntary (and unpaid). We suggest you try asking the author
some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the title
By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people remember are things they discover during
self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action guide is
that it is example-driven. It encourages the reader to try things out, to play with
new code, and explore new ideas.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

ABOUT THIS BOOK xxvii
 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them in action. The books in this
series are designed for such readers.

About the cover illustration
The figure on the cover of iText in Action is a “Dorobautz Valachia” or a Ruma-
nian from Wallachia, a historical region of southeast Romania between the Tran-
sylvanian Alps and the Danube River. Founded as a principality in the late
thirteenth century, Wallachia was ruled by Turkey from 1387 until it was united
with Moldavia to form Romania in 1861. The illustration is taken from a collec-
tion of costumes of the Ottoman Empire published on January 1, 1802, by Will-
iam Miller of Old Bond Street, London. The title page is missing from the
collection and we have been unable to track it down to date. The book's table of
contents identifies the figures in both English and French, and each illustration
bears the names of two artists who worked on it, both of whom would no doubt
be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an Ameri-
can based in Ankara, Turkey, and the transaction took place just as he was
packing up his stand for the day. The Manning editor did not have on his person
the substantial amount of cash that was required for the purchase and a credit
card and check were both politely turned down. With the seller flying back to
Ankara that evening the situation was getting hopeless. What was the solution? It
turned out to be nothing more than an old-fashioned verbal agreement sealed
with a handshake. The seller simply proposed that the money be transferred to
him by wire and the editor walked out with the bank information on a piece of
paper and the portfolio of images under his arm. Needless to say, we transferred
the funds the next day, and we remain grateful and impressed by this unknown
person’s trust in one of us. It recalls something that might have happened a long
time ago.

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of
two centuries ago. They recall the sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

xxviii ABOUT THIS BOOK
 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional
life of two centuries ago‚ brought back to life by the pictures from this collection.

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Part 1

Introduction

These three chapters give you a bird’s eye view of PDF in general and
iText in particular. You’ll get acquainted with different aspects of PDF by first
looking at different screenshots and then making a series of small “Hello,
World” files demonstrating the concept of PDF creation and manipulation
using iText.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

iText: when and why
This chapter covers
■ History and first use of iText
■ Overview of iText’s PDF functionality
■ Introduction to the examples in this book
3

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

4 CHAPTER 1
iText: when and why
If you want to enhance applications with dynamic PDF generation and/or manipu-
lation, you’ve come to the right place. Throughout this book, you’ll learn how to
build applications that produce professional, high-quality PDF documents. More
specifically, you’ll learn how to do the following:

■ Serve dynamically generated PDF to a web browser
■ Generate documents and reports based on data from an XML file or

a database
■ Create maps and ebooks, exploiting numerous interactive features avail-

able in PDF

■ Add bookmarks, page numbers, watermarks, and other features to existing
PDF documents

■ Split and/or concatenate pages from existing PDF files
■ Fill out forms, add digital signatures, and much more

You’ll create these documents on the fly, meaning you aren’t going to use a desk-
top application such as Adobe Acrobat. Instead, you’ll use an API to produce PDF
directly from your own applications, which is necessary when a project has one of
the following requirements:

■ The content needs to be served in a web environment, and PDF is pre-
ferred over HTML for better printing quality, for security reasons, or to
reduce the file size.

■ The PDF files can’t be produced manually due to the volume (number of
pages/documents) or because the content isn’t available in advance (it’s cal-
culated and/or based on user input).

■ Documents need to be created in unattended mode (for instance, in a
batch process).

■ The content needs to be customized and/or personalized.

This book is a comprehensive guide to an API that makes all this possible: iText, a
free Java-PDF library. For first-time users, this book is indispensable. Although
the basic functionality of iText is easy to grasp, this book lowers the learning
curve for more advanced functionality.

 It’s also a must-have for the many developers who are already familiar with
iText. With this book, they finally have in one place all the information previously
found scattered across the Internet. Even expert developers are likely to discover
iText functionality they weren’t aware of.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

The history of iText 5
 In this chapter, you’ll learn how iText was born, and we’ll look at some real-
world PDF files that were generated using iText.

1.1 The history of iText

In the summer of 1998, the university where I worked1 was starting up a migra-
tion project with the intention of redesigning a series of standalone programs
used by the student administration. Up until then, entering the grades of stu-
dents and calculating their final results at the end of the academic year was done
using software that worked only on MS-DOS. Documents produced by this soft-
ware could be printed on only one type of printer. This wasn’t an ideal way of
working, to say the least. Teachers and their administrative staff were using all
kinds of systems: Windows, Mac, Linux, Solaris, and so forth. Yet for one of the
most delicate aspects of their job—grading students—they were still forced to use
plain old DOS. The university decided it was high time to do something about
this situation and hired two developers to create a completely web-based solution.
One of them was (and still is) my colleague Mario Maccarini. The other one, as
you’ve probably guessed, was me.

 Mario and I immediately started writing some Java servlets using Apache
JSERV (it was the stone age of J2EE), and we proudly presented our first online
lists with students, courses, and grades in the fall of 1998. It was just some ordi-
nary HTML in a browser, but compared to the MS-DOS box, it was a big leap
forward. Everybody was enthusiastic, until somebody asked one of the most cru-
cial questions of the project: what did we, the developers, plan to do about the “docu-
ment problem”?

1.1.1 How iText was born

Have you ever tried printing an HTML document in Microsoft Internet Explorer
(MSIE), Firefox, or Netscape? If so, you have a good idea of the problem we were
facing. Every browser interprets HTML in its own way. A table in MSIE doesn’t
look completely the same as a table rendered by Firefox. Using Cascading Style
Sheets (CSS) can help you fine-tune the end result, but there’s another problem:
The end-user can disable style sheets, change margins, add page numbers, and so
forth. Moreover, just like with Microsoft Word documents, the end user can usu-
ally change the content of an HTML document manually, using the application

1 ICT Department, Ghent University, Belgium.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

6 CHAPTER 1
iText: when and why
that renders the document. We wanted to avoid this, so we didn’t consider Word
and HTML to be options. We needed a technology that allowed us to generate
unalterable reports with a reliable layout.

 I didn’t know much about the Portable Document Format back then. I only
knew it was supposed to be a read-only format and that you could make print-
outs look exactly the way you intended to, regardless of the operating system
and/or printer. When the document question arose, my answer was impulsive.
Without fully realizing the consequences, I told the university committee, “We’ll
produce PDF!”

 Mind you, it was a good answer, and it was well received. PDF is known as a
widespread page-description language (PDL), and it’s a de facto industry stan-
dard. It’s portable. It’s reliable. It prints really well. Almost everyone has the
free Adobe Reader on their system. I assumed all of these fine qualities auto-
matically meant there would be ample free or open source software available to
produce PDF.

 Apparently I was wrong. I needed an API, a set of classes, preferably written in
Java, and preferably open source, but in the winter of 1998, the only free Java-
PDF libraries I found on the Internet weren’t able to provide the functionality
required in our project. Only then did I become aware that I would have to write
a PDF library myself if I wanted to keep my promise. During that period, I spent
all my free time reading the PDF Reference.

 Within seven months of when we were hired, our new intranet application was
brought into production at the university where I worked. Its main users were uni-
versity professors, their proxies, and the administrative staff of the university.

 Registered users could log in to a personalized intranet page and do
the following:

■ Get an overview of all the courses they were responsible for (as a teacher or
a proxy)

■ Fetch (empty) grading lists in PDF with all the students enrolled for a spe-
cific course

■ Get an HTML form to submit grades to the server (this could also have
been a PDF AcroForm—a form containing a number of fixed areas—or
AcroFields, on one or more pages)

■ Get a completed version of the grading lists per course
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

http://opensource.org
http://opensource.org
http://opensource.org

The history of iText 7
School administrators were also able to

■ Compose a curriculum for each individual student
■ Generate application forms for students to sign up for specific examina-

tion periods
■ Calculate every student’s grade at the end of the academic year
■ Fetch lists with information on the complete year of study for different

purposes: deliberation lists, proclamation lists, feedback for the students,
and so forth

■ Generate official documents such as report cards and transcripts for
the students

Every document that needed to be printed was generated in PDF by a newly cre-
ated library. I designed this set of classes in such a way that it would be usable in
other projects, too. I was encouraged to publish the library as a Free and Open
Source Software (FOSS) product even before our project went into production.
That’s how iText was born.

 Almost immediately, many fellow developers started to use the library, contrib-
uting source code at the same time. Paulo Soares was one of these early adopters.
He joined the project in the summer of the year 2000 and is now one of the main
developers of new iText features. He also maintains the .NET port iTextSharp.

1.1.2 iText today

Nowadays, iText is used in many online and other services, directly or indirectly.
You may have already used iText without being aware of it; a lot of software prod-
ucts ship iText in their distribution. If you’ve created PDF documents using Mac-
romedia ColdFusion, the file was probably generated by iText. If you’re creating
reports with one of the most important reporting tools of the moment—Jasper-
Reports or Eclipse/BIRT—you’ll see that iText is built in as its PDF engine. You
could use this book to enhance your own product so that it’s capable of producing
PDF documents, but the activity on the mailing list tells me it’s more likely that
you’re going to use iText in tailor-made applications similar to the intranet appli-
cation Mario and I wrote.

 In e-commerce applications, you replace students with customers, courses with
products, and grades with prices. Energy companies use iText to generate invoices
with tables showing customers how much gas, electricity, or water they consumed.
The iText library is popular in e-government projects because iText can be used to
add a digital signature to a PDF document using an eID—a smart card issued by
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

8 CHAPTER 1
iText: when and why
some governments that can be used for proof of identity. The financial sector uses
iText to provide clients with reports about investments, or to produce and process
loan application forms. Manufacturers can use iText to compose lists of the parts,
subassemblies, and raw materials used to make a product (the Bill of Materials)
complete with barcodes that allow automating the manufacturing process. I’ve
seen blueprints and city maps that were created with iText. NASA uses iText in a
tool that produces PDF documents showing global longitude-latitude images or
pole-to-pole latitude-vertical images of the earth. Google Calendar uses iText to
produce calendar sheets.

 In short, whatever your project, iText can save you a lot of work and time,
helping you to create new PDF documents and/or manipulate existing PDF files.

Ease of use and flexibility
First-time iText users will find lots of examples on the Internet explaining how
to create a simple PDF document using iText. On the Java Boutique site is an
article by Benoy Jose titled “PDF Generation Made Easy” (http://javaboutique.
internet.com/tutorials/iText/). This title reflects the initial idea of iText—that
you shouldn’t have to be a PDF specialist to be able to generate PDF docu-
ments. iText’s small set of basic building blocks allows you to create a proof of
concept in no time.

 Some in the community are occasionally heard to say that working with iText
can be demanding, as might be expected of even a well-designed software tool
when you’re dealing with complicated issues. However, this book is structured so
that even iText’s complexities are presented painlessly. Don Fluckinger, a
freelance writer who has been covering Acrobat and PDF technologies for PDF-
Zone since 2000, writes that iText is “a robust little software tool for generating
PDFs on the fly that isn’t for the technically faint of heart.” I must admit that iText
code can get complex as soon as you want maximum flexibility when creating a
customized PDF document. Don recommends iText “if you feel like rolling up
your sleeves, popping open the hood, and getting to work.” That’s exactly what
we’re going to do in this book: We’re going to go further than the articles you can
find on the Internet and in the online tutorial. This book will give you an in-
depth overview of what is possible with iText.

 A developer who successfully integrated iText into his software writes, “You’re
able to produce an extremely size-optimized PDF on-the-fly without sacrificing
any feature of the desired output.” That’s the spirit of the true iText user.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

The history of iText 9
iText licensing
Although iText is free (you’re allowed to use iText in open or closed source soft-
ware, in standalone or web-based applications, for free or proprietary services,
and in commercial or nonprofit projects), this doesn’t mean you’re free to do
anything you want with the library; you have to respect the copyright and the
Mozilla Public License (MPL) that protects iText. The first versions of iText were
published under the Library (or Lesser) GNU Public License (LGPL), but once
iText got interesting for some major players in the Information and Communi-
cations Technology (ICT) business, there was increasing pressure to move to
another license.

 Many company lawyers had issues with some of the quirky details in the LGPL,
so we chose the MPL with LGPL as an alternative license, for backward compati-
bility. Basically, the MPL says that you have to inform your customers that you’re
using the FOSS library iText (by Bruno Lowagie and Paulo Soares), and you have
to tell them where they can find the library’s source code. Additionally, if you
change the library, you should make your enhancements and bug fixes available
to the community. This leads to a win-win situation: You win if you get your fixes
in the official release, because you reduce upgrade-related problems. The iText
community wins because it can benefit from your enhancements. This is the short
explanation. For the long version, see the full text of the MPL that is available on
the iText site (http://www.lowagie.com/iText/MPL-1.1.txt) and packaged with the
source code.

1.1.3 Beyond Java

This book focuses on PDF manipulation with iText seen from a Java developer’s
point of view, but that doesn’t mean you can’t use iText in another environment.
Companies make choices, and when it comes to building enterprise software, it
seems to come down to a choice between two technologies: J2EE or .NET. That’s
why the .NET ports are religiously synchronized at the release and Concurrent
Versioning System (CVS) level.

iText.NET and iTextSharp
There are two important .NET ports: iText.NET is a J# port by Kazuya Ujihara;
and iTextSharp is a C# port originally written by Gerald Henson, but which has
been taken over by Paulo Soares, the most active developer of iText in the past
five years. Paulo has been “converted” from Java to .NET recently and keeps
iTextSharp synchronized with the original Java version.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

10 CHAPTER 1
iText: when and why
iText and pdftk
The PDF Toolkit (pdftk) by Sid Steward is “a command-line tool for doing every-
day things with PDF documents,” as defined on the AccessPDF web site (www.
accesspdf.com). pdftk is also a good example of how iText can be used in a C++
program by building a native library using the GNU compiler for Java (GCJ). If
your program needs some of the PDF-manipulation functionality found in a C++
environment, you should try this toolkit.

iText and ColdFusion
The iText.jar file is shipped with Macromedia’s server product ColdFusion. This
means it’s possible to use iText in your ColdFusion applications for generating
PDF documents on the fly. By acquiring Macromedia, Adobe now has an afford-
able server product that is able to produce PDFs.

Using iText in PHP, Python, Ruby
There aren’t any PHP, Python, or Ruby ports, but you can use a PHP/Java bridge
for PHP integration, or a Ruby/Java bridge to address iText from a Ruby applica-
tion. If you search the Internet, you’ll find some iText examples written in Jython,
the Java implementation of Python.

 You won’t find any C#, CF, J#, Jython, Python, PHP, Ruby, or VB examples in
this book, but it should be fairly easy to adapt the Java examples so that you can
use them in your specific development environment. Most of the mechanisms
that are explained in this book are independent of the programming language.
Let’s return to Java and find out how to download and test iText.

1.2 iText: first contact

Setting up an environment in which to run and test the examples in a book can be
cumbersome, especially if you need to install additional services or servers. To
reduce the complexity, most examples in this book were conceived as small stan-
dalone applications.

 All examples were written in Java, so you’ll need a Java environment (JDK
1.4 or higher is preferred) and the appropriate Java Archives (jars). Each exam-
ple writes a short explanation to the System.out, telling you what it does. It also
lists the necessary resources and the jars needed in the CLASSPATH (a variable
that tells the Java Compiler and JVM where to find all necessary Java class-files
and archives).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

iText: first contact 11
 iText.jar is an executable jar. If you open it in a Java Runtime Environment
(JRE), the iText toolbox opens. This is a GUI application that lets you do some
simple PDF experiments without having to write a single line of code.

 But first things first: Let’s find out how to compile and execute the code samples.

1.2.1 Running the examples in the book
You can download a Zip file containing all the examples in this book from http://
itext.ugent.be/itext-in-action/. Unzip this file in the directory of your choice, but
be sure to name it something you can easily remember. After unzipping the file,
you should have a subdirectory called /examples. The examples are organized in
packages by chapter.

 The code snippets in this book all start with a comment line, for instance:
/* chapter01/HelloWorld.java */. This line tells you where to find the complete
sample code by giving you a subdirectory of <your_dir>/examples/ (in this case
<your_dir>/examples/chapter01) and the name of the Java source file (Hello-
World. java). If an example needs some extra resources (such as an image or
an XML file), you’ll find them in a subdirectory: <your_dir>/examples/chapter
<chapter_number>/resources.

 Whenever extra fonts are needed (TTF, OTF, or TTC files, for example), they
should be in the directory C:/Windows/Fonts. You’ll need to adapt this hardcoded
path in the example if you’re working on a Mac, Linux, or Unix OS, or if the fonts
are stored elsewhere on your Windows system.

NOTE Never use hardcoded paths in your production code. I wanted the examples to
be simple, so I didn’t use code to load properties files or fetch informa-
tion from a Java Naming and Directory Interface (JNDI) repository. You
should use a more robust solution to refer to fonts or any other resource
once you start writing your own code.

You’ll also need to download a file containing all the Java archives that are needed
to run the examples. The Zip file with the examples comes with a build.xml file
that expects these jars to be present in the directory called <your_dir>/bin. If
you’re used to working with ANT—the standard tool used to build and execute
Java code—you’ll immediately feel comfortable with it.

 The action target allows you to compile and execute each example like this:

$ ant –Dchapter=01 –Dexample=HelloWorld action

Although this is the official way to run ant, with the target at the end of the com-
mand, I find it more practical to switch the order of parameters and target like this:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

12 CHAPTER 1
iText: when and why
ant action –Dchapter=01 –Dexample=HelloWorld

It saves you a few keystrokes to use the Up arrow to repeat and the Backspace
key to change a command previously called in your shell (such as DOS or bash).
This particular command compiles and executes a “Hello, World” example. The
source code can be found in the directory <your_dir>/examples/chapter01/Hello-
World.java. This Java source file is compiled to <your_dir>/bin/classes/chapter01/
HelloWorld.class, and the file HelloWorld.pdf appears in <your_dir>/examples/
chapter01/results as soon as the compiled code is executed.

 After a while, you’ll have generated lots of files—compiled Java classes, PDF
documents, and so forth. You can remove all these files at once by using the clean
target for the ant command.

 Once you succeed in running these examples, integrating iText into your own
application should be a piece of cake. Just add the iText.jar to your CLASSPATH,
and start coding. If you’re new to Java development, and you have trouble find-
ing where to put the jar or where to change the CLASSPATH in a web application,
please consult your application server’s manual.

 If you’re not ready to compile and execute these examples yet, you can turn to
the iText toolbox first. This toolbox offers some ready-to-use tools that don’t
require any knowledge of Java or PDF; you only need a JRE.

1.2.2 Experimenting with the iText toolbox

Originally, iText was developed as a developer’s library, meaning that it wasn’t
aimed at an end-user market. Developers could integrate iText into their Java
web applications or standalone Java programs, but the library itself didn’t have a
user interface.

 When the first PDF manipulation classes were added to iText, some simple
command-line applications for splitting, encrypting, and concatenating PDF
files were provided as examples in the iText tutorial. Later, these sample appli-
cations were moved to a com.lowagie.tools package.

 Mailing-list questions made it clear that not many people were using com-
mand-line tools, probably because they aren’t user-friendly. So, a small GUI called
the iText toolbox was developed. The toolbox has now become a means to test
part of the iText functionality without having to write any source code.

 You can open the toolbox by executing the iText jar file:

java -jar iText.jar

In figure 1.1, some plug-ins are opened in an internal window of the toolbox.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

iText: first contact 13
The toolbox contains three menu items:

■ File—The File > Close command closes the toolbox.
■ Tools—A selection of plug-ins is loaded from the package com.lowagie.-

tools.plugins when you open the toolbox. These plug-ins are organized
in different categories under the Tools menu.

■ Help—Choosing Help > About directs you to a web page describing the
tools, and Help > Version shows the list of tools that were loaded and
their versions.

NOTE By going to the URL http://itext.ugent.be/library/itext.jnlp, you can use
the Java Network Launching Protocol (JNLP) to download and start the
jar as a Java Web Start (JWS) application. The application should start
automatically. Notice that you’ll get a security warning because I signed
the jar with a self-signed certificate.

Most of the plug-ins are self-explanatory. In the chapters that follow, we’ll dig into
the mechanics of some of these tools. Whenever there’s a toolbox tool that illus-
trates some specific functionality, I’ll insert a note about it like this:

Figure 1.1 The iText toolbox
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

14 CHAPTER 1
iText: when and why
TOOLBOX com.lowagie.tools.plugins.Burst (Manipulate) The verb to burst has
different meanings. One of its meanings is “to divide paper; to separate
continuous stationery such as computer printout into individual sheets.”
In the context of electronic paper, to burst a PDF means splitting it into
single pages.

For instance, using the Burst plug-in on a three-page file named
HelloWorld.pdf generates three separate files—HelloWorld_1.pdf,
HelloWorld_2.pdf, and HelloWorld_3.pdf—each containing a single
page of the original document, to which the number after the under-
score corresponds.

Each plug-in can be used in three different ways:

■ From an internal window in the toolbox—You can fill in the parameters for the
tool (source file, destination file, and so on) by choosing Arguments in the
internal window’s menu. By clicking Tool, you can ask the tool for its Usage,
consult the Arguments, and Execute the tool. Another (optional) menu
item is Execute+Open. There’s always a Close item to close the window.

■ As a command-line tool—For instance, if you want to burst a PDF file from the
command line, you can call the plug-in like this:

java –cp ./iText.jar com.lowagie.tools.plugins.Burst HelloWorld.pdf

Calling the plug-in without any arguments will show you the Usage
information.

■ From another Java application—Construct a String array with the arguments
and call the main method of the plug-in:

/* chapter01/HelloWorldBurst.java */
String[] arg = {"HelloWorldRead.pdf"};
com.lowagie.tools.plugins.Burst.main(arg);

We’ll create some more HelloWorld PDF files in the next chapter to get acquainted
with iText. First, let’s look at the more interesting examples this book has in store.
Let me tell you a story that could have happened to you.

1.3 An almost-true story

I graduated as a civil architectural engineer, and I started my professional career
in the Geographical Informations Systems (GIS) division of Tractebel Informa-
tion Systems (TRASYS), in Brussels, which is now owned by the international
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

An almost-true story 15
industrial and services group Suez. While I was looking for an application that
could run continuously throughout this book, I started drawing the map of a fic-
tional city called Foobar. On this map, I added a university campus. That way, I
combined my GIS background with my current professional situation. I thought
of a story that would make an employee of the fictive Technological University of
Foobar (TUF) the heroine. Her name is Laura, and she will be your guide
throughout the longer examples in this book.

 The following subsections tell the beginning of Laura’s story, but their main
purpose is to give you a preview of the iText features that will be explained in
parts 2, 3, and 4. Starting with chapter 2, you’ll find lots of small, almost atomic
source code examples that explain how to do something; later, some longer real-
world examples will show you how it all works together. The screenshots in this
section represent the output of these longer examples.

1.3.1 Some Foobar fiction

Laura is preparing to attend yet another staff meeting. According to her busi-
ness card, she’s a software architect for the central administration at TUF.
When asked for her job title, Laura prefers to call herself a Java developer,
plain and simple.

 TUF is a small university located in the city of Foobar. Apart from the central
administration, it consists of only two departments: the Department of Science
and the Department of Engineering. There has been a constant rivalry between
the departments, one of the catalysts being the introduction of computer science
as a new study discipline. That was over 20 years ago. At that time, the board of
the university decided to follow in the footsteps of King Solomon and divided
the discipline over both departments. Undergraduates had to enroll in the
Department of Science, whereas graduate students enrolled in the Department
of Engineering.

 It was a great idea in theory, but in practice, it was a burden. Making deci-
sions concerning the educational program of the complete field of study was no
longer a sinecure. Hidden agendas and internal differences between the
departments often got in the way of good management. Informatics students
suffered from this pragmatic division, too—their colleagues from other scientific
disciplines didn’t consider them to be “real” scientists in the first years of their
studies, and during their graduate years, their peers didn’t regard them as
being “engineer material.”
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

16 CHAPTER 1
iText: when and why
 Laura was aware of the feeling, but she was always careful never to be dragged
into a discussion about it. For a long time, the university played with the idea of
redesigning all the software applications supporting the core business processes
of the central administration. Finally, a decision was made, and a committee was
formed with authorities from both departments. Laura, of course, was also
invited. She feared the worst and decided to keep quiet while the debates between
scientists and engineers heated up. At one point, she forgot where she was and
began to daydream.

1.3.2 A document daydream

Computer sciences, software engineering, Information and Communication
Technology (ICT)—all of these disciplines have their differences, but is dividing
really the best way to conquer the hearts of students? Laura had given this ques-
tion a lot of thought. “Suppose I were given the opportunity to start a new department,”
she said to herself, “a department that combined all the courses and education in the field
of computer science and engineering. What would I need?

 She decided to start with the following:

■ Promotional flyers for the new department
■ A guide containing study programs (tables)
■ A course catalog (columns)

In part 2 of this book, all the elements needed to bring these assignments to
completion will be explained step by step throughout four chapters. At the
end of each chapter, you’ll work with Laura to create the documents she’s
dreaming of.

Making a flyer
As Laura’s new colleagues, the first thing we’ll do is create a flyer with the univer-
sity’s logo, a paragraph welcoming new students, lists of programs offered by the
department, and links to the university’s web site. See figure 1.2 for an example.

 You can consult section 4.3 if you need to generate a flyer with paragraphs,
lists, and anchors. If you need images, you’ll also need to read section 5.3. These
sections explain how to write source code that allows you to create an exact copy
of the PDF in figure 1.2.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

An almost-true story 17
Composing a study guide
Once students have seen our flyer, they may be interested in studying at the
Department of Computer Science and Engineering. If they contact the university
for more information, we should be able to send them a study guide. One part of
the study guide should contain tables representing the study programs. Figure 1.3
shows the first page of the program for students who want to earn a graduate
degree in complementary studies in applied informatics.

 The second part of the study guide should describe the courses that are men-
tioned in the study program. Figure 1.4 shows how we could organize this infor-
mation in columns with tables and images.

Figure 1.2 A PDF document containing some basic text elements, such as paragraphs, lists, anchors,
and images
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

18 CHAPTER 1
iText: when and why
Chances are, you’ve been working on projects that deal with similar information.
Maybe you’ve been asked to publish content coming from a database or an XML
repository in the form of some neat-looking PDF reports.

 If that is the case, you may want to read chapters 6 and 7 and discover how to
shape your data into tabular or columnar text elements. The code that was used
to create figure 1.3 and figure 1.4 is discussed in sections 6.3 and 7.5.

1.3.3 Welcoming the student

The university will welcome students from all over the world, so it’s important
that we provide them with an information package with some information written
in different languages. We’ll also have to give them a map of the city so that
they’re able to find their way to the campus. The five chapters of part 3 deal with
PDF text and graphics, which we’ll need to produce documents using different
fonts and writing systems, and a map of the city of Foobar.

Figure 1.3 A PDF document containing basic text elements, organized in tables
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

An almost-true story 19
Whereas part 2 discusses mainly iText-specific functionality, part 3 goes to the
core of iText and focuses on the internal structure of a PDF page.

Producing documents in different languages
In the ICT world, developers have adopted the English language as the de facto
standard for human communication. That’s why I’m writing this book in English,
although my mother tongue is Dutch. At some point, however, you may be asked
to create documents with non-English text. You probably won’t have a problem
displaying text in French, even with all those little accents and cedillas; those
characters can be found in the standard latin-1 encoding. But to display some
special characters that are common in languages such as Polish or Turkish, you
have to use another encoding. The same goes for Greek and Russian, languages
that have completely different alphabets than English.

Figure 1.4 A PDF document containing basic text elements, organized in columns
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

20 CHAPTER 1
iText: when and why
It gets harder when you need to display text in an Asian alphabet, because such
alphabets use many different symbols or ideograms organized into many differ-
ent character sets. Another issue arises: In general, Asian languages can be writ-
ten from left to right, but it’s also common to write text in vertical columns read
from top to bottom and right to left. Producing electronic documents using such
a writing system can be complex using standard software. The same goes for
Semitic languages, such as Arabic and Hebrew, which have scripts that are written
from right to left.

 This is the problem Laura is facing. Foobar is a small city in a small country.
In order to be a successful university, TUF invites students from all over the
world. Laura isn’t multilingual, but she has found a web site with the translation
of the word peace in a few hundred languages. To prove that we can generate a
welcoming document in different languages, we’ll help Laura display these
words of peace.

 Figure 1.5 shows a document with a message of peace in English, Arabic, and
Hebrew, respectively. Even if you can’t read Arabic or Hebrew, you can see these
languages are written from right to left by looking at the position of the exclama-
tion point and the comma. The order of the numbers and Latin characters in the
abbreviation for Internet Internationalization (I18N) is preserved.

 If you need support for special character sets, encodings, or writing systems,
you’ll find chapters 8 and 9 indispensable.

Figure 1.5 A PDF document demonstrating different writing systems
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

An almost-true story 21
Drawing a city map
Laura has made a map of the city of Foobar in the Scalable Vector Graphics (SVG)
format, and throughout this book we’ll attempt to create a PDF document based
on this SVG file. First we’ll deal with the streets (paths) and the squares (shapes),
as shown in figure 1.6.

 In chapter 10, the first chapter on PDF’s graphics state, you’ll learn about path
construction and path-painting operators and operands. A first attempt to gen-
erate the map of Foobar appears in section 10.5.

Adding street names to the map
We’ll continue discussing the graphics state in chapter 11, where you’ll learn that
PDF’s text state is a subset of the graphics state. The text state will help us add the
street names to the map. Figure 1.7 shows the result of a second attempt to draw
the map of Foobar (see section 11.6).

 The third attempt at drawing the map will use Apache Batik to parse the SVG.

Figure 1.6 Using iText to draw graphics such as lines and shapes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

22 CHAPTER 1
iText: when and why
Adding interactive layers to the map
Apache Batik is a library that can parse an SVG file and draw the paths, shapes,
and text that are described in the form of XML to a java.awt.Graphics2D object.
Chapters 10 and 11 present custom iText methods that are closely related to the
operators and operands listed in the PDF Reference, and chapter 12 explains that
you can also use an API you probably know already: the java.awt package.

 For our first two attempts, we used one SVG file with the graphics and one with
the street names in English, but Laura also wants to add the street names in
French and Dutch. This task can be achieved using PDF’s optional content feature,
discussed in chapter 12. By adding each set of street names to a different optional
content group, Laura can give foreign students the option to look at the map in the
language of their choice, as shown in figure 1.8.

Figure 1.7 Using iText to draw text at absolute positions
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

An almost-true story 23
In section 12.4, we’ll create a final version of the map of Foobar. Using Apache
Batik, we’ll parse different SVG files into different layers that can be turned on
and off interactively.

 This brings us to part 4, “Interactive PDF.”

1.3.4 Producing and processing interactive documents

Laura can be hard on herself sometimes. She isn’t quite satisfied with the study
guide and course catalog shown in figures 1.3 and 1.4. She wants to add interac-
tivity and extra features such as a watermark and page numbers.

Making documents interactive
Because a student’s curriculum can consist of many different courses, it may be
necessary to help students navigate through the course catalog. Let’s add some
extra links, annotations, and bookmarks to the document.

 Chapter 4 discusses some building blocks with interactive features, but if you
want the full assortment, you should dig into chapter 13, where you’ll learn about
setting viewer preferences; page labels and bookmarks; and actions and destina-
tions. In section 13.6, we’ll come back to the course catalog example and adapt it,
giving it the interactive features shown in figure 1.9.

Figure 1.8 A PDF document demonstrating the use of optional content groups.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

24 CHAPTER 1
iText: when and why
Adding watermarks and page numbers
Figure 1.10 shows pages 4 and 5 of the course catalog. The course number has
been added as a header, and every file has the university’s logo as its watermark.

 In chapter 14, “Automating PDF Creation,” you’ll learn about page events that
let you add content (such as watermarks or page numbers) automatically every
time a new page is triggered.

Using iText in a web application
You may have wondered what the letter i in iText stands for. You’ll find out while
reading about interactive PDF. You already know that iText was initially designed to
generate PDF in a web application and that its original purpose was to serve text
interactively based on a user specific query. It’s easy to adapt the code of the
examples so that they can be integrated in a web application, as long as you know
how to avoid some specific browser-related issues.

Figure 1.9 A PDF document demonstrating some interactive features.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

An almost-true story 25
You can write a web application that is able to create a personalized course catalog
for every student. Figure 1.11 shows a simple HTML form with the different
courses that are in the catalog. This form was created dynamically based on the
bookmarks inside the course catalog PDF.

 Students can select the courses that interest them and create a personalized
version of the course catalog. Figure 1.12 shows a PDF file containing information
about the three courses that were selected in the HTML form shown in figure 1.11.
Note that this screenshot also demonstrates the use of the Pages panel.

 Chapter 17 lists the common pitfalls you should avoid when integrating iText
in a web application. The source code used to produce the web pages shown in
figures 1.11 and 1.12 can be found in section 17.2.

 Notice that we’ve skipped chapters 15 and 16. These two chapters introduce
the theory for another example that begins in section 17.2 and is completed in
section 18.4.

Figure 1.10 Using page events to add page numbers and watermarks
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

26 CHAPTER 1
iText: when and why
Figure 1.11 An HTML form listing the different courses in the course catalog

Figure 1.12 A PDF served by a web application containing a personalized
course catalog
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

An almost-true story 27
Creating and filling forms using iText
Exchange students who want to study at the TUF have to fill out a Learning
Agreement form, and Laura wants to make this form available online. Students
can print this form, fill it out manually, and send it to the university, but it would
be nice if they also had the option to submit it online. That way, the courses
they’ve chosen can be preregistered in the database, and when the student
arrives on campus, the document can be checked and signed (manually or with a
digital signature).

 Figure 1.13 shows a PDF document with fillable form fields (the technical term
is AcroFields in an AcroForm); the document is opened in the Adobe Reader
browser plug-in. It can be submitted to a server.

 Chapter 15 explains how you can create such a form using iText, and chapter
16 explains how you can fill in the form fields programmatically. We’ll also flatten
the form to create a registration card for the students, and you’ll learn how to add
a digital signature to a PDF file.

Figure 1.13 A PDF form in a browser
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

28 CHAPTER 1
iText: when and why
In figure 1.14, a Java Server Pages (JSP) page displays the data that was sent to the
server after submitting the form shown in figure 1.13.

 Chapter 16 explains the different means that are available to retrieve the text
values of the parameters that were submitted in the form of an (X)FDF file, but
you’ll need to read chapter 18 to understand how to extract the letter of introduc-
tion that was submitted as a file attachment.

1.3.5 Making the dream come true

Suddenly there is applause in the conference room. Laura abruptly wakes from
her daydream to find everyone looking at her. The chairman of the committee
nods at Laura in a consenting way, and says, ”Well, Laura, those are some good
ideas you’ve been sharing with us. Why not make a project out of them?”

 Only then Laura does realize she hasn’t been as quiet as she had intended. She
has been speaking out loud, sharing her dreams and ideas with the complete
committee, which is now, to her surprise, applauding her. For a moment she pan-
ics, but soon she calms down. Why wouldn’t it be possible to make this dream
come true?

 I hope you’ll understand that any resemblance to a real university or real per-
sons, living or dead, is purely coincidental. There is no city of Foobar. Nor does
this fictitious city have a Technological University. And there most certainly isn’t
any rivalry between the different fictitious departments; I made that up to add
some spice to the story. And yet, if you’ve read the preface, you know where the

Figure 1.14 Displaying the data that was submitted using a PDF AcroForm
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 29
inspiration to write this story came from. Stories like this happen to developers all
the time; iText was born from a situation that was similar to the one Laura is fac-
ing now. This story could happen to you too. If it does, you don’t have to worry
about document problems anymore—this book can solve most of them for you.

1.4 Summary

The iText API was conceived for a specific reason: It allows developers to produce
PDF files on the fly. The short history on the origin of the library made it clear
that iText can easily be built into a web application to serve PDF documents to a
browser dynamically.

 We talked about the different ports of iText, but we chose to write all the book
samples in Java, using the original iText. We compiled and executed a first exam-
ple as a simple standalone application, and we also opened the iText toolbox.
The toolbox was written to demonstrate some of the iText functionality from a
simple GUI; you don’t need to write any source code to use it.

 The final section of this chapter offered you an à la carte view of what is pos-
sible with iText. Every figure in this section corresponds with a milestone in the
iText learning process. If you plan on reading this book sequentially, you can use
the corresponding sections as exercises to get acquainted with the functionality
you’ve acquired earlier in the chapter.

 If you intend to read this book to help you with a specific assignment, and
your Chief Technology Officer (CTO) or your customer demands a proof of con-
cept before you’re allowed to start coding, just follow the pointers accompanying
each screenshot in this section. You’ll notice that most of the Foobar examples are
XML based. You can feed these ready-made solutions with an XML file adapted to
another working environment or another line of business—for instance, replac-
ing students with customers and courses with products. After only a few hours of
work, you should be able to convince your CTO or customer that iText may be the
answer to their prayers.

 I can’t guarantee you won’t have to do any extra programming to integrate the
examples into your final application—but hey, wouldn’t we all be out of work if
the contrary were true?
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF engine jump-start
This chapter covers
■ Hello World, Hello iText
■ Creating a PDF document in five steps
■ Manipulating PDF: the basics
30

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 31
If you’re new to iText, reading this chapter will be like your first day on a new job.
Somebody gives you a quick tour of the building and makes you shake hands with
people you don’t know, and all the while you’re hoping you’ll be able to remem-
ber all of their names. At the end of the day, you may have the feeling you haven’t
done anything substantial, but really, you’ve done something important: You’ve
said “hello” to everyone.

 In this chapter, you’ll create new PDF documents in five easy steps, and
you’ll learn several ways to implement one of those steps: adding content.
You’ll also learn how to read and manipulate existing PDF files using several
iText classes.

 Whereas the previous chapter gave you an overview of parts 2, 3, and 4
using screenshots of some real-world PDF documents, this chapter presents the
most important mechanisms in iText. These mechanisms will return in almost
every example.

2.1 Generating a PDF document in five steps

Following the principle that you shouldn’t try to run before you can walk, we’ll
start with a simple PDF file. Figure 2.1 shows you a one-page PDF document say-
ing nothing more than “Hello World”.

 The code that was used to generate this “Hello World” PDF is shown in list-
ing 2.1. Note that the numbers to the side indicate the different steps.

Figure 2.1 Output of most of the “Hello World “examples in this chapter
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

32 CHAPTER 2
PDF engine jump-start
/* chapter02/HelloWorld.java */
Document document = new Document();
try {
 PdfWriter.getInstance(document,
 new FileOutputStream("HelloWorld.pdf"));
 document.open();
 document.add(
 new Paragraph("Hello World"));
} catch (Exception e) {
 // handle exception
}
document.close();

We’ll devote a separate subsection to each of these five steps:

Step b Create a Document.
Step C Get a DocWriter instance (in this case, a PdfWriter instance)
Step D Open the Document.
Step E Add content to the Document.
Step F Close the Document.

In every subsection, we’ll focus on one specific step. You’ll apply small changes to
step b in the first subsection, to step c in the second, and so forth. This way,
you’ll create several new documents that are slightly different from the one in fig-
ure 2.1. You can hold these variations on the original “Hello World” PDF against a
strong light (literally or not) and discover the differences and/or similarities
caused by the small source code changes. In the final subsection (corresponding
with step f), we’ll weigh the design pattern used for iText against the Model-
View-Controller (MVC) pattern.

2.1.1 Creating a new document object

Document is the object to which you’ll add content: the document data and meta-
data. Upon creating the Document object, you can define the page size, the page
color, and the margins of the first page of your PDF document. In listing 2.1,
step b, a Document object is created with default values.

 You can use a com.lowagie.text.Rectangle object to create a document with a
custom size. Replace step b in listing 2.1 with this snippet:

/* chapter02/HelloWorldNarrow.java */
Rectangle pageSize = new Rectangle(216f, 720f);
Document document = new Document(pageSize);

Listing 2.1 Creating a HelloWorld.pdf in five steps

 b

 C
 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 33
The two float values passed to the Rectangle constructor are the width and the
height of the page. These values represent user units. By default, a user unit cor-
responds with the typographic unit of measurement known as the point. There are
72 points in one inch. You’ve defined a width of 216 pt (3 in) and a height of 720
pt (10 in). If you open the resulting PDF in Adobe Reader and look at the tab File
> Document Properties > Description, you can check whether the document
indeed measures 3 x 10 in.

Page size
Theoretically, you could create pages of any size, but the PDF specification1

imposes limits depending on the PDF version of the document that contains those
pages. For PDF 1.3 or earlier, the minimum page size is 72 x 72 units (1 x 1 in); the
maximum is 3,240 x 3,240 units (45 x 45 in). Later versions have a minimum size
of 3 x 3 units (approximately 0.04 x 0.04 in) and a maximum of 14,400 x 14,400
units (200 x 200 in).

 We’ll discuss some other, more general version limitations in chapter 3.

FAQ Are there methods in iText to convert points into inches, inches into meters, and so
forth? No. You’ll notice that all measurements are done in points and
occasionally in thousandths of points (see chapter 9). The conversion
from and to the metric system and other systems of measurement has to
be handled in your code. Remember that 1 in = 2.54 cm = 72 points.

In most cases, you’ll probably prefer using a standard paper size. If you want to
write a letter to the world using the standard letter format, you have to change
step b like this:

/* chapter02/HelloWorldLetter.java */
Document document = new Document(PageSize.LETTER);

This creates a PDF document sized at 8.5 x 11 in, whereas the first “Hello World”
example was created with the default page size DIN A4 (8.26 x 11.69 in or 210 x
297 mm).

1 Adobe Systems Inc., PDF Reference, fifth edition, Appendix H, section 3, “Implementation notes,”
http://partners.adobe.com/public/developer/pdf/index_reference.html.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

34 CHAPTER 2
PDF engine jump-start
NOTE A4 is the most common paper size in Europe, Asia, and Latin America.
It’s specified by the International Standards Organization (ISO). ISO
paper sizes are based on the metric system. The height divided by the
width of all these formats is the square root of 2 (1.4142).

PageSize is a class written for your convenience. It contains nothing but a list of
static final Rectangle objects, offering a selection of standard paper sizes: A0 to
A10, B0 to B5, LEGAL, LETTER, HALFLETTER, _11x17, LEDGER, NOTE, ARCH_A to ARCH_E,
FLSA, and FLSE. The orientation of most of these formats is Portrait. You can
change this to Landscape by invoking the rotate method on the Rectangle. Step
b now looks like this:

/* chapter02/HelloWorldLandscape.java */
Document document = new Document(PageSize.LETTER.rotate());

Another way to create a Document in Landscape is to create a Rectangle object with
a width that is greater than the height:

/* chapter02/HelloWorldLandscape2.java */
Document document = new Document(new Rectangle(792, 612));

The results of both Landscape examples look the same in Adobe Reader. The
Reader’s Description tab doesn’t show any difference in size. Both PDF docu-
ments have a page size of 11 x 8.5 in (instead of 8.5 x 11 in), but there are subtle
differences internally:

■ In the first file, the page size is defined with a size that has a width lower
than the height, but with a rotation of 90 degrees.

■ The second file has the page size you defined without any rotation (a rota-
tion of 0 degrees).

This difference will matter when you want to manipulate the PDF.

Page color
If you use a Rectangle as pageSize parameter, you can also change the back-
ground color of the page. In the next example, you change the background color
to cornflower blue by setting the color of the Rectangle with setBackgroundColor:

/* chapter02/HelloWorldBlue.java */
Rectangle pagesize = new Rectangle(612, 792);
pagesize.setBackgroundColor(new Color(0x64, 0x95, 0xed));
Document document = new Document(pagesize);

The Color class used in this example is java.awt.Color; the colorspace is Red-
Green-Blue (RGB) in this case. If you need another colorspace—for instance,
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 35
Cyan-Magenta-Yellow-Black (CMYK)—you can use the class com.lowagie.text.-
pdf.ExtendedColor. You can find a class diagram of the color classes in appen-
dix A, section A.8; you’ll read all about colors in chapter 11.

 The iText API includes a third constructor of the Document class that we didn’t
discuss yet. This constructor not only takes a Rectangle as a parameter, but four
float values as well.

Page margins
In step e of the example, you add a Paragraph object to the document. This
paragraph contains the words “Hello World,” but how does iText know where to
put those words on the page? The answer is simple: When adding basic building
blocks such as Paragraph, Phrase, Chunk, and so forth to a document, iText keeps
some space free at the left, right, top, and bottom. These are the margins of your
document. All the “Hello World” examples you’ve created so far have default
margins of half an inch (36 units in PDF). Let’s change step b one last time:

/* chapter02/HelloWorldMargins.java */
Document document = new Document(PageSize.A5, 36, 72, 108, 180);

The PDF document now has a left margin of 36 pt (0.5 in), a right margin of 72 pt
(1 in), a top margin of 108 pt (1.5 in), and a bottom margin of 180 pt (2.5 in).

 You can mirror the margins by adding a line of code after step c:

/* chapter02/HelloWorldMirroredMargins.java */
document.setMarginMirroring(true);

In this example, all the odd pages have a left margin of 36 pt and a right margin
of 72 pt. For the even pages, it’s the other way around.

2.1.2 Getting a DocWriter instance

Once you have a document instance, you need to decide if you’ll write the docu-
ment to a file, to memory, or to the output stream of a Java servlet. You also need
to decide if you’ll produce PDF or another format that is supported by iText.

 Step c combines these two actions:

■ It tells the DocWriter to which OutputStream the resulting document should
be written.

■ It associates a Document with an implementation of the abstract DocWriter
class. In this book, we focus on the class PdfWriter because we’re interested
in generating PDF. It can be useful to know that you can also get a DocWriter
instance that produces RTF (using RtfWriter2) or HTML (using HtmlWriter).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

36 CHAPTER 2
PDF engine jump-start
These writers translate the content you’re adding to the Document object into
the syntax of some specific document format (PDF, RTF, or HTML).

The class diagram in appendix A, section A.1, shows how the different DocWriter
classes relate to each other. In the upper-left corner, you’ll recognize the Docu-
ment object. One of the member values is an ArrayList of listeners. These listen-
ers implement the DocListener interface. For instance, if you add an element to
the document, the document forwards it to the add method of its listeners. The
DocListener interface is implemented by different subclasses of the abstract
class DocWriter.

 As you can see in the class diagram, the constructors of these classes are pro-
tected. You can only create them using the public static getInstance() method.
This method creates the writer and adds the newly created object as a listener to
the document. If necessary, some helper classes are created for internal use by
iText only; see, for instance, the PdfDocument or RtfDocument object.

Creating the same document in different formats
Let’s add some extra lines to step c and see what happens:

/* chapter02/HelloWorldMultiple.java */
PdfWriter.getInstance(document,
 new FileOutputStream("HelloWorldMultiple.pdf"));
RtfWriter2.getInstance(document,
 new FileOutputStream("HelloWorldMultiple.rtf"));
HtmlWriter.getInstance(document,
 new FileOutputStream("HelloWorldMultiple.htm"));

Because you’re careful only to use code that is valid for all three presentation for-
mats (PDF, RTF, and HTML), you’re able to generate three different files (of dif-
ferent types) using the same code for steps b, d, e, and f. Note that this
approach won’t work with all the building blocks described in this book.

Choosing an OutputStream
While you’re adding content to the document, the writer instance gradually writes
PDF, RTF, or HTML syntax to the output stream. So far, you’ve written simple PDF,
RTF, and HTML documents to a file using the java.io.FileOutputStream. Most
examples in this book are written this way so you can try the examples on your
own machine without having to install additional software such as a web server or
a J2EE container.

 In real-world applications, you may want to write a PDF byte stream to a
browser (to a ServletOutputStream) or to memory (to a ByteArrayOutputStream).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 37
All of this is possible with iText; you can write to any java.io.OutputStream you
want. If you want to write a PDF document to the System.out to see what PDF
looks like on the inside, you can change step c like this:

/* chapter02/HelloWorldSystemOut.java */
PdfWriter.getInstance(document, System.out);

If you try this example, you won’t recognize the words “Hello World” in the out-
put; but you’ll notice different structures: objects marked obj, dictionaries
between << and >> brackets, and a lot of binary gibberish. In chapter 18, we’ll look
under the hood of iText and PDF, and you’ll learn to distinguish the different
parts that make up a PDF file. But this is stuff for people who really want to dig
into the Portable Document Format; you’re probably more interested in seeing
how to serve a PDF file in a web application.

 Class javax.servlet.ServletOutputStream extends java.io.OutputStream, so
you could try getting an instance of PdfWriter with response.getOutputStream()
as a second parameter. This works on some—but, unfortunately not all—brows-
ers. Chapter 17 will tell you how to avoid the many pitfalls you’re bound to
encounter once you start integrating iText (or any other dynamic PDF-producing
tool) in a J2EE web application. Notice that those problems are in most cases
browser-related, not iText-related.

 For now, let’s look at something simpler: opening the document.

2.1.3 Opening the document

Java programmers may not be used to having to open streams before being able
to add content. You create a new stream and write bytes, chars, and Strings to it
right away.

 With iText, it’s mandatory to open the document first. When a document
object is opened, a lot of initializations take place in iText. If you use the param-
eterless Document constructor and you want to change page size and margins
with the corresponding setter methods, it’s important to do this before opening
the document. Otherwise the default page size and margins will be used for the
first page, and your page settings will only be taken into account starting from
the second page.

 The following snippet opens a document in which the first page is letter size,
landscape oriented, with a left margin of 0.5 in, a right margin of 1 in, a top mar-
gin of 1.5 in, and a bottom margin of 2 in:

/* chapter02/HelloWorldOpen.java */
Document document = new Document();
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

38 CHAPTER 2
PDF engine jump-start
PdfWriter.getInstance(document, new
FileOutputStream("HelloWorldOpen.pdf"));

document.setPageSize(PageSize.LETTER.rotate());
document.setMargins(36, 72, 108, 144);
document.open();

One of the most common questions iText users ask is why page settings apply to
all pages but the first. The answer is almost always the same: You’ve added the
desired behavior after opening the Document instead of before.

 Many document types keep version information and metadata in the file
header. That’s why you should always set the PDF version and add the metadata
before opening the document.

The PDF header
When document.open() is invoked, the iText DocWriter starts writing its first bytes
to the OutputStream. In the case of PdfWriter, a PDF header is written, and by
default it looks like this:

%PDF-1.4
%âãÏÓ

The first line shows the PDF version of the document; that’s obvious. The second
line may seem a little odd. It starts with a percent symbol, which means it’s a PDF
comment line; thus it doesn’t seem to have any function. It isn’t necessary to add
this line, but doing so is recommended to ensure the “proper behavior of file
transfer applications that inspect data near the beginning of a file to determine
whether to treat the file’s content as text or as binary.”2

 PDF documents are binary files. Some systems or applications may not pre-
serve binary characters, and this almost inevitably makes the PDF file corrupt.
According to the PDF Reference, this problem can be avoided by including at
least four binary characters (codes greater than 127) in a comment near the
beginning of the file to encourage “binary treatment.”

 For the time being, iText generates PDF files with version 1.4 by default. If you
look at table 2.1, you’ll notice that version 1.4 is rather old.

 If you want to use functionality that is available only in a PDF version other
than v1.4, you can change the default PDF version with the method PdfWriter.-

2 See section 3.4.1 of the PDF Reference version 1.6.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 39
setPdfVersion(), using one of the static values displayed in the third column of
table 2.1:

/* chapter02/HelloWorldVersion_1_6.java */
Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("HelloWorld_1_6.pdf"));
writer.setPdfVersion(PdfWriter.VERSION_1_6);
document.open();

This file is intended to be viewed in Adobe Reader 7.0 or later. If you use an older
version of Adobe Reader, you’ll get a warning (Acrobat Reader 3.0 and later) or
even an error (all versions before Acrobat Reader 3.0). The cause of this error will
be explained in the next chapter.

FAQ Why doesn’t iText generate PDF in the latest PDF version by default? The
iText developers consider themselves to be early adopters of the newest
versions in many ways, but with respect to the end users of their software,
they deliberately didn’t use the most recent version. An end user may
still be using a viewer that only supports older PDF versions.

Changing the version number of the PDF has to be done before opening the docu-
ment, because you can’t change the header once it’s written to the OutputStream.

 The metadata of a PDF document is kept in an info dictionary. This dictionary is
a PDF object that can be put anywhere in the PDF. In theory, it would be possible
to add metadata after opening the document when producing PDF only, but in

Table 2.1 Overview of the PDF versions

PDF version Year iText constant

PDF-1.0 1993 -

PDF-1.1 1994 -

PDF-1.2 1996 PdfWriter.VERSION_1_2

PDF-1.3 1999 PdfWriter.VERSION_1_3

PDF-1.4 2001 PdfWriter.VERSION_1_4

PDF-1.5 2003 PdfWriter.VERSION_1_5

PDF-1.6 2004 PdfWriter.VERSION_1_6
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

40 CHAPTER 2
PDF engine jump-start
practice iText doesn’t allow this. This was a design decision—an attempt to keep
the code to produce HTML, RTF, and PDF as uniform as possible.

Adding metadata
Let’s rewrite the HelloWorldMultiple example and change it into HelloWorld-
Metadata:

/* chapter02/HelloWorldMetadata.java */
document.addTitle("Hello World example");
document.addSubject("This example shows how to add metadata");
document.addKeywords("Metadata, iText, step 3, tutorial");
document.addCreator("My program using iText");
document.addAuthor("Bruno Lowagie");
document.addHeader("Expires", "0");
document.open();

In HTML, all this information is stored in the <head> section of the resulting file:

<head>
 <title>
 Hello World example
 </title>
 <meta name="subject" content="This example shows how to add metadata" />
 <meta name="keywords" content="Metadata, iText, step 3" />
 <!-- Creator: My program using iText -->
 <meta name="author" content="Bruno Lowagie" />
 <meta name="Expires" content="0" />
 <!-- iText 1.4 (by lowagie.com) -->
 <!-- CreationDate: Wed Dec 28 09:44:40 CET 2006 -->
</head>

In PDF, the metadata passed to addHeader is added as a key-value pair to the PDF
info dictionary. This example adds the Expires key. This has no meaning in the
PDF syntax, so it won’t have any effect on the PDF file. Figure 2.2 shows how the
metadata added to the info dictionary is visualized in the File > Document Prop-
erties > Description dialog box.

 Don’t change the producer information and the creation date. If you ever
need support from the mailing list, the producer information will tell which iText
version you’re using. In figure 2.2, you can immediately see that an old version of
iText is being used (iText 1.3.5 dates from October 2005).

 If you experience a problem with an iText-generated PDF file, you can use this
version number to check whether the problem is caused by a bug that has been
fixed in a more recent version.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 41
FAQ How do you retrieve the producer information programmatically? The iText
version, displayed as the producer information in the document prop-
erties, can also be retrieved programmatically with the static method
Document.getVersion(). If you look into the iText source code, you’ll
see that this method and the corresponding private static final
String ITEXT_VERSION may only be changed by Paulo Soares and
Bruno Lowagie. The underlying philosophy of this restriction is purely
a matter of courtesy. You can use iText for free, but in return you
implicitly have to give the product some publicity. The iText developers
hope you don’t mind granting them this small favor. It’s better than
having a watermark saying “free trial version” spoiling every page of
your document. Besides, the average end user never looks at the
Advanced section of the Document Properties and thus is never con-
fronted with this hidden persuader.

Now that you’ve added metadata and opened the document, you can start adding
real data.

Figure 2.2 Document properties of HelloWorldMetadata.pdf.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

42 CHAPTER 2
PDF engine jump-start
2.1.4 Adding content

This chapter explains the elementary mechanics of iText. Once these are under-
stood, you can start building real-world applications with real-world content. You
can copy and paste steps b, c, d, and F from any Hello World example into
your own applications; the principal part of your job will be implementing step
E: adding content to the PDF document.

 There are three ways to do this:

■ The easy way—Using iText’s basic building blocks
■ As a PDF expert—Using iText methods that correspond with PDF operators

and operands
■ As a Java expert—Using Graphics2D methods and the paint method in

Swing components

Listing 2.1 generated a “Hello World” PDF the easy way; now let’s create the same
PDF file using alternative techniques.

Using building blocks
In listing 2.1, you used a Paragraph object to add the words “Hello World” to
the document. Paragraph is one of the many objects that will be discussed in
part 2 of this book, “Basic building blocks.” These building blocks will let you
programmatically compose a document in a programmer-friendly way without
having to worry about layout issues. Each of these building blocks has its own
set of methods to parameterize properties such as the leading, indentation,
fonts, colors, border widths, and so forth. iText does all the formatting based on
these properties.

 Note that iText is not a tool to design a document. It’s not a word processor, nor
is it a What You See Is What You Get (WYSIWYG) tool—otherwise I would have
called it user-friendly instead of programmer-friendly. It’s a library that lets you,
the developer, produce PDF documents on the fly—for example, when you want
to publish the content of a database in nice-looking reports. In part 2, we’ll start
with simple text elements and images, but the key chapters will be chapter 6,
“Constructing tables,” and chapter 7, “Constructing columns.” Remember that if
you use iText’s basic building blocks, you don’t need to know anything about PDF.

 In some cases, this limited set of building blocks won’t be sufficient for your
needs, and you’ll have to use one of the alternatives.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 43
Low-level PDF generation
The content of every page in a PDF file is defined inside a content stream. In chap-
ter 18, “Under the hood,” we’ll look inside a PDF document. You’ll learn that the
content stream of a page is a PDF object of type stream. Listing 2.2 shows the
uncompressed content stream of the “Hello World” page created with listing 2.1.

<</Length 55>>stream
q
BT
36 806 Td
0 -18 Td
/F1 12 Tf
(Hello World)Tj
ET
Q

endstream

You immediately recognize the words “Hello World”; after reading part 3,
you’ll also understand the meaning of the other PDF operators and operands
that are between the keywords stream and endstream. When you use basic build-
ing blocks, you add these operators and operands internally using an object
called PdfContentByte.

 iText allows you to grab this object so that you can address it directly—with the
method PdfWriter.getDirectContent(), for example. Starting from the original
listing 2.1, you could replace step e with the following lines:

/* chapter02/HelloWorldAbsolute.java */
PdfContentByte cb = writer.getDirectContent();
BaseFont bf = BaseFont.createFont(
 BaseFont.HELVETICA, BaseFont.CP1252, BaseFont.NOT_EMBEDDED);
cb.saveState(); // q
cb.beginText(); // BT
cb.moveText(36, 806); // 36 806 Td
cb.moveText(0, -18); // 0 -18 Td
cb.setFontAndSize(bf, 12); // /F1 12 Tf
cb.showText("Hello World"); // (Hello World)Tj
cb.endText(); // ET
cb.restoreState(); // Q

I have added the corresponding PDF operators and operands in a comment sec-
tion after each line.

Listing 2.2 Content stream of the Hello World page

 b
 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

44 CHAPTER 2
PDF engine jump-start
 First you move the cursor to the starting position b. The default margin to
the right was 36 units. Note that the lower-left corner of the page is used as
the origin of the coordinate system by default. The height of the page (Page-
Size.A4.height()) is 842 units. You subtract the top margin: 842 – 36 = 806
units. That’s the starting position: x = 36; y = 806.

 Subsequently, you move down 18 units c. This is the line spacing. In the PDF
Reference, as well as in iText, the line spacing is called the leading. You could
reduce these two lines to one: cb.moveText(36, 788); that’s the position where you
add the “Hello World” paragraph using showText d. The other methods set the
state, define a text block, and set the font and font size.

 You can print the file that was generated using the first example (Hel-
loWorld.pdf) and the file generated using this code snippet (HelloWorldAbso-
lute.pdf), hold them both to a strong light, and see that their output is identical.
You may ask why one would go through the trouble of learning how to write PDF
syntax when adding a simple line of code in current iText versions will do the
work for you. But you have to take into account that this isn’t really a representa-
tive example.

 In real-world examples, you’ll often write to the direct content using the
PdfContentByte object—for example, to add page numbers or a page header
or footer at an absolute position. This PdfContentByte object offers you a maxi-
mum of flexibility and PDF power, as long as you take into account the words
of Spider-Man’s Uncle Ben: “With great power, there comes great responsibil-
ity.” If you use PdfContentByte, it’s advised that you know something about
PDF syntax.

 Don’t panic—it won’t be necessary to read the complete PDF Reference. Chap-
ters 10 and 11 of this book will explain everything you need to know. You’ll learn
about PDF’s graphics state and text state, and we’ll discuss the PDF coordinate sys-
tem and most of the operators and operands that are available.

 If you want to avoid this low-level PDF functionality, chapter 12 talks about
a third way to add content to a page: using the Java Abstract Windowing Tool-
kit (AWT).

Using java.awt.Graphics2D
In the original Star Trek series, the character Leonard “Bones” McCoy is often
heard to say things like “I’m a doctor, not a bricklayer!” You may now be having a
similar reaction—“I’m a Java developer, not a PDF specialist. I want to use iText
so that I can avoid learning PDF syntax!”
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 45
 If that is the case, I have good news for you. The class PdfContentByte has a
series of createGraphics() methods that let you create a subclass of the abstract
Java class java.awt.Graphics2D called com.lowagie.text.pdf.PdfGraphics2D. This
subclass overrides all the Graphics2D methods, translating them to PdfContent-
Byte calls behind the scenes.

 Once again, you replace step e in listing 2.1:

/* chapter02/HelloWorldGraphics2D.java */
PdfContentByte cb = writer.getDirectContent();
Graphics2D graphics2D =
 cb.createGraphics(PageSize.A4.width(), PageSize.A4.height());
graphics2D.drawString("Hello World", 36, 54);
graphics2D.dispose();

You can compare the result of this example to the “Hello World” files you pro-
duced using the basic building block or low-level approach. They’re identical.

 This third way of adding content is especially interesting if you’re writing GUI
applications using Swing components or objects derived from java.awt.Compo-
nent. These objects can paint themselves to a Graphics2D object, and therefore
they can also paint themselves to PDF using iText’s PdfGraphics2D object. Chap-
ter 12 will show you how to write the content displayed on the screen in a GUI
application to a PDF file. What you see on the screen is what you’ll get on paper.
There is no PDF syntax involved; it’s just standard Java.

FAQ How do you solve X problems? On UNIX systems, people working with this
PdfGraphics2D object—or even with simple methods that use the
java.awt.Color class—may encounter X11 problems that prompt this
error message: Can’t connect to X11 window server using xyz as the value of
the DISPLAY variable.

The Sun AWT classes on UNIX and Linux have a dependency on the X
Window System: You must have X installed in the machine; otherwise
none of the packages from java.awt will be installed. When you use the
classes, they expect to load X client libraries and to be able to talk to an
X display server. This makes sense if your client has a GUI. Unfortu-
nately, it’s required even if your client uses AWT but, like iText, doesn’t
have a GUI.

You can work around this issue by running the AWT in headless mode
by starting the Java Virtual Machine (JVM) with the parameter java.
awt.headless=true.

Another solution is to run an X server. If you don’t need to display
anything, a virtual X11 server will do.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

46 CHAPTER 2
PDF engine jump-start
You’ve said “Hello” to the world many times, creating PDF documents from scratch
in many different ways. You may have an idea by now of which approach suits your
needs best. Only one step is left, which you must not forget—or you’ll end up with
a PDF file that misses its cross-reference table and its trailer—two important structures
that are mandatory in a PDF file.

2.1.5 Closing the document

Let’s restate the five steps to create a PDF document:

1 Create a Document.

2 Create a PdfWriter using Document and OutputStream.

3 Open the Document.

4 Add content to the Document.

5 Close the Document.

Some people may express serious doubts about this choice of design, because the
iText approach seems to be in violation of the MVC pattern. You may ask why
iText wasn’t designed like this:

 Model

1 Create a Document.

2 Add content to the Document.

 View

3 Create a PdfWriter/RtfWriter/… using OutputStream.

4 Write the Document using PdfWriter/RtfWriter/….

The advantage of such a design, as advocates of the MVC pattern keep telling me,
is that the Document would then act as an Object-Oriented (OO) model, encapsu-
lating the document data—the content—so that it can be arbitrarily written to
any specific output location and/or format on demand.

Design pattern
The iText design was inspired by the builder pattern, a pattern that’s used to create
a variety of complex objects from one source object. With iText, when you’re add-
ing content (step e), you’ve already decided how and where this content should
be written (step c), thus mixing content encapsulation with generation and pre-
sentation. Is that so bad? Please look at the other side of the coin before answer-
ing this question.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generating a PDF document in five steps 47
 Imagine you have a document consisting of more than 10,000 pages. Are you
really going to keep all those pages in memory, risking an OutOfMemoryError
before writing even the first byte of the document representation? Will you store
the content in another format, in an object in memory, or in XML on the file sys-
tem, before you convert it to PDF or RTF? The answer to these questions could be
yes, but you’d only need to do this if you wanted to examine the contents of the
document programmatically (which is beyond the scope of iText) or if you didn’t
find out which output format you wanted until you finished gathering the data.
These are typically issues that are difficult, if not impossible, to solve when you’re
dealing with very large documents. If you compare document generation to XML
parsing, the advantages of iText are similar to the advantages of the Simple API
for XML (SAX) over the Document Object Model (DOM). Any DOM variant is well
known to be suitable only when the data won’t be very large, and SAX is pro-
vided as an alternative for parsing extremely large XML documents. Behind the
scenes, SAX is often used to build the DOM tree. By analogy, you can build an
MVC-compliant application that uses iText as the underlying engine to create the
View. You can store the Model in a custom service object, create a Document
instance to which you add a listener, and finally pass it to your service object, so
that your object can write its content to the iText Document. That isn’t a bad
design. As a matter of fact, lots of applications use iText for that purpose.

 Nevertheless, there are many projects for which this design just doesn’t work.
Think of business processes that have to be very fast—for instance, the creation of
large documents that must be served in a web application, or batch jobs that take
a whole night. In such circumstances, you’ll be happy iText works the way it does.
One of iText’s strengths is its high performance. During step e, iText writes and
flushes all kinds of objects to the OutputStream, the most important objects being
the page dictionaries and page streams of all the pages as soon as they’re com-
pleted. All these objects become eligible for garbage collection, keeping the
amount of memory used relatively low compared to some other PDF-producing
tools. You can’t achieve this if you don’t specify the DocWriter and the Output-
Stream first.

PDF cross-reference table and trailer
Upon closing the Document, the PDF objects that have to be kept in memory
(because they must be updated from time to time) are written to the Output-
Stream. These include the following:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

48 CHAPTER 2
PDF engine jump-start
■ The PDF cross-reference table, an important table that contains the byte posi-
tions of the PDF objects

■ The PDF trailer, which contains information that enables an application to
quickly find the start of the cross-reference table and certain special
objects, such as the info dictionary

Finally, the String %%EOF (End of File) is added. After all this is done, the
OutputStream created in step c is flushed and closed. You’ve successfully created
a PDF file.

 The next chapter will list different types of PDF, not all of which are sup-
ported in iText. I’ll use the phrase traditional PDF to refer to the most common
type of PDF. Traditional PDF is intended to be a read-only, graphical format; it’s
designed to be electronic paper. When text is printed on paper, you can’t add an
extra word in the middle of a sentence and expect the layout of the paragraph to
adapt automatically. The same is true for traditional PDF; it’s not a format that is
suited for editing. This doesn’t mean you can’t perform a series of other opera-
tions: You can stamp a piece of paper, cut it into pieces, copy one or more sheets,
and perform other changes as well. Those sorts of changes are exactly what
you’ll perform on a traditional PDF file with iText classes such as PdfStamper
and/or PdfCopy.

 You’ll also use PdfStamper to fill in the fields of a PDF form programmatically.
Such a PDF document has a series of fields at specific coordinates on one or more
pages. An end user can fill in these fields, but you, as a developer, can also use a
PDF form as a template; iText is able to retrieve the absolute position of each field
and add data at these coordinates.

 All this functionality will be introduced in the next section, which discusses
manipulation classes.

2.2 Manipulating existing PDF files

Imagine you’re selling audio and video equipment in a branch office of a major
electronics dealer. The mother company has sent you a product catalog in PDF
with hundreds of pages. It contains sections on computers, digital cameras, tele-
visions, radios, dishwashers, and so forth. Suppose you want to distribute a simi-
lar catalog among your clientele.

 You can’t use the original product catalog from your dealer because you’re not
even selling half of the products mentioned in it. You know your customers won’t
be interested in kitchen equipment—they want to read about the new features of
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 49
the latest-model DVD players. For that reason, you want to compose a reduced
catalog that only contains the pages that are relevant for your store. If possible,
each page should have a header, footer, or watermark with the name and logo of
your store.

 Because PDF wasn’t conceived to be a word-processing format, creating this
new, personalized catalog is complex. It’s not sufficient to cut some pages from
one PDF file and paste them into another. Searching the Internet, you’ll find lots
of small tools and applications that offer this specialized functionality—such as
Pdftk, jImposition, and SheelApps PDFTools—but if you study these more closely,
you’ll find that most of them use iText under the hood (even tools that cost sev-
eral hundred dollars).

 Before spending any money or time on a tool that may or may not solve your
problem, look at the upcoming subsections. They will show you how these tools
work, and you’ll be able to tailor your own PDF-manipulation solution using the
iText API directly. You’ll learn that the PdfCopy class is best suited to copy a
selection of pages from a series of different, existing PDF files. Adding new con-
tent (such as a logo, page numbers, or a watermark) is best done with the Pdf-
Stamper class.

 The relationship between the different manipulation classes is shown in the
class diagram in appendix A section A.2. PdfCopy is a subclass of PdfWriter,
whereas PdfStamper has an implementation class that is derived from PdfWriter.
These classes are writers, they can’t read PDF files.

 To read an existing PDF file, you need the class PdfReader; the actual work is
done in the PdfReaderInstance class, but you’ll never address this instance
directly. As shown in the class diagram, PdfReaderInstance is for internal use by
PdfWriter only.

 Let’s begin by examining the PdfReader class and find out what information
you can retrieve from a PDF document before you start manipulating one or
more PDF files with PdfStamper, PdfCopy, and the other classes mentioned in the
class diagram.

2.2.1 Reading an existing PDF file

Before you start manipulating files, let’s generate a PDF file with some function-
ality that is more complex than a “Hello World” document. Figure 2.3 shows the
first page of the document HelloWorldToRead.pdf. As you can see, you can open
the Bookmarks tab to see the outline tree of the document.

 You’ll learn how to create bookmarks in chapters 4 and 13. For the moment,
we’re only interested in PdfReader and how to retrieve the information from this
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

50 CHAPTER 2
PDF engine jump-start
PDF file. You’ll retrieve general properties, such as the file size and PDF ver-
sion, the number of pages, and the page size, and also metadata and the book-
mark entries.

Document properties
The following example demonstrates how to perform some of the basic queries:
determining the version of the PDF file, the number of pages, the file length, and
whether the PDF was encrypted:

/* chapter02/HelloWorldReader.java */
PdfReader reader = new PdfReader("HelloWorldToRead.pdf");
System.out.println("PDF Version: " + reader.getPdfVersion());
System.out.println("Number of pages: " +
 reader.getNumberOfPages());
System.out.println("File length: " + reader.getFileLength());
System.out.println("Encrypted? " + reader.isEncrypted());

Figure 2.3 The existing PDF file you’ll inspect with PdfReader

Returns 4

Returns 3 Returns
8439

Returns false
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 51
The information returned in this code snippet is related to the complete docu-
ment, but you can also ask the reader for information on specific pages.

Page size and rotation
Section 2.1.1 talked about rotating the page size Rectangle. In the Hello-
WorldReader example, you create a PDF document with three pages. The first
two are A4 pages in portrait orientation, and the third is rotated with the
rotate() method.

 Now you’ll ask those pages for their page size:

/* chapter02/HelloWorldReader.java */
System.out.println("Page size p1: " + reader.getPageSize(1));
System.out.println("Rotation p1: " +
 reader.getPageRotation(1));
System.out.println("Page size p3: " +
 reader.getPageSize(3));
System.out.println("Rotation p3: " +
 reader.getPageRotation(3));
System.out.println("Size with rotation p3: " +
 reader.getPageSizeWithRotation(3));

If you ask for the page size with the method getPageSize(), you always get a
Rectangle object without rotation (rot. 0 degrees)—in other words, the paper size
without orientation. That’s fine if that’s what you’re expecting; but if you reuse
the page, you need to know its orientation. You can ask for it separately with
getPageRotation(), or you can use getPageSizeWithRotation().

 The annotations alongside the code sample show the results of the toString()
method of class Rectangle. The second page size query didn’t return what you
would expect for page three; the last one gives you the right value and indicates
that the page was rotated 90 degrees.

TOOLBOX com.lowagie.tools.plugins.InspectPDF (Properties) If you want a
quick inspection of some of the properties of your PDF file, you can do
this with the InspectPDF tool in the iText Toolbox.

Not every PDF tool produces documents that are 100 percent compliant with the
PDF Reference. Also, if you have the audacity to change a PDF file manually
(something you should attempt only if your PDF Fu is truly mighty), the offsets of
the different objects will change. This makes the PDF document corrupt, and
there may be a problem if the file is read.

Returns 595.0x842.0
(rot. 0 degrees)

Returns 0

Returns 595.0x842.0
(rot. 0 degrees)

Returns 90

Returns 842.0x595.0
(rot. 90 degrees)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

52 CHAPTER 2
PDF engine jump-start
Reading damaged PDFs
When you open a corrupt PDF file in Adobe Reader, you get this message: The file
is damaged and can’t be repaired. PdfReader will probably also throw an exception
when you try to read such a file; because it is damaged and it can’t be repaired.
There’s nothing iText can do about it.

 In other cases—for example, if the cross-reference table is slightly changed—
Adobe Reader only shows you this warning: The file is damaged but is being repaired.
PdfReader can also overcome similar small damages to PDF files. Because iText
isn’t necessarily used in an environment with a GUI, no alert box is shown, but
you can check whether a PDF was repaired by using the method isRebuilt():

/* chapter02/HelloWorldReader.java */
System.out.println("Rebuilt? " + reader.isRebuilt());

When trying to manipulate a large document, another problem can occur: You
can run out of memory. Augmenting the amount of memory that can be used by
the JVM is one way to solve this problem, but there’s an alternative solution.

PdfReader and memory use
When constructing a PdfReader object the way you did in the previous examples,
all pages are read during the initialization of the reader object. You can avoid this
by using another constructor:

/* chapter02/HelloWorldPartialReader.java */
PdfReader reader;
long before;
before = getMemoryUse();
reader = new PdfReader(
 "HelloWorldToRead.pdf", null);
System.out.println("Memory used by the full read: "
 + (getMemoryUse() - before));
before = getMemoryUse();
reader = new PdfReader(
 new RandomAccessFileOrArray("HelloWorldToRead.pdf"), null);
System.out.println("Memory used by the partial read: "
 + (getMemoryUse() - before));

The size of HelloWorld.pdf is about 5 KB. If you do a full read, a little less than 30
KB of the memory is used by the (uncompressed) content and the iText objects
that contain the object. By using the object com.lowagie.text.pdf.RandomAcces-
FileOrArray in the PdfReader constructor, barely 3.5 KB of the memory is used
initially. More memory will be used as soon as you start working with the object,
but PdfReader won’t cache unnecessary objects. If you’re dealing with large docu-
ments, consider using this constructor.

Does full read of
PDF file

Returns about
30 KB

Does partial
read of PDF file

Returns about
3.5 KB
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 53
 Now that you’ve tackled some problems with corrupt or large PDFs, you can go
on retrieving information.

Retrieving bookmarks
In figure 2.3, the Bookmarks tab is open. The class com.lowagie.text.pdf.Sim-
pleBookmark can retrieve these bookmarks if you pass it a PdfReader object. You
can retrieve the bookmarks in the form of a List:

/* chapter02/HelloWorldBookmarks.java */
PdfReader reader = new PdfReader("HelloWorldToRead.pdf");
List list = SimpleBookmark.getBookmark(reader);

This is an ArrayList containing a Map with the properties of the bookmark
entries. If you run this example, the titles of the outline tree shown in figure 2.3 is
written to System.out.

 With the static method SimpleBookmark.exportToXML, this list of bookmarks
can also be exported to an XML file:

/* chapter02/HelloWorldBookmarks.java */
SimpleBookmark.exportToXML(list,
 new FileOutputStream("bookmarks.xml"), "ISO8859-1", true);

You’ll learn more about the bookmark properties and about the structure of this
XML file in chapter 13.

TOOLBOX com.lowagie.tools.plugins.HtmlBookmarks (Properties) Suppose you
have many PDFs on your web site, all having an extensive table of contents
in the form of an outline tree. Wouldn’t it be great to be able to extract
these outlines and serve them to site visitors in the form of an HTML
index file with links to every entry in the PDF outline tree? That way, if vis-
itors are looking for a specific chapter, they don’t have to download and
browse every PDF file. Instead, they can browse through the HTML files
first and click a link to go to a specific page within a PDF file. The Html-
Bookmarks tool offers such index files—the only thing you have to do is
to provide a Cascading Style Sheets (CSS) file that goes with it.

Metadata can also contain information that is useful to display in an HTML file
before the visitor of your site downloads the complete document. You can use
PdfReader to extract the metadata from the PDF files in your repository and store
this information somewhere so that the repository can be searched.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

54 CHAPTER 2
PDF engine jump-start
Reading metadata
When you created the file HelloWorldToRead.pdf, you added metadata. The PDF-
specific metadata of the document is kept in the PDF info dictionary. PdfReader can
retrieve the contents of this dictionary as a (Hash)Map using the method getInfo():

/* chapter02/HelloWorldReadMetadata.java */
PdfReader reader = new PdfReader("HelloWorldToRead.pdf");
Map info = reader.getInfo();
String key;
String value;
for (Iterator i = info.keySet().iterator(); i.hasNext();) {
 key = (String) i.next();
 value = (String) info.get(key);
 System.out.println(key + ": " + value);
}

Now that you’ve retrieved the metadata, let’s try to change the Map returned by
getInfo(). This will introduce the PdfStamper class.

2.2.2 Using PdfStamper to change document properties
PdfStamper is the class you’ll use if you want to manipulate a single document.
This is how you create an instance of PdfStamper:

/* chapter02/HelloWorldAddMetadata.java */
PdfReader reader = new PdfReader("HelloWorldNoMetadata.pdf");
System.out.println("Tampered? " + reader.isTampered());
PdfStamper stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldStampedMetadata.pdf"));
System.out.println("Tampered? " + reader.isTampered());

Notice that as soon as you create a PdfStamper object, the reader is tampered—that
is, the PdfStamper instance alters the reader behind the scenes so it can’t be used
with any other PdfStamper instance. PdfStamper is often used to stamp data from a
database on the same document over and over again. For example, suppose
you’ve created a standard letter for your customers using Acrobat. You have all
the names of your customers in a database. Now you want to merge the results of
a database query with this letter. You can do this by reading the original PDF with
PdfReader and stamping it with PdfStamper.

FAQ Why do I get an exception when I try to create a PdfStamper instance? Novice
iText users often make the mistake of trying to reuse the reader
instance. A DocumentException will be thrown, saying: The original docu-
ment was reused. Read it again from file. This is normal: PdfStamper needs
a unique and exclusive PdfReader object. Tampered reader objects can’t
be reused.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 55
Note that it’s impossible to write to the file you’re reading. PdfReader does ran-
dom-access file reading on the original file, so it’s important to realize that the
original and the manipulated file can’t have the same name. Few programs read a
file and change it at the same time; most of them write to a temporary file and
replace the original file afterward. If that’s what you want, that’s how you should
implement it; but you can also read the original file into a byte array, create the
PdfReader object using this array, and write the output of the stamper to a file
with the same name as the original PDF.

 That being said, you can write some code to change the metadata of an exist-
ing PDF file. You get the information (Hash)Map from the reader b, add some
extra keys and values c, and then add it to the stamper object with the method
setMoreInfo() d:

/* chapter02/HelloWorldAddMetadata.java */
Map info = reader.getInfo();
info.put("Subject", "Hello World");
info.put("Author", "Bruno Lowagie");
stamper.setMoreInfo(info);
stamper.close();

Don’t forget to close the stamper e! Otherwise you’ll end up with a file of 0 KB.
 In the next chapter, you’ll learn how to use PdfStamper to change other prop-

erties of a PDF file, such as the compression, the encryption, and the user permis-
sions of a file. The rest of this chapter will focus on adding content to an existing
PDF file.

2.2.3 Using PdfStamper to add content

Let’s return to our earlier example. You’re selling audio and video equipment,
and you want to send a standard letter to all of your customers telling them about
the personalized catalog they can order. This letter is provided as a PDF docu-
ment containing a PDF form. In this case, the form’s fields (called AcroFields) cor-
respond to the fields of individual records in your customer database. You can
now use iText to fill in those fields.

Filling in a form
It’s possible to create a document containing a PDF form (also called an AcroForm)
with iText, and you’ll learn more about that in chapter 15; but using an end-user
tool like Acrobat is a better way to make a quality design. Chapter 16 will explain
how to fill and process forms. This is a crash course on document manipulation,
so let’s have a small taste of form functionality.

 b

 C D
 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

56 CHAPTER 2
PDF engine jump-start
 You start with a simple PDF saying “Hello Who?” The word “Who?” is gray
deliberately; you may not notice that it’s a form field just by looking at it, but if you
hover the cursor over this word, you’ll see the cursor changes from a little hand
into an I-bar. Click the area, and you can edit the word. One possible use of a PDF
form is to have people fill in the form and submit it, but for now you’re more inter-
ested in using the form as a template and filling it out programmatically:

/* chapter02/HelloWorldForm.java */
PdfReader reader = new PdfReader("HelloWorldForm.pdf");
PdfStamper stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldFilledInForm.pdf"));
AcroFields form = stamper.getAcroFields();
form.setField("Who", "World");
stamper.close();

Granted, the design of this HelloWorldForm is simple, but that doesn’t matter.
You can create forms with multiple fields in a complex design; it won’t make your
code more complex. You just ask the PdfStamper object for its AcroFields object
and change the value of all the fields inside the form.

 This example changes the word “Who?” that was in the Who field into the
word “World.” The result is a new PDF file that still contains a form; but it now
says “Hello World” instead of “Hello Who?” If you click the word “World,” you
can change it into something else. This may not always be what you want; in some
cases, you don’t want the end user to know you have used a PDF form as a tem-
plate. The resulting PDF shouldn’t be interactive once it’s filled in.

 That’s why you’ll flatten the form. Flattening means there are no longer any
editable field in the new PDF. The field content is added at the position where the
field was defined; an end user can’t change the text:

/* chapter02/HelloWorldForm.java */
stamper.setFormFlattening(true);

In chapter 16, you’ll discover lots of tips and tricks to optimize the process of fill-
ing and flattening a PDF form—for example, how to make sure the text fits the
field, or how to use a field as a placeholder for an image.

 But what if you need to add content to an existing PDF document without a
form? Can you still use it as a template and add extra content? The answer is yes,
you can—if you know where (on which coordinates) to add the new content.

Adding content to pages
Think of the personalized catalog you want to compose. The original catalog
doesn’t contain a form, but you want to take the existing PDF file, add a watermark
with your company logo in the middle of each page (under the existing content),

Gets form from
stamper

Sets field in form
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 57
and add page numbers to the bottom of the pages. Again, you need the Pdf-
Stamper class to achieve this.

 Do you remember the PdfContentByte object, which you used to add text at an
absolute position? With PdfStamper, you can get two different PdfContentByte
objects per page. The method getOverContent(int pagenumber) gives you a can-
vas on which to draw text and graphics that are painted on top of the existing
content.

 The next code snippet uses this method to add page numbers and draws a cir-
cle at an absolute position:

/* chapter02/HelloWorldStamper.java */
PdfContentByte over = stamper.getOverContent(i);
over.beginText();
over.setFontAndSize(bf, 18);
over.setTextMatrix(30, 30);
over.showText("page " + i);
over.endText();
over.setRGBColorStroke(0xFF, 0x00, 0x00);
over.setLineWidth(5f);
over.ellipse(250, 450, 350, 550);
over.stroke();

With the method getUnderContent(int pagenumber), you can get a canvas that
appears under the existing content. For example, you can add a watermark to
every page, like this:

/* chapter02/HelloWorldStamper.java */
PdfReader reader = new PdfReader("HelloWorld.pdf");
PdfStamper stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldStamped.pdf"));
Image img = Image.getInstance("watermark.jpg");
img.setAbsolutePosition(200, 400);
PdfContentByte under;
int total = reader.getNumberOfPages() + 1;
for (int i = 1; i < total; i++) {
 under = stamper.getUnderContent(i);
 under.addImage(img);
}
stamper.close();

Remember the importance of page orientation. In the HelloWorld.pdf file, the
third page has landscape orientation. If you’re adding text, graphics, or an image
at an absolute coordinate, you have to realize that the coordinate system has been
changed, too. You’re working on a canvas with dimensions set in height x width

instead of width x height. If this isn’t what you want, you can avoid it by setting
setRotateContents to false:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

58 CHAPTER 2
PDF engine jump-start
/* chapter02/HelloWorldStamper2.java */
stamper.setRotateContents(false);

Take a close look at figure 2.4, and compare the third pages of the documents
HelloWorldStamped.pdf and HelloWorldStamped2.pdf.

 In HelloWorldStamped.pdf, the page rotation has been taken into account,
and the text and graphics have been added so that you can read them without
having to turn your head 90 degrees. This also means you should have adjusted
the position of the watermark—it isn’t exactly where you want it to be. In
HelloWorldStamped2.pdf, the text and graphics were added as if the page was
still in portrait orientation.

 Not only can PdfStamper be used to change existing pages, but you can also
insert new blank pages to which content can be added.

Figure 2.4 Taking the page rotation into account when stamping a PDF
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 59
Inserting new pages
In the next example, you’ll add a title page to an existing PDF document:

/* chapter02/HelloWorldStamperAdvanced.java */
stamper.insertPage(1, PageSize.A4);
PdfContentByte cb = stamper.getOverContent(1);
cb.beginText();
cb.setFontAndSize(bf, 18);
cb.setTextMatrix(36, 770);
cb.showText("Inserted Title Page");
cb.endText();

I also threw in some more advanced functionality:

/* chapter02/HelloWorldStamperAdvanced.java */
stamper.addAnnotation(
 PdfAnnotation.createText(stamper.getWriter(),
 new Rectangle(30f, 750f, 80f, 800f),
 "inserted page", "This page is the title page.",
 true, null), 1);

This adds a comment on the first page. When the comment is closed, you see a
page icon; the comment title and text are visible only if you move the mouse
pointer over the comment. Figure 2.5 shows the text annotation in its opened
state. (Annotations are discussed in chapter 15.)

 Notice that the page numbers shift when inserting a new page—not the page
numbers that are printed on the page, but the indices used to retrieve the page
from the PdfStamper object. Make sure you keep track of the actual page count if
you’re inserting and retrieving pages using one stamper object!

 Let’s return to the idea of a personalized catalog. You already have two useful
pieces of the puzzle: You can stamp a logo on each page, and you can add an

Figure 2.5 A PDF with an open text annotation
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

60 CHAPTER 2
PDF engine jump-start
extra title page. You can’t remove the sections presenting the newest types of
dishwasher yet, but it would be nice if you could illustrate the title page with
thumbnails of existing pages, such as the title page of the section on DVD players.
In other words, you want to copy a complete page and paste a smaller version of it
on another page. To achieve this, you need imported pages.

2.2.4 Introducing imported pages

If you browse the API of the PdfReader class, you’ll discover the method getPage-
Content(int pagenumber), which returns the content stream of that page. You’ve
already seen the content stream of a simple “Hello World” page in listing 2.2.
This stream tells you what’s inside a page, but it doesn’t necessarily return the
complete page.

 A content stream normally contains references to external objects, images, and
fonts. For example, you can find a reference to a font named /F1 in listing 2.2.
This font is stored elsewhere in the PDF file. It’s possible to retrieve every object
that is needed to copy an existing page, but it takes a fair amount of coding and
you need to know the Portable Document Format inside out.

 That’s why it’s never advisable to extract a page from PdfReader directly.
Instead, you should pass the reader object to the manipulation class (Pdf-
Stamper, PdfCopy, or even PdfWriter) and ask the writer (not the reader!) for the
imported page. A PdfImportedPage object is returned. Behind the scenes, all
the necessary resources (such as images and fonts) are retrieved. As you’ll see in
chapter 18, importing pages this way not only saves you a lot of work, but is
also less error-prone.

 Here’s an example using PdfStamper:

/* chapter02/HelloWorldStamperImportedPages.java */
PdfReader reader = new PdfReader("HelloWorldRead.pdf");
PdfStamper stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldImportedPages.pdf"));
PdfImportedPage p;
stamper.insertPage(1, PageSize.A4);
PdfContentByte cb = stamper.getOverContent(1);
p = stamper.getImportedPage(reader, 2);
cb.addTemplate(p, 0.4f, 0f, 0f, 0.4f, 36f, 450);
p = stamper.getImportedPage(reader, 3);
cb.addTemplate(p, 0.4f, 0f, 0f, 0.4f, 300f, 450);
p = stamper.getImportedPage(reader, 4);
cb.addTemplate(p, 0.4f, 0f, 0f, 0.4f, 36f, 100);

Instead of inserting a page with text saying “inserted title page,” you insert a first
page that shows downsized versions of the pages that follow. With the method

Inserts new first page

Imports second page

Imports third page

Imports fourth page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 61
getImportedPage(), you pass the PdfReader object to a PdfStamper, and you tell
the stamper which page you want to import.

 The object that is returned is of type PdfImportedPage. It contains a descrip-
tion of the contents of the page; the resources that are referred to from this page
are passed to PdfStamper behind the scenes. Note that you can’t add new content
to a PdfImportedPage object; you can only scale, rotate, and/or translate it while
adding it to another page. The example uses the addTemplate method to scale
and position the thumbnails. The float values that are passed to this method are
elements of a transformation matrix. (You’ll read all about the transformation
matrix in chapter 10.)

 There’s still a lot to say about PdfStamper. We haven’t discussed how you can
sign an existing document, change viewer preferences, and so forth, but we’ll
cover all of that in part 4, “Interactive PDF.”

 Let’s elaborate on these imported pages first.

2.2.5 Using imported pages with PdfWriter

PdfStamper is able to retrieve and (re)use imported pages, but other classes may
be better suited for the job. If you’re using PdfStamper, it’s assumed that you want
to manipulate one and only one existing PDF file. But maybe you want to create a
document from scratch and use pages from an existing document as new content.
If we’re talking about generating a document from scratch, we automatically
think of PdfWriter.

 What you did in the PdfStamperImportedPages example can also be done in
step e of the PDF creation process we’ll discuss in chapter 3. If you wrap the
PdfImportedPage in an Image object (as will be discussed in section 5.3.4), it’s easy
to manipulate the imported page. Figure 2.6 shows how the pages of an existing
PDF document are used as thumbnails in a new document.

 In this example, you wrap the imported page inside an image b, scale it to 15
percent of its original size c, draw a gray box that is three units thick around it
d, and add it to the page e:

/* chapter02/HelloWorldImportedPages.java */
PdfReader reader = new PdfReader("HelloWorldToImport.pdf");
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("HelloWorldImportedPages.pdf"));
document.open();
System.out.println("Tampered? " + reader.isTampered());
document.add(new Paragraph("This is page 1:"));
PdfImportedPage page = writer.getImportedPage(reader, 1);
Image image = Image.getInstance(page);
image.scalePercent(15f);

 b
 C
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

62 CHAPTER 2
PDF engine jump-start
image.setBorder(Rectangle.BOX);
image.setBorderWidth(3f);
image.setBorderColor(new GrayColor(0.5f));
document.add(image);
System.out.println("Tampered? " + reader.isTampered());
document.close();

This functionality can be handy if you want to invite customers to order the com-
plete product catalog. You can make a flyer with the description of the content of
the catalog along with some thumbnails showing the most interesting and attrac-
tive pages.

 Note the System.out lines: I added them to show that importing pages with
PdfWriter doesn’t tamper with the reader object. A reader object used by Pdf-
Writer isn’t exclusively tied to the writer as was the case with PdfStamper. This
may sound unimportant, but once you get to know iText well, you’ll understand
that you can improve your applications drastically by choosing the right object
for the right job. Throughout this book, I’ll present different ways to achieve the
same result. If performance is an issue, you should try different solutions, bench-
mark them in your specific working environment, and use the best solution in
your production software.

Figure 2.6 Imported pages as thumbnails

 D
 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 63
The next example is a little more complex. It places the four pages of an existing
document on one page of a new document, so that the document can be folded
into a booklet. If you have a four-page brochure presenting your products, you
can use this code to print the four pages on one page in such a way that the page
can be folded to fit inside an envelope:

/* chapter02/HelloWorldWriter.java */
PdfReader reader = new PdfReader("HelloWorldToImport.pdf");
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("HelloWorldFolded.pdf"));
document.open();
PdfContentByte cb = writer.getDirectContent();
PdfImportedPage page;
page = writer.getImportedPage(reader, 1);
cb.addTemplate(page, -0.5f, 0f, 0f, -0.5f,
 PageSize.A4.width() / 2, PageSize.A4.height());
page = writer.getImportedPage(reader, 2);
cb.addTemplate(page, 0.5f, 0f, 0f, 0.5f, 0f, 0f);
page = writer.getImportedPage(reader, 3);
cb.addTemplate(page, 0.5f, 0f, 0f, 0.5f,
 PageSize.A4.width() / 2f, 0f);
page = writer.getImportedPage(reader, 4);
cb.addTemplate(page, -0.5f, 0f, 0f, -0.5f,
 PageSize.A4.width(), PageSize.A4.height());
document.close();

The height and width of the first imported page b are divided by 2; the page is
turned upside down and added at the upper-left side of the new page. The sec-
ond page c is also scaled; it’s added at the lower-left side of the new page. Page
three d is scaled and added next to page 2, at the lower-right side of the new
page. The fourth page e is scaled, rotated, and added next to page 1 at the
upper-right side of the page.

TOOLBOX com.lowagie.tools.plugins.NUp (Manipulate) The N-up tool allows
you to create a new PDF document based on an existing one. Each page
of the new document contains N pages of the existing document, with N
equal to 2, 4, 8, 16, 32, or 64.

There is one major downside when you’re adding a page imported using Pdf-
Writer (or with PdfStamper.getImportedPage) to a document. All interactive fea-
tures (annotations, bookmarks, fields, and so forth) are lost in the process. If you
want to import pages in order to concatenate several PDF files into one, this is a
big disadvantage. That’s where PdfCopy comes into the picture.

 B

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

64 CHAPTER 2
PDF engine jump-start
2.2.6 Manipulating existing PDF files with PdfCopy

You used PdfStamper to manipulate one and only one existing PDF file. PdfCopy is
the class you need if you want to combine a selection of pages from one or multi-
ple existing PDFs. This is the next puzzle piece you can use to create a personal-
ized catalog.

 You can distinguish different approaches. If you have different small catalogs
per product line, you can concatenate the PDF files that are of importance to your
customers into one catalog. If you have one big catalog with all the products, you
can make a selection of specific pages and page ranges.

Concatenating PDF files
In the next example, you’ll concatenate three pages from three different PDF
documents into one new document. The first document contains a plain page
with a paragraph; the second, a page with a text annotation; and the third, a
page with an anchor. All of these features are preserved in the resulting three-
page document:

/* chapter02/HelloWorldCopy.java */
PdfReader reader = new PdfReader("Hello1.pdf");
Document document = new Document(reader.getPageSizeWithRotation(1));
PdfCopy copy = new PdfCopy(document,
 new FileOutputStream("HelloWorldPdfCopy123.pdf"));
document.open();
System.out.println("Tampered? " + reader.isTampered());
copy.addPage(copy.getImportedPage(reader, 1));
reader = new PdfReader("Hello2.pdf");
copy.addPage(copy.getImportedPage(reader, 1));
reader = new PdfReader("Hello3.pdf");
copy.addPage(copy.getImportedPage(reader, 1));
System.out.println("Tampered? " + reader.isTampered());
document.close();

Again, you work with a getImportedPage() method, but this time you add the
imported page to the manipulation class with the method addPage(). You don’t
scale or position the page; it’s added as is. PdfCopy is a subclass of PdfWriter; the
use of both classes is similar, but it’s important to realize that PdfCopy can’t be
used to change the content of a PDF file. This time, you can’t grab a PdfContent-
Byte object; PdfCopy doesn’t allow new content on a page. If you need to concat-
enate and stamp different PDF files (as you’ll do with the personalized catalog),
you must create the resulting PDF in multiple passes (see section 2.3).

 When you run the example, you’ll see that importing a page with PdfCopy
doesn’t tamper with PdfReader. You can reuse the reader object for different
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 65
instances of PdfCopy—for example, if you need to add the same title page to a
series of existing PDF files.

Selected pages
There are two ways to select pages from an existing PDF file. You can use PdfCopy
to import the pages you need and add only those pages to the new document with
the method addPage(), but there’s a more elegant way to achieve this. You can use
the method selectPages() on PdfReader to narrow the selection even before you
start reading and copying.

 The next code snippet uses this method to select the odd pages from the exist-
ing PDF file:

/* chapter02/HelloWorldSelectPages.java */
PdfReader reader = new PdfReader("HelloMultiplePages.pdf");
reader.selectPages("o");
int pages = reader.getNumberOfPages();
Document document = new Document();
PdfCopy copy = new PdfCopy(document,
 new FileOutputStream("HelloWorldSelectPagesOdd.pdf"));
document.open();
for (int i = 0; i < pages;) {
 ++i;
 copy.addPage(copy.getImportedPage(reader, i));
}
document.close();

The general syntax for the range that is used in the selectPages() method looks
like this: [!][o][odd][e][even]start-end. You can have multiple ranges sepa-
rated by commas. The ! modifier removes pages from what is already selected.
The range changes are incremental—numbers are added or deleted as the range
appears. The start or the end can be omitted. If you omit both, you need at least
o (odd; selects all odd pages) or e (even; selects all even pages).

TOOLBOX com.lowagie.tools.plugins.SelectedPages (Manipulate) If you
need to quickly create a new document from a selection of pages from an
existing PDF file, you don’t need to adapt the example that demonstrates
the selectPages method. You can go to the iText Toolbox and use the
SelectedPages plug-in instead.

Note that if you reuse a reader object from which you’ve removed pages, the
pages remain removed; that’s why you have to create a new PdfReader for every
new selection in the example. The next code snippet selects pages 1, 2, 3, 7, and
9 (I excluded page 8):
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

66 CHAPTER 2
PDF engine jump-start
/* chapter02/HelloWorldSelectPages.java */
reader = new PdfReader("HelloWorldMultiplePages.pdf");
reader.selectPages("1-3, 7-9, !8");

This PdfReader functionality can also be used in the context of a PdfStamper
application.

/* chapter02/HelloWorldSelectedPages */
reader = new PdfReader("HelloMultiplePages.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloSelectedEven.pdf"));
reader.selectPages("e");
stamper.close();
reader = new PdfReader("HelloMultiplePages.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloSelected12379.pdf"));
reader.selectPages("1-3, 7-9, !8");
stamper.close();

Again, I’m presenting different ways to solve the same problem. It’s up to you to
experiment and choose the object that is best suited for your specific needs. For
example, if you need to combine a selection of pages from different product cat-
alogs, you’ll probably prefer using PdfCopy over PdfStamper. In some cases, you’ll
even need another class: PdfCopyFields.

2.2.7 Concatenating forms with PdfCopyFields

Be careful with the next example: It shows you how not to combine PDF files with
forms. It doesn’t differ much from the example HelloWorldCopy, except that the
pages you import now contain form fields:

/* chapter02/HelloWorldCopyForm.java */
PdfReader reader = new PdfReader("HelloWorldForm1.pdf");
Document document =
 new Document(reader.getPageSizeWithRotation(1));
PdfCopy writer = new PdfCopy(document,
 new FileOutputStream("HelloWorldCopyForm.pdf"));
document.open();
writer.addPage(writer.getImportedPage(reader, 1));
reader = new PdfReader("HelloWorldForm2.pdf");
writer.addPage(writer.getImportedPage(reader, 1));
reader = new PdfReader("HelloWorldForm3.pdf");
writer.addPage(writer.getImportedPage(reader, 1));
document.close();

When you open the resulting file HelloWorldCopyForm.pdf, you immediately see
that something didn’t work out the way you expected. HelloWorldForm1.pdf and
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating existing PDF files 67
HelloWorldForm2.pdf each have a form containing one text field that has the
same name: field1. After concatenating the files with PdfCopy, one of these fields
got lost in the process.

 That’s just one of the problems you could potentially experience when copy-
ing forms using PdfCopy. PdfCopy only deals with the form in the first docu-
ment. The form fields of the other documents are copied but not added to the
initial form. The resulting PDF looks good in most cases, but as soon as you
start to work with it, it will fail. This is an example of how you shouldn’t concate-
nate forms.

 To avoid problems when concatenating forms, you should use the class Pdf-
CopyFields. This is the safest way to concatenate documents that have forms; but
as you probably know, everything comes with a price—unlike PdfCopy, PdfCopy-
Fields keeps all the documents in memory so the final form can be updated cor-
rectly. Make sure you have enough memory available:

/* chapter02/HelloWorldCopyFields.java */
PdfCopyFields copy =
 new PdfCopyFields(new FileOutputStream("HelloWorldCopyFields.pdf"));
copy.addDocument(new PdfReader("HelloWorldForm1.pdf"));
copy.addDocument(new PdfReader("HelloWorldForm2.pdf"));
copy.addDocument(new PdfReader("HelloWorldForm3.pdf"));
copy.close();

If you look at HelloWorldCopyFields.pdf, you now see that field1 is present on
the first and the second page (with PdfCopy, it was missing on the second page). If
you change one of these fields, the other fields with the same name are changed
automatically, which is expected behavior.

 I’ve been stressing the importance of choosing the right manipulation class for
the right job. Now that you’ve worked with the different reader and writer classes
for PDF manipulation available in iText, it’s a good time for an overview.

2.2.8 Summary of the manipulation classes

When dealing with existing PDF documents, you can turn to table 2.2 to deter-
mine which manipulation class or classes can be used to perform the different
aspects of your assignment.

 You’ll soon discover that choosing one class that solves all problems isn’t pos-
sible. You’ll have to combine different classes, and the most efficient way to do
this is by creating a PDF in multiple passes.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

68 CHAPTER 2
PDF engine jump-start
2.3 Creating PDF in multiple passes

You finally have all the pieces of the puzzle when it comes to manipulating exist-
ing PDF files, but now you have to start putting the puzzle together. For example,
you know how to fill in one standard letter using one user record, but how do you
combine all the letters into a single file so you can send it to a printing office?

 One solution would be to use PdfStamper to fill in the fields of one PDF template
form. PdfStamper can’t add multiple forms that are filled in with different data to
the same document. You could keep the stamped PDF in memory temporarily and
do the concatenation with PdfCopy. As you remember, PdfCopy wasn’t able to add
new data to a document, so you need both classes: PdfCopy and PdfStamper.

 Once you’ve chosen which manipulation class to use for which aspect of your
assignment, you have to determine the best order to perform the manipulation.
Will you stamp the existing PDFs first, and then copy? Or is it better to do it the
other way around?

Table 2.2 An overview of PDF manipulation classes

iText class Usage

PdfReader Read PDF files. In most cases, you have to pass an instance of this class to one of
the PDF manipulation classes.

PdfStamper Manipulate the content of an existing PDF document. For example, you can add
page numbers, fill form fields, or sign an existing PDF file.

PdfEncryptor Uses PdfStamper to encrypt an existing PDF file in a user-friendly way (see chapter 3).

PdfWriter Generate PDF documents from scratch; import pages from other PDF documents.
The major downside: All interactive features (annotations, bookmarks, fields, and so
forth) of the imported page are lost in the process.

PdfCopy Concatenate a selection of pages from one or multiple existing PDF forms. Major
disadvantages: PdfCopy doesn’t allow new content, and combining multiple forms
into one is problematic.

PdfCopyFields Put the fields of the different forms into one new form. Can be used to avoid the
problems encountered with form fields when using PdfCopy, but remember that
memory use can be an issue.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating PDF in multiple passes 69
2.3.1 Stamp first, then copy

Let’s say you have a standard letter in PDF (with a form) that says the following:

Dear ...
I just wanted to say Hello.

In place of the ellipsis, you want a name from your customer database, and you
want to create a single document that has all the different versions of this letter,
one per addressee. In this case, the first step is to stamp and flatten the original
document. You don’t need the individual files, so you keep the result in memory
(in a ByteArrayOutputStream):

/* chapter02/HelloWorldStampCopy.java */
RandomAccessFileOrArray letter =
 new RandomAccessFileOrArray("HelloLetter.pdf");
reader = new PdfReader(letter, null);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
stamper = new PdfStamper(reader, baos);
form = stamper.getAcroFields();
form.setField("field", "World,");
stamper.setFormFlattening(true);
stamper.close();

Now you read the stamped and flattened file from memory and copy it:

/* chapter02/HelloWorldStampCopy.java */
reader = new PdfReader(baos.toByteArray());
Document document =
 new Document(reader.getPageSizeWithRotation(1));
PdfCopy writer = new PdfCopy(document,
 new FileOutputStream("HelloWorldStampCopy.pdf"));
document.open();
writer.addPage(writer.getImportedPage(reader, 1));

You can repeat this process as many times as you want:

/* chapter02/HelloWorldStampCopy.java */
reader = new PdfReader(letter, null);
baos = new ByteArrayOutputStream();
stamper = new PdfStamper(reader, baos);
form = stamper.getAcroFields();
form.setField("field", "People,");
stamper.setFormFlattening(true);
stamper.close();
reader = new PdfReader(baos.toByteArray());
writer.addPage(writer.getImportedPage(reader, 1));

This is just a simple example. You’ll probably want to write some loops to handle
all the copies with the same code and to copy all pages of the original document
(instead of just the first one), but that shouldn’t be a problem. Also, if file size and
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

70 CHAPTER 2
PDF engine jump-start
performance are an issue, it may be wiser to work with PdfWriter and page events
as discussed in chapter 14.

2.3.2 Copy first, then stamp

We’ve dealt with having one form that was filled in multiple times using different
data. Now we’ll look at the best way to proceed when you want to combine differ-
ent forms into one and then stamp the result. For example, suppose you have sev-
eral different loan application forms—one for people who own a house and one
for people who don’t; one for people who own their own company and one for
people who work for someone else. You want to be able to concatenate the forms
in a personalized way depending on the applicant’s individual situation, so that
you have all the necessary data (and nothing more) in one big form.

 In this case, it’s probably better to start with the concatenation of the differ-
ent forms:

/* chapter02/HelloWorldCopyStamp.java */
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PdfCopyFields copy = new PdfCopyFields(baos);
copy.addDocument(new PdfReader("HelloWorldLetter1.pdf"));
copy.addDocument(new PdfReader("HelloWorldLetter2.pdf"));
copy.close();

HelloWorldLetter1.pdf has a form containing field1. HelloWorldLetter2.pdf has
a form with field2. The resulting PDF (kept in memory) has one form containing
both fields. You can stamp these fields like this:

/* chapter02/HelloWorldCopyStamp.java */
reader = new PdfReader(baos.toByteArray());
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldCopyStamp.pdf"));
form = stamper.getAcroFields();
form.setField("field1", "World");
form.setField("field2", "People");
stamper.setFormFlattening(true);
stamper.close();

Of course, it could happen that you want to combine different forms having the
same field names for entities that are different in reality. For example, suppose you
have a form that contains the fields name and income and that allows one person
to declare his monthly revenues. When dealing with a couple, you need to know
the income of both partners, so you want to combine two versions of the income
form: one version with fields named name_husband and income_husband, and
another with fields named name_wife and income_wife. In this case, you must
rename these fields before you copy them.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating PDF in multiple passes 71
2.3.3 Stamp, copy, stamp

Let’s keep it simple and experiment with the original letter. You’ll stamp it and
use the method renameField() to change the name of the field:

/* chapter02/HelloWorldStampCopyStamp.java */
RandomAccessFileOrArray letter =
 new RandomAccessFileOrArray("HelloLetter.pdf");
reader = new PdfReader(letter, null);
ByteArrayOutputStream baos1 = new ByteArrayOutputStream();
stamper = new PdfStamper(reader, baos1);
form = stamper.getAcroFields();
form.renameField("field", "field1");
stamper.close();
reader = new PdfReader("HelloLetter.pdf");
ByteArrayOutputStream baos2 = new ByteArrayOutputStream();
stamper = new PdfStamper(reader, baos2);
form = stamper.getAcroFields();
form.renameField("field", "field2");
stamper.close();

Then, repeat what you did in section 2.3.2 (applying some small changes):

/* chapter02/HelloWorldStampCopyStamp.java */
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PdfCopyFields copy = new PdfCopyFields(baos);
copy.addDocument(new PdfReader(baos1.toByteArray()));
copy.addDocument(new PdfReader(baos2.toByteArray()));
copy.close();

Finally, stamp the fields you’ve just renamed:

/* chapter02/HelloWorldStampCopyStamp.java */
reader = new PdfReader(baos.toByteArray());
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldStampCopyStamp.pdf"));
form = stamper.getAcroFields();
form.setField("field1", "World");
form.setField("field2", "People");
stamper.setFormFlattening(true);
stamper.partialFormFlattening("field2");
stamper.close();

Notice this line: stamper.partialFormFlattening("field2");.
 Although you’ve set flattening to true, the resulting PDF still has a form with

editable fields. Only the fields you marked with the method partialForm-
Flattening() are flattened. This is useful if the forms are part of a workflow,
being filled in by different instances. For example, suppose some parts of a loan-
application form are to be filled in by the couple applying for the loan, whereas
other parts are to be filled in by the company granting the loan. The form can
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

72 CHAPTER 2
PDF engine jump-start
go back and forth several times before the loan is approved. Along the way,
some fields can be consolidated: for instance, the fields with the applicants’
names can be set to read-only.

 These are only a few simple examples. In chapters 15 and 16, you’ll get an
overview of all the possible types, find out more ways to fill forms programmati-
cally, and learn how to process forms that were filled out by end users.

2.4 Summary

In this chapter, you’ve said “Hello” to iText in 35 different Java programs. As in
chapter 1, you were introduced to the contents of the rest of this book, but from a
different point of view. Instead of looking at screenshots of different PDF docu-
ments generated by iText, you’ve created and manipulated PDF files to get
acquainted with different mechanisms that will return throughout the book.

 Remember that the creation process always follows five essential steps: b cre-
ating a document, c getting a writer instance, d opening the document, e add-
ing content, and f closing the document. Starting with chapter 4, we’ll elaborate
on the fourth step. In part 2, we’ll add content to a document using iText’s basic
building blocks; in part 3, you’ll learn about low-level PDF operators and oper-
ands, and you’ll discover the benefits of using the Java Graphics2D functionality.

 We also discussed different ways to manipulate existing PDF documents.
Table 2.2 gave you an overview of the different operations available in iText. You
can use this table to determine what iText class is best suited for each job. If nec-
essary, you can create a PDF in multiple passes.

 In the next chapter, you’ll learn more about PDF in general. We’ll talk about
different types and versions of PDF. You’ll find out which types and versions are
supported by iText for the moment, and which aren’t (yet).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF: why and when
This chapter covers
■ What is PDF?
■ History of the format
■ Different types
■ Different versions
73

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

74 CHAPTER 3
PDF: why and when
In chapter 2, you created some simple and some not-so-simple “Hello World”
documents. The not-so-simple documents have an initial demonstration of the
power of iText as far as document manipulation is concerned. Before we continue
with iText at full force, we’ll take one step back and look more closely at the Por-
table Document Format.

 In the first section of this chapter, you’ll learn why PDF was invented and how
it evolved into a de facto standard. In the second section, you’ll see that PDF
comes in different flavors, some of which are described in an International Stan-
dards Organization (ISO) standard. It’s important to understand when to choose
which specific type of PDF.

 Finally, we’ll use a table listing the different versions of the PDF specification to
focus on specific features such as compression and encryption. We’ll conclude
with more “Hello World” examples that show how to compress/decompress and
encrypt/decrypt PDF files.

3.1 A document history

Do you remember when people were talking about the paperless office? It was a
utopian concept that surfaced in the 1980s, which didn’t make it to the end of the
century. The brave new technology that was going to eliminate the paper chase
had quite the opposite effect—it generated an avalanche of paper.

 Although electronic documents didn’t bring about utopia, they do have
advantages:

■ They’re easy to search—Even if electronic documents don’t have an index,
there are tools that can make one for you automatically.

■ They’re easy to archive—Just think of the huge amount of cubic meters
needed for paper storage and compare that to the number of electronic
documents you can save on a mass-storage device.

■ They’re easy to exchange—You can put electronic documents on a web site or
e-mail them if you want to share them with others.

Of course, there are also major downsides. The fact that electronic documents are
easy to exchange can be a serious disadvantage when it comes to issues of piracy
and illegal copies. When it comes to legal issues, a hard copy still holds more
credibility than an electronic one. Even more important, there’s the irrefutable
fact that a printed document is a lot easier to read than text on a computer
screen. As it turns out, paper still rules.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

A document history 75
 New technologies are emerging that may revive the dream of the paperless
office. New devices that provide a better reading experience are finding their way
to the market. Technologies that add digital signatures to an electronic document
are becoming increasingly accepted by companies and governments. Electronic
documents are becoming more reliable and more secure. One of the key protag-
onists in this process, if not the main player, is Adobe Systems Incorporated. In
this section, we’ll look at the company and its products, and we’ll talk about the
intellectual property of the PDF specification.

3.1.1 Adobe and documents

Adobe Systems Incorporated was founded in 1982 by John Warnock and Chuck
Geschke. Its first products were digital fonts. These days, Adobe Creative Suite
(including Photoshop and Illustrator) and Acrobat are the company’s flag-
ship products.

 It’s important to realize that PDF wasn’t created out of the blue. The ancestors
of PDF still exist and are used in many applications. The best way to understand
the difference between PDF and these other specifications is to go back in history
and see how it all started.

The ancestors of PDF
In 1985, Adobe introduced the PostScript (PS) Page Description Language (PDL).
PS is an interpretive programming language. Its primary goal is to describe the
appearance of text, graphical shapes, and sampled images. It also provides a
framework for controlling printing devices; for example, specifying the number
of copies to be printed, activate duplex printing, and so forth.

 Also in 1985, Adobe developed an application for the Apple Macintosh called
Adobe Illustrator, a vector-based drawing program with its own format, AI, which
was derived from PS. Illustrator was ported to Windows in 1989, so it covered an
important market in the graphical industry.

 Producing high-quality visual materials was the privilege of specialists for a
long time, but with the advent of PostScript and Illustrator, anyone with a com-
puter could accomplish high-end document publishing. By introducing these two
technologies, Adobe started the desktop publishing revolution. But the founders
of Adobe felt there was something missing.

 In 1991, John Warnock wrote the “Camelot paper,” in which he said
the following:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

76 CHAPTER 3
PDF: why and when
The specific problem is that most programs print to a wide range of printers,
but there is no universal way to communicate and view this printed information
electronically. … What industries badly need is a universal way to communicate
documents across a wide variety of machine configurations, operating systems,
and communication networks.

As a result of this writing, a new development project was started, and the engi-
neers at Adobe enhanced the PostScript and Illustrator technologies to create a
document format and a suite of applications with which to create and visualize
documents of this format.

The Portable Document Format
This new document format, originally called Interchange PostScript (IPS), is now
known as the Portable Document Format (PDF). Although PostScript (PS) and PDF
are related, they’re essentially different formats. PDF isn’t a programming lan-
guage like PS; PDF leverages the ability of the PS language to render complex text
and graphics and brings this feature to the screen as well as to the printer. As
stated in the PDF Reference, “PDF trades reduced flexibility for improved effi-
ciency and predictability.”

 PDF and PS share the same underlying Adobe imaging model. A PDF docu-
ment consists of a sequence of pages, with each page including the text, font spec-
ifications, margins, layout, graphical elements, and background and text colors.
Unlike PS, PDF can contain a lot of document structure, links, and other related
information. As opposed to PS, PDF can’t tell the printer to use a certain input
tray, change the resolution, or use any other hardware-specific feature. One of the
key advantages PDF has over PS is page independence. Because PS is a program-
ming language, something in the description of page 1 can affect page 1000, so
to view page 1000 you have to interpret all the pages before it. Each page in PDF
can be drawn individually.

 PDF is called the Portable Document Format because a PDF document can be
viewed and printed on any platform: UNIX, Macintosh, Windows, Linux, or Palm
OS. In theory, a PDF document looks the same on any of these platforms (we’ll
discuss some exceptions in chapter 8, when we’re talking about embedding
fonts). In analogy with Java’s Write Once, Run Anywhere, you could say PDF is
Write Once, Read Anywhere—but in a more reliable way than the catchy Java
advertising phrase promises.

 Camelot was the original code name for what later became Acrobat. It’s impor-
tant not to confuse PDF, the Page Description Language, with Acrobat, the suite of
Adobe products that was developed along with the PDF specification.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

A document history 77
3.1.2 The Acrobat family

The Adobe web site describes the Acrobat family as a suite of products that allow
you to “create and exchange documents, collect and compare comments, and
tailor the security of a file in order to distribute reliable and polished Adobe
PDF documents.”

 In this book, I assume you and the end users of the PDF files you’re produc-
ing have Adobe Reader—a free PDF viewer that works with a plethora of operat-
ing systems—installed. You can use it as a standalone product or as a plug-in for
your browser. It allows you to view, print, and search PDF files. It doesn’t let you
create or change PDF files. People often confuse Adobe Reader with Acrobat—
for example, thinking that the free reader is capable of saving data entered into
any PDF form. (That’s only possible with reader-enabled PDFs.)

 Non-Adobe alternatives for Adobe Reader are available, such as Preview,
Ghostview, and Foxit, but these viewers are less feature-rich than Adobe Reader.
Note that Mac OS X uses PDF as the basis of its imaging model and ships Preview
as the default application for any PDF. Most of the PDF examples generated in
this book will be displayed correctly in the other tools, but not all of the function-
alities will work. For example, a PDF form is rendered correctly in Apple’s Pre-
view, but Preview doesn’t know how to submit forms. (I don’t know if they plan to
add this functionality.)

 Even if you’re only planning to develop applications using iText, you may
need some other Adobe products. For example, a customer may want to design a
PDF that can be used as a resource in her software applications. This resource can
act as a template that will be manipulated using iText code (see section 2.2). Note
that designing a document usually isn’t the task of a developer; it’s typically a job
for a graphic designer using one of the following Acrobat products:

■ Adobe Acrobat Elements allows you to view, print, and search PDF files, as
well as create PDF files from any application that prints. You can manage
specialized content from Microsoft Office and protect documents with
passwords, granting or revoking permissions. If you’re creating PDF files
from Microsoft Word, you can use iText to post process and concatenate
these files.

■ Adobe Acrobat Standard has the same functionality as Adobe Elements, but it
can also organize comments from multiple reviewers with sorting and fil-
tering tools; combine application files into a single Adobe PDF document;
digitally sign and certify documents; and manage specialized content from
Microsoft Outlook, MS Internet Explorer, Access, and Publisher.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

78 CHAPTER 3
PDF: why and when
■ Adobe Acrobat Professional adds the following features to those of Adobe
Standard: enables anyone with free Adobe Reader software to use high-
lighter, sticky note, pen, and other commenting tools; and builds intelli-
gent forms with Adobe LiveCycle Designer, which is a separate product
(that can be executed from Acrobat). For the moment, iText doesn’t fully
support forms created with Adobe LiveCycle Designer; only static XFA
forms. To be sure your forms can be filled with iText, you can create Acro-
Forms (not XFA forms) with Acrobat Professional (not Designer).

■ Adobe LiveCycle Designer retains layers and object data in technical drawings
and manages specialized content from AutoCAD, Microsoft Visio, and
Microsoft Project.

■ Adobe Distiller lets you turn PostScript into PDF.
■ Acrobat Capture is a powerful Optical Character Recognition (OCR) tool that

teams with your scanner to convert volumes of paper documents into
searchable PDF files.

These are all commercial products (proprietary software). If you want to use them,
you need to purchase them and pay a license fee. Depending on the tool you
need, this can be expensive. You may wonder: If Acrobat tools are expensive, how
is it possible that everybody can use iText for free? How were the iText developers
able to create their PDF-producing software? Did they have to pay a license fee?
No, they didn’t, and the following explains why not.

3.1.3 The intellectual property of the PDF specification

Adobe owns the copyright for the PDF specifications, but to promote the use of the
Portable Document Format for information interchange among diverse products
and applications—including, but not necessarily limited to, Acrobat products—
Adobe gives anyone copyright permission to (I quote section 1.5 of the PDF Ref-
erence, version 1.6):

■ Prepare files whose content conforms to the Portable Document Format
■ Write drivers and applications that produce output represented in the Por-

table Document Format
■ Write software that accepts input in the form of the Portable Document

Format and displays, prints or otherwise interprets the contents
■ Copy Adobe’s copyrighted list of data structures and operators, as well as

the example code and PostScript language-function definitions in the
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Types of PDF 79
written specification, to the extent necessary to use the Portable Docu-
ment Format for the purposes above

The conditions of such copyright permissions are:

■ Authors of software that accepts input in the form of the Portable Docu-
ment Format must make reasonable efforts to ensure that the software they
create respects the access permissions and permissions controls listed in
Table 3.20 of this specification (i.e. the PDF Reference), to the extent that
they’re used in any particular document. These access permissions express
the rights that the document’s author has granted to the users of the docu-
ment. It’s the responsibility of Portable Document Format consumer soft-
ware to respect the author’s intent.

■ Anyone who uses the copyrighted list of data structures and operators, as
stated above, must include an appropriate copyright notice.

Again, these permissions and conditions were copied word-for-word from the
PDF Reference. If you need advanced PDF features, I highly recommended this
manual as a companion for this book. You can purchase a hardcopy or download
it for free from the Adobe web site (www.adobe.com).

 The general idea is that developers like you and me are free to build tools that
view, generate, change, or manipulate PDF files (as long as you don’t crack them).
And that’s exactly what Paulo Soares and I did—we built a tool that let us create
and manipulate PDF.

 Of course, we didn’t implement the complete specification; some version-
specific features aren’t implemented (yet), and not all the possible types of PDF
are supported in iText.

3.2 Types of PDF

PDF is the de facto standard in many different sectors, including the graphic arts
industry, prepress companies, and governments. Each of these markets has its
own requirements and demands regarding documents, so it’s obvious that,
although Adobe ensures the integrity of the format through its copyright, many
different types of PDF have evolved from the original specifications. Some subsets
of the PDF specification were modeled into an ISO standard. Other types of PDF
are so new that they aren’t supported by (almost) any tools yet.

 People who don’t know the difference between these types of PDF files risk
accepting assignments that might as well be labeled “Mission: Impossible.” These
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

80 CHAPTER 3
PDF: why and when
are typically the people posting questions on the mailing list with the word
“urgent” in the subject, begging for assistance. Unfortunately, we’re unable to
help them.

 It’s important to make sure you and your clients are communicating in the
same language when talking about PDF. That’s why I made a list with different
categories, which are discussed in the following sections. People with other back-
grounds could organize their lists differently, but I made my list from an iText
developer’s point of view.

3.2.1 Traditional PDF

This isn’t an official term, but I use the word traditional when I want to refer to the
kind of PDF that is intended to be a finished product with unchangeable content
and a print-ready layout. The way it looks on the screen is the way it will look
when it’s printed, in contrast with other formats such as RTF or HTML. The
printed output of an RTF or HTML (and even a Microsoft Word) file depends on
the application that is used to render it.

 Traditional PDF is a read-only paginated document format that can contain
all kinds of multimedia, links, bookmarks, and so forth; but it doesn’t know any-
thing about text structure. For example, traditional PDF doesn’t understand the
concept of a table; you can render a table in a PDF file, but you can’t retrieve
the data that was organized in this tabular structure from the PDF to reuse it in
another application. As far as the PDF file is concerned, the table consists of
some characters drawn on a canvas, along with some lines. The concept of rows
and columns is lost on PDF. You’d need specialized OCR software to retrieve the
original content.

 In short, creating traditional PDF is a one-way process.

3.2.2 Tagged PDF

Sometimes traditional PDF isn’t sufficient for your needs. You may want to pro-
duce PDF files that can adapt themselves to the device they will be used on, or you
may want to repurpose the PDF file if, for example, end users will read the docu-
ment on the smaller screen of their Palm Pilot. If you need to make the document
accessible for the visually impaired, the PDF file should contain the logical read-
ing order (which isn’t always the case with traditional PDF). Images should be
given alternate descriptions. Also, if you need to be able to recognize document
structures such as paragraphs and tables, you’ll need tagged PDF.

 Tagged PDF is a stylized use of PDF; it defines a set of standard structure
types and attributes that allow page content to be extracted and reused for other
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Types of PDF 81
purposes. Page content is represented so that the characters, words, and text
order can be determined reliably. There’s a basic layout model and a set of stan-
dard structure elements and attributes. Limited support for tagged PDF has
been added to iText only recently (see appendix F).

3.2.3 Linearized PDF
A linearized PDF file is organized in a special way to enable efficient incremental
access, thus enhancing the viewing performance. Its primary goal is to display the
first page as quickly as possible. When data for a page is delivered over a slow
channel, the page content is displayed incrementally as it arrives. Linearized PDF
isn’t supported by iText, but iText can read linearized PDFs just fine—an impor-
tant distinction.

3.2.4 PDFs preserving native editing capabilities
I mentioned briefly that Adobe Illustrator was one of the ancestors of PDF. In
Adobe Illustrator, you have the option to save files as a PDF file. If you open such
a file in Illustrator, you can continue editing, just like with the native AI format.
Note that these PDF files aren’t suited for general, online distribution: they’re
larger than the traditional PDFs because they contain a lot of application-specific
data. It’s a matter of taste, but I wouldn’t recommend using PDF as an editing for-
mat. It’s not what PDF was designed for. Instead, keep the source of the document
in another format and convert to PDF when needed.

3.2.5 PDF types that became an ISO standard
There are many ways to create a valid PDF file. This freedom is an advantage, but
it can be a disadvantage too. Not all valid PDF files are usable in every context. To
tackle this problem, different ISO standards were created.

PDF/X
In particular, the prepress sector felt the need to restrict the freedom offered by
the Portable Document Format. A consortium of prepress companies got together
and released specifications for PDF/X (the X stands for eXchange). PDF/X is a set of
ISO standards (ISO 15930-1, -2, and -3) describing well-defined subsets of the
PDF specification that promise predictable and consistent PDF files. The main
goal of PDF/X-1a is to support blind exchange of PDF documents. Blind exchange
means you can deliver PDF documents to a print service provider with hardly any
technical discussion. PDF/X-3 is a superset of PDF/X-1a. The primary difference is
that a PDF/X-3 file can also contain color managed data. PDF/X-2 is a superset of
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

82 CHAPTER 3
PDF: why and when
PDF/X-3. It was designed for exchanges where there is more discussion between
the supplier and receiver of the PDF.

 Each standard has its own specific requirements and constraints, but in gen-
eral, you can say that functionality that will probably break PDF/X conformance
includes encryption, the use of fonts that aren’t embedded, RGB colors, layers,
image masks, transparency, and some blend modes. The two most useful PDF/X
standards are supported by iText: PDF/X-1a:2001 and PDF/X-3:2002.

PDF/A and XMP
PDF/A is another ISO specification: ISO 19005-1:2005, “Document manage-
ment—Electronic document file format for long-term preservation—Part 1: Use
of PDF 1.4 (PDF/A-1).” The standard was approved in September 2005. The ini-
tiative for PDF/A was started by the Association for Information and Image Man-
agement (AIIM) and the Association for Suppliers of Printing, Publishing and
Converting Technologies (NPES).

 The A in PDF/A stands for archiving; there are many electronic formats (ASCII,
TIFF, PDF, XML) and technologies (databases, repositories) to choose from for
archiving. The proprietary nature of many of these formats is one of the biggest
disadvantages: They can’t be guaranteed to continue for the long term. For
example, if you try to open a 10-year-old Microsoft Word file in the most recent
version of Word, you can’t expect it to look like it looked 10 years ago in the ver-
sion that was used to create it.

 As opposed to most word-processing formats, PDF represents not only the data
contained in the document but also the exact form the document takes. The file
can be viewed without the originating application. All the revisions of the PDF spec-
ification are backward-compatible. For example, if your viewer can read and print
a PDF with version 1.6, it can also read a PDF with version 1.2. Moreover, the infor-
mation about the file format is always in the public domain. Anyone, at any time,
using any hardware or software, can create programs to access PDF documents.

 This makes PDF an interesting candidate as a format for archiving. PDF/A goes
a step further: It’s a subset of PDF-1.4 intended to be suitable for long-term pres-
ervation of page-oriented documents. Just like PDF/X, PDF/A imposes some con-
straints: In order to meet level-B conformance, all fonts must be embedded;
encryption isn’t allowed; audio and video content are forbidden, as are JavaScript
and executable file launches; and so forth. Level-A conformance also means the
PDF has to be tagged (see the discussion of tagged PDF earlier in this chapter).

 Of course, archiving isn’t just about storing documents somewhere in
some format. You also have to be able to search and find the documents.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Types of PDF 83
Self-documentation of every archived file is important. This is where XML
and, more specifically, Adobe’s Extensible Metadata Platform (XMP) come
into the picture. XMP is a standard format for the creation, processing, and
interchange of metadata, not limited to the PDF format. Applications that
don’t understand PDF, JPG, PNG, or GIF syntax but are able to extract and
read XMP can retrieve the metadata from files in either of these formats.

PDF/E
Another ISO standard that will emerge soon is PDF/E. You can follow the progress
of this standard on the AIIM site (www.aiim.org/), where the PDF/E committee
defines their scope as being “responsible for specifying PDF tags for creating,
viewing, and printing documents used in engineering workflows.”

 The PDF/E standard doesn’t exist yet, so it’s evident that PDF/E isn’t supported
yet in iText.

3.2.6 PDF forms, FDF, and XFDF
A PDF document can contain an interactive form, sometimes referred to as an
AcroForm. An AcroForm is a collection of fields. These fields can be used to gather
information interactively from the user. They can also act as placeholders with
fixed coordinates that can be filled with variable content.

 In the first situation, the PDF file can be served on a web site, as if it were an
HTML page with a single form. If the user clicks the Submit button, the data
entered can be submitted to the web server in different formats (depending on
how the submit action was defined in the AcroForm):

■ As an HTML query string—key1=value1&key2=value2&... or HTML multi-
part form data.

■ In the Forms Data Format (FDF)—An FDF file contains the data of the form
and a reference to the PDF file with the AcroForm. When an FDF file is
opened in Adobe Reader, the original PDF is fetched, and the fields are
filled with the data in the FDF.

■ In XFDF—This is the XML-based alternative to FDF.
■ As PDF—In this case, a complete filled-in PDF file is sent to the server

(note that this is not possible if you only have Adobe Reader).

In this book, you’ll also use PDFs with an AcroForm as a kind of template. You’ll
fill the fields with data coming from a database, XML, FDF, or XFDF. One special
type of form field is the digital signature.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

84 CHAPTER 3
PDF: why and when
3.2.7 XFA and XDP
Forms that are made with Acrobat 7.0 (more specifically, with Adobe’s LiveCycle
Designer, which comes with Acrobat 7.0 Professional but not with the Standard
version) are completely different from AcroForms. They’re based on the XML
Forms Architecture (XFA). The XML Data Package (XDP) provides a mechanism
for packaging units of PDF content as XML. XFA resources are described as XDP
packages inside the PDF. In this case, you still have a PDF file, but the form is
described in XML. Forms like this aren’t discussed in this book. You can read more
about XFA in the XFA Specification on the Adobe web site (www.adobe.com).
There is only basic XFA support.

 The XML Data Package is more than just XFA. XDP is intended to be an XML-
based companion to PDF. An XDP file is an XML file that encodes a PDF file in
XML. An XDP file consists of five parts, many of which are optional:

■ The XML form data—The user data encoded according to an arbitrary XML
schema chosen by the designer of the form.

■ The XML form template—Contains all the form intelligence. Maps the XML
form data to PDF form fields. Holds the business logic to validate fields,
calculates results, and so forth.

■ XML configuration information—A global reference for database and web ser-
vice connections.

■ Other XML information—Metadata, schemas, and digital signatures.
■ The PDF file—Embeds the PDF as base64 encoded.

PDF and XDP are equivalent and interchangeable representations of the same
underlying electronic form. PDF offers advantages for large documents, when file
size is important, or when forms contain images. XDP is interesting when forms
have to fit in an XML workflow and data needs to be manipulated by software that
isn’t PDF-aware. For the time being, there are no plans to support XDP files in iText.

3.2.8 Rules of thumb
I’ll refer to the different types of PDF files regularly in parts 2, 3, and 4 of this
book. It’s not essential that you remember all of them, as long as you keep the fol-
lowing points in mind:

■ Traditional PDF is a one-way process.
■ Don’t abuse the phrase PDF template. No one will know whether you’re

referring to a traditional PDF file that can be stamped, tagged PDF files that
can be repurposed, or a PDF form that can be filled in.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF version history 85
■ If you’re talking about a PDF form, always specify whether you’re referring
to an AcroForm or an XFA form.

■ PDF is a de facto standard; PDF/X, PDF/A, and (soon) PDF/E are ISO stan-
dards.

Now that you have an idea of the types of PDF that are supported, let’s look at the
different PDF versions and discuss some iText-specific issues.

3.3 PDF version history

In chapter 2, you learned how to change the PDF version of the documents that
are generated with iText. Table 2.1 listed the different versions and the year the
specifications of these versions were published; in table 3.1 you’ll find a nonre-
strictive list of new features that were added in each PDF version.

Table 3.1 New features in different PDF versions

PDF version Year
Acrobat
version

New features

PDF-1.0 1993 Acrobat 1 - Ability to render complex text and graphics to the screen as
well as to the printer

PDF-1.1 1994 Acrobat 2 - Ability to create a password-protected PDF
- External links
- Device-independent color

PDF-1.2 1996 Acrobat 3 - Flate (zip/gzip) compression
- Interactive, fill-in forms
- Chinese, Japanese, Korean (CJK) support

PDF-1.3 1999 Acrobat 4 - File attachments,
- Digital signatures,
- Logical page numbering

PDF-1.4 2001 Acrobat 5 - 128-bit encryption
- Transparency
- Tagged PDF

PDF-1.5 2003 Acrobat 6 - Additional compression and encryption options
- Optional content groups
- Enhanced support for embedding and playback of multimedia

PDF-1.6 2004 Acrobat 7 - Customizable UserUnit value
- Support for Advanced Encryption Standard (AES)
- Page-scaling option for printing
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

86 CHAPTER 3
PDF: why and when
For a complete list, see the PDF Reference Manual. Each version of the Ref-
erence has a section in its introductory chapter detailing the latest version’s
new features.

 A number of the features listed in table 3.1 were additions to the existing PDF
specification (for example, support for 128-bit encryption and support for trans-
parency), whereas other features led to an almost completely different type of
PDF (for example, tagged PDF).

 When you create a new document using iText, the default version is 1.4. In
chapter 2, you used the method setPdfVersion() to create a PDF document in
another version, but it’s important to realize that this method changes only a sin-
gle character in the PDF header (see section 2.1.3); iText doesn’t check the com-
patibility of every feature you’re using in your code.

 In this section, we’ll look at specific examples that will help you understand
the implications of this limitation. You’ll learn what happens if you change the
user unit, a feature that was introduced in version 1.6; and you’ll learn more
about the compression and encryption of PDF documents, two important topics
that figure in different rows of table 3.1.

3.3.1 Changing the user unit

When we discussed the first step of the iText PDF-creation process, we talked
about the maximum and minimum size of a page. If you decide to create a PDF
document with a version that is different from the default, you have to be careful
not to create a PDF that isn’t valid.

 For example, if you change the PDF version to 1.3, iText won’t check the page
size. It’s your responsibility not to insert pages that are smaller than 72 by 72
units or bigger than 3,240 by 3,240 units.

 Since version 1.4, pages can have a minimum size of 3 by 3 units and a maxi-
mum of 14,400 by 14,400 units. This corresponds with a minimum page size of
approximately 0.04 by 0.04 in and a maximum of 200 by 200 in, because 1 in
equals 72 pt. That’s true for PDF-1.4 and -1.5; but table 3.1 indicates that you can
change the user unit, starting with version 1.6. The minimum value of the user
unit is 1 pt (this is the default; 1 unit = 1/72 in); in PDF 1.6 it can be changed to a
maximum of 75,000 pt (1 unit = 1042 in).

 Let’s give it a try and create a “Hello World” document with a page of
15,000,000 by 15,000,000 inches (14,400 b x 75,000 c x 1/72).

/* chapter03/HelloWorldMaximum.java */
Document document = new Document(new Rectangle(14400, 14400));
PdfWriter writer = PdfWriter.getInstance(document,

 b
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF version history 87
 new FileOutputStream("HelloWorldMaximum.pdf"));
writer.setPdfVersion(PdfWriter.VERSION_1_6);
writer.setUserunit(75000f);
document.open();

Note that this document measures 381 by 381 kilometers! You’ll only be able to
view it correctly in Adobe Reader 7.0 or later. If you open HelloWorldMaxi-
mum.pdf in an earlier version of Acrobat Reader, you’ll get a warning similar to
the one Adobe Reader 6.0 is giving in figure 3.1.

 Adobe Reader 6.0 can’t display the page correctly because it doesn’t under-
stand the meaning of a user unit of 75,000 pt.

 End users get the warning shown in figure 3.1 every time you serve them a PDF
that has a higher version than the one supported by their version of Adobe
Reader. This happens even if the PDF doesn’t contain new functionality that can’t
be shown in that specific viewer application. For example, Acrobat Reader 3.0
gives a similar warning if you try to open the “Hello World” file you created in
chapter 2. Once you click the OK button, the document displays correctly. That’s
because listing 2.1 doesn’t produce any PDF syntax that isn’t compatible with PDF
version 1.2.

 Requiring the end user to click OK can be annoying. Table 3.1 can help you
decide when it’s necessary to change the PDF version. If you plan to use the
optional content group functionality (OCG; see chapter 12), you have to change
the version of your PDF file to 1.5 or 1.6 before opening the document. Note that
iText can’t change the version number automatically. The PDF version number is

 C

Figure 3.1 Warning when opening a PDF document with a version higher
than the version of the viewer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

88 CHAPTER 3
PDF: why and when
written to the output stream in the second step of the PDF creation process; iText
notices the use of OCG functionality only in the fourth step.

 Changing the user unit, on the other hand, is done before the second step. In
this case, you could have omitted the line with setPdfVersion(). Setting the ver-
sion is done implicitly in the method setUserUnit(). The same happens when
you use setFullCompression(). A glance at table 3.1 shows that flate/zip compres-
sion was introduced in PDF 1.2, but additional full compression functionality
wasn’t added until version 1.5.

 Let’s look at some examples that demonstrate the difference between uncom-
pressed, compressed, and fully compressed files.

3.3.2 PDF content and compression

Figure 3.1 showed the warning you get when you opened your initial “Hello
World” file in Acrobat Reader 3.0. In spite of this warning, Acrobat Reader was
able to display the document correctly. This isn’t the case if you try to open the
file with Acrobat Reader 2.0. Instead of a warning, you get an error message (see
figure 3.2).

 The document you’ve generated isn’t damaged; you know it opens without
any problem in more recent versions of Adobe Reader. After you click OK, Acro-
bat Reader 2.0 gives you another message box, saying This file contains information
not understood by the viewer. Suppress further errors?

 That’s a better error message. Acrobat Reader 2.0 is only supposed to support
PDF version 1.1 or earlier. By default, iText compresses the content streams of
each page. Acrobat Reader versions prior to 3.0 can’t show compressed streams;
that’s what causes the error.

Figure 3.2
Error message prompted
when opening HelloWorld.pdf
in Acrobat Reader 2.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF version history 89
FAQ What is the default compression when creating PDF files with iText? Since
PDF-1.2, flate/deflate compression has been the default compression
used by Acrobat. This is an algorithm based on Huffman encoding and
LZ77 compression, one of the first versions of Lempel-Ziv-Welch (LZW).
It’s also the compression iText uses by default.

If you refer again to table 2.1, you’ll notice that the iText constant values for
PDF-1.0 and -1.1 are missing. This was intentional; it’s assumed that you aren’t
interested in generating a PDF file using a specification that is more than 10
years old.

 Nevertheless, you can tweak iText to generate a valid 1.0 or 1.1 PDF file. The
PDF header that is written to the output stream upon opening the document is
stored in a HEADER variable. The setPdfVersion() method replaces one character
in this String. You could tweak iText to generate a PDF-1.1 by calling setPdfVer-
sion() and passing the char 1 as a parameter. Additionally, you’d have to turn off
the default compression. Note that this example is shown for pedagogic reasons
only; I don’t recommend that you change the compression variable. It’s a static
value, so if you set compression to false, you do this for the entire JVM (and thus
for all the PDFs you’re generating in the same process). Doing so may lead to
unwanted side effects:

/* chapter03/HelloWorldUncompressed.java */
Document.compress = false;
writer.setPdfVersion('1');

You can open this particular HelloWorldUncompressed.pdf file in Acrobat
Reader 2.0 without getting the error message shown in figure 3.2. Mind my
choice of words: You can open this particular file in Reader 2.0. I already
explained that using setPdfVersion() doesn’t necessarily result in files that are
compliant with that version.

 You’ve just made a PDF that was uncompressed. Why not make one that is fully
compressed for a change? Full compression means that not only page streams are
compressed, but some other objects as well, such as the cross-reference table. This
is only possible since PDF-1.5:

/* chapter03/HelloWorldFullyCompressed.java */
writer.setFullCompression();

You don’t set the version in this example; iText changes it to 1.5 automatically.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

90 CHAPTER 3
PDF: why and when
Existing PDF documents and compression
Suppose you have a large repository of old PDF files that aren’t fully compressed.
With PdfStamper, you can upgrade the version of these PDF files by constructing
the PdfStamper with a version character as an extra parameter. You can then apply
full compression with the method setFullCompression():

/* chapter03/HelloWorldFullyCompressed.java */
reader = new PdfReader("HelloWorldCompressed.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldFullCompression.pdf"),
 PdfWriter.VERSION_1_5);
stamper.setFullCompression();
stamper.close();

Isn’t that easy? If you compare the sizes of the files, you’ll see that the original file
is 4211 bytes, and the one with full compression is only 3179 bytes. Just for fun,
you can also decompress the file, which results in a file that is 5561 bytes long:

/* chapter03/HelloWorldCompression.java */
reader = new PdfReader("HelloWorldCompressed.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldDecompressed.pdf"), '1');
Document.compress = false;
int total = reader.getNumberOfPages() + 1;
for (int i = 1; i < total; i++) {
 reader.setPageContent(i, reader.getPageContent(i));
}
stamper.close();

I used a trick to decompress the pages. You can get the uncompressed content
stream of a page (see listing 2.2) directly from the reader with getPageContent();
this can be interesting if you want to debug a PDF file at the lowest level. You can
set the content back with setPageContent(). (Note that you should have some
experience with PDF before you start experimenting with these methods; you’ll
read more about them in chapter 18.)

 Let’s wrap up this chapter by covering one more topic that’s mentioned sev-
eral times in table 3.1: encryption.

3.3.3 Encryption

The FAQs of many tools that produce PDF documents recommend iText as a tool
for post-processing PDF files. For example, Apache Formatting Objects Proces-
sor (FOP) can be used to convert XML to PDF, but it doesn’t encrypt the resulting
file; the FOP developers recommend using iText as a post-processor for FOP-
generated PDF documents.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF version history 91
 In the next example, you’ll encrypt an existing PDF document in two different
ways, and you’ll learn how to decrypt an encrypted PDF file (provided that you
have the needed credentials).

Encrypting existing PDF documents
To encrypt an existing PDF document, you can create a PdfReader object, con-
struct a PdfStamper object with it, set the encryption parameters, and close
the stamper:

/* chapter03/HelloWorldEncryptDecrypt.java */
reader = new PdfReader("HelloWorldNotEncrypted.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldEncrypted1.pdf"));
stamper.setEncryption(
 "Hello".getBytes(), "World".getBytes(),
 PdfWriter.AllowPrinting | PdfWriter.AllowCopy,
 PdfWriter.STRENGTH40BITS);
stamper.close();

This looks simple, but you can do all this in a one-liner using the Pdf-
Encryptor class:

/* chapter03/HelloWorldEncryptDecrypt.java */
PdfEncryptor.encrypt(new PdfReader("HelloWorldNotEncrypted.pdf"),
 new FileOutputStream("HelloWorldEncrypted2.pdf"),
 "Hello".getBytes(), "World".getBytes(),
 PdfWriter.AllowDegradedPrinting,
 PdfWriter.STRENGTH128BITS);

Note that the encrypt methods in PdfEncryptor use PdfStamper behind the
scenes. The end result is exactly the same as if you used the same arguments with
PdfStamper. In both cases, you need to pass two passwords b, an or-ed sequence
of permissions c, and the strength of the encryption d. Let’s look more closely
at these parameters.

PDF passwords
The PDF standard security handler allows access permissions and up to two pass-
words to be specified for a document: a user password (sometimes referred to as
the open password) and an owner password (sometimes referred to as the permissions
password). Encryption applies to all strings and streams used in the PDF objects,
but not to other types such as integers and boolean values needed to define the
document’s structure rather than its content.

 In the examples, the user must enter the password “Hello” in order to open
the files HelloWorldEncrypted1.pdf and HelloWorldEncrypted2.pdf. The PDF

 b
 C

 D

 b
 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

92 CHAPTER 3
PDF: why and when
file is locked for everyone who doesn’t know the password. If you want to read the
PDF file in order to change the permissions (and possibly decrypt it), you need
the owner password. Remember that the owner password (in this case, “World”)
will also let you open the PDF file.

 The maximum password length is 32 characters: You can enter longer pass-
words, but only the first 32 characters will be taken into account. One or both of
the passwords can be null. If you don’t specify a user password, all users will be
able to open the document without being prompted for a password, but the per-
missions and restrictions (if any) will remain in place. This protection is merely
psychological. The encryption key is derived from the user password, so omitting
this password doesn’t provide real security: The content is encrypted as described
in the PDF Reference. You could write a program to decrypt such a file, but that
would be illegal.

 It’s even easier to decrypt a file if no owner password was specified; again, you
can read the PDF Reference to learn how to change the permissions of the file. If
you want decent protection for your document, choose 128-bit key length and
always set both passwords, using different strings and all 32 characters for each
one. If you choose a password shorter than 32 characters, it will be padded with
default padding (as described in the PDF Reference).

 Passwords such as “Hello” and “World” are good for simple examples because
they make it easy for you to test (reducing the possibility that you can’t open the
document due to a slip of the keyboard); but in a production environment, you
should use passwords that are more complex. Remember that anyone with one of
the passwords will be able to remove all the permissions from the file. If users
have the owner/permissions password, they can do this legally. If they have the
user/open password, they can use rogue software to decrypt the content and cre-
ate an unprotected copy.

 Speaking of protection, let’s sum up the permissions that can be applied to a
PDF document.

Overview of the permissions
Encryption is often used to enforce restrictions. The permissions that can be
granted or restricted depend on the strength of the encryption; there’s 40-bit
encryption and 128-bit encryption. A quick glance at table 3.1 tells you that 128-
bit encryption became possible only in PDF-1.4. In iText, you can use Pdf-
Writer.STRENGTH40BITS or PdfWriter.STRENGTH128BITS as a parameter to pass to
the setEncryption() or encrypt() method.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF version history 93
 Permissions are or-ed like this: PdfWriter.AllowPrinting | PdfWriter.AllowCopy.

TOOLBOX com.lowagie.tools.plugins.Encrypt (Encrypt) With this tool, you
can encrypt an unencrypted PDF document as you did in the examples.
Notice that if you’re using this tool from the command line, the permis-
sions argument is a series of 0 and 1 String values.

Table 3.2 provides an overview of all the possible values. If you’re using 40-bit
encryption, every permission that has the remark “128 bit” is granted automati-
cally. If you want to revoke these permissions, you need to use 128-bit encryption.
As you can see, 128-bit encryption offers more fine-grained permission levels.

Table 3.2 Overview of the permission parameters

Static final in iText Description of permission Remark

PdfWriter.AllowPrinting Printing the document.

PdfWriter.AllowDegradedPrinting Printing the document, but not with
the quality offered by PdfWriter.Allow-
Printing.

128 bit

PdfWriter.AllowModifyContents Modifying the contents—for example,
changing the content of a page, or inserting
or removing a page.

PdfWriter.AllowAssembly Inserting, removing, and rotating pages and
adding bookmarks is allowed. The content
of a page can’t be changed (unless the
permission PdfWriter.AllowModify-
Contents is granted too).

128 bit

Pdfwriter.AllowCopy Copying or otherwise extracting text and
graphics from the document, including
assistive technologies such as screen
readers or other accessibility devices.

PdfWriter.AllowScreenReaders Extracting text and graphics for use by
accessibility devices.

128 bit

PdfWriter.AllowModifyAnnotations Adding or modifying text annotations
and interactive form fields.

PdfWriter.AllowFillIn Filling form fields; adding or modifying anno-
tations only if PdfWriter.AllowModify-
Annotations is granted too.

128 bit
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

94 CHAPTER 3
PDF: why and when
FAQ How do you revoke permission to save or copy a PDF file? It isn’t possible to
restrict someone from saving or copying a PDF file. You can’t disable the
Save (or Save As) option in Adobe Reader. And even if you could, people
would always be able to retrieve and copy the file with another tool. This
isn’t an iText issue—it goes beyond standard PDF security.

If you really need this kind of protection, you must look for a Digital
Rights Management (DRM) solution. DRM tools give you fine-grained
control over the document. There are different DRM software vendors,
but these tools are rather expensive.

If you have an existing file that is encrypted, you can get its permissions with the
getPermissions() method of PdfReader. This method returns a value that is rather
cryptic. You can get a verbose overview of the permissions using getPermissions-
Verbose(), a static method in PdfEncryptor:

/* chapter03/HelloWorldEncryptDecrypt.java */
System.out.println("Encrypted? " + reader.isEncrypted());
if (reader.isEncrypted()) {
System.out.println("Permissions: " +
 PdfEncryptor.getPermissionsVerbose(reader.getPermissions()));
 System.out.println("128 bit? " + reader.is128Key());
}

We have discussed all the parameters needed for encryption. You’ve used them to
encrypt an existing PDF document. In the next example, you’ll use these param-
eters to create a PDF document from scratch.

Encrypting a PDF document generated from scratch
The PdfWriter class has a setEncryption() method that takes the same parameters
as the PdfStamper method with the same name. If you go back to the reference
example in chapter 2, it’s sufficient to add one extra line after the second step:

/* chapter03/HelloWorldEncrypted.java */
PdfWriter writer
 = PdfWriter.getInstance(document, new

FileOutputStream("HelloWorldEncrypted.pdf"));
writer.setEncryption(PdfWriter.STRENGTH128BITS,
 "Hello", "World",
 PdfWriter.AllowCopy | PdfWriter.AllowPrinting);

Note that the order of the parameters is slightly different.
 You’ve been encrypting PDF files, both existing and new, but if you want to

read an encrypted PDF file with PdfReader, you need a constructor that takes a
password as parameter.

 D
 B

 C
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 95
Decrypting an existing PDF file
If you try reading an encrypted PDF file with PdfReader, an exception will be
thrown if you don’t provide the owner password. If you do know the owner pass-
word, decrypting a PDF file with iText is simple. Create the reader object with the
constructor that takes the password as parameter b, construct the stamper object
c and close it immediately afterward d:

/* chapter03/HelloWorldEncryptDecrypt.java */
reader = new PdfReader("HelloWorldEncrypted1.pdf", "World".getBytes());
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldDecrypted.pdf"));
stamper.close();

You’ve just created an unencrypted version of an encrypted PDF file.

TOOLBOX com.lowagie.tools.plugins.Decrypt (Encrypt) With this tool, you
can decrypt an encrypted PDF document as you did in the example.

Note that changing the compression and/or encryption of a PDF file is easy when
using iText. It’s sufficient to change some settings. If you want to know more
about the compression and/or encryption algorithms that are used behind the
scenes, please consult the PDF Reference.

 We have dealt with three version-specific features that are mentioned in
table 3.1. I won’t go into detail about the differences between the versions prior
to PDF-1.4, but whenever we encounter functionality that was added after ver-
sion 1.4 (the default version used by iText), I’ll mention this in the text. That
way, you’ll know if and when it’s necessary to change the PDF version in your
source code.

3.4 Summary

This chapter started with a general overview of the Portable Document For-
mat. We talked about the origins and the initial purpose of PDF. PDF has
become a de facto standard, but you’ve seen that along the way different types
of PDF and different real ISO standards have emerged. We have discussed how
to deal with different PDF versions when using iText. The concepts of user unit,
compression, and encryption were introduced in a series of simple examples.
This concludes the first part of this book.

 In the second part, you’ll create traditional PDF documents using iText’s basic
building blocks. There will be no need to change the PDF version. All the files will

 b

 C
 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

96 CHAPTER 3
PDF: why and when
be generated in the default version: PDF 1.4. In part 3, we’ll encounter some
more advanced functionality. You’ll still be producing traditional PDF files, but
you’ll need to change the version once you start working with optional content
groups. Part 4 will deal with interactive PDF, including some very recent PDF func-
tionality. You’ll also work with other types of PDF: PDF documents with AcroForms
and FDF and XFDF files.

 If you haven’t done so already, now is the time to roll up your sleeves and start
doing some real work!
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Part 2

Basic building blocks

Every document is made up of different structures: phrases, paragraphs,
chapters, and sections. A document can also contain images, tables, and col-
umns. This part explains how iText implements these structures, and the
examples demonstrate how they fit together.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composing
text elements
This chapter covers
■ Working with Chunks, Phrases, and Paragraphs
■ Working with Anchors, Lists, and ListItems
■ Working with Chapters and Sections
■ Advanced Chunk functionality
99

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

100 CHAPTER 4
Composing text elements
If you wanted to use the first versions of iText back in 1999, you had to be a PDF
specialist. Even if you knew what PDF-specific iText methods to use, the Java code
to produce a PDF document was obscure. Because I wanted to speed up the devel-
opment process and make the code maintainable and easier to debug, it wasn’t
long before I decided to write a layer on top of iText version 0.2x. I had been pro-
ducing many different types of PDF documents, so I knew which high-level
objects would be useful.

 This chapter describes a first series of high-level objects that can be used as
basic building blocks to generate quality PDF documents without having to
bother with PDF syntax. The building blocks that will be discussed in this chapter
are presented in class diagram A.3, “Text element classes” (appendix A), which
will help you understand the relation between the different text elements avail-
able in iText.

 A Chunk corresponds with a String of which all the characters have the same
font, font size, font color, and font style. It’s the most atomic text element. A
Phrase is an ArrayList of Chunk objects. It’s the most elementary object you can
use to add a complete sentence to a document. You can define the main font of a
phrase and the space between the lines. Anchor is a special type of Phrase. It can
be used to define a destination inside a document or to add a clickable link.

 Class Paragraph is also derived from the Phrase object: It’s a block of text that
can be aligned and indented. Add a list symbol to a Paragraph, and you have a
ListItem. ListItem objects are grouped in a List object. All of these text elements
can be added to a Chapter or a Section; these two objects can be used to organize
the content of your document. They automatically generate a table of contents
that is visible as an outline tree in the Bookmarks panel of Adobe Reader.

 At the end of this chapter, you’ll use most of these text elements to help Laura
with her first assignment: making a flyer for the Department of Computer Sci-
ence and Engineering. Throughout this book, you’ll see that the objects discussed
in this chapter are the essential ingredients of more complex iText objects such as
Table (chapter 6) and ColumnText (chapter 7).

4.1 Wrapping Strings in text elements

Let’s go back to the first “Hello World” example from Listing 2.1. The line
marked as step e (adding content to the document) looked like this:

/* chapter02/HelloWorld.java */
document.add(new Paragraph("Hello World"));
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Wrapping Strings in text elements 101
The general idea of step e in the PDF-creation process using document.add() is
that you add objects implementing the interface Element to the Document object.
Behind the scenes, a writer object analyzes these objects and translates them into
the appropriate syntax.

 Class PdfWriter knows how to insert these elements on a PDF page. It also
makes sure all the necessary resources, such as fonts and image data, are dealt
with and added correctly to the PDF document.

 In this chapter, we’ll discuss all the objects shown in class diagram A.3 that
implement the Element interface. These classes have one thing in common: Their
main function is to display Java String objects. Diagram A.3 shows that all these
classes are related to each other, but each one has its own specific characteristics.

 Let’s find out what makes Chunks, Phrases, and Paragraphs different from
each other.

4.1.1 The atomic building block: com.lowagie.text.Chunk
A Chunk is the smallest significant part of text that can be added to a document.
It’s the atomic building block of most of the other high-level text objects. A Chunk
contains a String of which all the characters have the same font, font size, font
style, font color, rendition, and so forth.

 We’ll discuss these characteristics in detail in section 4.2. For now, let’s look at
a short example:

/* chapter04/FoxDogChunk1.java */
Font font = new Font(Font.COURIER, 10, Font.BOLD);
font.setColor(new Color(0xFF, 0xFF, 0xFF));
Chunk fox = new Chunk("quick brown fox", font);
fox.setBackground(new Color(0xa5, 0x2a, 0x2a));
Chunk jumps = new Chunk(" jumps over ", new Font());
Chunk dog = new Chunk("the lazy dog",
 new Font(Font.TIMES_ROMAN, 14, Font.ITALIC));
document.add(fox);
document.add(jumps);
document.add(dog);

In this example, three chunks of text are constructed. The words quick brown fox
are in 10-point Courier bold, and the font color is white with a brown background
color b. The words jumps over are in 12-point Helvetica; this is the default font
and size when you use new Font() c. Finally, the words the lazy dog are in 14-point
Times Roman italic d. Note that some lines in this snippet were left out on pur-
pose; we’ll discuss the complete sample later.

 The end result looks nice because quick brown fox jumps over the lazy dog fits on
one line; but if you tried to add more text to the document, you’d have a problem.

 B

 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

102 CHAPTER 4
Composing text elements
The Chunk object knows how the characters have to advance on a line from left to
right. If a line is full, a carriage return is triggered, but a Chunk doesn’t know
about line spacing. If no other object has been added to the document, the
default line spacing is 0. So, if you added nothing but Chunks to a document, all
the text would be printed on the first line, with the different characters overlap-
ping. Let’s add some lines to the original Chunk example and see what happens:

/* chapter04/FoxDogChunk2.java */
Chunk space = new Chunk(' ');
for (int i = 0; i < 10; i++) {
 document.add(fox);
 document.add(jumps);
 document.add(dog);
 document.add(space);
}

Look at the overlapping chunks in figure 4.1; what do you think about the result?
It’s ugly, isn’t it? I added this example to demonstrate that, in general, Chunks
aren’t objects you should add to a document directly; instead, they should be used
in combination with other objects.

Figure 4.1 The difference between Chunks without leading (background) and Phrases
with leading (foreground)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Wrapping Strings in text elements 103
4.1.2 An ArrayList of Chunks: com.lowagie.text.Phrase

I chose the word chunk for the atomic element because of its first definition in my
dictionary: “a solid piece.” A phrase, on the other hand, is defined as “a string of
words.” It isn’t solid; it’s a composed object. I thought it was a good word to use to
refer to a concatenation of chunks. Translated to iText and Java, a Phrase is an
ArrayList of Chunk objects. Let’s adapt the previous example:

/* chapter04/FoxDogPhrase.java */
Phrase phrase = new Phrase(30);
phrase.add(fox);
phrase.add(jumps);
phrase.add(dog);
phrase.add(space);
for (int i = 0; i < 10; i++)
document.add(phrase);

Now the words Quick brown fox jumps over the lazy dog are repeated 10 times, but
when the end of the line is reached, a newline is triggered. The space between the
baselines of the two lines is 30 user units. You pass this value as a parameter when
you construct the Phrase object.

 If you don’t specify a value for the leading, a default is chosen, depending on
the font used in the Phrase. The default value is 1.5 times the font size. The word
leading is used as a synonym for line spacing.

FAQ How do I change the space between two lines? When I wrote the Phrase
class, I used the word leading because that is how the space between two
lines is defined in the PDF Reference. Until recently, I thought the word
was pronounced “leeding.” But while writing this book, I found out it’s
pronounced “ledding” because the term is derived from the word lead
(the metal); when type was set by hand for printing presses, strips of lead
were placed between lines of type to add space. The word originally
referred to the thickness of these strips of lead that were placed between
the lines. The PDF Reference redefined the word. In answer to the fre-
quently asked question, you can change the space between the lines of a
Phrase (and its subclasses) by using the method setLeading().

If you take a closer look at the PDF, you can see that every word that doesn’t fit on
the line is forwarded to the next line. You can also trigger a newline action by
adding the static Chunk.NEWLINE:

/* chapter04/FoxDogPhrase.java */
document.add(Chunk.NEWLINE);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

104 CHAPTER 4
Composing text elements
This works because the default leading is no longer 0; it’s set to 30 when you add
the Phrase object. Another way to jump to the next line is by using newline char-
acters (\n):

/* chapter04/FoxDogPhrase.java */
phrase.add("\n");

I don’t know about you, but I don’t like all that juggling with newline chunks or
characters. I’d rather have an object that adds a newline automatically. That
object is a Paragraph.

4.1.3 A sequence of Phrases: com.lowagie.text.Paragraph

The Paragraph class is derived from Phrase; this means you can create a Paragraph
and specify the leading, but you also can do much more. Let’s start by composing
a Paragraph with some Chunk and Phrase objects:

/* chapter04/FoxDogParagraph.java */
Chunk space = new Chunk(' ');
String text = "Quick brown fox jumps over the lazy dog.";
Phrase phrase1 = new Phrase(text);
Phrase phrase2 = new Phrase(new Chunk(text, new Font(Font.TIMES_ROMAN)));
Phrase phrase3 = new Phrase(text, new Font(Font.COURIER));
Paragraph paragraph = new Paragraph();
paragraph.add(phrase1);
paragraph.add(space);
paragraph.add(phrase2);
paragraph.add(space);
paragraph.add(phrase3);
document.add(paragraph);
document.add(paragraph);

I used different constructors for the Phrase objects to illustrate the different pos-
sibilities. You compose a Paragraph object with these phrases and add it twice to the
document. In the resulting PDF, you see that a newline was added automatically.

 But this isn’t the most important feature of the Paragraph class. In the Phrase
example, you can see that all the text is added starting from the default right
margin, but the left margin is assembled capriciously. With Paragraphs, you can
specify an alignment:

/* chapter04/FoxDogParagraph.java */
paragraph.setAlignment(Element.ALIGN_LEFT);
document.add(paragraph);
paragraph.setAlignment(Element.ALIGN_CENTER);
document.add(paragraph);
paragraph.setAlignment(Element.ALIGN_RIGHT);
document.add(paragraph);

Left alignment is default

Center every line of paragraph

Align all lines to right
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding extra functionality to text elements 105
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);

You can add some extra spacing before or after a paragraph using the set-
SpacingBefore() and setSpacingAfter() methods:

/* chapter04/FoxDogParagraph.java */
paragraph.setSpacingBefore(10);
document.add(paragraph);
paragraph.setSpacingBefore(0);
paragraph.setSpacingAfter(10);
document.add(paragraph);

The value passed as a parameter is a height in user units that is added to the lead-
ing. Whereas leading is responsible for managing the space between lines, this
value defines the spacing between paragraphs..

TOOLBOX com.lowagie.tools.plugins.Txt2Pdf (Convert2Pdf) If you have plain
ASCII files that are formatted using space characters, you can convert
them to PDF. With this tool, you can choose the page size and orienta-
tion. The font used for the PDF file is Courier. Courier is a monospace font,
meaning that every character has the same width, which is necessary if
you want to preserve the original formatting of the plain text file.

With the Paragraph object, you can also change the indentation of a paragraph:

/* chapter04/FoxDogParagraph.java */
paragraph. setIndentationLeft(20);
document.add(paragraph);
paragraph.setIndentationRight(20);
document.add(paragraph);

There are some other methods in class Paragraph, but these will be discussed later
because they only work in the context of more complex objects. Let’s continue
with our overview.

4.2 Adding extra functionality to text elements

Class Phrase is a subclass of java.util.ArrayList. You’re probably familiar with
java.util.ArrayList, so this information helps you understand what the Phrase
object is about. Seen from the point of view of the iText developer, it’s probably
better to describe a Phrase as an implementation of the com.lowagie.text.Text-
ElementArray interface, rather than as an ArrayList of Chunk objects.

 Justify line
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

106 CHAPTER 4
Composing text elements
 This interface has only one method: public boolean add(Object o). The
Phrase class overrides this method, which is available in its superclass, ArrayList.
The overridden method makes sure that not every type of object can be added.
Each implementation of TextElementArray accepts only a limited set of types of
com.lowagie.text.Element objects.

 Except for class Chunk, all the objects we’ll discuss in this chapter are imple-
mentations of the TextElementArray interface. Some of these objects do more
than just display a String; they can act as an anchor or refer to a destination
inside or outside of the document (class Anchor). They can organize the content
in bulleted or numbered lists (classes List and ListItem). They can even be used
to generate a table of contents in the Bookmarks tab of Adobe Reader (classes
Chapter and Section). Let’s look at these objects one by one.

4.2.1 External and internal links: com.lowagie.text.Anchor

I’ve been making a lot of examples with the words Quick brown fox jumps over the
lazy dog, but why did I choose this particular phrase? You can look it up in the free
encyclopedia Wikipedia. Or, I can give you a link to the page that explains the
origin of this sentence:

/* chapter04/FoxDogAnchor1.java */
Anchor anchor =
 new Anchor("Quick brown fox jumps over the lazy dog.");
anchor.setReference("http://en.wikipedia.org/wiki/
 ➥ The_quick_brown_fox_jumps_over_the_lazy_dog");
document.add(anchor);

If you hover your mouse over the words in the PDF file, you’ll see that the cursor
changes into a pointing finger. Click the right mouse button, and your browser
opens and a Wikipedia HTML page appears. This is only one of the many ways
you can add an external link to a PDF file using iText. More complex Anchor func-
tionality will follow in section 4.5 and chapter 13.

 If you want to add internal references with class Anchor, you need an Anchor
that contains the actual reference. In HTML, this is an <A> tag with a HREF
attribute. But you also need an Anchor that is referenced. In HTML, this is an <A>
tag with a NAME attribute. If you click the text in the first Anchor (the link), you
automatically jump to the text of second one (the destination).

 Try this example, and see what happens:

/* chapter04/FoxDogAnchor2.java */
Paragraph paragraph = new Paragraph("Quick brown ");
Anchor foxReference = new Anchor("fox");
foxReference.setReference("#fox");

Reference that can
be clicked
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding extra functionality to text elements 107
paragraph.add(foxReference);
paragraph.add(" jumps over the lazy dog.");
document.add(paragraph);
document.newPage();
Anchor foxName = new Anchor("This is the FOX.");
foxName.setName("fox");
document.add(foxName);

If you click the word fox, Adobe Reader changes its view to the second page, to
the sentence This is the FOX. Notice that when you define the link, you have to
add the # sign to the name of the destination. This functionality is important
because it can be used to add structural elements that help the end user when
browsing the document. We’ll elaborate on this functionality in chapter 13.

 To help Laura with her first assignment, you’ll provide a list with links to the
different faculties. You know how to create an Anchor, but what about the List?

4.2.2 Lists and ListItems: com.lowagie.text.List/ListItem
List and ListItem are both implementations of the TextElementArray interface.
If you add a ListItem to a List, the content is indented, and a bullet or a number
is added automatically.

 Figure 4.2 shows examples of ordered and unordered lists:

Referenced Anchor;
destination

Figure 4.2 Different types of lists
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

108 CHAPTER 4
Composing text elements
ListItem is a subclass of Paragraph. A ListItem has the same functionality as a
Paragraph (such as leading and indentation), except for two differences:

■ You can’t add a ListItem to a document directly. You have to add ListItem
objects to a List.

■ The classes List and ListItem have a member variable that represents the
list symbol.

The default ListItem is a number or a letter for ordered lists and a hyphen for
unordered lists. With unordered lists, you can change this list symbol for each
item individually or set it at the level of the list. The space that is needed for the
list symbol isn’t calculated automatically. You need to pass the symbol indentation
with the constructor of the list:

/* chapter04/FoxDogList1.java */
List list1 = new List(List.ORDERED, 20);
list1.add(new ListItem("the lazy dog"));
document.add(list1);
List list2 = new List(List.UNORDERED, 10);
list2.add("the lazy cat");
document.add(list2);
List list3 = new List(List.ORDERED, List.ALPHABETICAL, 20);
list3.add(new ListItem("the fence"));
document.add(list3);
List list4 = new List(List.UNORDERED, 30);
list4.setListSymbol("----->");
list4.setIndentationLeft(10);
list4.add("the lazy dog");
document.add(list4);
List list5 = new List(List.ORDERED, 20);
list5.setFirst(11);
list5.add(new ListItem("the lazy cat"));
document.add(list5);
List list = new List(List.UNORDERED, 10);
list.setListSymbol(new Chunk('*'));
list.add(list1);
list.add(list3);
list.add(list5);
document.add(list);

Here’s what happens in the code:

Create an ordered list (1, 2, 3, and so on).
Create an unordered list (the list symbol is -).
Add a String instead of a ListItem.
Create an ordered list (A, B, C, and so on).

 b

 C
 D

 E

 F
 G

 H

 I

 B

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding extra functionality to text elements 109
Create an unordered list using a custom list symbol.
Change the overall indentation of the list.
Generate an ordered list (11, 12, 13, and so on).
Lists can be nested.

In figure 4.2, you also see some lists that have list symbols that look special:

/* chapter04/FoxDogList2.java */
RomanList romanlist = new RomanList(20);
romanlist.setRomanLower(false);
romanlist.add(new ListItem("the lazy dog"));
document.add(romanlist);
GreekList greeklist = new GreekList(20);
greeklist.setGreekLower(true);
greeklist.add(new ListItem("the lazy cat"));
document.add(greeklist);
ZapfDingbatsList zapfdingbatslist = new ZapfDingbatsList(42, 15);
zapfdingbatslist.add(new ListItem("the lazy dog"));
document.add(zapfdingbatslist);
ZapfDingbatsNumberList zapfdingbatsnumberlist
 = new ZapfDingbatsNumberList(0, 15);
zapfdingbatsnumberlist.add(new ListItem("the lazy cat"));
document.add(zapfdingbatsnumberlist);

These lists can be handy, but you have to be careful with them. RomanList and
GreekList work well if your list has no more than 26 or 24 items. If you have
more list items, other characters appear. The same goes for the ZapfDingbats-
NumberList. These are lists from b to ; if you have more than 10 items, the
eleventh item is numbered with the next character, for instance A.

 The next TextElementArray implementations are also elements that structure
text on one or more pages, but they add something extra: They automatically
generate an outline tree (also known as a bookmark).

4.2.3 Automatic bookmarking: com.lowagie.text.Chapter/Section

In the previous chapter, you learned how to retrieve the outline tree of a PDF
document. I’ll explain bookmarks further in chapter 13, but in the meantime
you’ll create bookmarks like the ones in figure 4.3 automatically using the Text-
ElementArray implementations Chapter and Section.

 The use of chapters and sections isn’t limited to novels; you can use these Text-
ElementArray objects to offer a structure to the people who consult your document
online. For example, if you have a catalog of electronic equipment, you can place
all the video equipment in one chapter and the computer-related products in
another. In the video equipment section, you can have subsections for cameras,

 F
 G

 H

 I

Create list with Roman
numbers (I, II, II, IV…)

Create list with Greek
characters (α , β)

Create list with
Zapfdingbats symbols

1)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

110 CHAPTER 4
Composing text elements
DVD players, DVD recorders, and so forth. That way, your customers can use the
Bookmarks tab to jump directly to the section they’re interested in; they don’t
have to scroll through the complete document.

 The top-level bookmarks refer to Chapter objects. All sublevels refer to Sec-
tion objects. Section objects are created with the method addSection(). Let’s
approach this step by step:

/* chapter04/FoxDogChapter1.java */
Chapter chapter1 = new Chapter(
 new Paragraph ("This is a sample sentence:", font), 1);
chapter1.add(text);
Section section1 = chapter1.addSection("Quick", 0);
section1.add(text);
document.add(chapter1);

b creates a Chapter object with the number 1 (it’s the first chapter). Note that a
PDF document doesn’t necessarily have to start with chapter 1. The title of the
chapter (or section) is used as the title for the bookmark. It can be passed as a
String or a Paragraph. You can change this with the method setBookmarkTitle()
if needed. The outline tree that is visible in the Bookmark tab is open by default.
With the method setBookmarkOpen(), you can also change this:

/* chapter04/FoxDogChapter2.java */
chapter1.setBookmarkTitle("The fox");
chapter1.setBookmarkOpen(false);

In steps c and e, content is added to the chapter and the section: Paragraphs,
Phrases, Anchors, Lists, and so forth. You can’t construct a Section directly; creat-
ing a Section d only makes sense in the context of a Chapter or a parent Section.
Step d also defines the number depth. The numberDepth variable tells iText how
many parent-level numbers should be shown.

Figure 4.3 A PDF document with bookmarks

 b
 C

 D
 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Chunk characteristics 111
 For example, you’re now reading section 4.2.3 of part 2 of this book. If the
number depth was 1, the title would be “3 Automatic bookmarking: com.low-
agie.text.Chapter/Section.” With a number depth of 4, the part number (2) would
be added to the section number (4.2.3): “2.4.2.3 Automatic bookmarking:
com.lowagie.text.Chapter/Section.”

 In step f, the Chapter is added to the Document. It’s important to realize that
Chapters can consume a lot of memory. This memory can only be released after
the Chapter is added to the document, after the content is flushed to the Output-
Stream. The Chapter/Section functionality isn’t memory-friendly.

 Let’s now return to the atomic text and learn how to change the characteristics
of the text that is being added to a TextElementArray.

4.3 Chunk characteristics

I have already introduced some of the characteristics of Chunk objects. In fig-
ure 4.1, you saw superscript Chunks, subscript Chunks, and underlined Chunks.
Perhaps you’ve already peeked into the code to see how it was done.

 This section will introduce some of the standard Chunk functionality, such as
retrieving the dimensions of a Chunk, adding lines and colors, and changing the
way characters inside a Chunk are rendered.

4.3.1 Measuring and scaling

Chunks can be used as elements in the basic building blocks, but they will also be
useful for more complex PDF magic later on in this book. On some occasions, you
need to know the width of a Chunk. For instance, if you write Quick brown fox jumps
over the lazy dog in 12-point Helvetica, how much space do you need? The get-
WidthPoint() method gives you the width in points. Doing some math will help
you find out how many inches or centimeters the Chunk takes; see figure 4.4.

 The next code snippet shows how the first two lines in figure 4.4 were composed:

/* chapter04/FoxDogScale.java */
Chunk c = new Chunk("quick brown fox jumps over the lazy dog");
float w = c.getWidthPoint();
Paragraph p = new Paragraph("The width of the chunk: '");
p.add(c);
p.add("' is ");
p.add(String.valueOf(w));
p.add(" points or ");
p.add(String.valueOf(w / 72f));
p.add(" inches or ");
p.add(String.valueOf(w / 72f * 2.54f));
p.add(" cm.");
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

112 CHAPTER 4
Composing text elements
Suppose you have to fit a Chunk inside a box with a certain width. You can scale the
Chunk with the method setHorizontalScaling(). On line 3 in figure 4.4, the Chunk
is added as-is once. On line 4, it’s added twice, but scaled to 50 percent:

/* chapter04/FoxDogScale.java */
document.add(c);
document.add(Chunk.NEWLINE);
c.setHorizontalScaling(0.5f);
document.add(c);
document.add(c);

You can see clearly that the two Chunks in line 4 take the same space as the one
Chunk in line 3. Of course, you have to be careful not to exaggerate the scaling. At
some point, your text will become almost illegible; you may consider switching to
a smaller font size instead of scaling the one you’re using. You’ll learn more about
fonts in chapters 8 and 9.

 For now, you’ll learn how to add horizontal lines to a Chunk so that you can
underline or strike through a text string.

4.3.2 Lines: underlining and striking through text

In chapter 8, you’ll learn about defining the font styles Font.UNDERLINE and
Font.STRIKETHRU. This is nice if you want to underline or strike through some
text, but you may wonder if this functionality really belongs in the Font class.
More important, does the default result correspond with what you expect?
Wouldn’t you rather have the line striking through the words a few points higher
than the default? In some situations, it’s better to work at a more atomic level and
use one of the variants of the method Chunk.setUnderline(). Figure 4.5 shows
some of the possibilities.

Figure 4.4 Measuring and scaling a Chunk
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Chunk characteristics 113
The lines drawn under, through, and above the first sentence in figure 4.5 (to
underline Quick brown fox, strike through jumps over, and go above the lazy dog)
were added at specific distances from the baseline of the text:

/* chapter04/FoxDogUnderline.java */
Chunk foxLineUnder = new Chunk("Quick brown fox");
foxLineUnder.setUnderline(0.2f, -2f);
Chunk jumpsStrikeThrough = new Chunk("jumps over");
jumpsStrikeThrough.setUnderline(0.5f, 3f);
Chunk dogLineAbove = new Chunk("the lazy dog.");
dogLineAbove.setUnderline(0.2f, 14f);

The first parameter of the setUnderline() method defines the thickness of the
line; the second specifies the Y position above (Y > 0) or under (Y < 0) the baseline
of the Chunk. The length of the line depends on the length of the Chunk, but if you
look at the second and third lines, you can see some variation is possible. Let’s look
at a method that offers even more flexibility.

 Let’s define two different Chunks with a different font size:

/* chapter04/FoxDogUnderline.java */
c = new Chunk("Quick brown fox jumps over the lazy dog.");
c = new Chunk("Quick brown fox jumps over the lazy dog.",
 new Font(Font.HELVETICA, 24));

You invoke the same methods with the same parameters on both Chunks:

/* chapter04/FoxDogUnderline.java */
c.setUnderline(new Color(0x00, 0x00, 0xFF),
 0.0f, 0.2f, 15.0f, 0.0f, PdfContentByte.LINE_CAP_BUTT);

Figure 4.5 Underlining and striking through text

Draw upper
(blue) line
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

114 CHAPTER 4
Composing text elements
c.setUnderline(new Color(0x00, 0xFF, 0x00),
 5.0f, 0.0f, 0.0f, -0.5f,
 PdfContentByte.LINE_CAP_PROJECTING_SQUARE);
c.setUnderline(new Color(0xFF, 0x00, 0x00),
 0.0f, 0.3f, 0.0f, 0.4f, PdfContentByte.LINE_CAP_ROUND);

The most obvious parameter in this method is the first one: It defines the color of
the line. But can you see what the other parameters do?

 Let’s start with the upper line (the blue one, if you’re creating the PDF while
reading the book). The Y position above the baseline is 15 pt. If you define this
height for a 12-point font, the line ends up somewhere above the text; but when a
24-point font is used, the line almost strikes through the text. You have a similar
problem with the middle (green) line. The thickness of this line is 5 pt; this is
rather thick compared to a 12-point font and normal compared to a 24-point
one. The height and thickness of the lower (red) line seem better in proportion
with the font size.

 Let’s look at the javadoc information to see what is happening here:

public Chunk setUnderline(Color color,
 float thickness, float thicknessMul,
 float yPosition, float yPositionMul,
 int cap)

I’ve already explained the first parameter:

■ Color—The color of the line, or null to follow the text color

The second and third parameters define the thickness:

■ Thickness—The absolute thickness of the line
■ ThicknessMul—The thickness multiplication factor with the font size

The example gives the green line an absolute thickness of 5 pt. This is about half
as thick as the 12-point font size of the first line and about a fifth of the 24-point
font of the second line. For the blue and red lines, you defined a thickness relative
to the size of the font.

 The fourth and fifth parameters define the Y position:

■ yPosition—The absolute Y position relative to the baseline
■ yPositionMul—The position multiplication factor with the font size

Here, you use an absolute value for the blue line and a relative value for the red
and green lines. Finally, there’s the cap parameter:

Draw lower (green) line

Draw (red) line that
strikes through text
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Chunk characteristics 115
■ cap—The end line cap. Allowed values are PdfContentByte.LINE_CAP_BUTT,
PdfContentByte.LINE_CAP_ROUND, and PdfContentByte.LINE_CAP_PROJECTING_
SQUARE

You’ll more or less understand the difference between these values by looking
closely at the PDF produced by the example. If you need the full explanation,
please consult table 10.3 in section 10.3.2.

 If you use the Font.UNDERLINE style to underline a text element, you have to
accept what you get. With this method, you have almost complete control. By
playing with the absolute and relative values, you can fine-tune the position and
thickness of the lines.

 In the next example, you’ll draw a line indicating the baseline and move the
text up and down with the method setTextRise().

4.3.3 TextRise: sub- and superscript

If you’re writing a mathematical function and you need an exponent or an index
notation, you want to write a value above (superscript) or below (subscript) the
baseline of the chunk. The following example shows how you can use the method
setTextRise() to achieve this:

/* chapter04/FoxDogSupSubscript.java */
String s = "quick brown fox jumps over the lazy dog";
StringTokenizer st = new StringTokenizer(s, " ");
float textrise = 6.0f;
Chunk c;
while (st.hasMoreTokens()) {
 c = new Chunk(st.nextToken());
 c.setTextRise(textrise);
 c.setUnderline(new Color(0xC0, 0xC0, 0xC0),
 0.2f, 0.0f, 0.0f, 0.0f, PdfContentByte.LINE_CAP_BUTT);
 document.add(c);
 textrise -= 2.0f;
}

The result in figure 4.6 is quite jumpy, don’t you agree?

Figure 4.6
Using setTextRise() with Chunks
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

116 CHAPTER 4
Composing text elements
Just as you can underline or strike through text using setUnderline(), you can
now simulate superscript and subscript with setTextRise()—that is, if you know
how to change the font size. This will be explained in chapter 8.

4.3.4 Simulating italic fonts: skewing text

In chapter 8, you’ll learn how to select fonts with different styles; but in chapter 9,
you’ll learn that it’s not always possible to find the italic or bold version of a font.
With some extra Chunk magic, you can work around this problem.

 The best way to simulate an italic font is by using chunk.setSkew(0f, 25f); fig-
ure 4.7 shows the results of using some other parameters:

/* chapter04/FoxDogSkew.java */
chunk = new Chunk("Quick brown fox");
chunk.setSkew(15f, -30f);
p.add(chunk);
chunk = new Chunk(" jumps over ");
chunk.setSkew(15f, 15f);
p.add(chunk);
chunk = new Chunk("the lazy dog.");
chunk.setSkew(-30f, 15f);
p.add(chunk);
document.add(p);

By changing the value of the first parameter, you change the angle of the base-
line. This can lead to strange results. The second parameter defines the angle
between the characters and the baseline. If you aren’t pleased with the standard

Figure 4.7
Skewed text
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Chunk characteristics 117
italic fonts (with the glyphs leaning forward, like a forward slash), you can use this
parameter to create your own backward italic font.

 The default text color is black. In the next example, you’ll learn how to change
the text and the background color of the Chunk.

4.3.5 Changing font and background colors

In figure 4.1, the color of the font and the Chunk background of the words quick
brown fox are different from the other words in the line. Let’s look at the code to
see how this is done:

/* chapter04/FoxDogColor.java */
Font font = new Font(Font.COURIER, 10, Font.BOLD);
font.setColor(new Color(0xFF, 0xFF, 0xFF));
Chunk fox = new Chunk("quick brown fox", font);
fox.setBackground(new Color(0xa5, 0x2a, 0x2a));

The dimensions of the rectangle are defined automatically, but you can change
them if you use another setBackground() method:

/* chapter04/FoxDogColor.java */
Chunk dog =
 new Chunk("the lazy dog", new Font(Font.TIMES_ROMAN, 14, Font.ITALIC));
dog.setBackground(new Color(0xFF, 0x00, 0x00), 10, -50, 20, -10);

The order of the extra parameters that add or subtract space from the original
rectangle is as follows: left, bottom, right, top. You can use this function to high-
light text.

 Let’s continue with colors and find out how text is drawn.

4.3.6 Simulating bold fonts: stroking vs. filling

In chapter 8, you’ll learn that you shouldn’t confuse characters with glyphs.
Glyphs are shapes that can be stroked and/or filled with color. These shapes are
defined in a font file. With the method setTextRenderMode(), you can change the
rendering mode that defines whether the glyphs are to be stroked and/or filled, as
well as the color and the thickness of the strokes.

 In figure 4.8, the four rendition modes are demonstrated. In the first line, the
shapes are filled in black (the default fill color) b. The stroke color of the second
line is red; the fill color remains black c. The third line is invisible d, and the
fourth line isn’t filled e; you can only see the strokes:

/* chapter04/FoxDogRender.java */
Chunk chunk = new Chunk("Quick brown fox jumps over the lazy dog.");
chunk.setTextRenderMode(PdfContentByte.TEXT_RENDER_MODE_FILL,
 0f, new Color(0xFF, 0x00, 0x00));

Set font color to white

Set background to brown

 B
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

118 CHAPTER 4
Composing text elements
document.add(new Paragraph(chunk));
chunk.setTextRenderMode(PdfContentByte.TEXT_RENDER_MODE_FILL_STROKE,
 0.3f, new Color(0xFF, 0x00, 0x00));
document.add(new Paragraph(chunk));
chunk.setTextRenderMode(PdfContentByte.TEXT_RENDER_MODE_INVISIBLE,
 0f, new Color(0x00, 0xFF, 0x00));
document.add(new Paragraph(chunk));
chunk.setTextRenderMode(PdfContentByte.TEXT_RENDER_MODE_STROKE,
 0.3f, new Color(0x00, 0x00, 0xFF));
document.add(new Paragraph(chunk));

The best way to simulate a bold font is by using this code snippet:

setTextRenderMode(PdfContentByte.TEXT_RENDER_MODE_FILL_STROKE, 0.5f, null);

Observe that null is used as the stroke color. In this case, the fill color is used as
the stroke color. Note that you should use the Chunk functionality to simulate an
italic or a bold font only as a last resort. Chapter 8 will explain better ways to
change the font style.

 The other functionality involving colors and lines we have just discussed will
be covered in more detail in part 3, when you’ll add text at absolute positions
(using PDF text state operators). You’ll find that the basic building blocks take
away a lot of the complexity of PDF. For example, when using basic building
blocks, iText calculates how many characters fit on one line automatically.

4.4 Chunks and space distribution

When we discussed the difference between Chunks, Phrases, and Paragraphs, I
mentioned that sentences are automatically split at the end of the line. I also

 C

 D

 E

Figure 4.8
Demonstrating text-rendering modes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Chunks and space distribution 119
mentioned that it’s possible to justify paragraphs. In this section, you’ll learn how
to define split characters and hyphenation rules. You’ll also see how you can
parameterize the distribution of space (between words and between glyphs).

4.4.1 The split character

The default behavior of iText is to try to add as many complete words to a line as
possible. iText splits sentences when a space or a hyphen character (-) is encoun-
tered. If the Chunk is longer than the page width, and it doesn’t contain any spaces
or hyphens (or any other character that is in one of the Unicode ranges consid-
ered to contain split characters), iText splits the Chunk just before the first charac-
ter that doesn’t fit the page. This can be annoying in some situations. For
example, if you have a long URL, you may want to define the forward slash (/) as
a split character for chunks that contain a URL. Look at figure 4.9, and think about
how you would like to change the default behavior.

 To achieve what has been done in the bottom portion of figure 4.9, you
need to implement the SplitCharacter interface. The method that must be
implemented looks a little complicated, but in most cases it’s sufficient to copy
this method and only change the return line:

Figure 4.9 Changing the split character
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

120 CHAPTER 4
Composing text elements
/* chapter04/FoxDogSplit.java */
public class FoxDogSplit implements SplitCharacter {
public boolean isSplitCharacter(int start, int current, int end,
 char[] cc, PdfChunk[] ck) {
 char c;
 if (ck == null)
 c = cc[current];
 else
 c = ck[Math.min(current, ck.length - 1)]
 .getUnicodeEquivalent(cc[current]);
 return (c == '/');
 }
}

Now you tell the URL Chunk that it should use your custom SplitCharacter imple-
mentation instead of the default split functionality:

/* chapter04/FoxDogSplit.java */
urlChunk = new Chunk(url, font);
urlChunk.setSplitCharacter(new FoxDogSplit());

If the string url contains spaces or hyphens, they won’t act as split characters.
The URL Chunk will only be split where there’s a forward slash. This is nice, but it
isn’t as nice as real hyphenation, where words are split according to grammatical
rules. We’ll discuss this next.

4.4.2 Hyphenation
Let’s use some real text for a change, as shown in figure 4.10, and quote Charles
Dickens, one of the best storytellers who ever lived.

 Just like with the split character, you define the magic at the level of the Chunk.
Before I explain how it’s done, I want to draw your attention to the fact that you
need to add an extra jar file to your CLASSPATH if you want to hyphenate text with
iText: itext-hyph-xml.jar. In this jar, you’ll find files like en_US.xml, en_GB.xml,
nl.xml, and pt.xml. They describe the rules for hyphenation for different lan-
guages—in this case, American English, British English, Dutch, and Portuguese.

 These XML files weren’t created by the iText developers. They were cre-
ated for Apache FOP, downloaded from Apache, and put in a separate jar for
your convenience. Some of them may be General Public License (GPL) or not
usable for commercial purposes, so read the licenses and decide what to keep.
If you can’t find the hyphenation pattern you’re looking for, you can create
your own as described at the Apache FOP site. Put the XML file in a directory,
and call Hyphenator.setHyphenDir() or add it as a resource in the package
com.lowagie.text.pdf.hyphenation.hyph.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Chunks and space distribution 121
Let’s see some code that shows how these files are used:

/* chapter04/DickensHyphenated.java */
Chunk ck = new Chunk(text);
HyphenationAuto auto = new HyphenationAuto("en", "GB", 2, 2);
ck.setHyphenation(auto);
Paragraph p = new Paragraph(ck);
p.setAlignment(Paragraph.ALIGN_JUSTIFIED);

As you can see, the first two parameters of the HyphenationAuto constructor cor-
respond with parts of the XML filename, and the third and fourth parameters
specify how many characters may be orphaned at the start of a word or the end
of a word, respectively. For instance, you wouldn’t want to split the word elephant
like this: e-lephant. It doesn’t look right if a single letter gets cut off from the rest
of the word.

4.4.3 Changing the CharSpace ratio

One other issue is important when the end of a line is reached: line justification.
Take a close look at figure 4.11. Do you see any difference between the page on
the left and the page on the right?

 The page on the left shows how characters and words are spaced by default
when a paragraph is justified. In order to fit the line exactly, some extra space is
added between the words and between the characters. The default ratio between

Figure 4.10
A hyphenated excerpt from A
Tale of Two Cities
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

122 CHAPTER 4
Composing text elements
word spacing and character spacing is 2:5. You can change this ratio at the level
of the PdfWriter (this is PdfWriter magic rather than Chunk magic):

/* chapter04/FoxDogSpaceCharRatio.java */
Paragraph paragraph = new Paragraph(text);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);
document.newPage();
writer.setSpaceCharRatio(PdfWriter.NO_SPACE_CHAR_RATIO);
document.add(paragraph);

On the left, there is a lot more space between the words than between the charac-
ters. This is because the code tells the writer not to apply character spacing. In
reality, NO_SPACE_CHAR_RATIO is a big float. You can enter any other float value if
you want to experiment with this feature.

 The tricks you’ve learned until now have concerned visible magic. There’s also
some magic that won’t show up if you print a document, but which you can use to
make it easier for a user to read your document online.

4.5 Anchors revisited

In section 4.2.1, you added external and internal links using the Anchor object.
Chapter 13 will tell you more about links and the actions that are invoked when a
link is clicked; but in the meantime, let’s look at some Chunk functionality that lets
you add clickable text to jump to another document (HTML, PDF, or another
type) or to jump to another place in the current document.

Figure 4.11 Character spacing versus word spacing
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Anchors revisited 123
4.5.1 Remote Goto

Do you remember the meaning of the Quick Brown Fox sentence? In case you’ve
forgotten the Wikipedia link, here’s an alternative version of the FoxDog-
Anchor1 example:

/* chapter04/FoxDogGoto1.java */
Chunk chunk = new Chunk("Quick brown fox jumps over the lazy dog.");
chunk.setAnchor("http://en.wikipedia.org/wiki/
 ➥ The_quick_brown_fox_jumps_over_the_lazy_dog");
document.add(chunk);

This code fragment results in the same behavior as Anchor.setReference(). If
you click the link, the Wikipedia page explaining the Fox/Dog sentence opens.
If you need to add an external link, you can choose which object to use,
Anchor or Chunk.

 But there is more: With Chunk, you can also jump to a specific location on another
(remote) PDF document. The document fox.pdf adds a remote Goto, like this:

/* chapter04/FoxDogGoto2.java */
Paragraph p1 = new Paragraph("The quick brown fox wants to");
Chunk chunk = new Chunk(" jump over ", font);
chunk.setRemoteGoto("dog.pdf", "jump");
p1.add(chunk);
p1.add(" the lazy dog.");

You’re referring to a destination named jump in the file dog.pdf. You could use an
Anchor with the name jump; but for this example I chose to do it this way:

/* chapter04/FoxDogGoto2.java */
Paragraph p3 = new Paragraph("The quick brown fox has jumped over ");
p3.add(new Chunk("the lazy dog.").setLocalDestination("jump"));

In figure 4.12, both files are open. If you click the words jump over in fox.pdf,
dog.pdf opens and the focus is set to the line where the destination (named jump)
was added. The dog.pdf document also has a link to jump to a specific page in
another document. Click on it, and page 3 of fox.pdf opens:

/* chapter04/FoxDogGoto2.java */
Paragraph p4 = new Paragraph("you can also jump to a ");
p4.add(new Chunk("specific page on another document")
 .setRemoteGoto("fox.pdf", 3));

Looking at these code fragments, you’ll also notice that these methods return a
Chunk. What you did in three lines in the first code fragment is reduced to one line
in the second and third FoxDogGoto2 sample code fragments.

fox.pdf

dog.
pdf

dog.pdf
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

124 CHAPTER 4
Composing text elements
The same functionality exists if you want to navigate inside a document not to an
external HTML or PDF file.

4.5.2 Local Goto
With a few changes, you can turn the previous example into one that demon-
strates local Goto and local destination functionality:

/* chapter04/FoxDogGoto3.java */
Paragraph p1 = new Paragraph("The Quick brown fox wants to");
p1.add(new Chunk(" jump over ").setLocalGoto("jump"));
p1.add("the lazy dog.");
Paragraph p3 = new Paragraph("The fox");
p3.add(new Chunk(" has jumped ").setLocalDestination("jump"));
p3.add("over the lazy dog.");

In chapter 13, you’ll learn that all of these Goto actions can also be added with a
PdfAction. Let’s write a third variant of the external link example:

/* chapter04/FoxDogGoto4.java */
Chunk chunk = new Chunk("Quick brown fox jumps over the lazy dog.");
chunk.setAction(new PdfAction("http://en.wikipedia.org/wiki/
 ➥ The_quick_brown_fox_jumps_over_the_lazy_dog"));
document.add(chunk);

The results of FoxDogAnchor1, FoxDogGoto1, and FoxDogGoto4 look identical.
Once you start learning about the PdfAction class in chapter 13, you’ll see that
method setAction() opens lots of other interesting possibilities.

Figure 4.12 External links from one PDF document to another
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generic Chunk functionality 125
 You’ve learned (almost) all about the standard Chunk functionality. If you’re
looking to add a circle around a Chunk or to strike through a word diagonally, you
won’t find a specific method in iText to achieve this. This doesn’t mean it’s impos-
sible; you just need to write custom functionality.

4.6 Generic Chunk functionality

Chapters 10 and 11 will explain how to draw a circle or a diagonal line at an abso-
lute position on a page. In chapter 14, you’ll learn about page events, which let
you retrieve the page coordinates of Chunks, Paragraphs, Chapters, and Sections.
For instance, by implementing the page event method onParagraphEnd(), you can
draw a line under every paragraph (if that’s one of your requirements).

 For now, we’ll preview this functionality by looking at the onGenericTag()
method. First, you’ll tag some chunks that need a special background or that
need to be marked in some special way. Then, you’ll count the occurrence of
some tagged chunks. Finally, you’ll tag a number of chunks so that you can create
an index with references to the page numbers where these chunks occur.

4.6.1 Drawing custom backgrounds and lines

You’ve used specific Chunk methods, such as setUnderline() and setBackground(),
to draw lines and rectangles. Suppose you want to draw an ellipse around a word.
In that case, you could add an extra ellipse method to the Chunk class; but then
you’d end up with lots of custom methods, most of which are hardly ever used. You
should use generic functionality instead.

 This generic functionality is available through page events. For the moment,
you’re only interested in generic Chunk events. Instead of implementing every
method of the PdfPageEvent, you’ll extend the helper class PdfPageEventhelper
and implement only one method:

/* chapter04/FoxDogGeneric1.java */
public class FoxDogGeneric1 extends PdfPageEventHelper {
 public void onGenericTag(PdfWriter writer, Document document,
 Rectangle rect, String text) {
 if ("ellipse".equals(text)) {
 PdfContentByte cb = writer.getDirectContent();
 cb.setRGBColorStroke(0xFF, 0x00, 0x00);
 cb.ellipse(rect.left(), rect.bottom() - 5f,
 rect.right(), rect.top());
 cb.stroke();
 cb.resetRGBColorStroke();
 }
 else if ("box".equals(text)) {
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

126 CHAPTER 4
Composing text elements
 PdfContentByte cb = writer.getDirectContentUnder();
 rect.setBackgroundColor(new Color(0xa5, 0x2a, 0x2a));
 cb.rectangle(rect);
 }
 }
 }

After you create a PdfWriter object, you have to declare this event to the writer.

/* chapter04/FoxDogGeneric1.java */
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("fox_dog_generic1.pdf"));
writer.setPageEvent(new FoxDogGeneric1());

Now the method onGenericTag() is called by the PDF-generating process every
time a tagged Chunk is written to the PdfWriter. In the example, the word fox is put
in a box, and an ellipse is drawn around the word dog:

/* chapter04/FoxDogGeneric1.java */
Paragraph p = new Paragraph();
Chunk fox = new Chunk("Quick brown fox");
fox.setGenericTag("box");
p.add(fox);
p.add(" jumps over ");
Chunk dog = new Chunk("the lazy dog.");
dog.setGenericTag("ellipse");
p.add(dog);
document.add(p);

It’s important to understand that this event isn’t necessarily triggered immedi-
ately after the Chunk object is added to the document. The only thing you can be
sure of is that onGenericTag() will be called once the current page is full and a new
page is started. This is important because you can use this generic functionality for
a number of other interesting applications, as you’ll see in the next section.

4.6.2 Implementing custom functionality
Suppose you want to write a screenplay about a fox and a dog. For convenience,
you can write some helper code that constructs a Paragraph displaying the
speaker in bold and the text line in a normal font:

/* chapter04/FoxDogGeneric2.java */
private static Paragraph getLine(String speaker, String line) {
 Paragraph p = new Paragraph(18);
 Chunk s = new Chunk(speaker + ": ", SPEAKER);
 s.setGenericTag(speaker);
 p.add(s);
 p.add(line);
 return p;
}

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Generic Chunk functionality 127
Now you can write your screenplay like this:

/* chapter04/FoxDogGeneric2.java */
document.add(getLine("Fox", "Hello lazy dog."));
document.add(getLine("Dog", "Hello quick brown fox."));
document.add(getLine("Fox", "I want to jump over you."));
document.add(getLine("Dog", "No problem. Go ahead!"));

Because you added a generic tag to the speaker Chunk, you can count how many
lines each actor has:

/* chapter04/FoxDogGeneric2.java */
public void onGenericTag(PdfWriter writer, Document document,
 Rectangle rect, String text) {
 Integer count = (Integer) lines.get(text);
 if (count == null) lines.put(text, new Integer(1));
 else lines.put(text, new Integer(count.intValue() + 1));
}

Afterward, you can ask the FoxDogGeneric2 class for the lines HashMap, which is
defined as a member variable. Remember that the information gathered in the
generic tag event is correct only after a newPage is invoked on the document. If
you try to retrieve the lines HashMap earlier, some Chunks may not have been writ-
ten to the PdfWriter yet.

 If you write implementations of the PdfPageEvents interface that can be useful
in a broader context, please post them on the mailing list. Maybe they can be
bundled in one of the next iText releases, as was the case with the event class in
the next section.

4.6.3 Building an index
If the previous example inspired you to write a class that builds an index, I have to
disappoint you. Another iText developer already had that idea and he contrib-
uted the class IndexEvents.

 In most books, you can find an index at the end. It’s a list with the major terms
discussed in the book, along with the page numbers on which those discussions
can be found. A more detailed index also contains subentries and references to
other terms. A good index is an organized map of the contents of the book that
helps readers find the information they need. The IndexEvents class is able to
create an index that is three levels deep. Figure 4.13 gives you an idea: If you look
for the word Yellow, you see it’s a color and that you should also look at the index
entry Color, where you’ll find other colors that might interest you.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

128 CHAPTER 4
Composing text elements
The following code snippet shows how the content of the index was gathered:

/* chapter04/FoxDogGeneric3.java */
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("fox_dog_generic3.pdf"));
IndexEvents index = new IndexEvents();
writer.setPageEvent(index);
Paragraph p = new Paragraph("Quick brown fox ");
p.add(index.create("jumps", "Jump"));
p.add(" over the lazy dog.");
document.add(p);
p = new Paragraph(
 index.create("Quick brown fox", "Fox", "quick, brown"));
p.add(new Chunk(" jumps over "));
p.add(index.create("the lazy dog.", "Dog", "lazy"));
document.add(p);
Paragraph p = new Paragraph(new Chunk("The fox is "));
p.add(index.create("brown", "Color", "brown"));
p.add(index.create(" ", "Brown", "color", "see Color; brown"));

First you create an instance of IndexEvents b. The create method of this class
returns a Chunk and keeps a register of keywords. In c the chunk with content
jumps is created and a single keyword (Jump) is registered. This keyword will refer
to the page where the word jumps was added. Internally, the onGenericTag()
method was used to achieve this.

 You can also create index entries that are two levels deep: For example, the
keyword Fox with the specification quick, brown refers to the Chunk containing
Quick brown fox d. Other keywords and specifications such as Dog; lazy e and
Color; brown f are added. The maximum number of levels is three: In G, you’re
creating an empty Chunk with a keyword and specification Brown, color, but you
also add some extra information that can be useful in your index: see Color;

Figure 4.13
An index generated with the
IndexEvents class

 B

 C

 D

 E

 F
 G
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Making a flyer (part 1) 129
brown. If people look for the word Color in your index, you can refer them to the
word Brown.

 The information in the IndexEvents class is sorted by keyword and stored as a
List of IndexEvents.Entry objects. You can write your index like this:

/* chapter04/FoxDogGeneric3.java */
document.add(new Paragraph("Index:"));
List list = index.getSortedEntries();
for (int i = 0, n = list.size(); i < n; i++) {
 IndexEvents.Entry entry = (IndexEvents.Entry) list.get(i);
 Paragraph in = new Paragraph();
 in.add(new Chunk(entry.getIn1()));
 if (entry.getIn2().length() > 0) {
 in.add(new Chunk("; " + entry.getIn2()));
 }
 if (entry.getIn3().length() > 0) {
 in.add(new Chunk(" (" + entry.getIn3() + ")"));
 }
 in.add(": ");
 List pages = entry.getPagenumbers();
 List tags = entry.getTags();
 for (int p = 0, x = pages.size(); p < x; p++) {
 Chunk pagenr = new Chunk(" p" + pages.get(p));
 pagenr.setLocalGoto((String) tags.get(p));
 in.add(pagenr);
 }
 document.add(in);
}

As you can see, you construct strings like Yellow; color (See Color; Yellow) by concat-
enating the different parts of the entry in a paragraph b. Then, you retrieve not
only the page numbers c but also the tags that were added to the Chunk as local
destinations d (the Chunks are wrapped in an Anchor; remember that this is the
PDF equivalent of the HTML tag and attribute).

 By using the local Goto functionality discussed in section 4.5.2, you make the
page numbers clickable e. By clicking a page number in the index file, you can
now jump directly to the place where the referenced word is mentioned.

 You can also add custom functionality to paragraphs, chapters, and sec-
tions, but we’ll cover that in chapter 14. It’s high time we help Laura with her
first assignment.

4.7 Making a flyer (part 1)

In chapter 1, you read that Laura wants to make a flyer introducing the new
Department of Computer Science and Engineering. Figure 4.14 shows the HTML

 B

 C
 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

130 CHAPTER 4
Composing text elements
code Laura has written, as well as what this code looks like when rendered in a
browser (that’s how the PDF page should look). Throughout this chapter, I’ve cov-
ered almost all the elements needed to generate this page in PDF. Only the image
functionality is missing. The H1, H2, and H3 tags correspond with Paragraphs; the A
tag with an Anchor; and the UL and OL tags with Lists. All the text between two tags
can be wrapped in Chunks.

 Maybe you can help Laura to translate the HTML tags she used into iText’s
basic building blocks. Before you begin, I should tell you that you won’t write a
full-blown HTML2PDF parser. Chapter 14 will explain that there are better tools if
you want to convert HTML to PDF.

 For demonstration purposes only, you’ll write an extension for the class
org.xml.sax.ContentHandler and parse the HTML with the Simple API for
XML (SAX). Note that you’ll need some knowledge of SAX to understand this

Figure 4.14 The HTML version of the flyer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Making a flyer (part 1) 131
example. You’ll override the characters() method of the SAX handler and cre-
ate a Chunk object (currentChunk) that contains all the characters between an
open and close tag.

 You’ll also create a java.util.Stack object (stack), to which you’ll add a basic
building block every time an open or close tag is encountered. The following
code sample shows how to implement the startElement() method:

/* chapter04/FoobarFlyer.java */
public void startElement(
 String uri, String localName, String qName,
 Attributes attributes) throws SAXException {
 try {
 if (document.isOpen()) {
 updateStack();
 for (int i = 0; i < 6; i++) {
 if (HtmlTags.H[i].equals(qName)) {
 flushStack();
 stack.push(new Paragraph(Float.NaN, "",
 new Font(Font.HELVETICA, FONTSIZES[i], Font.UNDEFINED,
 new CMYKColor(0.9f, 0.7f, 0.4f, 0.1f))));
 }
 return;
 }
 if ("blockquote".equals(qName)) {
 flushStack();
 Paragraph p = new Paragraph();
 p.setIndentationLeft(50);
 p.setIndentationRight(20);
 stack.push(p);
 }
 else if (HtmlTags.ANCHOR.equals(qName)) {
 Anchor anchor = new Anchor("", new Font(
 Font.HELVETICA, Font.UNDEFINED, Font.UNDEFINED,
 new CMYKColor(0.9f, 0.7f, 0.4f, 0.1f)));
 anchor.setReference(attributes.getValue(HtmlTags.REFERENCE));
 stack.push(anchor);
 }
 else if (HtmlTags.ORDEREDLIST.equals(qName)) {
 stack.push(new List(List.ORDERED, 10));
 }
 else if (HtmlTags.UNORDEREDLIST.equals(qName)) {
 stack.push(new List(false, 10));
 }
 else if (HtmlTags.LISTITEM.equals(qName)) {
 stack.push(new ListItem());
 }
 else if (HtmlTags.IMAGE.equals(qName)) {
 handleImage(attributes);
 }

 B

 C

 D

 E

 F

 G

 H
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

132 CHAPTER 4
Composing text elements
 }
 else if (HtmlTags.BODY.equals(qName)) {
 document.open();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Here’s what happens in this code snippet:

Map h1, h2, h3, h4, h5, and h6 to a Paragraph.
Map blockquote to an indented Paragraph.
Map the <a> tag to an Anchor.
Map ol to an ordered List.
Map ul to an unordered List.
Map li to a ListItem.
The next chapter will deal with img.
The <body> tag opens the document.

The method handleImage() isn’t implemented yet; it’s just some empty braces.
We’ll deal with it in the next chapter. When looking at this code, you see a lot of
common HTML tags and attributes are missing. You didn’t implement the name
attribute of an <a> tag, add support for different list symbols, and so forth, but I
hope you get the general idea: Every time you encounter a starting tag, you add
an element—specifically, an implementation of the TextElementArray interface—
to the stack.

 These objects don’t have any content when they’re created, but you provide
a method updateStack() that regularly adds the currentChunk to the object on
top of the stack. The method flushStack() determines whether the elements
on top of the stack can be processed.

 For example, when the end tag of a list item is encountered, it can be removed
from the stack in order to add it to the list that is the next object on the stack. This
is what happens in the implementation of the endElement() method:

/* chapter04/FoobarFlyer.java */
public void endElement(String uri, String localName, String qName)
 throws SAXException {
 try {
 if (document.isOpen()) {
 updateStack();
 for (int i = 0; i < 6; i++) {
 if (HtmlTags.H[i].equals(qName)) {
 flushStack();

 I

 B

 C

 D

 E

 F

 G

 H

 I
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Making a flyer (part 1) 133
 return;
 }
 }
 if ("blockquote".equals(qName) ||
 HtmlTags.ORDEREDLIST.equals(qName) ||
 HtmlTags.UNORDEREDLIST.equals(qName)) {
 flushStack();
 }
 else if (HtmlTags.NEWLINE.equals(qName)) {
 currentChunk = Chunk.NEWLINE;
 updateStack();
 }
 else if (HtmlTags.LISTITEM.equals(qName)) {
 ListItem listItem = (ListItem) stack.pop();
 List list = (List) stack.pop();
 list.add(listItem);
 stack.push(list);
 }
 else if (HtmlTags.ANCHOR.equals(qName)) {
 Anchor anchor = (Anchor) stack.pop();
 try {
 TextElementArray previous = (TextElementArray) stack.pop();
 previous.add(anchor);
 stack.push(previous);
 } catch (EmptyStackException es) {
 document.add(anchor);
 }
 }
 else if (HtmlTags.HTML.equals(qName)) {
 flushStack();
 document.close();
 }
 }
 else {
 if (HtmlTags.TITLE.equals(qName)) {
 document.addTitle(currentChunk.content().trim());
 }
 currentChunk = null;
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

You can use this custom SAX content handler to parse Laura’s HTML file; as a
result, you get a PDF file that looks like the screenshot shown in figure 4.15.

 Figure 4.15 is already close to the expected result as shown in figure 1.2. The
only thing that’s missing is the image with the logo of the university.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

134 CHAPTER 4
Composing text elements
4.8 Summary

This chapter started with some basic examples. You were introduced to objects such
as Chunk, Phrase, and Paragraph. These were designed to make it easy to add
straightforward text to a PDF document. In the second section, we added some
complexity: We introduced the classes Anchor, List/ListItem, and Chapter/Section.

 After this introduction, we questioned some issues that seemed obvious at
first—for instance, skipping to the next line—and you saw that there is much
more to it than you would think at first sight. You also employed functionality
that will be explained when we get to the core of iText: how to navigate through
a document using different Goto options, creating generic behavior for Chunks,
and so forth.

 Finally, you helped Laura with her first assignment, but you need to know
more about images to complete it. That’s what we’ll do in the next chapter.

Figure 4.15 Making a flyer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Inserting images
This chapter covers
■ Image types supported in iText
■ com.lowagie.text.Image vs. java.awt.Image
■ Image properties
135

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

136 CHAPTER 5
Inserting images
In the previous chapter, we talked about this quick brown fox jumping over that
lazy dog. To take a quote from David Lynch’s movie Wild at Heart, “Mentally
you picture my dog, but I haven’t told you the type of dog which I have. Per-
haps you even picture Toto, from the ‘Wizard of Oz.’” That’s definitely not the
kind of dog I’m thinking of. Wouldn’t it be nice if you could add a picture of a
specific fox and a specific dog in the document? If so, what types of images
does iText support? Those and other questions will be answered in this chapter.

 iText supports a range of standard image types and adds some extra types that
are Java or iText specific. You’ll work with the java.awt.Image class and with raw
image data (bytes), and we’ll briefly talk about barcodes. Note that you’ll find an
exhaustive overview of the barcodes supported by iText in appendix B.

 Let’s start with the standard types: BMP, EPS, GIF, JPEG, PNG, TIFF, and WMF.

5.1 Standard image types

Table 5.1 lists the standard image types that are supported by the Image class and
indicates which format is best to use in which context. For instance, JPG is a better
format for photographs than GIF. GIF is better for charts than JPG.

Table 5.1 Standard image types supported by com.lowagie.text.Image

Image type Description

BMP [Windows bitmap] BMP is a common form of bitmap file in Microsoft Windows. It’s
poorly supported by other operating systems and has limited support for color.

EPS [Encapsulated PostScript] This is a graphics format that describes an image in the
PostScript language. It isn’t fully supported by iText. It works with only some EPS files;
it may or may not work with your EPS files.

GIF [Graphic Interchange Format] GIF is a common format for image files and is especially
suitable for images containing large areas of the same color. GIF format files of simple
images are often smaller than the same files would be if stored in JPEG format, but GIF
format doesn’t store photographic images as well as JPEG.

JPEG/JPG [Joint Photographic Experts Group] JPEG or JPG is commonly used to refer to a lossy
compression technique, reducing the size of a graphic file by as much as 96%. Usually
this is the best file format for photographs on the Web.

PNG [Portable Network Graphics] This graphics format was designed as the successor to
GIF. It features compression, transparency, and progressive loading, like GIF.

TIFF [Tagged Image File Format] The TIFF file format is commonly used for digital scanned
images.

continued on next page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Standard image types 137
iText has (a) separate class(es) for (almost) each type that is supported (see also
section A.4). Fortunately, you don’t need to be acquainted with all these different
classes; you only need to know about the superclass from which most of them are
derived: com.lowagie.text.Image.

 Image is an abstract class; you can’t construct an instance directly. Instead, you
use one of the many static Image.getInstance() methods that return an instance
of a specific image implementation. This approach is handy if you want to add an
image to a PDF document without knowing its type in advance. You don’t need to
examine an image in order to choose one of the iText classes that deals with some
specific type. The getInstance() method takes care of this.

 Let’s start by creating an Image object using files of each of the types listed in
table 5.1.

5.1.1 BMP, EPS, GIF, JPEG, PNG, TIFF, and WMF

I made a picture of a quick brown fox and a lazy dog and converted it to BMP, GIF,
JPEG, PNG, TIFF, and WMF. I also added an EPS file of a tiger. Adding images of
these types to a document is easy:

/* chapter05/FoxDogImageTypes.java */
Image img1 = Image.getInstance("foxdog.jpg");
Document.add(img1);
Image img2 = Image.getInstance("foxdog.gif");
Document.add(img2);
Image img3 = Image.getInstance("foxdog.png");
Document.add(img3);
Image img4 = Image.getInstance("foxdog.tiff");
Document.add(img4);
Image img5 = Image.getInstance("foxdog.wmf");
Document.add(img5);
Image img6 = Image.getInstance("foxdog.bmp");
Document.add(img6);
Image img7 = Image.getInstance("tiger.eps");
Document.add(img7);

Figure 5.1 shows what part of the first page generated by the example looks like.

WMF [Windows Metafile Format] WMF is a vector graphics format for Windows-compatible
computers, used mostly for word-processing clip art.

Table 5.1 Standard image types supported by com.lowagie.text.Image (continued)

Image type Description
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

138 CHAPTER 5
Inserting images
In the example, I wrote the classname of the seven different images to System.out.
You’ll see that the type of image doesn’t always correspond with the iText class you
would expect. GIF files, for instance are managed with the class com.lowagie.text.-
pdf.codec.GifImage, but this class isn’t derived from com.lowagie.text.Image.

 The image class returned by GifImage is of type com.lowagie.text.ImgRaw.
This isn’t unusual; we’ll return to the GIF example and then talk more about
ImgRaw in the next subsection.

FAQ Why do I get an exception when I try to add an EPS file? For the moment,
iText offers only basic support for EPS. If you have a simple logo in
EPS, iText will probably accept it, but iText can’t handle all EPS
files. You’ll have to convert them to another image format before
adding them.

One important image type is missing in the standard list of images. You can also
use iText to convert a Scalable Vector Graphics (SVG) file to PDF. Chapter 12 will
explain how to combine iText and Apache Batik to parse an SVG file (which is an
image represented in XML).

Figure 5.1
Document with examples
of different standard
image types
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Standard image types 139
 Two types mentioned in table 5.1 can contain more than one image. Image.-
getInstance() fetches only the first image. You need other objects and methods to
fetch all the pages or frames.

5.1.2 TIFF with multiple pages

A TIFF file can contain multiple pages. You can read the TIFF into a Random-
AccessFileOrArray object b, get the number of images (or pages) C, and extract
the images one by one D.

/* chapter05/FoxDogMultipageTiff */
RandomAccessFileOrArray ra =
 new RandomAccessFileOrArray("foxdog_multiplepages.tif");
int pages = TiffImage.getNumberOfPages(ra);
for (int i = 0; i < pages;) {
 ++i;
 document.add(TiffImage.getTiffImage(ra, i));
}

TIFF files are common in desktop publishing, faxing, and medical-imaging appli-
cations. The iText toolbox provides some useful tools to convert TIFF to PDF.

TOOLBOX com.lowagie.tools.plugins.Tiff2Pdf (Convert2Pdf) This tool allows
you to copy a TIFF file into an A4 or Letter PDF file. You can also create a
PDF file that keeps the original dimensions of every page in the TIFF.

com.lowagie.tools.plugins.KnitTiff (Convert2Pdf) TIFF is also a
common format for scanned images. When you’re scanning, it’s often
easier to scan the odd pages of a bundle of recto-verso (paper) pages
first, followed by the even pages. Unfortunately, you end up with one
TIFF that has pages 1, 3, 5… and another TIFF with pages 2, 4…. Knit-
Tiff lets you knit both files together into one PDF document with pages
1, 2, 3, 4….

Multiple GIF images can be packaged into one animated GIF file; but we don’t
talk of pages in this context, because the purpose of these different images is to
create an animation.

5.1.3 Animated GIFs

In an animated GIF, the animation is created by displaying the different images
one after another with a user-defined interval. Animated GIFs aren’t supported in

 b
 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

140 CHAPTER 5
Inserting images
PDF. When an Image instance is constructed with an animated GIF, only the first
frame of the animation is imported—the animation is lost.

 This doesn’t mean you can’t extract the other images from the combined GIF
file. You can create a GifImage b and ask it for the number of frames C and extract
each specific frame as an Image object D—more specifically, an ImgRaw object.

/* chapter05/FoxDogAnimatedGif.java */
GifImage img = new GifImage("animated_fox_dog.gif");;
int frames = img.getFrameCount();;
for (int i = 0; i < frames;) {
 ++i;
 document.add(img.getImage(i));;
}

This is similar to what you’ve done with TIFF files, but the terminology is differ-
ent; getFrameCount() refers to the fact that you’re making a simple movie using a
limited set of frames. If you want to add a moving picture, you don’t need the
Image class. Media clips (video and/or sound) are added using annotations (see
chapter 15).

 In addition to the iText-specific Image class, there’s also the standard Java class
in the AWT package: java.awt.Image.

5.2 Working with java.awt.Image

You have to pay attention not to confuse the iText object com.lowagie.text.Image
with the standard Java image class java.awt.Image. If you’re using both classes in
the same source file, you must use the full classname to avoid ambiguity and com-
pile errors.

 In figure 5.2, an iText Image is constructed using an AWT Image.
 This is how it’s done:

/* chapter05/HitchcockAwtImage.java */
java.awt.Image awtImage =
 Toolkit.getDefaultToolkit().createImage("hitchcock.gif");
com.lowagie.text.Image img1 =
 com.lowagie.text.Image.getInstance(awtImage, null);
com.lowagie.text.Image img2 =
 com.lowagie.text.Image.getInstance(awtImage, null, true);
com.lowagie.text.Image img3 =
com.lowagie.text.Image.getInstance(awtImage,
 new Color(0xFF, 0xFF, 0x00));
com.lowagie.text.Image img4 =
com.lowagie.text.Image.getInstance(awtImage,
 new Color(0xFF, 0xFF, 0x00), true);

 B
 C

 D

Create java.awt.
Image from file

Create iText Image
(transparency
preserved)

Create iText
image (black
and white)Create iText image

(yellow background)

Create iText image
(black and white)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Working with java.awt.Image 141
Remember that if you’re working on a UNIX/Linux system, you may experience
the same problem as mentioned in the FAQ entry about solving X problems in sec-
tion 2.2.4. You’re creating an image with the java.awt.Toolkit, so you need an X
Server. Note that the other getInstance() methods of class com.lowagie.text.-
Image didn’t need real X functionality.

 One of the big disadvantages of constructing a com.lowagie.text.Image using
a java.awt.Image is the fact that the image is added pixel per pixel. Figure 5.3
show five different PDF files to which this image was added.

 The image added to the PDF files shown in figure 5.3 is a 16 KB PNG. When
the image is added with the getInstance() method used in the previous sec-
tion, the size of the resulting PDF is 17 KB; this is the upper-left PDF in the
screenshot. When the image is added with the method discussed in this section
using java.awt.Image, the file size is almost 19 KB; this is the upper-right PDF.
Although both PDF files look identical, there is a little overhead because the
image was added pixel per pixel.

 You can convert the java.awt.Image to a JPG file by using a different method
that also lets you define the quality of the conversion. The three lower PDFs are
created like this:

Figure 5.2 com.lowagie.text.Image and java.awt.Image
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

142 CHAPTER 5
Inserting images
/* chapter05/HitchcockAwt.java */
Document document = new Document(new Rectangle(200, 280));
try {
 PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("hitchcock20.pdf"));
 document.open();
 img = Image.getInstance(writer, awtImage, 0.2f);
 img.setAbsolutePosition(15, 15);
 document.add(img);
} catch (Exception e) {
 System.err.println(e.getMessage());
}
document.close();

This leads to some surprising results. By using this special image constructor, you
add the image to the document compressed as a JPG. The quality of the conversion

Figure 5.3 Different ways to add a java.awt.Image
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Byte arrays with image data 143
is expressed as a value between 0 (0 percent) and 1 (100 percent). In the screen-
shot, the quality of the images seen from left to right is 100 percent (file size 35
KB), 20 percent (6 KB), and 10 percent (4 KB).

 Observe that the size of the PDF has increased due to the conversion of the
image from PNG to a JPG with a quality of l00 percent. Reducing the quality (for
instance to 10 percent) may lead to unacceptable results, but for this example
there’s not that much difference if you compare the image added with a quality
of 20 percent and the one with a quality of 100 percent. This can be an interest-
ing way to reduce the final file size if you’re creating a document with lots of
high-resolution photographs.

 We’ve been constructing images read from files; and we’ve been constructing
images wrapped in the java.awt.Image object. Another common way is to con-
struct an image using a byte array retrieved from a database.

5.3 Byte arrays with image data

An image can be stored as a Binary Large Object (BLOB) in your database. You
could retrieve the image from the database, store it somewhere on the file system,
and call it using its path, but that isn’t efficient. Performance-wise, it’s better to
create a com.lowagie.text.Image object from memory using the byte array with
the image data retrieved from the database directly.

 Figure 5.4 shows a PDF with two images. The first image was read from a file
into a byte array, and the Image object was constructed by passing this array to the
Image.getInstance() method:

/* chapter05/FoxDogRawImage.java */
RandomAccessFile rf = new RandomAccessFile("foxdog.jpg", "r");
int size = (int)rf.length();
byte imagedata[] = new byte[size];
rf.readFully(imagedata);
rf.close();
Image img1 = Image.getInstance(imagedata);

The Image class reads the raw data and, in this case, detects the JPG header. It
knows it should return an instance of class com.lowagie.text.Jpeg.

 The second image in figure 5.4 wasn’t read from a file, nor was it stored in a
database. The image data was constructed on the fly using an algorithm that gen-
erates raw image bytes. The getInstance() method returns an image of type
com.lowagie.text.ImgRaw.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

144 CHAPTER 5
Inserting images
5.3.1 Raw image data

Sometimes, you need to create an image on the fly. In section 5.4.3, for instance,
you’ll construct a black-and-white image (an image with one component) that acts
as a mask to cover part of another image.

 Suppose you want to create an image with three components that measures
100 x 100 pixels. You can define the color of every pixel with three bytes: one
for the red value, one for the green value, and one for the blue value. The size
of the byte array with the image data will be 30,000: 100 pixels x 100 pixels x
3 components.

 To get the effect demonstrated in the lower image in figure 5.2, you use a
mathematical algorithm as follows:

/* chapter05/FoxDogRawImage.java */
byte data[] = new byte[100*100*3];
for (int k = 0; k < 100; ++k) {
 for (int j = 0; j < 300; j += 3) {

Figure 5.4 A PDF with images constructed using the raw image data
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Byte arrays with image data 145
 data[k * 300 + j] =
 (byte)(255 * Math.sin(j * .5 * Math.PI / 300));
 data[k * 300 + j + 1] =
 (byte)(256 - j * 256 / 300);
 data[k * 300 + j + 2] =
 (byte)(255 * Math.cos(k * .5 * Math.PI / 100));
 }
}
Image img2 = Image.getInstance(100, 100, 3, 8, data);

As you can see, this example doesn’t use the ImgRaw constructor. It composes the
image manually without any standard image header. The Image object can’t rec-
ognize its type, as well as some other properties such as the image size. You only
pass an array of red, green, and blue values. You need to pass more information
to the Image class with the getInstance() method—the width and the height (100
x 100), the number of components (the three colors), and the number of bits per
component (you use a byte, and 1 byte is 8 bits). You can also add an int array to
define a transparency value: The length of this array needs to be two times the
number of components.

 Another suite of images type you may be generating using an algorithm is
defined in the CCITT standard.

5.3.2 CCITT compressed images

CCITT stands for Comité Consultatif International Téléphonique et Télégra-
phique, a standards organization that is now part of the International Telecom-
munication Union (ITU). This organization is responsible for defining many of
the standards for data communications. PDF supports Group 3 and Group 4 com-
pression, which are facsimile (fax) standards (until now, you’ve only worked with
flate compression; see section 2.2.3). With iText, you can insert CCITT-encoded
images using this method:

Image.getInstance(int width, int height,
 boolean reverseBits, int typeCCITT, int parameters, byte[] data)

The reverseBits parameter indicates whether the bits need to be swapped (bit 7
swapped with bit 0, and so on). The type can be Element.CCITTG31D, Ele-
ment.CCITTG32D, or Element.CCITT4.

 The parameters associated with the stream can be (a combination of) the fol-
lowing values:

■ Element.CCITT_BLACKIS1—A flag indicating whether 1 bits are to be inter-
preted as black pixels and 0 bits as white pixels
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

146 CHAPTER 5
Inserting images
■ Element.CCITT_ENCODEDBYTEALIGN—A flag indicating whether the filter
expects extra 0 bits before each encoded line so that the line begins on a
byte boundary

■ Element.CCITT_ENDOFLINE—A flag indicating whether end-of-line bit pat-
terns are required to be present in the encoding

■ Element.CCITT_ENDOFBLOCK—A flag indicating whether the filter expects
the encoded data to be terminated by an end-of-block pattern

The CCITT protocols described in this section are used to send a document as an
image from one fax to another. You could use iText to import a stream received
from your fax server into a PDF file.

 In iText CCITT is also used to construct images that need to be read by a
machine, such as a two-dimensional barcode.

5.3.3 Creating barcodes

You may not look at barcodes as images, but in iText it’s common to add a bar-
code to a document as an instance of the Image object. The purpose of a barcode
is to encode a string of characters as a sequence of spaces and bars so that it’s
machine-readable. Barcodes are used wherever physical objects need to be
tagged with information that is to be processed by computers. An operator can
use a barcode reader to enter the information instead of typing the strings of data
into a terminal. Fully automated processes can use barcodes—for instance, to
ship packages by postal services.

 The different barcode classes are presented in section A.5. The following code
snippet shows how to add an Image object with a Barcode 3 of 9 representing the
text “ITEXT IN ACTION”:

/* chapter05/Barcodes.java */
document.add(new Paragraph("Barcode 3 of 9"));
Barcode39 code39 = new Barcode39();
code39.setCode("ITEXT IN ACTION");
document.add(code39.createImageWithBarcode(cb, null, null));

If you want to know when and where to use the different types of barcodes and
how to create them using iText, you’ll find all the information you need in
appendix B. You’ll also see how to get the barcode as a java.awt.Image or a Pdf-
Template object.

 Any PdfTemplate object can be wrapped in an Image class, as you’ll see next.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Setting image properties 147
5.3.4 Working with com.lowagie.text.pdf.PdfTemplate
When you took the crash course on PDF manipulation, I did a little trick with the
Image class and an imported page to create a thumbnail of an existing page:

/* chapter02/HelloWorldImportedPages.java */
PdfImportedPage page = writer.getImportedPage(reader, 1);
Image image = Image.getInstance(page);

I told you PdfImportedPage is a subclass of PdfTemplate. PdfTemplate is like a can-
vas. In chapter 10, you’ll learn about the transformation matrix, and the parame-
ters needed to position a PdfTemplate. If you want to avoid doing math, it can be
useful to wrap such a template in an Image so that you can more easily change its
properties, such as its width, its height, and its absolute position.

5.4 Setting image properties

In the previous sections, you’ve been adding images to the document at the cur-
rent pointer in the page, in its original size, with the default (left) alignment. In
this section, you’ll change these defaults, and you’ll also deal with image position-
ing, rotation, and scaling.

5.4.1 Adding images to the document
With some minor changes, you can have the image aligned to the right or in the
middle (horizontally):

/* chapter05/FoxDogImageAlignment.java */
Image img1 = Image.getInstance("foxdog.jpg");
img1.setAlignment(Image.ALIGN_LEFT);
Image img2 = Image.getInstance("foxdog.gif");
img2.setAlignment(Image.ALIGN_MIDDLE);
Image img3 = Image.getInstance("foxdog.png");
img3.setAlignment(Image.ALIGN_RIGHT);

This example also adds some text to see what happens when an image is added.
The image aligned to the left starts on a new line. The images added in the mid-
dle and right start on the same line as the text, because there is sufficient space to
begin with the image. Text that comes after the image is added on a new line.

Alignment and wrapping
You can change this behavior by adding extra alignment properties, such as
Image.TEXTWRAP and Image.UNDERLYING.

 Using the first constant indicates that you want iText to try to wrap the text
around the image. The second constant tells iText not to bother about wrapping;
the image will be added under the text:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

148 CHAPTER 5
Inserting images
/* chapter05/FoxDogImageWrapping.java */
Phrase p = new Phrase(
 "Quick brown fox jumps over the lazy dog. ");
Image img1 = Image.getInstance("../resources/foxdog.jpg");
img1.setAlignment(Image.RIGHT | Image.TEXTWRAP);
document.add(img1);
for (int i = 0; i < 20; i++) document.add(p);
Image img2 = Image.getInstance("../resources/foxdog.gif");
img2.setAlignment(Image.MIDDLE | Image.UNDERLYING);
document.add(img2);
for (int i = 0; i < 30; i++) document.add(p);

Figure 5.5 shows what happens. Text is wrapped around the first image (which is
aligned to the right). Text is written on top of the second image (which is aligned
in the middle).

 Note that Image.MIDDLE and Image.TEXTWRAP can’t be combined. This is one of
the limitations of using basic building blocks. In the screenshot, notice that the
spacing of the images and wrapped text doesn’t always look nice. In chapter 7,
we’ll deal with this problem using the ColumnText object.

 You can also wrap an Image inside a Chunk object, so that you can use the image
as if it were a chunk of text.

Figure 5.5 Images and text
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Setting image properties 149
Images and Chunks
Even before they could read, I bought books for my children and encouraged
them to read. Because they didn’t understand words and letters, I bought books
that had lots of images and sentences like the ones in figure 5.6.

 As you can see, some of the words are replaced by images. You probably won’t
use this functionality to produce books for children, but it may be handy if you
need to integrate a company logo into your text. You can do this by wrapping an
Image object into a Chunk object:

/* chapter05/FoxDogImageChunk.java */
Chunk fox = new Chunk(Image.getInstance("fox.gif"), 0, -15);
Chunk dog = new Chunk(Image.getInstance("dog.gif"), 0, -15);
Paragraph p = new Paragraph("Quick brown ");
p.add(fox);
p.add(" jumps over the lazy ");
p.add(dog);
p.add(".");

This code sample uses small GIFs representing a fox and a dog. You create a
Chunk object with the Image instance that contains these GIFs, and you define an
offset. In this case, x = 0 and y = –15. This means the images are drawn 15 pt
under the base line of the Chunk. Once the images are wrapped in the Chunk, you
can use the chunks as if they contained text.

 If you want to make these images more presentable, you can add borders.

Image borders
Class Image extends class Rectangle. You already used this class to define the size
of your page, but Rectangle is also the superclass of several other rectangular
objects. This means you can use some of the methods of this superclass to add a
border around the image:

Figure 5.6 Images wrapped inside a Chunk
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

150 CHAPTER 5
Inserting images
/* chapter05/FoxDogImageRectangle.java */
Image jpg = Image.getInstance("foxdog.jpg");
jpg.setBorder(Image.BOX);
jpg.setBorderColor(new Color(0xFF, 0x00, 0x00));
jpg.setBorderWidth(5);

More on the Rectangle object will follow in the next chapter, when we’ll discuss
tables and cells.

Image sequence
When you add an image to a document without specifying a coordinate, iText
tries to add the image at the current position—that is, where the previous ele-
ment ended. If the image doesn’t fit on the current page, adding the image is
postponed. This was a design decision; iText doesn’t cut images in two, but it
adds other content first.

 In the two PDF documents displayed in figure 5.7, a large image is added,
followed by a smaller image. This is repeated a number of times. In the PDF on
the left, eventually the large image doesn’t fit on the page. The smaller image is
added first, and the large image is forwarded to the next page. You can change
this default behavior by forcing the PdfWriter to respect the image sequence,
like this:

/* chapter05/FoxDogImageSequence.java */
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("fox_dog_imageInSequence.pdf"));
writer.setStrictImageSequence(true);

This code snippet is responsible for the PDF document on the right in figure 5.7.
Just like in the PDF on the left, the fifth image didn’t fit the first page, but instead
of adding the sixth image, a new page is triggered.

FAQ Can I reuse an Image more than once? If you try this example, look at the
size of the generated PDF files. The JPEG is about 12 KB; the GIF is about
4 KB. We added both images three times to the document, and the result-
ing PDF is 17 KB. If you do some math, you see the image data is added to
the PDF file only once, no matter how many times the same image shows
up in the document.

The sequence problem doesn’t apply if you add an image at an absolute position,
at specific coordinates on the page.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Setting image properties 151
5.4.2 Translating, scaling, and rotating images

Chapter 10 will offer a short course in analytical geometry. Using some algebra
and matrices, you’ll learn how to translate, scale and rotate objects in the two-
dimensional PDF coordinate system. That’s the advanced stuff; in this chapter,
we’ll start by explaining how to translate, scale, and rotate images.

Adding an image at an absolute position
When you move an object to another place without scaling or rotating it, you per-
form a translation. This is what happens when you set the absolute positions of an
Image object. With the method setAbsolutePosition(), you pass the coordinate
of lower-left corner of the Image:

/* chapter05/FoxDogImageTranslation.java */
Image img = Image.getInstance("foxdog.jpg");
img.setAbsolutePosition(50, 600);
document.add(img);

Figure 5.7 One PDF document demonstrating the image sequence
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

152 CHAPTER 5
Inserting images
Phrase p =
 new Phrase("Quick brown fox jumps over the lazy dog. ");
for (int i = 0; i < 80; i++) {
 document.add(p);
}
img.setAbsolutePosition(50, 300);
document.add(img);

The coordinates of the lower-left corner of the images on the page are (50, 600)
and (50, 300). In chapter 10, you’ll learn that the origin of the coordinate system
(0, 0) is in the lower-left corner. This is different from the coordinate system used
in other technologies—for instance, in SVG or in the Java Graphics2D object,
where the origin is in the upper-left corner. Remember that the y-axis in PDF
points up; in SVG or Graphics2D, it points down.

 I added some text in this example. In the resulting PDF, the images are added
under the text; no matter if you add the image before or after document.add(p).
Images are always added to a layer under the text. In chapter 10, you’ll learn how
to add the image on top of the text. Note that iText isn’t able to wrap text around
images that are added at absolute positions. In chapter 7, we’ll use a ColumnText
object with irregular columns to work around this issue.

Scaling images
The next example changes the width and height of an image; with or without
respect to the X/Y ratio. We are scaling the image. Figure 5.8 shows an example of
an image that is scaled to 50 percent and another in which the scaling in the X
direction is different than the scaling in the Y direction.

 You can scale an image with scalePercent(), but you can also scale it to abso-
lute dimensions with scaleAbsolute().

/* chapter05/FoxDogImageScaling1.java */
Image jpg = Image.getInstance("foxdog.jpg");
jpg.scaleAbsolute(154, 94)
document.add(jpg);
jpg.scalePercent(50);
document.add(new Paragraph("scalePercent(50)"));
document.add(jpg);
jpg.scaleAbsolute(308, 94);
document.add(new Paragraph("scaleAbsolute(320, 120)"));
document.add(jpg);
jpg.scalePercent(100, 50);
document.add(new Paragraph("scalePercent(100, 50)"));
document.add(jpg);

The original image is 308 by 188 pixels. In b, you scale the image to half its
size by specifying a new width and a new height. You can do the same with the

 B

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Setting image properties 153
method scalePercent() C. With the method scaleAbsolute() D, you can also
change the X/Y ratio of the image. If you want to define a different scale for the
X and Y direction, you can define different percentages for scalePercent() E.
The result of line E is identical to the result of line D. Note that you can also
set the width and height separately with the methods scaleAbsoluteWidth() and
scaleAbsoluteHeight().

NOTE It’s important to understand that iText doesn’t change the image’s
size in bytes. Scaling only changes the resolution that is used to ren-
der the image.

There are a lot of misunderstandings about the resolution used by iText when
images are added to a document. The next example should shed some light on
this matter.

Image resolution
For images, iText always uses a resolution of 72 dots per inch (dpi), regardless
of the resolution specified inside the image. Suppose you have a paper image
that measures 5 x 5 in. You scan this image at 300 dpi. The resulting image is
1500 x 1500 pixels. If you get an iText Image instance, the width and height will

Figure 5.8 Scaled images
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

154 CHAPTER 5
Inserting images
be 1500 user units. Taking into account that 1 in equals 72 user units, the
image will be about 20.83 x 20.83 in. If you want the object to be displayed as
an image of 5 x 5 in, you need to scale it. The best way to do this is with scale-
Percent(100 * 72 / 300).

 Let’s look at a concrete example, to see what happens:

/* chapter05/FoxDogImageScaling2.java */
Image tiff = Image.getInstance("foxdog.tiff");
document.add(tiff);
document.add(new Paragraph("Original width: " + tiff.width()
+ "; original height: " + tiff.height()));
document.add(new Paragraph("DPI X: " + tiff.getDpiX()
 + "; DPI Y: " + tiff.getDpiY()));

The image foxdog.tiff is 619 x 381 pixels. These are the values that are returned
by tiff.width() and tiff.height(). But as you can see, the value returned by
tiff.getDpiX() and tiff.getDpiY() is 360. This means the image has a resolu-
tion of 360 dpi.

 By default, iText shows the image with a resolution of 72 dpi, but you can
change this by scaling it:

/* chapter05/FoxDogImageScaling2.java */
tiff.scalePercent(72f / tiff.getDpiX() * 100);
document.add(new Paragraph("Show the image with 360 Dpi (scaled "
 + (7200f / tiff.getDpiX()) + "%):"));
document.add(tiff);
document.add(new Paragraph("Scaled width: " + tiff.scaledWidth()
+ "; scaled height: " + tiff.scaledHeight()));

The scaled width and height of the image are 123.8 by 76.2 user units. The image
is now rendered with a resolution of 360 dpi instead of 72 dpi.

Scale to fit a rectangle
It’s likely that you’ll have to fit an image inside a predefined rectangle on your
PDF page, keeping the X/Y ratio of the original image. Suppose you have an
application form with a rectangular area that can be used for a photo. Not every
applicant hands in a photograph that has the correct dimensions; so you’ll have
to scale the photo if you want to fit it into the rectangle. You don’t want to stretch
the face on the photograph by using scaleAbsolute(), as is done in the lower
image in figure 5.8. You could do the math to calculate new dimensions, preserv-
ing the aspect ratio, but it’s much easier to use the method scaleToFit():

/* chapter05/FoxDogImageScaling2.java */
tiff.scaleToFit(200, 200);
document.add(tiff);

Returns
619x381

Returns 360
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Setting image properties 155
document.add(new Paragraph("Scaled width: " + tiff.scaledWidth()
 + "; scaled height: " + tiff.scaledHeight()));
document.add(new Paragraph("DPI X: "
 + (72f * tiff.width() / tiff.scaledWidth())
 + "; DPI Y: " + (72f * tiff.height() / tiff.scaledHeight())));

You know the image is 619 x 381 user units, but you need to make it fit in a square
of 200 x 200 user units. If you use the scaleToFit() method, the image is resized
to 200 x 123.1 user units.

 The resolution of the resulting image can be found by doing some extra math:
72f * tiff.width() / tiff.scaledWidth() equals 222.84 dpi.

 We’ll finish this subsection on transformations by discussing the rotation of
an image.

Image rotation
Figure 5.9 shows an image in which the angle of the base line was changed to
30 degrees.

Figure 5.9 A rotated image
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

156 CHAPTER 5
Inserting images
This rotation can be achieved with the method setRotation() or setRotation-
Degrees():

/* chapter05/FoxDogImageRotation.java */
Image jpg2 = Image.getInstance("foxdog.jpg");
jpg2.setRotationDegrees(45);
jpg2.setRotation((float)Math.PI / 2);
jpg2.setRotationDegrees(135);
jpg2.setRotation((float)Math.PI);
jpg2.setRotation((float)
 (2.0 * Math.PI));

If you don’t rotate the image, plain width/height and scaled width/height return
the same values. A rotated image often needs more space. In this case, the meth-
ods to return the plain width/height still give you the dimensions of the image
itself, but the scaled width/height methods return the dimensions of the rectan-
gle that is needed to display the image—the image plus extra space around it.

 The text under each image in the PDF will help you understand the difference
between the methods that get the width and height of the image:

/* chapter05/FoxDogImageRotation.java */
Image jpg1 = Image.getInstance("foxdog.jpg");
jpg1.scalePercent(80);
jpg1.setRotation((float)Math.PI / 6);
document.add(new Paragraph("rotate 30 degrees"));
document.add(jpg1);
document.add(new Paragraph("Original width: " +
 jpg1.width() + "; original height: " +
 jpg1.height()));
document.add(new Paragraph("Plain width: " +
 jpg1.plainWidth() + "; plain height: " +
 jpg1.plainHeight()));
document.add(new Paragraph("Scaled width: " +
 jpg1.scaledWidth() + "; scaled height: " +
 jpg1.scaledHeight()));

In the example, 288.59 is the horizontal distance between the upper-left and
lower-right corners of the rotated image, whereas 253.45 is the vertical distance
between the upper-right and lower-left corner.

5.4.3 Image masks

Whatever type of image you create, JPEG, GIF, PNG, TIFF, or something else, it’s
going to be rectangular or square. You can rotate an image, as you saw in the pre-
vious section, but its form still remains rectangular. Suppose you want to add an
image that has the form of a circle; how can you achieve this? Figure 5.10 shows a

Rotates image
45 degrees

Rotates image 90 degrees
Rotates image 135 degrees

Rotates image
180 degreesRotates image

360 degrees

Returns 308 x 188
(original dimensions)

Returns 264.4 x 150.4
(scaled dimensions)

Returns 288.59 x 253.45
(actual dimensions)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Setting image properties 157
rudimentary example of how I put a mask that looks somewhat like a donut over
the foxdog.jpg image.

 In real life, you’ll want something that looks much better
than figure 5.10, but this example serves mainly to introduce the
theory of hard and soft masks in images. A hard mask has only
one bit per component; 1 covers the image and 0 is transparent.
A soft mask contains a gradient from 0 to 1. We’ll deal with this
concept in more depth later on in chapter 11; this is just a sim-
ple example that serves as an introduction. In chapter 11, you’ll
learn how to create masks that are more spectacular.

 In section 5.3.1, you generated an image with three compo-
nents and eight bits per component. Now, you need an image
with one 1-bit component: black/white. Figure 5.11 represents
an image of 8 x 8 pixels. Each line can be described as 1 byte (8 bits, 1 bit per
pixel). The first line is 00111100 or 0x3C; the second line 01111110 or 0x7e; and
so on.

 The hexadecimal byte stream of this mask looks like this: 3C7EE7C3C3E77E3C.
If you want rounded corners instead of this donut shape, the stream looks like this:
3C7EFFFFFFFF7E3C.

Figure 5.10
Masking an image

Figure 5.11
The image mask
is an image of
8 x 8 pixels.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

158 CHAPTER 5
Inserting images
 This is how to create the image shown in figure 5.11:

/* chapter05/FoxDogImageMask.java */
byte circledata[] =
{(byte)0x3c, (byte)0x7e, (byte)0xe7, (byte)0xc3,
 (byte)0xc3, (byte)0xe7, (byte)0x7e, (byte)0x3c};
Image mask = Image.getInstance(8, 8, 1, 1, circledata);
mask.makeMask();
mask.setInvertMask(true);
img.setImageMask(mask);
document.add(img);

First, you create a byte array with the image data b. You use this byte array to
create an Image with a size of 8 x 8 pixels. It has one component (it’s mono-
chrome) and 1 bit per component (black or white) C. You indicate that you’re
planning to use this image as a mask D. You use the donut shape as a stencil for
another image F (see figure 5.5); if you omit line E, the inverse will happen:
The donut shape will cover the other image.

 This is a theoretical example. Let’s return to the real world and see if we can
finish Laura’s first assignment.

5.5 Making a flyer (part 2)

In the previous chapter, Laura made an HTML file, and you wrote a simple parser
that parsed this HTML into a PDF file. You dealt with all the tags that concerned
text. You didn’t write any code that handled the tag because you didn’t
know anything about images in iText yet. When such a tag was encountered, you
called the method handleImage(), but you left the body of this method empty.

 Now that you know how to get an instance of the Image class and set its prop-
erties, you can implement this method.

5.5.1 Getting the Image instance

Let’s start by getting the values of the url and alt attributes passed with the
tag. You’ll try to create an image with the url; if you don’t succeed, you’ll add a
paragraph with the contents of the alt attribute:

/* chapter05/FoobarFlyer.java */
private void handleImage(Attributes attributes)
 throws MalformedURLException, IOException, DocumentException {
 String url = attributes.getValue(HtmlTags.URL);
 String alt = attributes.getValue(HtmlTags.ALT);
 if (url == null) return;
 Image img = null;

 B

 C
 D

 E
 F

Get the src
attributes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Making a flyer (part 2) 159
 try {
 img = Image.getInstance(url);
 if (alt != null) {
 img.setAlt(alt);
 }
 }
 catch(Exception e) {
 if (alt == null) {
 document.add(new Paragraph(e.getMessage()));
 }
 else {
 document.add(new Paragraph(alt));
 }
 return;
 }
 }

This code snippet uses the method that hasn’t been discussed yet: setAlt(). This
method is useless when generating PDF, but in chapter 2 you saw that you can
also use iText to generate HTML. With the method setAlt(), you can set the
alternative string of an HTML tag.

 If something goes wrong while trying to get the image instance, the text of
the error message or the alternative string is added to the document instead
of the image. You can, of course, choose to throw an error. It’s up to you; this
is just an example, not a full-blown HTML parser.

 The tag can also have attributes defining the border, the alignment, and
the dimensions of the image. Let’s complete the handleImage() method so that
these Image properties are set.

5.5.2 Setting the border, the alignment, and the dimensions

This example gets the values of the border and the alignment and sets the prop-
erties discussed in section 5.4. Note that no border width was defined for the
image in Laura’s HTML document, so the first part of the code snippet will be
skipped when the example is executed. I add it for the sake of completeness:

/* chapter05/FoobarFlyer.java */
 String property;
 property = attributes.getValue(HtmlTags.BORDERWIDTH);
 if (property != null) {
 int border = Integer.parseInt(property);
 if (border == 0) {
 img.setBorder(Image.NO_BORDER);
 }

Try to get image instance

Set alternative string
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

160 CHAPTER 5
Inserting images
 else {
 img.setBorder(Image.BOX);
 img.setBorderWidth(border);
 }
 }
 property = attributes.getValue(HtmlTags.ALIGN);
 if (property != null) {
 int align = Image.DEFAULT;
 if (ElementTags.ALIGN_LEFT.equalsIgnoreCase(property))
 align = Image.LEFT;
 else if (ElementTags.ALIGN_RIGHT.equalsIgnoreCase(property))
 align = Image.RIGHT;
 else if (ElementTags.ALIGN_MIDDLE.equalsIgnoreCase(property))
 align = Image.MIDDLE;
 img.setAlignment(align | Image.TEXTWRAP);
}

Finally, you deal with the attributes width and height. The logo is 411 x 537 pix-
els, which is much too large for the flyer. Laura has set the dimensions to 102 x
134, so the image will be scaled (see section 5.2.2):

/* chapter05/FoobarFlyer.java */
 int w = 0;
 property = attributes.getValue(HtmlTags.PLAINWIDTH);
 if (property != null) {
 w = Integer.parseInt(property);
 int h = 0;
 property = attributes.getValue(HtmlTags.PLAINHEIGHT);
 if (property != null) {
 h = Integer.parseInt(property);
 img.scaleAbsolute(w, h);
 }
 }
 document.add(img);

The only thing that remains is to run the code and take a look at the result.

5.5.3 The resulting PDF

Laura has now finished a flyer that she can distribute to promote her new depart-
ment (see figure 5.12).

 I must admit that this example isn’t really real-world. If you want to create a
flyer like this, you’re better of with a word processor or professional software like
Acrobat. Keep in mind that this example is only the first step. In the next chapter,
you’ll help Laura create more documents, with complex elements such as tables
and columns.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 161
5.6 Summary

In this chapter, you’ve learned what types of images are supported in iText. It’s
important to remember how to get an instance of an image, because you’re
going to use the Image object in different contexts later. An issue that turns up on
the iText mailing list regularly concerns resolution: Remember that iText looks
at the size in pixels of the image, regardless of the resolution.

 You made a single example with lots of barcodes because barcodes are treated
as images in iText; if you need to know more about the different types of barcodes
supported in iText, see appendix B. In part 3, we’ll return to images; you’ll learn
how to add an image to a PdfContentByte object, how to clip images, and how to
make them transparent.

 In most cases, you’ll use images in combination with other objects and struc-
tures. You’ve seen how to wrap an Image inside a Chunk. In the chapters that fol-
low, you’ll see how to add images to the cells of a table (chapter 6) and how to
combine them with columns of text (chapter 7).

Figure 5.12 A fancy flyer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Constructing tables
This chapter covers
■ Working with PdfPTable
■ Working with PdfPCell
■ What about class Table?
162

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 163
If asked what iText’s primary goal is, different people provide different answers
depending on the way they use iText. I use iText mostly to produce reports. If you
ask me for the most important components when generating such a report, I
don’t have to think twice. My answer is: tables, tables, and tables. I repeat the
word three times and not without reason; the table class comes in three different
flavors: PdfPTable, Table, and SimpleTable.

 In this book, we’ll focus mainly on the most flexible and most important table
class: PdfPTable. We’ll spend two examples on class Table, but only to list some of
its advantages. We’ll use SimpleTable for the Foobar example.

6.1 Tables in PDF: PdfPTable

If you’re generating PDF only—you aren’t using HtmlWriter or RtfWriter2—and
if you want full control over the way the table will be rendered, you shouldn’t
doubt what table class to use. You should go for PdfPTable without hesitation.

 We’ll start with some simple examples, demonstrating how to change the
alignment and how to set the width of the table and its columns. Then we’ll do
the same for cells. Additionally, you’ll learn to tune the height of a cell and to
change the color of its background and borders. Finally, you’ll learn what to do if
a table doesn’t fit on one page, or if you want to add the table at a specific abso-
lute position.

6.1.1 Your first PdfPTable

Suppose you need to create a simple table that looks like figure 6.1.
 The code to generate this kind of table is pretty easy, as shown in listing 6.1.

Figure 6.1 Your first PdfPTable
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

164 CHAPTER 6
Constructing tables
/* chapter06/MyFirstPdfPTable.java */
PdfPTable table = new PdfPTable(3);
PdfPCell cell =
 new PdfPCell(new Paragraph("header with colspan 3"));
cell.setColspan(3);
table.addCell(cell);
table.addCell("1.1");
table.addCell("2.1");
table.addCell("3.1");
table.addCell("1.2");
table.addCell("2.2");
table.addCell("3.2");
document.add(table);

When you create a PdfPTable, you always need to pass the number of columns to
the constructor (creating a table with zero columns results in a RuntimeException).
You can add different objects to a PdfPTable object using the method addCell().

 There is an object PdfPRow in the com.lowagie.text.pdf package, but you
aren’t supposed to address it directly; iText uses this class internally to store the
cells that belong to the same row. In this example, the table has three columns.
After adding the first cell with column span three, the first row is full. The next
cell is added to a second row that is created automatically by iText. In other
words, you don’t have to worry about rows—you just have to make sure you’re
adding the correct number of cells.

 The default width of a table is 80 percent of the available width. Let’s do the
math for the table in figure 6.1: The width page is 595 pt minus the margins,
which are 36 pt. In short, the width of the table is (595 – (2 * 36)) * 80 percent, or
418.4 pt.

 Note that the table is centered by default. The width of each cell is equal to the
width of the table divided by the number of columns. In the next section, you’ll
tune these widths.

6.1.2 Changing the width and alignment of a PdfPTable

Let’s add a few extra lines to listing 6.1. You’ll create three tables; the width of the
first one is 100 percent of the available width on the page. The other two have a
width of only 50 percent. You’ll align one of these tables to the right and the
other to the left:

/* chapter06/PdfPTableAligned.java */
table.setWidthPercentage(100);

Listing 6.1 Creating a PdfPTable

Create PdfPTable with 3 columns

Create PdfPCell with
a paragraph

Change colspan of PdfPCell
Add custom PdfPCell to PdfPTable

Add String objects
to PdfPTable
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 165
document.add(table);
table.setWidthPercentage(50);
table.setHorizontalAlignment(Element.ALIGN_RIGHT);
document.add(table);
table.setHorizontalAlignment(Element.ALIGN_LEFT);
document.add(table);

You set the horizontal alignment of the complete table object using set-
HorizontalAlignment(). Note that this doesn’t have any impact on the alignment
of the content inside the cells!

Relative versus absolute width of the PdfPTable
Working with width percentage is easy because it saves you from calculating the
width yourself. If you want to set the absolute width, you should use the methods
setTotalWidth() and setLockedWidth():

/* chapter06/PdfPTableAbsoluteWidth.java */
PdfPTable table = new PdfPTable(3);
table.setTotalWidth(216f);
table.setLockedWidth(true);

Note that iText stores two width parameters: a percentage of the available width
and an absolute width. By setting locked width to true, you indicate that the value
of the absolute width should be used.

 The example sets the total width to 216 user units and has three columns, so
every column in the table is 1 in wide (216 user units / 3 = 72 user units = 1 in).

Column widths
To change the way the available space is distributed over the columns, you can use
a table constructor that takes an array of floats as parameter:

/* chapter06/PdfPTableColumnWidths.java */
float[] widths1 = { 1f, 1f, 2f };
PdfPTable table = new PdfPTable(widths1);

Except for these two lines, this example is identical to the one in listing 6.1; but as
you can see in figure 6.2, the distribution of the columns is different from the
table shown in figure 6.1.

 An array with three values was used to construct the table object, defining a
table with three columns. The floats in the array define relative widths; PdfPTable
will calculate the absolute widths internally. The first two columns take a quarter
of the horizontal space each (1 / (1 + 1 + 2)). The third column takes half of the
available horizontal space. After constructing the PdfPTable, you can also change
the relative width with the setWidths() method:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

166 CHAPTER 6
Constructing tables
/* chapter06/PdfPTableColumnWidths.java */
float[] widths2 = { 2f, 1f, 1f };
table.setWidths(widths2);

FAQ Is it possible to have the column width change dynamically based on the content
of the cells? PDF isn’t HTML, and a PdfPTable is completely different
from an HTML table rendered in a browser; iText can’t calculate col-
umn widths based on the content of the columns. The result would
depend on too many design decisions and wouldn’t always correspond
with what a developer expects. It’s better to have the developer define
the widths.

I repeat that the widths entered with the widths array are relative values. If you
enter an array with absolute widths, every column width is recalculated depend-
ing on the available width on the page, which is a percentage of the available
page width. You can avoid this result by letting the width percentage of the table
depend on the absolute column widths and the page size:

/* chapter06/PdfPTableAbsoluteWidths.java */
float[] widths = { 72f, 72f, 144f };
Rectangle r =
 new Rectangle(PageSize.A4.right(72), PageSize.A4.top(72));
table.setWidthPercentage(widths, r);

The table generated in the PdfPTableColumnWidths example has two columns
with a width of 1 in and a third column with a width of 2 in. There’s more than
one way to make such a table. You can set the total width to 4 in (288pt) and the
relative column widths to {1, 1, 2}; or you can do it like this:

/* chapter06/PdfPTableAbsoluteColumns.java */
float[] widths = { 72f, 72f, 144f };

Figure 6.2 Changing the width of the columns
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 167
table.setTotalWidth(widths);
table.setLockedWidth(true);

Don’t forget to set the locked width to true, otherwise, the floats in the widths
array will be considered as relative widths.

Spacing before and after a PdfPTable
If you look at the resulting PDF documents generated with the previous examples,
you’ll notice that consecutive tables are glued to each other: There is no vertical
space between the tables. This is handy if you want the different tables to look like
one big table.

 If the tables are completely different, or if you need extra spacing between a
table and other high-level objects (such as a previous or a following Paragraph),
you should use the methods setSpacingBefore() and setSpacingAfter():

/* chapter06/PdfPTableSpacing.java */
table.setSpacingBefore(15f);
table.setSpacingAfter(10f);

We have dealt with some general table defaults and showed you how to change
them. Now, let’s look at the way a cell is constructed.

6.1.3 Adding PdfPCells to a PdfPTable
Adding a String, a Phrase, or a Paragraph to a table with the method addCell() is
equivalent to these two lines of code:

PdfPCell cell = new PdfPCell(new Phrase("some text"));
table.addCell(cell);

If you create a PdfPCell with a Paragraph as a parameter, then all paragraph spe-
cific properties are lost. The leading, alignment, and indentation of the PdfPCell
are used instead.

 When you use addCell(String text), you can define default properties for the
cells. For instance, the next code snippet changes the border values of the default
table cell to NO_BORDER:

/* chapter06/PdfPTableWithoutBorders.java */
PdfPTable table = new PdfPTable(3);
table.getDefaultCell().setBorder(PdfPCell.NO_BORDER);
PdfPCell cell =
 new PdfPCell(new Paragraph("header with colspan 3"));
cell.setColspan(3);
table.addCell(cell);
table.addCell("1.1");
table.addCell("2.1");
table.addCell("3.1");
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

168 CHAPTER 6
Constructing tables
The cell containing “header with column span 3” will have borders because Pdf-
PCell.BOX is the default value of every newly created PdfPCell. The cells that con-
tain “1.1,” “2.1,” and so on are added without any border, because the border
property of the default cell was changed to PdfPCell.NO_BORDER.

 Note that there is a huge difference between the following line:

PdfPCell cell = new PdfPCell(new Paragraph("some text"));

and this code snippet:

PdfPCell cell = new PdfPCell();
cell.addElement(new Paragraph("some text"));

In the next chapter, you’ll see that a PdfPCell is rendered as a ColumnText
object, and you’ll learn about the difference between text mode (option b; see
section 7.3.1) and composite mode (option c; see section 7.3.2):

■ Text mode means the properties of the paragraph are ignored.
■ Composite mode means the properties of the elements that are added to

the cell are respected.

Don’t mix these two modes. If you’ve created a PdfPCell in text mode, you
shouldn’t use addElement(). If you do, the original (text mode) content will
be lost.

Alignment of the cell content
In text mode, cell content is aligned horizontally to the left and vertically to the
top of the cell by default. Changing the horizontal alignment is done with set-
HorizontalAlignment():

/* chapter06/PdfPTableCellAlignment.java */
PdfPCell cell;
Paragraph p = new Paragraph(
 "Quick brown fox jumps over the lazy dog.
 ➥ Quick brown fox jumps over the lazy dog.");
table.addCell("centered alignment");
cell = new PdfPCell(p);
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
table.addCell(cell);

The first four rows in figure 6.3 demonstrate four different ways to align a content
cell. When the alignment is set to Element.ALIGN_JUSTIFIED, you can change the
ratio of word spacing to character spacing with the method PdfPCell.set-
SpaceCharRatio(). Turn to figure 4.11 to see the effect of changing this value.

 b

 C
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 169
The previous code snippet sets the alignment for the complete cell. In composite
mode, you can use a different alignment per paragraph (row five in figure 6.3):

/* chapter06/PdfPTableCellAlignment.java */
table.addCell("paragraph alignment");
Paragraph p1 = new Paragraph("Quick brown fox");
Paragraph p2 = new Paragraph("jumps over");
p2.setAlignment(Element.ALIGN_CENTER);

Figure 6.3 Changing the alignment and indentation of a PdfPCell
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

170 CHAPTER 6
Constructing tables
Paragraph p3 = new Paragraph("the lazy dog.");
p3.setAlignment(Element.ALIGN_RIGHT);
cell = new PdfPCell();
cell.addElement(p1);
cell.addElement(p2);
cell.addElement(p3);
table.addCell(cell);

In both modes, the vertical alignment can be changed with the method set-
VerticalAlignment(). The final 3 rows in figure 6.3 are created like this:

/* chapter06/PdfPTableCellAlignment.java */
table.addCell("blah\nblah\nblah\nblah\nblah\nblah\nblah\nblah\nblah\n");
table.getDefaultCell().setVerticalAlignment(Element.ALIGN_BOTTOM);
table.addCell("bottom");
table.addCell("blah\nblah\nblah\nblah\nblah\nblah\nblah\nblah\nblah\n");
table.getDefaultCell().setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell("middle");
table.addCell("blah\nblah\nblah\nblah\nblah\nblah\nblah\nblah\nblah\n");
table.getDefaultCell().setVerticalAlignment(Element.ALIGN_TOP);
table.addCell("top");

The second column of the PDF file shown in figure 6.3 also experiments with
the indentation.

Indentation and leading of the cell content
You can set the left indentation of the first paragraph in a cell with set-
Indent(); the indentation of the following paragraphs are set with Pdf-

PCell.setFollowingIndent(). The indentation to the right can be changed
with PdfPCell.setRightIndent().

 In chapter 4, you saw some methods to change the indentation of a Paragraph.
The same rules we discussed for the alignment of a cell/paragraph apply. Rows six
and seven shown in figure 6.3 demonstrate the method Paragraph.setFirst-
LineIndent() was used. This is an example of a method that doesn’t work with
paragraphs added with document.add(); it only works if you add a Paragraph to a
PdfPTable or a ColumnText object:

/* chapter06/PdfPTableCellAlignment.java */
table.addCell("extra indentation (cell)");
cell = new PdfPCell(p);
cell.setIndent(20);
table.addCell(cell);
table.addCell("extra indentation (paragraph)");
p.setFirstLineIndent(10);
cell = new PdfPCell();
cell.addElement(p);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 171
In composite mode, the leading of the elements added to the cell is used. In text
mode, you can define an absolute value for the leading and/or a value relative to
the size of the font:

/* chapter06/PdfPTableCellSpacing.java */
PdfPCell cell = new PdfPCell(
 new Paragraph("Quick brown fox jumps over the lazy dog.
 ➥ Quick brown fox jumps over the lazy dog."));
table.addCell("default leading / spacing");
table.addCell(cell);
table.addCell("absolute leading: 20");
cell.setLeading(20f, 0f);
table.addCell(cell);
table.addCell("absolute leading: 3; relative leading: 1.2");
cell.setLeading(3f, 1.2f);
table.addCell(cell);
table.addCell("absolute leading: 0; relative leading: 1.2");
cell.setLeading(0f, 1.2f);
table.addCell(cell);
table.addCell("no leading at all");
cell.setLeading(0f, 0f);
table.addCell(cell);

Regardless of whether you’re working in text or in composite mode, you can also
define the padding of the cell content.

Padding of the cell content
The padding is the space between the content of a cell and its borders. You can
define different padding for the left and right side of the cell, as well as for the
top and bottom:

/* chapter06/PdfPTableCellSpacing.java */
cell = new PdfPCell(
 new Paragraph("Quick brown fox jumps over the lazy dog."));
table.addCell("padding 10");
cell.setPadding(10);
table.addCell(cell);
table.addCell("padding 0");
cell.setPadding(0);
table.addCell(cell);
table.addCell("different padding for left, right, top and bottom");
cell.setPaddingLeft(20);
cell.setPaddingRight(50);
cell.setPaddingTop(0);
cell.setPaddingBottom(5);
table.addCell(cell);

You can adjust the top padding depending on the ascender of the first line in
the cell. The bottom padding can be adapted to the descender of the last line.

Absolute leading of 20 pt

Leading of 3 pt + 1.2 times font size

Leading of 1.2 times font size

Leading of 0
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

172 CHAPTER 6
Constructing tables
When a character is drawn, the ascender is the space needed above its base-
line; the descender is the space needed below the baseline to draw the character.
Here an example:

/* chapter06/PdfPTableCellSpacing.java */
Phrase p =
 new Phrase("Quick brown fox jumps over the lazy dog");
table.getDefaultCell().setPadding(2);
table.getDefaultCell().setUseAscender(true);
table.getDefaultCell().setUseDescender(true);
table.addCell("padding 2; ascender and descender");
cell.setPadding(2);

Setting the padding is important to increase the readability of your tables. Other-
wise, the content of the cell sticks to the borders—and that’s not pretty. If the pad-
ding is relatively small, you should also consider using the ascender and
descender to make sure all the characters fit nicely inside the cell borders.

 Changing the leading and/or padding and using the ascender/descender have
an impact on the height of a cell and, by extension, on the height of a row. In the
previous examples, the height of each row was calculated automatically. Now
you’ll learn how to change the row height.

Changing the row height
In figure 6.4, the second column of rows one and two contain the same para-
graph. The first row shows the default behavior. When the content of a cell
doesn’t fit on one line, the text is wrapped and the height of the cell is adapted.

 In row two the text isn’t wrapped. It’s a common misunderstanding that iText
truncates the content when you use setNoWrap(true). If you want your table to
have a fixed size, you shouldn’t turn on the cell wrapping. Instead, you should fix
the height to a certain size. This is done in rows three and four.

 The height of row three is fixed at 1 in (72 pt) with setFixedHeight(); that’s
more than sufficient to show three lines of “blah blah blah.” Row four has a fixed
height of 0.5 in (36 pt), which isn’t sufficient; so the third line is lost.

 If it’s your intention to create a table with fixed dimensions, this is a good way
to add as many full words as possible to the cell. Words that don’t fit the cell are
omitted. This is a feature, not a bug.

 The method setMinimumHeight() is less strict. If the previous example used it
instead of setFixedHeight(), row four would show all the content, but the cell
height would be more than half an inch. The setMinimumHeight() method is dem-
onstrated in row five. It has only one line of content, but the cell is half an inch high;
that’s the minimum height defined in the code. Here’s the code for these examples:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 173
/* chapter06/PdfPTableCellHeights.java */
cell = new PdfPCell(new Paragraph("blah blah … blah"));
table.addCell("wrap");
cell.setNoWrap(false);
table.addCell(cell);
table.addCell("no wrap");
cell.setNoWrap(true);
table.addCell(cell);
cell = new PdfPCell(
 new Paragraph("1. blah blah\n2. blah blah blah\n3. blah blah"));
table.addCell("fixed height (more than sufficient)");
cell.setFixedHeight(72f);
table.addCell(cell);
table.addCell("fixed height (not sufficient)");
cell.setFixedHeight(36f);
table.addCell(cell);
table.addCell("minimum height");
cell = new PdfPCell(new Paragraph("blah blah"));
cell.setMinimumHeight(36f);
table.addCell(cell);

Figure 6.4 Different row heights

Row 1

Row 2

Row 3

Row 4

Row 5
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

174 CHAPTER 6
Constructing tables
Note that the height of the final row is extended to the bottom margin of the page.
This isn’t a cell property; it’s something that has to be defined at the table level:

/* chapter06/PdfPTableCellHeights.java */
table.setExtendLastRow(true);
table.addCell("extend last row");
cell = new PdfPCell(
 new Paragraph("almost no content, but the row is extended"));
table.addCell(cell);
document.add(table);

Only one method left affects the height of a cell: setUseBorderPadding(). But in
order to know what this method is about, you need to learn more about setting
the width and the color of cell borders.

Changing cell borders and colors
If you want to make your table more colorful, or if you wish to stress the header
row by using a thicker line for the borders, you can benefit from the fact that the
PdfPCell class extends Rectangle. You can use all kinds of methods to change
rectangle borders and colors.

 If you open the PDF shown in figure 6.5, you’ll see that the background of
the second cell of row one is red. The cells in row two have shades of gray as
background color. These colors are set with the methods setBackgroundColor()
and setGrayFill():

/* chapter06/PdfPTableColors.java */
cell = new PdfPCell(new Paragraph("red / no borders"));
cell.setBorder(Rectangle.NO_BORDER);
cell.setBackgroundColor(Color.red);
table.addCell(cell);
cell = new PdfPCell(new Paragraph("0.5"));
cell.setBorder(Rectangle.NO_BORDER);
cell.setGrayFill(0.5f);
table.addCell(cell);

Row 6

Figure 6.5 Changing the colors of a cell and its borders
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 175
The following code fragment was used to change the border width and color of
the lower-right cell:

/* chapter06/PdfPTableColors.java */
cell = new PdfPCell(new Paragraph("orange border"));
cell.setBorderWidth(6f);
cell.setBorderColor(Color.orange);
table.addCell(cell);

Do you see the difference from the other cells in row three? The previous snippet
sets the width and color of the border box. The next example defines different
widths and colors for the right, left, top, and bottom border. This automatically
sets the “use variable borders” attribute to true. If you don’t want the border to
overlap with other cells, as does the orange border cell in figure 6.5, you must
add the line cell.setUseVariableBorders(true); to the previous code fragment.

 The following lines are responsible for creating the cell in the second column
of the row three:

/* chapter06/PdfPTableColors.java */
cell = new PdfPCell(new Paragraph("different borders"));
cell.setBorderWidthLeft(6f);
cell.setBorderWidthBottom(5f);
cell.setBorderWidthRight(4f);
cell.setBorderWidthTop(2f);
cell.setBorderColorLeft(Color.red);
cell.setBorderColorBottom(Color.orange);
cell.setBorderColorRight(Color.yellow);
cell.setBorderColorTop(Color.green);
table.addCell(cell);

If you look at the cells with thick borders, you see that the border and the content
of the cell can overlap. This can be avoided by calculating the border into the
padding as is done with the cell in the third column of row three:

/* chapter06/PdfPTableColors.java */
cell = new PdfPCell(new Paragraph("with correct padding"));
cell.setUseBorderPadding(true);

Until now, you’ve been creating cells with content that is rendered in horizontal
lines. Sometimes it’s useful to be able to add text that is written vertically. The
first column could, for instance, contain a short title, and the second might con-
tain a description.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

176 CHAPTER 6
Constructing tables
Changing the rotation of a PdfPCell
Figure 6.6 shows an example of cells that are rotated 90 degrees.

 There are different ways to create a table with cells like these. The easiest tech-
nique is to change the rotation of the cell with the setRotation() method:

/* chapter06/PdfPTableVerticalCells.java */
PdfPCell cell = new PdfPCell(new Paragraph("fox"));
cell.setBackgroundColor(Color.YELLOW);
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
cell.setRotation(90);
table.addCell(cell);

There is no method setRowspan() in PdfPTable/PdfPCell. If you want to have a
title “fox and dog” that spans the two rows, you need to use a workaround: nested
tables. Tables can be nested using one of the PdfPCell constructors we’ll discuss in
the next section.

6.1.4 Special PdfPCell constructors

In the previous subsections, you’ve been constructing cells containing objects
from chapter 4—text-only objects. Tables aren’t limited to text only; there are also
PdfPCell constructors that take a PdfPTable or an Image object as parameter.

Nested tables
To work around the row-span problem, you create a PdfPCell with a PdfPTable as
a parameter. In figure 6.7, cell 1 is really a table with one row and two columns
containing the values 1.1 and 1.2. The space between the inner table and the
outer cell is the default padding.

Figure 6.6
Cells with vertical text
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 177
Cell 20 contains a one-column table with two rows. This nested table is wrapped
in a PdfPCell so the padding is zero; this way, it looks as if cells 21, 22, and 23
have a row span equal to 2. The following code snippet shows how it’s done:

/* chapter06/PdfPTableNested.java */
PdfPTable table = new PdfPTable(4);
PdfPTable nested1 = new PdfPTable(2);
nested1.addCell("1.1");
nested1.addCell("1.2");
PdfPTable nested2 = new PdfPTable(1);
nested2.addCell("20.1");
nested2.addCell("20.2");
for (int k = 0; k < 24; ++k) {
 if (k == 1) {
 table.addCell(nested1);
 }
 else if (k == 20) {
 table.addCell(new PdfPCell(nested2));
 }
 else {
 table.addCell("cell " + k);
 }
}
document.add(table);

Another interesting PdfPCell constructor can be used to add images.

Tables and images
Suppose you want to make a table containing the specifications of all the prod-
ucts that are sold by your company. One of the columns should contain an image
displaying the product. These images have various heights and widths, so you
want iText to scale each image so that it fits into the table.

Figure 6.7 Cells 1 and 20 contain a nested table

Table to be used for cell 1

Table to be used for cell 20

Add tables as cell
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

178 CHAPTER 6
Constructing tables
 That’s easy to achieve, but make sure you use the right method. There are
three different ways to add an image to a table:

/* chapter06/PdfPTableImages.java */
PdfPTable table = new PdfPTable(1);
table.addCell(img);
table.addCell(new PdfPCell(img, true));
table.addCell(new PdfPCell(img, false));

When you add an image directly to the table b, the properties of the default cell
are used (for instance, padding = 2); the image is scaled to fit the cell by default.

 When you add an image wrapped in a cell, the properties of the default cell
aren’t taken into account. If you set the parameter fit to true c, the image is
scaled so that it fits the cell. If it’s set to false d, iText tries to adapt the cell
dimension to the image.

 Having all these small examples to demonstrate different table features is
nice, but in real life, you’ll probably have to deal with much larger tables than the
ones we’ve shown. Let’s look at what happens if a table doesn’t fit on one page.

6.1.5 Working with large tables
When a cell doesn’t fit on a page, what do you expect iText to do? Do you want to
trigger a new page and start the cell on a new page? Do you want to split the cell
in two parts? Or do you want to drop the cell if it’s too large to fit the page? When
in doubt, try the next example.

Tables spanning multiple pages
This example adds the same table to three different documents, demonstrating
three different options. You create three Document and PdfWriter instances:

/* chapter06/PdfPTableSplit.java */
PdfWriter.getInstance(document1,
 new FileOutputStream("SplitRowsBetween.pdf"));
PdfWriter.getInstance(document2,
 new FileOutputStream("SplitRowsWithin.pdf"));
PdfWriter.getInstance(document3,
 new FileOutputStream("OmitRows.pdf"));

The table is created only once and added to three different documents:

/* chapter06/PdfPTableSplit.java */
String text = ". Quick brown fox jumps over the lazy dog.";
PdfPTable table = new PdfPTable(2);
PdfPCell largeCell = new PdfPCell();
for (int i = 1; i < 13; i++) {
 largeCell.addElement(new Paragraph(String.valueOf(i) + text));
}

 b
 C
 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 179
for (int i = 1; i < 11; i++) {
 table.addCell(String.valueOf(i));
 table.addCell(largeCell);
 if (i == 8) {
 for (int j = 13; j < 31; j++) {
 largeCell.addElement(new Paragraph(String.valueOf(j) + text));
 }
 }
}
document1.add(table);
table.setSplitLate(false);
document2.add(table);
table.setSplitRows(false);
document3.add(table);

First, you add the table to document1 as is b. Once this is done, you tell the table
that cells shouldn’t be kept together and add the table to document2 c. Finally, you
indicate that the rows don’t need to be split and add the table to document3 d.

 What is happening here? The default behavior is that iText tries to add com-
plete cells that aren’t split in two. You can change this default by setting “split
late” to false. The example adds eight rows with a 12-line cell to a table.

 The first four pages of SplitRowsBetween.pdf contain two complete rows each.
With setSplitLate(false), the first page contains two complete rows and four
lines of the third row. Lines 5 to 12 of row three are forwarded to the next page, and
so on. Starting from row eight, you augment the number of lines in the large cell
to 30. A cell with 30 lines is too large to fit on one page. This isn’t a problem in the
file SplitRowsWithin.pdf; these large rows are split over several pages anyway.

 If “split late” is true, a choice has to be made. The default is to start the large
row on a new page and split it anyway. The alternative is to drop the row. You can
do this by setting “split rows” to false, as demonstrated in OmitRows.pdf. If you
open this PDF file, you’ll see the last two rows are missing.

 This table splitting is done automatically, so you don’t have to count rows and
row positions yourself. But what if you want to repeat the table header on every
new page? Again, you don’t have to worry about this—PdfPTable knows how to
take care of it. The previous examples were rather theoretical; the next example is
more realistic.

Repeating the table header and footer
Suppose you have to generate large administrative reports with lots of users, some
information about the users, company and department information, and a list of
privileges. This example is based on some production code that was sent to me, but
instead of filling in data based on a database query, I added some nonsense data.

 b C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

180 CHAPTER 6
Constructing tables
Figure 6.8 shows a table with some header rows. The screenshot shows only part
of page 1 of 7; the actual report spans multiple pages. If you want to repeat the
header (the part with the thick borders) on the pages that contain the rest of
the table, you have to use the method setHeaderRows() and define the number
of rows that are part of the header:

/* chapter06/PdfPTableRepeatHeader.java */
datatable.setHeaderRows(2);

You can also define a footer for the table. The final row with the permissions in
the System Users Report shown in figure 6.9 is repeated on every page, just like
the header.

 If you want to have the last row repeated, you should add it after the two
header rows and before adding any other data. Then you do a little trick:

/* chapter06/PdfPTableRepeatHeaderFooter.java */
datatable.setHeaderRows(3);
datatable.setFooterRows(1);

You still have two header rows, but the first line of the code snippet says that three
rows should be repeated. The second line of the sample says that one of these
lines is a footer. When building a table, you add the rows in the following order:
header row, header row, footer row, data row 1, data row 2, …, data row n.

 Once you start experimenting with this functionality, you’ll find that this is an
easy way to distribute large tables over different pages. There’s only one serious
caveat: Creating a large table object demands a lot of memory. The memory
needed to store table data can exceed the memory available to your JVM. This

Figure 6.8 A PdfPTable with some header rows
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 181
memory can be released only once the table is added to the document and the
table object goes out of scope or is set to null. If you construct a large PdfPTable
and keep adding new cells, you risk the dreaded OutOfMemoryError.

 This can be problematic when dealing with really large tables, but there are
several workarounds.

Memory management for large tables
When you add objects to a document, these objects are written to the Output-
Stream as soon as possible (in most cases, when a page is full). The objects that
have been added to the document should be made eligible for destruction.

 One solution is to fragment a large table into different small tables. In sec-
tion 6.1.2, you saw how consecutive tables are glued together unless you set the
spacing before or after the table. You can use this feature to fake one large table
while in reality you’re adding multiple small tables that are destroyed once
they’re added to the document.

Figure 6.9 A PdfPTable with a footer row
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

182 CHAPTER 6
Constructing tables
 But there is another, more elegant way. You can add a partially con-
structed table to the document, release the data in the table, and continue
adding new cells:

/* chapter06/PdfPTableMemoryFriendly.java */
PdfPTable table = new PdfPTable(2);
table.setWidthPercentage(100);
table.setHeaderRows(1);
PdfPCell h1 = new PdfPCell(new Paragraph("Header 1"));
h1.setGrayFill(0.7f);
table.addCell(h1);
PdfPCell h2 = new PdfPCell(new Paragraph("Header 2"));
h2.setGrayFill(0.7f);
table.addCell(h2);
PdfPCell cell;
for (int row = 1; row <= 2000; row++) {
 if (row % 50 == 0) {
 document.add(table);
 table.deleteBodyRows();
 table.setSkipFirstHeader(true);
 }
 cell = new PdfPCell(new Paragraph(String.valueOf(row)));
 table.addCell(cell);
 cell = new PdfPCell(
 new Paragraph("Quick brown fox jumps over the lazy dog."))
 table.addCell(cell);
}
document.add(table);

Did you notice that the code is gradually getting more complex? The next subsec-
tion goes a step further and tells you how to add tables at absolute positions and
split them vertically.

6.1.6 Adding a PdfPTable at an absolute position

In section 2.2.4, you saw different ways to add content to a page. Until now,
you’ve been adding content using high-level objects with document.add(). In the
next examples, you’ll use an object that is discussed in part 3: PdfContentByte. It
can be used to write objects at absolute positions. For instance, if you want to use a
table as a header or footer, you have to be able to add this table at exact coordi-
nates above or below the actual content.

Comparing document.add() with writeSelectedRows()
Let’s add the same table twice in two different ways: once with document.add()
and once using one of the writeSelectedRows() methods:

Table will have 2000 rows

Add table to document
every 50 rows

Delete 50 rows from table

Header added only on new page

Add new
cells

Add final rows (fewer than 50)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 183
/* chapter06/PdfPTableCompare.java */
PdfPTable table = new PdfPTable(3);
table.addCell("the quick brown fox");
table.addCell("jumps over");
table.addCell("the lazy dog");
document.add(new Paragraph(
 "The table below is added with document.add():"));
document.add(table);
document.add(new Paragraph(
 "The table below is added with writeSelectedRows() at
 ➥ position (x = 50; y ="
 ➥ + PageSize.A4.height() * 0.75f + "):"));
table.writeSelectedRows(0, -1,
 50, PageSize.A4.height() * 0.75f,
 writer.getDirectContent());

In this case, all the rows of the table are added to the direct content, because
you use 0 as the starting row and –1 as end row (which means “show all the
remaining rows”).

 The next example uses the method writeSelectedRows() to distribute a table
over different pages. Observe that there’s a big difference from what you did in
section 6.1.5:

/* chapter06/PdfPTableAbsolutePositions.java */
PdfContentByte cb = writer.getDirectContent();
PdfPTable table = new PdfPTable(2);
float[] rows = { 50f, 250f };
table.setTotalWidth(rows);
for (int k = 0; k < 200; ++k) {
 table.addCell("row " + k);
 table.addCell("blah blah blah " + k);
}
document.add(new Paragraph("row 0 - 49"));
table.writeSelectedRows(0, 50, 150, 820, cb);
document.newPage();
document.add(new Paragraph("row 50 - 99"));
table.writeSelectedRows(50, 100, 150, 820, cb);
document.newPage();
document.add(new Paragraph(
 "row 100 - 149 DOESN'T FIT ON THE PAGE!!!"));
table.writeSelectedRows(100, 150, 150, 200, cb);
document.newPage();
document.add(new Paragraph("row 150 - 199"));
table.writeSelectedRows(150, -1, 150, 820, cb);

Here’s what happens:

Rows 0 to 49 are added at coordinate x = 150; y = 820.

Create regular
PdfPTable

Add table with document.add()

Start and
end row

Coordinates

PdfContentByte object

 b

 C

 D

 E

 B
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

184 CHAPTER 6
Constructing tables
Rows 50 to 99 are added at coordinate x = 150; y = 820. Notice that you have to
trigger a newPage() manually; this isn’t done automatically by iText.
Rows 100 to 149 are added at coordinate x = 150; y = 200. This means the start-
ing point of the table is much lower than it should be. Part of the table doesn’t fit
the page and will be invisible. It’s your responsibility to make sure the table fits.
Rows 150 to 199 are added at coordinate x = 150; y = 820.

Note that the method writeSelectedRows() returns the current Y position after
the table was added. This information is important if you choose not to use
document.add() but decide to add all the content at absolute positions.

 In the previous example, you were in luck that the first page was big enough to
fit rows 0 to 49. In a real-life application, you can calculate the total height of the
first 50 rows before selecting and positioning the rows.

FAQ Why is the returned height 0 when I use table.getRowHeight(0)? This
result is normal. You’ve forgotten to set an important property. Before
iText can calculate the height of each row, the available horizontal width
must be known. Otherwise, it’s impossible to determine how much space
will be needed vertically to display the content of all the cells in a row.
The available width is known to iText when the table is added to the doc-
ument, but at that moment, any information about the row height comes
too late. If you want to know the height before adding the table to a
page, you have to set the total width of the table.

The following code snippets demonstrate two different ways to get the height of a
selection of rows. In the first example, you loop over the first 50 rows, assuming
that the total width of the table is set:

/* chapter06/PdfPTableAbsolutePositions.java */
System.out.println("Total table height: " + table.getTotalHeight());
float rowheight = 0;
for (int i = 0; i < 50; i++) {
 rowheight += table.getRowHeight(i);
}
System.out.println("Height of the first 50 rows: " + rowheight);

In the second code snippet, you get the height of each row in the ArrayList of
PdfPRow objects:

/* chapter06/PdfPTableAbsolutePositions.java */
System.out.print("Heights of the individual rows:");
PdfPRow row;
for (Iterator i = table.getRows().iterator(); i.hasNext();) {
 row = (PdfPRow)i.next();

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tables in PDF: PdfPTable 185
 System.out.print(" ");
 System.out.print(row.getMaxHeights());
}

A more elegant way to find out if a table that is added at an absolute position fits
the current page is to add it to a ColumnText object. You can then ask iText to do
all the calculations that are performed when a column is added to a page. These
calculations can also return a Y position. Depending on this Y value, you can
decide if it’s necessary to add the table at another position. The ColumnText object
will be discussed in the next chapter.

 Until now, you’ve split tables horizontally, row per row. For tables that have a
lot of columns, it can be interesting to split the table vertically. To do this, you’ll
use a second variety of the method writeSelectedRows().

Splitting a PdfPTable vertically
Figure 6.10 shows a table with ten columns. If you tried to fit all these columns on
one page, the column width would be insufficient for the cell content.

With the method writeSelectedRows(), you can select the columns that have to
be rendered:

/* chapter06/PdfPTableSplitVertically.java */
PdfPTable table = new PdfPTable(10);
for (int k = 1; k <= 100; ++k) {
 table.addCell("number " + k);
}
table.setTotalWidth(800);
table.writeSelectedRows(0, 5,
 0, -1, 50, 650, writer.getDirectContent());
document.newPage();
table.writeSelectedRows(5, -1,
 0, -1, 50, 650, writer.getDirectContent());

Figure 6.10 A table that has been split vertically

Write first 5 columns

Write all rows at
coordinate x = 50;
y = 650

Write remaining
columns
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

186 CHAPTER 6
Constructing tables
Again, you need to do some extra calculations to see if the table fits on the page.
For example, you can call the method PdfPTable.getAbsoluteWidths() to retrieve
the absolute width of each column.

 There’s a lot more to say about PdfPTable. In chapter 10, you’ll learn how to
customize cells using table events and cell events. Chapter 10 deals with PDF’s
graphics state; you’ll also learn how to draw cell borders with rounded corners,
how to strike a line through a cell, and so on. But for now, let’s talk about some
alternatives to PdfPTable.

6.2 Alternatives to PdfPTable

This chapter focuses on tables created with PdfPTable. If you look at the iText
API, you’ll also find some other table classes. com.lowagie.text.Table is the orig-
inal table class; it dates from the early iText days. It uses class com.lowagie.-
text.pdf.PdfTable internally to render a table to PDF (don’t confuse this class
with PdfPTable).

 There’s also the newer SimpleTable class, which tries to form a link between
PdfPTable and Table. It’s able to translate itself to a PdfPTable if you add it to a
document that writes PDF or to a Table if you’re producing HTML or RTF.
Because this book focuses mainly on PDF generation, I won’t discuss the other
table classes in detail; I’ll just sum up some pros and cons.

 The major disadvantage of the Table class is that it’s no longer supported. Dif-
ferent people have fixed most of the known issues, but today not a single person
understands if and how all the Table-methods work. If you decide to use this class,
you’re more or less on your own, and you’ll encounter lots of quirky layout issues
based on historical design decisions. However, this doesn’t mean you can’t make
good use of the Table class. Let’s look at some of the advantages.

Advantages of the Table class
The following code sample illustrates three advantages of using the Table class:

/* chapter06/MyFirstTable.java */
Document document = new Document();
PdfWriter.getInstance(document,
 new FileOutputStream("my_first_table.pdf"));
RtfWriter2.getInstance(document,
 new FileOutputStream("my_first_table.rtf"));
HtmlWriter.getInstance(document,
 new FileOutputStream("my_first_table.htm"));
document.open();
Table table = new Table(3);

 B
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternatives to PdfPTable 187
table.setBorderWidth(1);
table.setBorderColor(new Color(0, 0, 255));
table.setPadding(5);
table.setSpacing(5);
Cell cell = new Cell("header");
cell.setHeader(true);
cell.setColspan(3);
table.addCell(cell);
cell = new Cell("example cell with colspan 1 and rowspan 2");
cell.setRowspan(2);
cell.setBorderColor(new Color(255, 0, 0));
table.addCell(cell);
table.addCell("1.1");
table.addCell("2.1");
table.addCell("1.2");
table.addCell("2.2");
table.addCell("cell test1");
cell = new Cell("big cell");
cell.setRowspan(2);
cell.setColspan(2);
cell.setBackgroundColor(new Color(0xC0, 0xC0, 0xC0));
table.addCell(cell);
table.addCell("cell test2");
document.add(table);
document.close();

You can generate a table in PDF, HTML, or RTF using the same code.
You can set padding and spacing the way it’s done in HTML.
You can use the row span without having to resort to nested table.

With the Table class, you can generate a table structure that can be rendered in
PDF, RTF, and HTML. If you compare the results, you’ll see there are small differ-
ences in the way the table is rendered. This is normal; not every table feature is
supported in every document format.

 The next example demonstrates more advantages of the Table class:

/* chapter06/SpecificCells.java */
Table table = new Table(2,2);
table.setAlignment(Element.ALIGN_LEFT);
table.setAutoFillEmptyCells(true);
table.addCell("0.0");
table.addCell("0.1");
table.addCell("1.0");
table.addCell("1.1");
table.addColumns(2);
float[] f = {2f, 1f, 1f, 1f};
table.setWidths(f);
table.addCell("2.2", new Point(2,2));
table.addCell("3.3", new Point(3,3));

 C

 D

 B

 C

 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

188 CHAPTER 6
Constructing tables
table.addCell("2.1", new Point(2,1));
table.addCell("1.3", new Point(1,3));
table.addCell("5.3", new Point(5,3));
table.addCell("5.0", new Point(5,0));
table.deleteColumn(2);
document.add(table);
document.add(new Paragraph("converted to PdfPTable:"));
table.setConvert2pdfptable(true);
document.add(table);
document.add(new Paragraph("positioned PdfPTable:"));
PdfPTable pTable = table.createPdfPTable();
pTable.setTotalWidth(400);
PdfContentByte cb = writer.getDirectContent();
pTable.writeSelectedRows(0, -1, 36, 550, cb);

You can change the number of columns even after you’ve added cells.
You can add cells at specific positions (the number of rows is augmented
dynamically).
You can delete a column before adding the table to the document.
You can let iText add the Table as if it was a PdfPTable.
You get a PdfPTable object based on the Table object.

As opposed to PdfPTable, you can add cells to a Table in a random order, and add
or delete columns if needed. You can even translate a Table to a PdfPTable if you
didn’t use setRowspan().

 There’s also the SimpleTable, class, which is a simplified version of (PdfP)-
Table. When adding a SimpleTable to a PDF document, iText first attempts to add
the table as a PdfPTable; if this fails, it’s added as a Table. When adding a Simple-
Table to an RTF or HTML document, it’s added as a Table. SimpleTable differs
from the Table and PdfPTable in the sense that it reintroduces the concept of rows.
This can be handy if you’re parsing an XML file that has a table-row-cell structure.
If the tag corresponding with the rows has attributes, you don’t have to define this
property for each cell in the row separately; you can set the property for the entire
row at once.

 This being said, we can use this SimpleTable class to help Laura with her sec-
ond assignment. We’ll ask her to make an XML file with all the information that
needs to be displayed in a study program at Foobar University, and we’ll parse
this XML into a PDF and an HTML file.

 G

 H

 I

 E

 F

 G

 H

 I
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composing a study guide (part 1) 189
6.3 Composing a study guide (part 1)

Do you remember Laura’s second assignment? She had to make a nice brochure
with information about the available study programs and the different courses
that are taught in the new department. Let’s start with the study programs and
create some sheets with all the necessary data.

6.3.1 The data source
For my job, I need to create similar PDF documents with data coming from a data-
base. In other words, I use iText as a database publishing tool. I write a database
query, I create a table with as many columns as there are fields returned by my
result set, and I start populating a PdfPTable class, adding it in small portions as
described in section 6.1.4.

 At Foobar, Laura wants to create code that is database independent. She uses
XML as an intermediary format to store the database results. (Personally, I think
this is overkill for most applications, but it’s handy to use an example that you can
run without having to install a database.) Laura composed an appealing study pro-
gram. She took some of the most interesting Manning books on Java development
and turned them into courses, appointing the writers as teachers. Listing 6.2
shows an excerpt of the XML with the data:

<studyprogram>
 <faculty>Department of Computer Science and Engineering</faculty>
 <programme code="CSE_GCAI0101">Graduate in Complementary
 Studies in Applied Informatics</programme>
 <option>Java Development for the Enterprise</option>
 <group>
 <title>GENERAL COURSES</title>
 <unit>
 <course>
 <coursenumber>8001</coursenumber>
 <title>POJOs: Plain Old Java Objects</title>
 <semester>1</semester>
 <pt>1</pt>
 <department>CSE02</department>
 <teacher>Chris Richardson</teacher>
 <a>37.5
 22.5
 <c />
 <d count="true">180</d>
 <e count="true">6</e>
 </course>

Listing 6.2 Excerpt of the study program data source
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

190 CHAPTER 6
Constructing tables
</unit>
 ...
</group>
 ...
</studyprogram>

The data structure is pretty realistic. That’s not a coincidence: The data fields are
based on the way study programs are composed at Ghent University.

6.3.2 Generating the PDF

The data in the XML contains information that fits perfectly into a table structure.
That’s why a class FoobarStudyProgram was created that can parse the XML file
(see listing 6.2) into a SimpleTable object:

/* chapter06/FoobarStudyProgram.java */
public FoobarStudyProgram(String html) throws Exception {
 table = new SimpleTable();
 table.setWidthpercentage(100f);
 currentRow = new SimpleCell(SimpleCell.ROW);
 SAXParser parser = SAXParserFactory.newInstance().newSAXParser();
 parser.parse(new InputSource(new FileInputStream(html)), this);
}

Now you have to implement the methods of the SAX DefaultHandler interface, just
as you did when you created the flyer in the previous chapters. You map every tag
with specific cell properties. SimpleCell objects are constructed in this manner:

/* chapter06/FoobarStudyProgram.java */
private SimpleCell getCell(String s, int style, float width) {
 SimpleCell cell = new SimpleCell(SimpleCell.CELL);
 Paragraph p;
 switch(style) {
 case EMPTY:
 cell.setBorder(SimpleCell.BOX);
 break;
 case TITLE:
 p = new Paragraph(s,
 FontFactory.getFont(BaseFont.HELVETICA, BaseFont.WINANSI,
 BaseFont.NOT_EMBEDDED, 14));
 p.setAlignment(Element.ALIGN_CENTER);
 cell.add(p);
 cell.setColspan(NUMCOLUMNS);
 cell.setBorder(SimpleCell.NO_BORDER);
 break;
 ...
 }
 cell.setBorderWidth(0.3f);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composing a study guide (part 1) 191
 cell.setPadding_bottom(5);
 return cell;
}

If you have lots of tables to generate, you can write an abstract class with a get-
Cell() method that returns all kinds of standard cell layouts. For every type of
table, you can then write a subclass that implements the structure of your XML
schema or your database query. Once you get some experience with this function-
ality, you’ll see it’s not that difficult to create tables like the one in figure 6.11.

Figure 6.11 A table with a study program
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

192 CHAPTER 6
Constructing tables
This is only the first part of a study guide. It lists the courses offered in a certain
study program; it doesn’t explain what these courses are about. In the next chap-
ter, we’ll return to this study program and generate a brochure with some infor-
mation on every course.

6.4 Summary

This was the key chapter of this book if you need to produce reports filled
with data retrieved with a database query. You’ve produced all kinds of tables,
and I hope this chapter gave you a good understanding of the different possi-
bilities. PdfPTable should be your first choice; but depending on the require-
ments defined for your project, there can be good reasons to opt for Table
or SimpleTable.

 Of course, this chapter doesn’t stand alone. We used a lot of building blocks
that were discussed in the previous chapters, but we also referred to some func-
tionality that will be discussed in part 3—for instance, the use of PdfContentByte.

 You’ll also need this object in the next chapter, which introduces another
structure that can be used to organize content on a page. After working with tabu-
lar data, you’re now going to produce columns.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Constructing columns
This chapter covers
■ Advanced page layout with ColumnText
■ Text mode vs. composite mode
■ Automated columns with MultiColumnText
193

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

194 CHAPTER 7
Constructing columns
In the examples so far, you’ve created a Document object defining a certain page
size and well-defined margins. The layout of the building blocks you added to
this document was adapted to fit inside this rectangle (PageSize minus margins).
With class ColumnText, you have an object at your disposal that is similar. You can
create a column object, add different types of building blocks, and then decide
how the content has to be laid out: You can define a Y position; you can define the
left and right borders of the column as straight or irregular lines; and you can
also control the flow of the content.

 Working with this class isn’t always simple, but if you don’t mind trading some
flexibility for ease of use, you can use a MultiColumnText object. This class uses
ColumnText internally, but it comes with some extra functionality that would oth-
erwise be repeated frequently in your code.

 But let’s start with a typical problem that can be solved by introducing
ColumnText. Suppose you want to add a paragraph to a document. How can you
know if this paragraph will fit on the current page? If it doesn’t fit, how many
lines will be added on the current page, and how many lines will be forwarded to
the next page?

7.1 Retrieving the current vertical position

If a paragraph is cut in two and there’s only one line of the paragraph on the
current page, we call this line an orphan. If there’s only one line of the para-
graph on the next page, it’s called a widow. Word processors avoid orphans and
widows automatically, but iText isn’t a word processor; you have to take care of
this issue programmatically.

 Figure 7.1 illustrates a similar layout problem.
 For this example, we took an excerpt from a famous work by Julius Caesar:

“De Bello Gallica.” You read the first lines of his report on the Gallic War from the
plain ASCII file caesar.txt, wrap every line inside a Paragraph object, and add
these paragraphs one by one:

/* chapter07/ParagraphText.java */
BufferedReader reader = new BufferedReader(
 new FileReader("../resources/caesar.txt"));
String line;
Paragraph p;
float pos;
while ((line = reader.readLine()) != null) {
 p = new Paragraph(line);
 p.setAlignment(Element.ALIGN_JUSTIFIED);
 document.add(p);
}

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Retrieving the current vertical position 195
The result looks good at first sight, but there is room for improvement. If you
give the text a closer look, you’ll see the last two lines of the first page belong to
a separate paragraph. Suppose you want to keep this last paragraph together on
one page.

 One possibility is to ask the PdfWriter for its vertical Y position after adding a
high-level object and evaluate how close you are to the bottom border of the
page. This way, you can trigger a new page if you think the next paragraph will
cause an orphaned line—for instance, if the space available is less than the bot-
tom margin plus the paragraph leading times two or three. Avoiding widows is
more difficult. You don’t know how many lines the next paragraph will take, so
you have to do quite a bit of math to see if there’s enough space available on the
current page.

 In the second example of this chapter, you’ll go to a new page if a paragraph
ends less than 1¼ in (90 user units) from the bottom border:

Figure 7.1 Text composed using Paragraph objects and illustrating a layout that could be improved
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

196 CHAPTER 7
Constructing columns
/* chapter07/ParagraphPositions.java */
PdfContentByte cb = writer.getDirectContent();
BufferedReader reader =
 new BufferedReader(new FileReader("caesar.txt"));
String line;
Paragraph p;
float pos;
while ((line = reader.readLine()) != null) {
 p = new Paragraph(line);
 p.setAlignment(Element.ALIGN_JUSTIFIED);
 document.add(p);
 pos = writer.getVerticalPosition(false);
 System.out.println(pos);
 cb.moveTo(0, pos);
 cb.lineTo(PageSize.A4.width(), pos);
 cb.stroke();
 if (pos < 90) document.newPage();
}

The resulting PDF is shown in figure 7.2.

Get current Y coordinate

Draw line at this
exact Y-position

Open new page if Y < 90 pt

Figure 7.2 Retrieving the Y position after adding a high-level object
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding text to ColumnText 197
Look at the horizontal lines that were added with the moveTo()/lineTo() meth-
ods (these methods will be explained in part 3). These lines indicate the Y posi-
tion of the baseline of every last paragraph line. This value is returned by
getVerticalPosition(). As you can see, the lines that were orphaned in figure 7.1
are now forwarded to the next page.

 In the next section, you’ll try to achieve the same result using the Column-
Text class.

7.2 Adding text to ColumnText

Let’s start with Phrases and Chunks. Remember that a Chunk is the atomic building
block, containing a String in one specific font, font size, font style, and font color.
A Phrase is an ArrayList of chunks for which you’ve defined a leading. Please
don’t think about more complex building blocks (such Paragraphs, Images, and
Tables) until you’ve reached the next section.

 First, you’ll produce a PDF that looks exactly the same as the PDF shown in fig-
ure 7.1. You’ll use an approach that differs from all the previous examples: Instead
of performing a series of document.add() invocations, you’ll create a ColumnText
object and position it on the page.

7.2.1 Different ways to add text to a column

This is a complex matter, so I’ll throw in a good deal of code to help you get
acquainted with the interesting ColumnText object. The PDF shown in figure 7.1
could have been generated in three different ways.

ColumnText.addText(Phrase p)
When you create a ColumnText object, you always need a PdfContentByte object.
By now, you probably understand that objects that are added at absolute positions
generally can’t do without PdfContentByte.

 You add different portions of text to this ColumnText object. Furthermore, you
use the method setSimpleColumn() to define a rectangle (the lower-left and
upper-right corner of the column), a leading, and an alignment:

/* chapter07/ColumnWithAddText.java */
PdfContentByte cb = writer.getDirectContent();
ColumnText ct = new ColumnText(cb);
BufferedReader reader =
 new BufferedReader(new FileReader("caesar.txt"));
String line;

Create ColumnText object
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

198 CHAPTER 7
Constructing columns
while ((line = reader.readLine()) != null) {
 ct.addText(new Phrase(line + "\n"));
}
reader.close();
ct.setSimpleColumn(36, 36,
 PageSize.A4.width() - 36, PageSize.A4.height() - 36
 18, Element.ALIGN_JUSTIFIED);
int status = ColumnText.START_COLUMN;
while (ColumnText.hasMoreText(status)) {
 status = ct.go();
 ct.setYLine(PageSize.A4.height() - 36);
 document.newPage();
}

The go() method renders as much text as possible on the current page. As long as
more text is left in the column, you create a new page and reset the Y position of
the column so that you can continue rendering text until there’s none left.

NOTE Don’t write a ColumnText object to different writers simultaneously. Invoking
go() removes content from the column object, so it can only be used
once—that is, with one PdfWriter at a time.

If the text doesn’t fit the column (you’ve reached the end of the column and there
is still content left in the ColumnText object), the go() method returns Column-
Text.NO_MORE_COLUMN. If you’re out of text, but you still have space available in the
column, ColumnText.NO_MORE_TEXT is returned. It’s also possible that the text fits
the column exactly; in this case, an or-ed combination of both values is returned:
ColumnText.NO_MORE_COLUMN | ColumnText.NO_MORE_TEXT.

NOTE You should never check the status like this: status == Column-
Text.NO_MORE_TEXT. Instead, you can use the condition (status &
ColumnText.NO_MORE_TEXT) == 0 or the convenience method Column-
Text.hasMoreText(status).

Another way to get a document similar to the one in figure 7.1 using the Column-
Text object is to read the text completely into a String (including all the newline
characters) and add this String to a column in a single statement.

ColumnText.setSimpleColumn(Phrase p, …)
You can read the entire text into a StringBuffer and pass the toString() of this
buffer object to the setSimpleColumn() method:

Add Phrase

Define lower-left coordinate

Define upper-
right coordinateDefine leading

and alignment
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding text to ColumnText 199
/* chapter07/ColumnWithSetSimpleColumn.java */
StringBuffer sb = new StringBuffer(1024);
BufferedReader reader =
 new BufferedReader(new FileReader("caesar.txt"));
int c;
while((c = reader.read()) > -1){
 sb.append((char)c);
}
reader.close();
PdfContentByte cb = writer.getDirectContent();
ColumnText ct = new ColumnText(cb);
ct.setSimpleColumn(new Phrase(sb.toString()), 36, 36,
 PageSize.A4.width() - 36, PageSize.A4.height() - 36,
 18, Element.ALIGN_JUSTIFIED);

When you add content with the setSimpleColumn() method, it’s appended to the
content that was previously added with addText(). After setting the simple column,
you have to invoke the go() method in a loop, as was done in the previous example.

 Finally, there’s a third way to set the text; it doesn’t differ much from the pre-
vious example.

ColumnText.setText(Phrase p)
You can also read the complete text into the StringBuffer sb, define the column,
and set the text:

/* chapter07/ColumnWithSetText.java */
ColumnText ct = new ColumnText(cb);
ct.setSimpleColumn(36, 36,
 PageSize.A4.width() - 36, PageSize.A4.height() - 36,
 18, Element.ALIGN_JUSTIFIED);
ct.setText(new Phrase(sb.toString()));

Again, you need to loop until all text has been added. The difference from the
previous examples is that using setText() discards all the content that was already
added to the column. Soon you’ll see why this is important.

 You’ve now created three PDF files that look like the one in figure 7.1, but what
you really need is a PDF that keeps paragraphs together as shown in figure 7.2.

7.2.2 Keeping paragraphs together

With class ColumnText, it’s possible to simulate the go() method before you add
the content of the column to the document. If you use a boolean parameter like
ct.go(true), iText will pretend to add the column, but in reality nothing will
show up on the page. This is interesting because the result of this simulation pro-
vides a lot of information.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

200 CHAPTER 7
Constructing columns
It tells you the number of lines that will be rendered, as well as the Y position that
will be reached after the content is added. These values can help you to decide
whether a block of text will be widowed or orphaned. Compare figure 7.3 with fig-
ures 7.2 and 7.1. In figure 7.3, the last paragraph of the text is forwarded to the
next page instead of being split.

 You use the method ColumnText.hasMoreText() to decide if you’re going to
add the column to this page or forward it to the next page:

/* chapter07/ColumnControl.java */
PdfContentByte cb = writer.getDirectContent();
BufferedReader reader =
 new BufferedReader(new FileReader("caesar.txt"));
ColumnText ct = new ColumnText(cb);
float pos;
String line;
Phrase p;
int status = ColumnText.START_COLUMN;

Figure 7.3 Columns that keep paragraphs together on one page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding text to ColumnText 201
ct.setSimpleColumn(36, 36,
PageSize.A4.width() - 36, PageSize.A4.height() - 36,
 18, Element.ALIGN_JUSTIFIED);
while ((line = reader.readLine()) != null) {
 p = new Phrase(line);
 ct.addText(p);
 pos = ct.getYLine();
 status = ct.go(true);
System.err.println("Lines written:" + ct.getLinesWritten()
 + " Y-positions: " + pos + " - " + ct.getYLine());
 if (!ColumnText.hasMoreText(status)) {
 ct.addText(p);
 ct.setYLine(pos);
 ct.go(false);
 }
 else {
 document.newPage();
 ct.setText(p);
 ct.setYLine(PageSize.A4.height() - 36);
 ct.go();
 }
}
reader.close();

There are things going on in this code that need some extra explanation. The
most important issue is that go(true) does everything go() or go(false) does,
except add the content to the page. Observe that go(true) also removes the con-
tent from the ColumnText object as if it was added.

 If the text fits, you can use addText() or setText() to reintroduce the phrase
before invoking go() for real. In the other case, you have to use setText() to dis-
card the content that is still present in the ColumnText because it didn’t fit. If you
used addText(), part of the content would be duplicated. This answers the ques-
tion you probably wanted (but were afraid?) to ask in the previous subsection:
Why do you need all these different methods?

 Being able to simulate the go() method to gain control over what happens
when adding data to a page is one interesting feature of class ColumnText, but it
isn’t the most important, as you’ll see in the next section.

7.2.3 Adding more than one column to a page
You’ve been using ColumnText as an alternative for document.add() using a single
column, but nothing stops you from adding more than one column to the same
page. Figure 7.4 shows you the same text in two columns, as if it was a news article
reporting on the Gallic War in the Gazetta di Roma.

Simulate go() method

Add as much text as
possible to page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

202 CHAPTER 7
Constructing columns
You don’t need any new functionality to achieve this format. We’ve already dis-
cussed all the necessary methods; but let’s look at the source code to produce
these regular columns.

Regular columns
If you want to add two columns of text per page, then you only need to make
some changes in the go() loop:

/* chapter07/ColumnsRegular.java */
ColumnText ct = new ColumnText(cb);
ct.setAlignment(Element.ALIGN_JUSTIFIED);
ct.setText(new Phrase(sb.toString()));
float[] left = { 36, (PageSize.A4.width() / 2) + 18 };
float[] right = { (PageSize.A4.width() / 2) - 18,
 PageSize.A4.width() - 36 };
int status = ColumnText.NO_MORE_COLUMN;
int column = 0;

Figure 7.4
Adding more than one
column to a page

Define left borders

Define right
borders
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding text to ColumnText 203
while (ColumnText.hasMoreText(status)) {
 ct.setSimpleColumn(left[column], 36,
 right[column], PageSize.A4.height() - 36);
 status = ct.go();
 column++;
 if (column > 1) {
 column = 0;
 document.newPage();
 }
}

This example doesn’t teach you anything new, but it’s an ideal way to move on to
the next topic.

Irregular columns
Figure 7.5 looks nicer than figure 7.4, which only has regular columns; don’t
you agree?

 This example illuminates the document with an image of Caesar and an extra
geometric ornament that is repeated on every page. You don’t want the text to
overlap the illustrations, so you need to find a way to define irregular borders for
the ColumnText object.

 You can’t use the method setSimpleColumn() any more; instead, you must
define the right and left borders of the column and pass them to the ColumnText
with the method setColumns():

/* chapter07/ColumnsIrregular.java */
PdfContentByte cb = writer.getDirectContent();
Image caesar = Image.getInstance("caesar.jpg");
cb.addImage(caesar, 100, 0, 0, 100, 260, 595);
PdfTemplate t = cb.createTemplate(600, 800);
t.setGrayFill(0.75f);
t.moveTo(310, 112); t.lineTo(280, 60);
t.lineTo(340, 60); t.closePath();
t.moveTo(310, 790); t.lineTo(310, 710);
t.moveTo(310, 580); t.lineTo(310, 122);
t.fillStroke();
cb.addTemplate(t, 0, 0);
ColumnText ct = new ColumnText(cb);
ct.setText(new Phrase(sb.toString()));
ct.setAlignment(Element.ALIGN_JUSTIFIED);
float[][] left = {
 {70,790, 70,60} ,
 {320,790, 320,700, 380,700, 380,590,
 320,590, 320,106, 350,60} };
float[][] right = {
 {300,790, 300,700, 240,700, 240,590,
 300,590, 300,106, 270,60} ,
 {550,790, 550,60} };

Set dimensions
of column

Define left border, first column

Define left border,
second column

Define right border,
first column

Define right border, second column
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

204 CHAPTER 7
Constructing columns
int status = ColumnText.NO_MORE_COLUMN;
int column = 0;
while ((status & ColumnText.NO_MORE_TEXT) == 0) {
 if (column > 1) {
 column = 0;
 document.newPage();
 cb.addTemplate(t, 0, 0);
 cb.addImage(caesar, 100, 0, 0, 100, 260, 595);
 }
 ct.setColumns(left[column], right[column]);
 ct.setYLine(790);
 status = ct.go();
 column++;
}

Figure 7.5
Columns with
irregular borders
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding text to ColumnText 205
Note that the irregular-columns functionality works only when you work with text
(the addText() and setText() methods). Once you start working with other high-
level objects in the next section, this functionality is no longer available; you’ll get
a RuntimeException saying: Irregular columns are not supported in composite mode.

Text mode versus composite mode
In the previous chapter, I talked about PdfPTable and the difference between the
properties of a PdfPCell and the properties of basic building blocks added with
PdfPCell.addElement(). In my explanation, I didn’t go into the details. Let’s do
that now.

 The content of a PdfPCell is internally stored as a ColumnText object. If a cell is
created by passing a Phrase object to the constructor, the internal ColumnText
object of the cell is in text mode. When in text mode, you define the properties at
the level of the cell/column. Figure 7.6 demonstrates the effect when the default
properties of a ColumnText object are changed.

/* chapter07/ColumnProperties.java */
ColumnText ct = new ColumnText(cb);
ct.setAlignment(Element.ALIGN_JUSTIFIED);
ct.setExtraParagraphSpace(12);
ct.setFollowingIndent(18);
ct.setLeading(0, 1.2f);
ct.setSpaceCharRatio(PdfWriter.NO_SPACE_CHAR_RATIO);
ct.setUseAscender(true);

You recognize the methods we have already used in the previous chapter, “Con-
structing tables,” when we discussed the PdfPCell object:

■ setAlignment() defines the alignment of the content.
■ setExtraParagraphSpace() adds extra space between paragraphs.
■ setFollowingIndent() sets the indentation of the lines following the first line.
■ setLeading() defines the leading (an absolute value and a value that is rel-

ative to the font size).
■ setSpaceCharRatio() defines the SpaceChar ratio.
■ setUseAscender() makes sure the ascender is taken into account (or not, if

set to false).

PdfPCell uses a ColumnText object behind the scenes. When working with Pdf-
PCell, you saw that changing the properties at the cell level doesn’t have any
effect as soon as you add other building blocks (not just Phrases and Chunks, but
also Paragraphs, Images, and so on). This is because the ColumnText object that
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

206 CHAPTER 7
Constructing columns
stores the content of the cell switches to composite mode as soon as a Paragraph,
Image, or PdfPTable is added. Properties such as leading should then be defined
at the level of the content (the objects) instead of the container (the cell). The
next section deals with the differences between text mode and composite mode.

7.3 Composing ColumnText with other building blocks

If you don’t need irregular columns, you can use the method addElement() instead
of addText() and setText(). Using addElement() causes the ColumnText object to
switch to composite mode. This means you aren’t limited to chunks and phrases any-
more. Text mode is text-only. In composite mode, you’re allowed to add an Image
object, PdfPTables, Paragraphs, and so on.

Figure 7.6
Changing the properties
of ColumnText
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composing ColumnText with other building blocks 207
The best way to explain the advantages and disadvantages of text mode versus
composite mode is by trying to make a document that looks like figure 7.7 in two
different ways.

7.3.1 Combining text mode with images and tables

If for one reason or another, you want to stick to text mode, the code to produce a
document that looks like the screenshot in figure 7.7 gets rather complex:

/* chapter07/ColumnElements.java */
PdfContentByte cb = writer.getDirectContent();
ColumnText ct = new ColumnText(cb);
ct.setAlignment(Element.ALIGN_JUSTIFIED);
ct.setLeading(0, 1.5f);
ct.setSimpleColumn(document.left(), 0,
 document.right(), document.top());

Figure 7.7
Mixing text and other
high-level objects

Define column width
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

208 CHAPTER 7
Constructing columns
Phrase fullTitle = new Phrase("POJOs in Action", FONT24B);
ct.addText(fullTitle);
ct.go();
Phrase subTitle = new Phrase(
"Developing Enterprise Applications with Lightweight Frameworks",
 FONT14B);
ct.addText(subTitle);
ct.go();
float currentY = ct.getYLine();
currentY -= 4;
cb.setLineWidth(1);
cb.moveTo(document.left(), currentY);
cb.lineTo(document.right(), currentY);
cb.stroke();
ct.setYLine(currentY);
ct.addText(new Chunk("Chris Richardson", FONT14B));
ct.go();
currentY = ct.getYLine();
currentY -= 15;
float topColumn = currentY;
for (int k = 1; k < numColumns; ++k) {
 float x = allColumns[k] - gutter / 2;
 cb.moveTo(x, topColumn);
 cb.lineTo(x, document.bottom());
}
cb.stroke();
Image img = Image.getInstance("resources/8001.jpg");
cb.addImage(img, img.scaledWidth(), 0,
0, img.scaledHeight(),
 document.left(), currentY - img.scaledHeight());
currentY -= img.scaledHeight() + 10;
ct.setYLine(currentY);
ct.setSimpleColumn(allColumns[0], document.bottom(),
 allColumns[0] + columnWidth, currentY);
ct.addText(new Chunk("Key Data:", FONT14BC));
ct.go();
currentY = ct.getYLine();
currentY -= 4;
PdfPTable ptable = new PdfPTable(2);
float[] widths = {1, 2};
ptable.setWidths(widths);
ptable.getDefaultCell().setPaddingLeft(4);
ptable.getDefaultCell().setPaddingTop(0);
ptable.getDefaultCell().setPaddingBottom(4);
ptable.addCell(new Phrase("Publisher:", FONT9));
ptable.addCell(new Phrase("Manning Publications Co.", FONT9));
(...)
ptable.setTotalWidth(columnWidth);
currentY = ptable.writeSelectedRows(0, -1,
 document.left(), currentY, cb) - 20;

Add title and subtitle

Get Y position

Add author name

Draw column lines

Add image

Adjust Y pointer

Define rectangle

Create
PdfPTable

Set table width

Write table rows
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composing ColumnText with other building blocks 209
ct.addText(new Phrase("Description\n", FONT14BC));
ct.addText(new Phrase("In the past, developers (…).\n\n", FONT11));
Phrase p = new Phrase();
Chunk anchor = new Chunk("POJOs in Action", FONT11B);
anchor.setAnchor("http://www.manning.com/books/crichardson");
p.add(anchor);
p.add(new Phrase(" describes (…).\n\n", FONT11));
ct.addText(p);
ct.addText(new Phrase("Inside the Book\n", FONT14BC));
ct.addText(new Phrase("* How to develop apps (…)\n\n", FONT11));
ct.addText(new Phrase("About the Author...\n", FONT14BC));
ct.addText(new Phrase("Chris Richardson is a developer, (…).", FONT11));
int currentColumn = 0;
while (true) {
 int status = ct.go();
 if ((status & ColumnText.NO_MORE_TEXT) != 0)
 break;
 ++currentColumn;
 if (currentColumn >= allColumns.length)
 break;
ct.setSimpleColumn(allColumns[currentColumn], document.bottom(),
 allColumns[currentColumn] + columnWidth, topColumn);
}

I hate it when a code sample spans more than one page, but in this case it was
unavoidable. It also makes my point that you should only mix the ColumnText text
mode with other objects if there is no alternative. However, you can learn a few
new things by examining this large code fragment.

 Looking at figure 7.7, you might assume that different ColumnText objects are
involved. In reality, all the text is added to the same column, but you change the
columns borders and the Y position according to your needs while you add text.

 Also note that when you add the table with writeSelectedRows(), you receive
the bottom Y coordinate as a return value.

 Working this way offers a lot of flexibility, but it also makes your code less read-
able and more error prone. If you want to get the result shown in figure 7.7,
you’re better off using composite mode.

7.3.2 ColumnText in composite mode

The first part of the next example is identical to the first part of the previous
example. You add the title, subtitle, and author in text mode. There’s nothing
wrong with that, but as soon as you get to the snippet that adds the image, you’d
better switch to composite mode.

 Switching to composite mode is done implicitly by using the method add-
Element(). All the text that was added in text mode previously and that hasn’t

Add content

Track column numbers

Render column

Define next
column borders
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

210 CHAPTER 7
Constructing columns
been rendered yet will be cleared as soon as you use addElement(). You may
already have noticed this when using PdfPCell. If you create a cell with a para-
graph as a parameter for the constructor and subsequently use PdfPCell.add-
Element(), the first paragraph is lost. This isn’t a bug; it’s a feature. (Honest!)

 But let’s return to the ColumnText example:

/* chapter07/ColumnWithAddElement.java */
int currentColumn = 0;
ct.setSimpleColumn(allColumns[currentColumn], document.bottom(),
 allColumns[currentColumn] + columnWidth, currentY);
Image img = Image.getInstance("resources/8001.jpg");
ct.addElement(img);
ct.addElement(newParagraph("Key Data:",
 FONT14BC, 5));
PdfPTable ptable = new PdfPTable(2);
float[] widths = {1, 2};
ptable.setWidths(widths);
ptable.getDefaultCell().setPaddingLeft(4);
ptable.getDefaultCell().setPaddingTop(0);
ptable.getDefaultCell().setPaddingBottom(4);
ptable.addCell(new Phrase("Publisher:", FONT9));
ptable.addCell(new Phrase("Manning Publications Co.", FONT9));
(...)
ptable.setSpacingBefore(5);
ptable.setWidthPercentage(100);
ct.addElement(ptable);
ct.addElement(newParagraph("Description", FONT14BC, 15));
ct.addElement(newParagraph("In the past (...)", FONT11, 5));
Paragraph p = new Paragraph();
p.setSpacingBefore(5);
p.setAlignment(Element.ALIGN_JUSTIFIED);
Chunk anchor = new Chunk("POJOs in Action", FONT11B);
anchor.setAnchor("http://www.manning.com/books/crichardson");
p.add(anchor);
p.add(new Phrase(" describes (...)", FONT11));
ct.addElement(p);
ct.addElement(newParagraph("Inside the Book",
 FONT14BC, 15));
List list = new List(List.UNORDERED, 15);
ListItem li;
li = new ListItem("How to develop (...)", FONT11);
list.add(li);
(...)
ct.addElement(list);
ct.addElement(newParagraph("About the Author...", FONT14BC, 15));
ct.addElement(newParagraph("Chris Richardson is (...)", FONT11, 15));

I didn’t repeat the go() loop because it’s identical to the loop in the previous
example. I know, I cheated a little by using a private static newParagraph()

Create Image

Add paragraph with
addElement()

Add PdfPTable

Add paragraphs

Add
paragraph
with
Anchor

Add paragraph

Add list

Add paragraphs
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automatic columns with MultiColumnText 211
method to make this code look shorter and more attractive, but I hope you agree
that this example is much more elegant than the previous one.

 Observe that in composite mode, you can add objects of type Paragraph, List,
SimpleTable, PdfPTable, and Image. If you add a Phrase or a Chunk, it’s wrapped in
a Paragraph. Adding Anchor objects directly isn’t possible; you can wrap them in a
Paragraph or use Chunk.setAnchor(). This example uses a Chunk with an Anchor,
wrapped in a Paragraph.

NOTE Be careful when you mix addElement() and addText(). Always invoke
go() before you switch from text mode to composite mode (or vice
versa); otherwise, you risk losing part of your data.

Looking at the source code of the previous examples, you realize that gaining
more control over what happens on a page also means you have to deal with more
complexity. Some code snippets are repeated in almost every ColumnText example.
Can’t we automate some of the processes ? For instance, do we really have to copy/
paste the go() loop for every new example ? Let’s find out in the next section.

7.4 Automatic columns with MultiColumnText

If you use the ColumnText class extensively, you’ll notice that you need to write a
lot of code that is repeated over and over. To avoid this code repetition, Steve
Appling wrote the MultiColumnText class. This is a convenience class written
around class ColumnText that can save you a lot of work if you only need standard
column functionality; for more complex functionality, you’ll still need Column-
Text. With class MultiColumnText, the same rules about text and composite mode
apply, but much of the complexity is hidden.

 You’ll make some regular and irregular columns to get acquainted with this
new class.

7.4.1 Regular columns with MultiColumnText

Steve Appling has provided an example that generates poetry at random, as
shown in figure 7.8.

 The code to generate these columns is much more user-friendly than the code
you had to write when you used class ColumnText:

/* chapter07/MultiColumnPoem.java */
MultiColumnText mct = new MultiColumnText();
mct.addRegularColumns(document.left(),
 document.right(), 10f, 3);

Create MultiColumnText object

Define dimensions
of column
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

212 CHAPTER 7
Constructing columns
for (int i = 0; i < 30; i++) {
 mct.addElement(new Paragraph(String.valueOf(i + 1)));
mct.addElement(newParagraph(
 randomWord(noun), Element.ALIGN_CENTER, Font.BOLDITALIC));
 for (int j = 0; j < 4; j++) {
mct.addElement(newParagraph(
 poemLine(), Element.ALIGN_LEFT, Font.NORMAL));
 }
mct.addElement(newParagraph(
 randomWord(adverb), Element.ALIGN_LEFT, Font.NORMAL));
mct.addElement(newParagraph(
 "\n\n", Element.ALIGN_LEFT, Font.NORMAL));
}
document.add(mct);

When reading the code sample, the first thing that pops into your mind is prob-
ably what happened to the Y pointer? The method addRegularColumns() defines the

Figure 7.8
Adding MultiColumnText
columns with document.add()

Generate
30 random
poems

Add MultiColumnText to document
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automatic columns with MultiColumnText 213
left and right border, a gutter, and the number of columns, but you don’t indicate
the Y position where the column should start. What will happen?

 The answer is simple: If you don’t specify a height for the columns, Multi-
ColumnText asks the document for the current vertical position and the bottom
margin of the page; this is the available height. Furthermore, iText distributes
the available width over the columns, taking into account some space between the
columns (specified by the gutter parameter).

 By default, the columns are added from left to right. If you want to reverse this
order, add one extra line to the previous example:

/* chapter07/MultiColumnPoemReverse.java */
MultiColumnText mct = new MultiColumnText();
mct.setColumnsRightToLeft(true);

You can also define the columns one by one:

/* chapter07/MultiColumnPoemCustom.java */
MultiColumnText mct = new MultiColumnText();
mct.addSimpleColumn(100, 280);
mct.addSimpleColumn(300, 480);

MultiColumnText doesn’t have an addText() method, only an addElement()
method; but behind the scenes, it uses addText() for Phrases and Chunks as long
as you’re in text mode. As soon as you use Images, PdfPTables, and so on, it
switches to composite mode. The MultiColumnText class uses ColumnText in the
background. When using MultiColumnText, you give up some of the ColumnText
functionality, but in return, you get extra ease of use.

 There is a method in MultiColumnText to set the alignment of the internal
ColumnText object; but for the other properties, you need to construct a Column-
Text object, set its properties, and pass this ColumnText object as a parameter
with the useColumnParams() method.

 If you stay in text mode, you can also automate the rendition of irregu-
lar columns.

7.4.2 Irregular columns with MultiColumnText

Let’s return once more to Caesar’s report on the Gallic War to demonstrate how
you can define irregular columns with MultiColumnText (see figure 7.9).

 To produce this kind of output, you add a little complexity. You define the
height of the columns when constructing the MultiColumnText object. However,
doing so disables the automatic column repetition over different pages. Only the
columns that fit on the current page will be added, so you have to write a loop—
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

214 CHAPTER 7
Constructing columns
not to keep track of the column count, but to tell iText that it can continue on the
next page. The example clarifies why this can be useful:

/* chapter07/MultiColumnIrregular.java */
float[] left = {document.left(), document.top(),
 document.left(), document.bottom()};
float[] right = {document.left() + colMaxWidth, document.top(),
 document.left() + colMaxWidth, diamondTop,
 document.left() + diamondInset, diamondTop - diamondHeight / 2,
 document.left() + colMaxWidth, diamondTop - diamondHeight,
 document.left() + colMaxWidth, document.bottom() };
mct.addColumn(left, right);
left = new float[] { document.right() - colMaxWidth, document.top(),
 document.right() - colMaxWidth, diamondTop,
 document.right() - diamondInset, diamondTop - diamondHeight / 2,
 document.right() - colMaxWidth, diamondTop - diamondHeight,
 document.right() - colMaxWidth, document.bottom() };

Figure 7.9
Adding irregular columns with
document.add()

 B

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automatic columns with MultiColumnText 215
right = new float[] { document.right(), document.top(),
 document.right(), document.bottom() };
mct.addColumn(left, right);
String line;
while ((line = reader.readLine()) != null) {
 mct.addElement(new Phrase(line + "\n"));
}
reader.close();
PdfContentByte cb = writer.getDirectContent();
do {
 cb.saveState();
 cb.setLineWidth(5);
 cb.setColorStroke(Color.GRAY);
 cb.moveTo(centerX , document.top());
 cb.lineTo(centerX, document.bottom());
 cb.stroke();
 cb.moveTo(centerX, diamondTop);
cb.lineTo(centerX - (diamondWidth/2),
 diamondTop - (diamondHeight / 2));
 cb.lineTo(centerX, diamondTop - diamondHeight);
cb.lineTo(centerX + (diamondWidth/2),
 diamondTop - (diamondHeight / 2));
 cb.lineTo(centerX, diamondTop);
 cb.setColorFill(Color.GRAY);
 cb.fill();
 cb.restoreState();
 document.add(mct);
 mct.nextColumn();
} while (mct.isOverflow());

This example works as follows:

Define the left border of the first column.
Define the right border of the first column.
Add these borders to the MultiColumnText.
Define the left border of the second column.
Define the right border of the second column.
Add these borders to the MultiColumnText.
Add the content; you stay in text mode!
Add some lines and the diamond shape.
Add two columns of content on the current page.
Skip to the next column.
Keep on looping as long as there is text.

 F
 G

 H

 I

 J
 1)

 1!

 b
 C
 D
 E
 F
 G
 H
 I
 J

 1)

 1!
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

216 CHAPTER 7
Constructing columns
Do you see why it can be useful to prevent iText from going to the next page auto-
matically? This way, you can add extra content to every new page inside the loop
(in this case, the lines and the diamond shape).

 You can make the example even more complex by replacing document.-
add(mct) with the method write(cb, document, documentY). This method is
similar to the writeSelectedRows() method you saw in the previous chapter. It
returns the Y position that was reached after the column was added.

7.5 Composing a study guide (part 2)

You’re almost able to finish Laura’s second assignment. Laura needs to create a
course catalog with study program tables (section 6.3) and course descriptions
(see figure 7.10). If you look at the screenshot of the PDF you want to generate,
you see that the best solution is to use a MultiColumnText object in composite
mode: MultiColumnText because you only need standard columns (three per page

Figure 7.10 A page from the course catalog
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composing a study guide (part 2) 217
with a small gutter); composite mode because you need more than just text—you
also need tables, lists, and images.

 Again, you’ll start from an XML file, or rather a series of XML files. The course
descriptions are stored in separate XML files. For some courses, you have a JPG
showing the cover of the course manual. Each XML file looks like listing 7.1.

<course>
<title>POJOs: Plain Old Java Objects</title>
<specs>
 <coursenumber>8001</coursenumber>
 <programs><program>Graduate in Complementary Studies
 in Applied Informatics: Java Development for the
 Enterprise</program></programs>
 <a>37.5
 22.5
 <c />
 <d>180</d>
 <e>6</e>
 <department>CSE02</department>
 <language>English</language>
 <lecturers>
 <lecturer inCharge="true">Chris Richardson</lecturer>
 </lecturers>
</specs>
<tagline>Developing Enterprise Applications
 with Lightweight Frameworks.</tagline>
<description>In the past,
 developers built enterprise Java applications…</description>
<contents>
 <topic>How to develop apps in the post EJB 2 world</topic>
 <topic>...</topic>
</contents>
<book>

 POJOs in Action<newline />by Chris Richardson<newline />
 (October 2005, 450 pages)<newline />
 ISBN: 1932394583
</book>
</course>

As with part 1 of Laura’s study guide assignment, this is similar to the real-life
situation at Ghent University. In the XML, you immediately recognize objects
that will be rendered as a Paragraph (tagline, description), as a List (lectu-
rers, contents), or as an Image (img). This time, you don’t add these objects to a

Listing 7.1 XML file describing the course on POJOs: 8001.xml
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

218 CHAPTER 7
Constructing columns
Document or to a SimpleTable as in the previous Foobar examples. Instead, you
store them in an objectsStack:

/* chapter07/FoobarCourseCatalog.java */
protected Stack objectStack;

Once you have this stack of iText objects representing the content of one course
(one XML file), you need a method to flush this stack to a MultiColumnText object:

/* chapter07/FoobarCourseCatalog.java */
public void flushToColumn(MultiColumnText mct)
 throws DocumentException {
 for (Iterator i = objectStack.iterator(); i.hasNext();) {
 Element e = (Element) i.next();
 if (e instanceof SimpleTable) {
 mct.addElement(((SimpleTable)e).createPdfPTable());
 }
 else {
 mct.addElement(e);
 }
 }
}

In the main method, you make sure you loop over all the XML files:

/* chapter07/FoobarCourseCatalog.java */
MultiColumnText mct = new MultiColumnText();
mct.addRegularColumns(document.left(), document.right(), 10f, 3);
String[] courses = {"8001", "8002", "8003", "8010", "8011",
"8020", "8021", "8022", "8030", "8031", "8032", "8033",
 "8040", "8041", "8042", "8043", "8051", "8052"};
for (int i = 0; i < courses.length; i++) {
 new FoobarCourseCatalogue(courses[i]).flushToColumn(mct);
 document.add(mct);
 mct.nextColumn();
}

This code snippet works as follows:

Create one MultiColumnText object.
List the courses that have to be added.
Parse the XML file of one course.
Render all the content of one course.
 Skip to the next column for the next course.

This example differs from the previous ones in this chapter in the sense that it’s
much closer to what you’ll do in a real-life situation. Previously, you filled the col-
umn with content; once it was full, you rendered this content to the page. This
isn’t a good idea if you expect your column to contain a lot of data. You risk the

 B

 C

 D
 E

 F

 b
 C
 D
 E
 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 219
same problems concerning memory use that we discussed when dealing with
large tables. Remember that with ColumnText and MultiColumnText, you should
render the content from time to time in order to release memory.

 In the course catalog example, you add the column object to the document
after every course. If you didn’t call nextColumn(), the next course would be
added directly after the previous one. MultiColumnText keeps track of the current
column and Y position. The nextColumn() method tells iText that it should skip to
the next column even if there’s space left in the current one. It resets the Y
pointer to the top of the column. If no columns are left on this page, the new-
Page() method is triggered.

 If you combine the output from this example with the output of the Foobar
example in the previous example, you have a study guide you can print for your
students. Later, we’ll return to these PDFs and add some interactive features.

7.6 Summary

Whereas the sample code in the previous chapters looked theoretical, chapters 6
and 7 brought you some examples that are useful in a real-life situation. I men-
tion both chapters in the same breath, because you have seen that ColumnText and
PdfPCell are closely related.

 MultiColumnText is the most user-friendly solution if you need to organize
text and other data in a columnar structure. Class ColumnText is more complex,
but it offers you almost as much flexibility as if you were writing to the Pdf-
ContentByte directly. This object will be discussed in chapters 10–12 in the next
part of the book.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Part 3

PDF text and graphics

This part goes to the core of iText and PDF. It also serves as a reference
manual for you: How do you choose a font? draw a dashed line? make an
image transparent? translate a Swing component to PDF? These and many
other questions are answered in five chapters that are illustrated with plenty
of examples.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Choosing the right font
This chapter covers
■ What is a font?
■ What is a font program?
■ What font do you need?
223

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

224 CHAPTER 8
Choosing the right font
The previous part of this book was iText specific. You created some interesting
building blocks that were translated to PDF by iText. In this part, we’ll focus
mainly on PDF-related issues. In chapters 10–12, you’ll learn a lot about the syn-
tax used in PDF. In chapters 8 and 9, we’ll focus on fonts.

 Previous examples have used the font Helvetica. You may have wondered why
I didn’t use Arial. In this chapter, you’ll learn that Helvetica offers some advan-
tages because it’s a so-called built-in font. It also has some downsides, so it’s
important to learn how to select another font. In a series of small examples, you’ll
learn how to produce text written in other languages—for instance, using Eastern
European characters and Asian ideographs. But let’s start with the most essential
question: What is a font?

8.1 Defining a font

Some dictionaries say a font is “a complete assortment of type of one style and
size”1 or “a set of letters and symbols in a particular design and size.”2 That’s
true, but other dictionaries tell you that font is “a synonym for typeface, a coordi-
nated set of designs for characters, or a computer file that stores these designs.”3

We’ll use the word in both senses, depending on the iText object we’re using.
 Like font, type is another word that has many different definitions. In this chap-

ter, you’ll encounter a lot of words that find their origin in book printing and
typography. In chapter 4, I explained the origin of the word leading. Now you need
to add the words type and typeface to the typography vocabulary.

 Type can be a synonym for printed characters or printing blocks: “the set of small
metal blocks used in printing, especially formerly, each of which has a raised fig-
ure that is the mirror image of a number or letter on one of its sides.” Typeface is
“the side of a printing block that has the shape of the printed character on it.”4

By the way, the word font originally comes from the French word fondre, which
means “to melt”; all the metal blocks of a font were cast at the same time.

 In this section, you’ll encounter 14 sets of virtual metal blocks that are sup-
posed to be known by every PDF product (including iText), and you’ll learn how
to change some font characteristics. That’s after we present an overview of more
terminology and the different types of font programs.

1 Random House Unabridged Dictionary
2 Cambridge Advanced Learner’s Dictionary
3 Wikipedia
4 Encarta World English Dictionary (both definitions)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Defining a font 225
8.1.1 Using the right terminology

Depending on the definition you choose for font, you may refer to different mean-
ings of the word. You could be talking about 12 pt Arial Bold Italic, while I’m
thinking of the file arial.tff and not specifying any size. Some people talk about
the font Arial, but in reality they have the complete font family in mind. The fonts
Arial, Arial Bold, Arial Italic, and so on all belong to the same family, but they’re
different fonts.

 Many tools, iText included, make an ambiguous use of this small word, mix-
ing different definitions. I realize this can get quite confusing, but this chapter
should help you understand what fonts are all about as far as using them in iText
is concerned.

 It’s also important to understand the difference between a character and a
glyph. The PDF Reference says, “A character is an abstract symbol, whereas a glyph
is a specific rendering of a character. For example, the glyphs A, A and A are ren-
derings of the abstract A character.” You can also use the word grapheme in this
context. A grapheme is a unit of a writing system: a letter, a number, a punctua-
tion mark, a Chinese ideograph, or any other symbol. Different glyphs can rep-
resent the same grapheme.

 The PDF Reference manual continues: “Glyphs are organized into fonts. A
font defines glyphs for a particular character set.” We’re especially interested in
computer fonts. In the sections that follow, we’ll deal with many different font for-
mats that can be used in a PDF. Each of these formats has its own conventions for
organizing and representing the information within it.

 Table 5.1 of the PostScript Language Reference provides a complete overview
of all the font types. Not all of them apply to PDF. I have listed the types that are
relevant to you in table 8.1.

Table 8.1 PostScript font types

Type Description

Type 0 A composite font composed of other fonts called base fonts.

Type 1 A base font that defines character shapes by using specially encoded procedures. Details
on this format are provided in the book Adobe Type 1 Font Format (Adobe Systems Inc.).

Type 2 A Compact Font Format (CFF) font.

Type 3 A user-defined font that defines character shapes as ordinary PostScript language
procedures.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

226 CHAPTER 8
Choosing the right font
All the fonts used in a PDF file are defined in a font dictionary. This is a PDF dic-
tionary in which the value of the Type entry is set to Font.

 Another interesting item in this dictionary is the SubType entry. Table 8.2
roughly corresponds with table 5.7 in the PDF Reference and lists some possible
values for the SubType entry. They’re listed more or less in the order we’ll dis-
cuss them.

I’m introducing a lot of new terminology here: base fonts, user defined fonts,
composite fonts, and more. Soon we’ll disentangle all these types and font for-
mats in a series of examples.

 Let’s begin gently with an easy example, introducing the standard Type 1 fonts,
a set of 14 fonts that are required to be available in all PDF consumer applications.

8.1.2 Standard Type 1 fonts

I was tempted to name this section “Simple fonts”; but that would have been
a bad idea because the term simple font officially refers to a font in which
the glyphs are selected by single-byte character and each glyph has a single set
of metrics.

 An alternative title could have been “The simplest way to construct a
font”; but that would have been misleading too, because this subsection will
only tell you how to create an iText Font object for the 14 Type 1 fonts listed
in table 8.3.

Table 8.2 PDF Font dictionary subtype values

Subtype value Description

Type1 A font that defines glyph shapes using PostScript Type 1 font technology.

Type3 A font that defines glyphs with streams of PDF graphics operators.

TrueType A font based on the TrueType font format.
Note that the PostScript Type 42 font format (also based on TrueType) doesn’t apply
to PDF.

Type0 A composite font—a font composed of glyphs from a descendant CIDFont.

CIDFontType0 A CIDFont whose glyph descriptions are based on Type 1 font technology.

CIDFontType2 A CIDFont whose glyph descriptions are based on TrueType font technology.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Defining a font 227
In the past, these 14 fonts were often referred to as the Base 14 fonts. In more
recent reference manuals, this terminology has been replaced; you should now
call them standard fonts.

The iText Font class
The iText Font class allows you to construct a Font object as defined in the first
set of dictionaries I mentioned: It’s a “set of type of a particular face and
size.”5 When you create an iText Font object, imagine a box with a number of
metal blocks that can be used to form words and sentences. Each line of the
PDF shown in figure 8.1 was composed using a different Font object—a differ-
ent “box.”

Table 8.3 Standard Type 1 fonts

PostScript name Font family Font style AFM file

Courier Font.COURIER Font.NORMAL Courier.afm

Courier-Bold Font.COURIER Font.BOLD Courier-Bold.afm

Courier-Oblique Font.COURIER Font.ITALIC Courier-Oblique.afm

Courier-BoldOblique Font.COURIER Font.BOLDITALIC Courier-BoldOblique.afm

Helvetica Font.HELVETICA Font.NORMAL Helvetica.afm

Helvetica-Bold Font.HELVETICA Font.BOLD Helvetica-Bold.afm

Helvetica-Oblique Font.HELVETICA Font.ITALIC Helvetica-Oblique.afm

Helvetica-BoldOblique Font.HELVETICA Font.BOLDITALIC Helvetica-BoldOblique.afm

Times-Roman Font.TIMES_ROMAN Font.NORMAL Times-Roman.afm

Times-Bold Font.TIMES_ROMAN Font.BOLD Times-Bold.afm

Times-Italic Font.TIMES_ROMAN Font.ITALIC Times-Italic.afm

Times-BoldItalic Font.TIMES_ROMAN Font.BOLDITALIC Times-BoldItalic.afm

Symbol Font.SYMBOL - Symbol.afm

ZapfDingbats Font.ZAPFDINGBATS - ZapfDingbats.afm

5 Compact Oxford English Dictionary
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

228 CHAPTER 8
Choosing the right font
The code sample demonstrates the original constructors of the Font class dating
from the time iText supported only the standard fonts. They only work for stan-
dard Type 1 fonts:

/* chapter08/StandardType1Fonts.java */
Font[] fonts = new Font[14];
fonts[0] = new Font(Font.COURIER, Font.DEFAULTSIZE, Font.NORMAL);
fonts[1] = new Font(Font.COURIER, Font.DEFAULTSIZE, Font.ITALIC);
fonts[2] = new Font(Font.COURIER, Font.DEFAULTSIZE, Font.BOLD);
fonts[3] = new Font(Font.COURIER, Font.DEFAULTSIZE,
 Font.BOLD | Font.ITALIC);
(...)
fonts[11] = new Font(Font.TIMES_ROMAN, Font.DEFAULTSIZE,
 Font.BOLDITALIC);
fonts[12] = new Font(Font.SYMBOL, Font.DEFAULTSIZE);
fonts[13] = new Font(Font.ZAPFDINGBATS, Font.DEFAULTSIZE,
 Font.UNDEFINED, new Color(0xFF, 0x00, 0x00));
for (int i = 0; i < 14; i++) {
 document.add(new Paragraph(
 "quick brown fox jumps over the lazy dog", fonts[i]));
}

The first parameter is one of the values from the Font family column in table 8.3.

Figure 8.1 The standard Type 1 fonts
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Defining a font 229
FAQ Can you change the default font family used by iText from HELVETICA to
another font? If you create a font with the constructor new Font(), a font
with family Font.HELVETICA, size 12, and style Font.NORMAL is created.
The default values are static. If you changed them, you’d change the
default for the complete JVM, which might lead to unexpected
(unwanted) side effects. This isn’t the way to go. If you need another
font, don’t depend on the default font; create a Font object with the
desired font, instead.

The second parameter is the size of the font. The other parameters define the
style and color.

Defining the font style and color
The style can be defined with a single style constant, as listed in the third column
of table 8.3. It can also be defined by an or-ed combination of styles; for instance,
Font.BOLD | Font.ITALIC is equivalent to Font.BOLDITALIC. Other possible styles
are Font.UNDERLINE and Font.STRIKETHRU, but in chapter 4 you saw better ways
to underline or strike through a Chunk; these styles were the predecessors of
this functionality.

 There is also a parameter that defines the color. Here the meaning of the class
name diverges a little from our agreed-on meaning for the word font; color is a
quality of the ink, not a property of the type(face).

Defining the font size
The size isn’t the height of any specific glyph; it’s an indication of the vertical
space used by a line of text. As you saw in chapter 4, we usually define the leading
as a factor of this size (for instance, 1.5 times the font size).

 In chapter 2, we talked about metrics, and I wrote that all measurements are
done in points. With fonts, you work with points too, but also with glyph metrics.
In glyph space, 1000 units correspond with 1 unit in text space. For instance, for a 12
pt font, 1000 units correspond with 12 pt (see figure 8.2).

 This example measures the strings 0123456789 and abcdefghijklmnopqrstu-
vwxyz. The width of the string with the numbers in glyph space is 5560. The width
in points is 5560 / 1000 x 12, or 66.72 pt.

 The ascent is the space needed above the baseline, and the descent is the
space below the baseline. If you subtract the descent from the ascent, you can
calculate the height of the string. In the font Helvetica with size 12, the height
required by numbers is 8.664 pt; the height required by the lowercase letters is
11.376 pt.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

230 CHAPTER 8
Choosing the right font
These values were retrieved from the BaseFont object corresponding with the
Font. This object will be the main topic of the next two sections. First, let’s look at
the source code that was used to produce figure 8.2:

/* chapter08/FontMetrics.java */
Font font = new Font(Font.HELVETICA, 12);
BaseFont bf = font.getCalculatedBaseFont(false);
String numbers = "0123456789";
document.add(new Paragraph(numbers, font));
document.add(new Paragraph("width: " + bf.getWidth(numbers)
 + " (" + bf.getWidthPoint(numbers, 12) + "pt)", font));
document.add(new Paragraph("ascent: " + bf.getAscent(numbers)
 + "; descent: " + bf.getDescent(numbers)
 + "; height: " + (bf.getAscentPoint(numbers, 12)
 - bf.getDescentPoint(numbers, 12) + "pt"), font));

The standard fonts are special in the sense that the PDF specification requires that
PDF viewers should be able to render every glyph available in the font; iText can
give you the width and height values because the metrics of the standard fonts are
built into the library. A viewer application needs a font program to draw the
shapes corresponding with the characters in your PDF document.

 If you’re writing a web application, and you don’t need any special characters,
it’s interesting to use one (or more) of the standard fonts. You can be sure the
end-user’s PDF viewer will be able to render the font, and using a standard font is
the best way to keep the file size of your PDF documents within limits.

 If you use another font, there is no guarantee that the font will be installed on
the client side. The only way to make sure the end user will be able to read your
file is to embed a font program.

Figure 8.2
Font metrics
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 231
Embedded versus nonembedded fonts
If a font can’t be found on the client side, the viewer tries to use another font
instead. In a document with the nonembedded font Avenir, its look-alike Century
Gothic may be used; Palatino can be replaced by Book Antiqua; and so on.

 Adobe Reader does a good job of approximating the most common fonts, but
there’s always a risk that the text in your document will look different on different
machines or even be illegible. Do you remember that in chapter 3 I said a PDF
document always looks the same on every system? This is the most important
exception to this rule. The only way to make sure the correct font is used and to
ensure the document looks exactly the way you intended on every viewer and on
every printout is to embed the font program into the PDF document, in a PDF
stream object.

 Note that embedding the font is mandatory to comply with the PDF/X and
PDF/A ISO standards (for eXchanging and Archiving documents). If you send a
document to a printing office, you don’t want to receive it printed in a different
font. If you consult an archive, you need all the used resources to be available.

FAQ Why does iText say my font can’t be embedded due to licensing restrictions? Font
programs are subject to copyright, and not all fonts can be used for free.
Some fonts have the restriction that you aren’t allowed to embed them.
When restrictions recorded in the font program are encountered, iText
throws a DocumentException. This is a licensing problem, not an
iText problem.

Of course, by embedding a font, you increase the file size. If file size is an issue,
you can opt for a standard font or, if you need characters that aren’t available in
a standard font, choose to embed only a subset of the font. This way, the PDF
document will only contain the glyph descriptions corresponding with the char-
acters that were used. That’s the theory; but how is it done in iText?

8.2 Introducing base fonts

In the PostScript Language Reference, fonts of Types 1, 2, 3, 14, and 42 are called
base fonts, as opposed to Type 0 and character identifier (CID) fonts (PostScript
Types 9, 10, 11, and 32). In a base font, every character corresponds with a glyph.
The mapping between characters and glyphs isn’t a part of the glyph descrip-
tions; this information is stored in a separate encoding vector.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

232 CHAPTER 8
Choosing the right font
 This section will demonstrate how to use different types of base fonts: You’ll
load a Type 1 font in different ways and create your own Type 3 font. We’ll also
talk about TrueType fonts and what’s so different about OpenType fonts.

8.2.1 Working with an encoding

The descriptions of individual glyphs can be keyed by character names (Type 1,
Type 3) or by means of an internal structure called a cmap. The association
between characters and glyphs is called the encoding. Every base font must have
an encoding.

 In a font dictionary of a Type 1 and Type 3 font, the descriptions of the indi-
vidual glyphs are keyed by character names, not by character codes. The PS Lan-
guage Reference says, “Character names are ordinary PostScript name objects.
Descriptions of Latin alphabetic characters are normally associated with names
consisting of single letters, such as A or a. Other characters are associated with
names composed of words, such as three, ampersand, or parenleft.”

 A Type 1 font can have a special built-in encoding; as is the case for Symbol
and Zapfdingbats. With other fonts, multiple encodings may be available. Appen-
dix D of the PDF Reference lists the character sets and encodings of the Latin-text
standard fonts. If you look up the glyph known as dagger (†), you see that it cor-
responds with (char) 134 in the encoding known as WinAnsi, aka Western Euro-
pean Latin (code page 1252), a superset of Latin-1 (ISO-8859-1). The same
dagger glyph corresponds with different character values in the Adobe Standard
encoding (178), Mac Roman encoding (160), and PDF Doc Encoding (129).

 You need this information to be able to create an iText BaseFont object.

Creating a BaseFont object
If you look at the class diagram in appendix A, section A.7, you’ll see a lot of
implementations of the abstract class BaseFont. Notice that the class names
correspond vaguely with the types listed in table 8.2. You don’t have to worry
about what class to use for what type; you get a specific implementation auto-
matically by using the abstract method BaseFont.createFont().

 The parameters of this method are as follows:

■ A String that refers to the font name or file
■ The character encoding
■ A boolean value that indicates if the font needs to be embedded
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 233
The name of the BaseFont class is somewhat misleading, because the class is also
used to create composite fonts. You won’t always pass a real encoding with the
encoding parameter; and even if you pass the value true for the embedded
parameter, the font won’t always be embedded (or vice versa). But let’s pretend
you don’t know that, and start by creating a BaseFont object for a Type 1 font with
the createFont() method.

8.2.2 Class BaseFont and Type 1 fonts

For every name in the first column of table 8.3, there’s a corresponding public
static String in the BaseFont object. Let’s try to construct a BaseFont object for
an embedded font like this:

/* chapter08/StandardType1FontFromAFM.java */
BaseFont bf = BaseFont.createFont(
 BaseFont.TIMES_ROMAN,
 BaseFont.CP1252,
 BaseFont.EMBEDDED);
System.err.println(bf.getClass().getName());
Font font = new Font(bf, 12);
document.add(new Paragraph("0123456789", font));

As opposed to the Font constructor, you don’t specify a size when creating a Base-
Font object. Here, you’re using the definition that says a font is a set of designs.
You pass the BaseFont object to a Font object, along with the size.

 Figure 8.3 is somewhat surprising. Adobe Reader replaced the Type 1 font
Times-Roman with the TrueType font Times New Roman PS MT. The font wasn’t
embedded!

Ignore BaseFont.EMBEDDED!

Return com.lowagie.
text.pdf.Type1Font

Figure 8.3 Adobe Reader replaced a font that wasn’t embedded.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

234 CHAPTER 8
Choosing the right font
This is normal behavior; BaseFont is designed to ignore the value of the
embedded parameter if you use createFont() with the name of a standard font.
To understand why, you need to know the difference between AFM files and
PFB files.

Adobe Font Metrics files
Look inside iText.jar, and you’ll find a com/lowagie/text/pdf/fonts directory con-
taining 14 files with the extension AFM. You’ll recognize these files from the
fourth column in table 8.3. AFM files are plain-text files with Adobe Font Metrics:
They store information about widths, kerning pairs, and bounding boxes of
glyphs. iText uses them to calculate how many glyphs fit on one line and to
retrieve the ascender value, descender value, and so on.

 Even if you tell iText to embed a standard font, the font won’t be embedded
unless you provide a font program. AFM files don’t contain any information about the
font shape. If you only have an AFM file, you can only create a BaseFont object
that isn’t embedded.

FAQ Why do I get an IOException when I use the default or a standard font? The
complete message of the exception is, for instance, Helvetica is not found
as a resource. (The *.afm files must exist as resources in the package com. low-
agie.text.pdf.fonts). This message explains exactly what went wrong. The
AFM files can’t be loaded as a resource into your JVM. This is often the
result of building iText.jar from source code, forgetting the AFM files.
Add them to the jar, and/or check their access permissions.

To create a BaseFont object using another Type 1 font, you can pass the name of
the font, and iText will look for the corresponding AFM file in directory /com/-
lowagie/text/pdf/fonts. If no such file is found, an exception is thrown.

 Instead of using the name of a Type 1 font, you can also refer to the AFM
file directly by passing the path to the file instead of the name of the font. I
downloaded the AFM files of the fonts Utopia Regular (copyright © 1989 by
Adobe Systems Incorporated) and Computer Modern Regular (copyright ©
1997 American Mathematical Society, a font designed by Donald Knuth) and
used them to create the PDF file shown in figure 8.4. These fonts can be used
for free as long as you respect the copyright.

 Figure 8.4 shows how Adobe Reader tries to visualize these fonts that
weren’t embedded.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 235
You immediately see some problems if you use this approach. Times-Roman is
again replaced by Times New Roman PS MT. (You already knew that.) Utopia-
Regular is replaced by the Type 1 font Adobe Sans MM. The text is readable, but I
was expecting a serif font instead of a sans font.

FAQ What is the difference between serif and sans(-serif)? Serifs are the small fea-
tures at the end of the strokes within letters. A font without serifs is called
sans-serif (sans is the French word for without). Compare the first three
lines in figure 8.4 (Times New Roman PS MT: serif) with the following
three lines (Adobe Sans MM: sans-serif) to understand the difference.
Serif is assumed to be easier to read on paper. Sans-serif is better suited
to read on a screen. In print, sans-serif is used for headers and smaller
sections of text. There’s no such thing as a general rule; this is just a rule
of thumb.

The biggest problem is that you can’t read the text written in the nonembedded
font Computer Modern. When you open the file, a warning is shown: Cannot find
or create the font ‘CMR10’. Some characters may not display or print correctly. In
figure 8.4, you only see dots, and the spacing between the dots is irregular. What
happened? The code looks OK:

/* chapter08/Type1FontFromAFM.java */
BaseFont bf1 = BaseFont.createFont(
 "/com/lowagie/text/pdf/fonts/Times-Roman.afm",
 "", BaseFont.NOT_EMBEDDED);

Figure 8.4 Type 1 fonts that weren’t embedded
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

236 CHAPTER 8
Choosing the right font
Font font1 = new Font(bf1, 12);
document.add(new Paragraph("0123456789 ", font1));
BaseFont bf2 = BaseFont.createFont(
 "../resources/putr8a.afm", "", BaseFont.NOT_EMBEDDED);
Font font2 = new Font(bf2, 12);
document.add(new Paragraph("0123456789 ", font2));
BaseFont bf3 = BaseFont.createFont(
 "../resources/cmr10.afm", "", BaseFont.NOT_EMBEDDED);
Font font3 = new Font(bf3, 12);
document.add(new Paragraph("0123456789\ ", font3));

Note that the code doesn’t specify an encoding. For the Times-Roman and Uto-
pia font, the default encoding (ANSI) was used. Computer Modern has a built-in
encoding that is used, but this isn’t what’s causing the problem.

 The issue is that Adobe Reader didn’t understand the acronym/font name
CMR10. This results in an unknown actual font. The code should provide a font
program instead of just the metrics in the AFM file. This example prevents
iText from looking up a font program by setting the embedded parameter to
false. Would setting this value to true without further changes to the code solve
the problem?

PostScript Font Binary files
For Utopia and Computer Modern, I have put the files putr8a.pfb and cmr10.pfb
in the same directory as the cmr10.afm file. Now, you can set the embedded param-
eter to true for these fonts. You’ll still encounter problems with Times-Roman,
because I didn’t provide a Times-Roman.pfb file. An exception will be thrown, say-
ing Times-‘/com/lowagie/text/pdf/fonts/Times-Roman.pfb’ is not found as file or resource.

 PostScript Font Binary (PFB) is a format for storing Type 1 fonts. If you copy the
font program from the PFB file to the PDF, you get the PDF shown in figure 8.5.

Figure 8.5 Embedded Type 1 font
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 237
You can finally read the text in Computer Modern. If you compare the text in
Utopia-Regular with the Adobe Sans font in figure 8.4, you see why I expected a
serif font. In figure 8.5, the letters have these little extra strokes. In the Fonts tab
both fonts are marked Embedded.

 The only difference in the code is the value of the embedded parameter:

/* chapter08/Type1FontFromPFBwithAFM.java */
BaseFont bf = BaseFont.createFont(
 "../resources/putr8a.afm", "", BaseFont.EMBEDDED);
Font font = new Font(bf, 12);
document.add(new Paragraph("0123456789 ", font));
bf = BaseFont.createFont(
 "../resources/cmr10.afm", "", BaseFont.EMBEDDED);
font = new Font(bf, 12);
document.add(new Paragraph("0123456789", font));

You don’t have to pass the path of the PFB files in the BaseFont constructor; iText
looks for the PFBs in the same directory as the AFM file (by replacing the exten-
sion AFM with PFB).

 If you look at the resources directory with the AFM and PFB files for these
fonts, you’ll also find a cmr10.pfm file. This is a Printer Font Metric (PFM) file.

Printer Font Metric files
PFM files are the Microsoft version of AFM; iText is able to convert PFM files
to AFM, so you can replace the reference to an AFM file in all the previous
examples with a reference to a PFM file (provided you have a PFM version of
the AFM):

/* chapter08/Type1FontFromPFBwithPFM.java */
BaseFont bf = BaseFont.createFont(
 "../resources/cmr10.pfm", "", BaseFont.EMBEDDED);
Font font = new Font(bf, 12);
document.add(new Paragraph("0123456789", font));

The resulting PDF file of this example is about 26 KB. If you set the embedded
parameter to BaseFont.NOT_EMBEDDED, the file is only 2 KB. A larger file size is the
price you have to pay for embedding the Type 1 font program.

 Some fonts always have to be embedded. For instance, it’s evident that a user-
defined font always needs to be embedded. Tables 8.1 and 8.2 tell you that such a
font is also known as a Type 3 font.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

238 CHAPTER 8
Choosing the right font
8.2.3 Embedding Type 3 fonts

In chapter 10, you’ll learn about PDF operators and operands. This is PDF syntax,
and you can use it to create your own fonts (see figure 8.6).

I created glyphs corresponding with the characters “ ”, “1”, “2”, “3”, “4”, and “5”
so that I could mark in fives my age in the year this book was first published. The
first line shows the String “1 2 3 4 5”; my age in the year 2006 (36) corresponds
with the String “5 5 5 5 5 5 5 1.”

 This is how it’s done:

/* chapter08/Type3Characters.java */
Type3Font t3 = new Type3Font(writer,
 new char[]{' ', '1', '2', '3', '4', '5'}, false);
PdfContentByte g;
g = t3.defineGlyph(' ', 300, 0, 0, 600, 1200);
g = t3.defineGlyph('1', 600, 0, 0, 600, 1200);
g.moveTo(250, 1200);
g.lineTo(350, 100);
g.lineTo(400, 1100);
g.closePathFillStroke();
...
Font font = new Font(t3, 24);
document.add(new Paragraph("1 2 3 4 5", font));

You can create a font with class Type3Font (extending the abstract class BaseFont)
and define all the characters with the method defineGlyph(). This example
passes the value false for the colorized parameter in the constructor, so you’re
limited to characters in one color. Change this parameter to true if you need
more color. The metrics parameters passed with the defineGlyph() method are
the advance of the character and the definition of the bounding box of the glyph:

Figure 8.6 PDF file with a user-defined font

Type3Font constructor

Characters to redefine
One PdfContentByte
object per character

Define glyph for
character “1”
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 239
the lower left X-coordinate, the lower-left Y coordinate, the upper-right X coor-
dinate, and the upper-right Y coordinate. All values are measured in glyph space.

 There are some rules to take into account if you define your own glyphs. For
instance, if you stroke lines instead of filling shapes, you should explicitly set the
line width, line join, line cap, and dash pattern. The meaning of these terms is
explained in detail in chapter 10.

 Although Type 1 and Type 3 fonts are interesting, you may be more familiar
with TrueType fonts, or OpenType fonts with TrueType outlines. Those are the
fonts you know from Word, Windows, or Mac.

8.2.4 Working with TrueType fonts

The TrueType specification was originally developed by Apple Computer, Inc. to
compete with Adobe’s Type 1 fonts. Apple licensed the TrueType technology
to Microsoft, and it was adopted as a standard font format for the Microsoft Win-
dows operating system. This may seem odd, but it was part of a strategy by
Apple to distance itself from Adobe. I won’t go into the details of corporate poli-
tics; what matters is how to use a TrueType font, and whether you can embed it.

 If you look at the Fonts tab in figure 8.7, you see that Arial-BlackItalic is men-
tioned twice: once not embedded, and once with only a subset embedded. On my
PC, the name of the actual font corresponds with the PostScript font name
retrieved from the TTF file. If you look at this PDF on another machine, another
font may be used, instead.

 You have to be careful with nonembedded TrueType fonts. Not only do you
risk that end users don’t have this font on their computers, but TrueType fonts

Figure 8.7 Nonembedded TrueType fonts
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

240 CHAPTER 8
Choosing the right font
are also platform dependent. You should always embed TrueType fonts. As you
can see in the Fonts tab in figure 8.7, iText doesn’t embed the complete font, as
was the case with Type 1 fonts; only a subset is embedded. You didn’t have to set a
parameter; iText does this automatically:

/* chapter08/TrueTypeFontExample.java */
bf = BaseFont.createFont("c:/windows/fonts/ARBLI___.ttf",
 BaseFont.CP1252,
 BaseFont.EMBEDDED);
font = new Font(bf, 12);
System.err.println(bf.getClass().getName());
document.add(new Paragraph(
 "This is font arial black italic (embedded)", font));
bf = BaseFont.createFont("c:/windows/fonts/ARBLI___.ttf",
 BaseFont.CP1252,
 BaseFont.NOT_EMBEDDED);
font = new Font(bf, 12);
document.add(new Paragraph(
 "This is font arial black italic (not embedded)", font));
document.add(new Paragraph("PostScript name:"
 + bf.getPostscriptFontName()));

As opposed to Type 1 and Type 3 fonts, glyphs aren’t referenced by name (not
by names like “a,” “parenleft,” and “three”). Instead, an internal data structure
is used: a cmap table (not to be confused with CMap, another term you’ll
encounter later). A cmap can contain one or more subtables that represent mul-
tiple encodings.

 If you want to know the encodings available in a TTF file, you can use the
method getCodePagesSupported():

/* chapter08/TrueTypeFontExample.java */
document.add(new Paragraph("Available code pages:"));
String[] encoding = bf.getCodePagesSupported();
for (int i = 0; i < encoding.length; i++) {
 document.add(
 new Paragraph("encoding[" + i + "] = " + encoding[i]));
}

In the iText source code, the term code page is used as a synonym for encoding. Code
page is “the traditional IBM term for a specific character encoding table: a map-
ping in which a sequence of bits, usually a single octet representing integer values
from 0 to 255, is associated with a character.”6 In this example, only Latin 1 and

6 Wikipedia

Return com.lowagie.text.
pdf.TrueTypeFont

Return PS name
Arial-BlackItalic
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 241
the Macintosh Character Set are available, but soon, you’ll use font formats that
provide many more possible encodings.

 This example retrieves the PostScript font name with method getPostscript-
FontName(), but you can also retrieve the font family and the full font names. As
you can see in figure 8.8, you get the same name in different languages. If you
replace getFullFontNames() with getFamilyFontName() in the source code sam-
ple, you get the names of the font family:

/* chapter08/TrueTypeFontExample.java */
document.add(new Paragraph("Full font names:"));
String[][] name = bf.getFullFontName();
for (int i = 0; i < name.length; i++) {
 document.add(new Paragraph(
 name[i][3]
 + " (" + name[i][0] + "; "
 + name[i][1] + "; "
 + name[i][2] + ")"));
}

In this example, b gets the full font names (2D array). Element 3 is the actual
name C, element 0 is the platform ID D, element 1 is the platform encoding ID
E, and element 2 is the language code F.

 I added some numbers between parentheses after the font name. Each subtable
inside a cmap is identified by two numbers: a platform ID and a platform-specific
encoding ID. Table 8.4 (taken from Microsoft’s OpenType specification) lists the
platform IDs. Figure 8.8 shows the platform IDs for Mac (1) and Microsoft (3).

Figure 8.8
Different names of the
font Arial Black Italic

 b

 C
 D

 E
 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

242 CHAPTER 8
Choosing the right font
The second number is the platform encoding ID. The encoding number for
Microsoft (1) means “Unicode BMP only” (consult the OpenType specification for
more information on the other numbers).

 The third number in figure 8.8 is the language identifier. The figure shows the
name of the font in Catalan (1027), Czech (1029), Danish (1030), and so on. The
language identifier for English is 1033. Notice that these values are returned only
for TrueType and OpenType fonts, not for the other fonts that are handled by the
BaseFont object.

 I’ve dropped the name OpenType three times in the last few paragraphs. To
explain how OpenType fonts relate to the TrueType font, I should insert a little his-
tory lesson. TrueType is a font standard; that is, both Apple and Microsoft started
with the same standard. But as you have seen happen with a lot of standards, the
standard according to Apple and the standard according to Microsoft diverged.
Both companies added their own proprietary extensions, and soon they had their
own versions and interpretations of (what once was) the standard. When looking
for a commercial font, you had to be careful and buy a font that could be used on
your system. A TrueType font for Windows didn’t necessarily work on a Mac.

FAQ How can I convert my fonts on OS X to fonts that can be used in iText? Some
fonts on your Macintosh will be recognized by iText, and you’ll be able
to use them in a PDF document. But if you wish to use a Mac font that
isn’t supported by iText, you should download and install the tool
fondu (http://fondu.sourceforge.net/). You can, for instance, switch to
your personal Fonts directory (/Users/username/Library/Fonts) and issue
fondu *. Fondu will replace all the Mac-specific files with font files sup-
ported in iText.

To resolve the platform dependency of TrueType fonts (and because Apple refused
to license its advanced typography technology GX Typography), Microsoft started

Table 8.4 Platform IDs in a TrueType or OpenType font

Id Platform Platform-specific encoding IDs Language IDs

0 Unicode Various None

1 Macintosh Script manager code Various

2 ISO (deprecated) ISO encoding (deprecated) None

3 Microsoft Microsoft encoding Various

4 Custom Custom None
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 243
developing a new font format. Microsoft was joined by Adobe, and support for
Adobe’s Type 1 fonts was added. A new font format was born: OpenType fonts.

 There are some interesting stories to be told about the rivalry between Apple,
Microsoft, and Adobe, in the past as well as in the present. But I’ll restrain myself
and stick to the technical stuff, telling you more about this new font type.

8.2.5 Working with OpenType fonts
Adobe’s Q&A on OpenType Fonts says, “The OpenType format is a superset of
the existing TrueType and Adobe PostScript Type 1 font formats. It provides
improved cross-platform document portability, rich linguistic support, powerful
typographic capabilities, and simplified font management requirements.” Let’s
analyze this sentence bit by bit.

OpenType font with PostScript outlines
OpenType fonts can have PostScript Type 1 outlines or TrueType outlines. If an
OpenType font has PS outlines, the font file always has the extension OTF. The
font is stored in the Compact Font Format (Type 2). Most of these fonts aren’t
free, but I found some freeware OTF files that were developed by Ethan Lamor-
eaux. They contain the Shavian alphabet. This alphabet is named after George
Bernard Shaw (winner of the Nobel Prize for Literature in 1925). In his will, Shaw
stipulated that there should be a contest to create a simple, phonetic orthography
(because he didn’t think the Latin alphabet was suited to write in English). The
competition took place in 1958, and the £500 prize was won by Kingsley Read.

 Figure 8.9 shows the first article of the Universal Declaration of Human Rights
in English (Latin alphabet) and in … English (Shavian alphabet). Looking at the
screenshot, you see that the complete font is embedded as a Type 1 font (not a
subset). The corresponding source code has a few peculiarities:

Figure 8.9 Using an OpenType font (Compact Font Format)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

244 CHAPTER 8
Choosing the right font
/* chapter08/CompactFontFormatExample.java */
BaseFont bf = BaseFont.createFont(
 "../resources/esl_gothic_shavian.otf", "Cp1252", BaseFont.EMBEDDED);
System.err.println(bf.getClass().getName());
Font font = new Font(bf, 12);

document.add(new Paragraph("All human beings are born free and equal
 ➥ in dignity and rights. They are endowed with reason and conscience
 ➥ and should act towards one another in a spirit of brotherhood."));
document.add(new Paragraph("Yl hVman bIiNz R bPn frI n ikwal in
 ➥ dignitI n rFts. Hej R endQd wiH rIzn n konSans n Sud Akt tawPds
 ➥ wan anaHr in a spirit ov braHarhUd.", font));

The String passed to the paragraph with the Shavian font C looks odd when
compared to the String in plain English b. In this specific OTF, the ranges that
are normally reserved for the Latin alphabet are used to store the Shavian alpha-
bet. That way, if you’re using a word processor, you can type Shavian directly with
regular strokes on your keyboard.

 But the real reason the same characters are often used to refer to different
graphemes is the limitation that is inherent in the encoding system: A font can
contain more than 256 glyphs (OpenType fonts can have up to 65,536 glyphs),
but in each code page you can use only 256 characters to refer to them. It hap-
pens regularly that a character referring to a certain grapheme in one encoding
refers to another grapheme in another encoding.

 Furthermore, you probably think the annotation with bf.getClass().get-
Name() is a copy/paste error. You expect either an instance of CFFFont (because
that’s the format of the OTF) or Type1Font (the type shown in figure 8.9). But no,
it isn’t an error.

 The class TrueTypeFont deals with all font files that have the extension OTF or
TTF. But in this case the CFFFont class does the work, because the font is stored in
the Compact Font Format. In Adobe Reader, the font is seen as a Type 1 font,
because the glyphs are defined and stored in the PDF as PostScript outlines.

 This may sound confusing, but don’t worry—you can use the font without
knowing the theory behind it.

FAQ Can I use these fonts on operating systems other than Mac and Windows? One
of the biggest differences between OpenType and Type 1/TrueType fonts
is that the same font file works on a Windows PC as well as on a Mac. But
what about Linux and Solaris? Can you create an iText BaseFont object
that takes a TTF or OTF file on a UNIX system? The answer is, Yes. With
iText, it doesn’t matter on which operating system you’re working as long
as a valid font file is provided.

Return com.lowagie.text.
pdf.TrueTypeFont

 B

 C
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 245
We started this section by saying that a file with the extension OTF can also be an
OpenType font using TrueType technology. Let’s look at such a font.

OpenType font with TrueType outlines
In most cases, OpenType font files using TrueType technology have the extension
TTF, but OTF is also a valid extension. When we discussed plain old TrueType
fonts, we used Arial Black Italic. We didn’t have a lot of choice for the encoding.
Adobe’s Q&A answer says that OpenType provides “rich linguistic support.” Let’s
see if we have more choice if we use the OpenType font ArialBoldMT (arialbd.ttf)
instead of Arial Black Italic (ARBLI___.ttf). Compare figure 8.10 with figure 8.7;
there’s now a list with 26 available codepages.

Figure 8.10 Code pages in the font ArialBoldMT
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

246 CHAPTER 8
Choosing the right font
This answers one of the initial questions: Can you create a basic building block
that contains Eastern European characters (or Greek, or Turkish, or…)?

 Some Western European languages (for instance, French) have letters that get
a cedilla (¸) or a circumflex (^). Those letters are in Code Page 1252. For a
change, you pass the encoding as a String:

/* chapter08/TrueTypeFontEncoding.java */
bf = BaseFont.createFont("c:/windows/fonts/arialbd.ttf",
 "Cp1252", BaseFont.EMBEDDED);
System.err.println(bf.getClass().getName());
font = new Font(bf, 12);
document.add(new Paragraph("Un long dimanche de fiançailles", font));

Eastern Europe uses letters that get, for instance, a hacek (�, aka a caron). These
characters are in Code Page 1250 (also known as Latin 2). If you want to add such
a letter to a PDF file, you use cp1250:

/* chapter08/TrueTypeFontEncoding.java */
bf = BaseFont.createFont("c:/windows/fonts/arialbd.ttf",
 "Cp1250", BaseFont.EMBEDDED);
font = new Font(bf, 12);
byte[] noMansLand = { 'N', 'i', 'k', 'o', 'g', 'a', 'r',
 (byte) 0x9A, 'n', 'j', 'a', ' ', 'z', 'e', 'm', 'l', 'j', 'a' };
document.add(new Paragraph(new String(noMansLand), font));

The resulting PDF in figure 8.11 lists some interesting movie titles.
 You aren’t limited to Latin text; figure 8.11 also shows original movie titles in

Cyrillic (Code Page 1251) and Greek (Code Page 1253):

/* chapter08/TrueTypeFontEncoding.java */
bf = BaseFont.createFont("c:/windows/fonts/arialbd.ttf",
 "Cp1251", BaseFont.EMBEDDED);
font = new Font(bf, 12);
char[] youILove = { 1071, ' ', 1083, 1102, 1073, 1083, 1102,
 ' ', 1090, 1077, 1073, 1103 };
document.add(new Paragraph(new String(youILove), font));
bf = BaseFont.createFont("c:/windows/fonts/arialbd.ttf",
 "Cp1253", BaseFont.EMBEDDED);
font = new Font(bf, 12);
byte[] brides = { -51, -3, -10, -27, -14 };
document.add(new Paragraph(new String(brides, "Cp1253"), font));

I’ve been showing the Fonts tab so that you can compare which font is (or
isn’t) embedded into the PDF. The screenshots don’t show much difference
between using AMF/PFB files versus an OTF file, or between the different fla-
vors of TTF files.

Return instance of com.lowagie.
text.pdf.TrueTypeFont
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing base fonts 247
FAQ When I try the examples in the book, why is the text garbled? In most cases,
this isn’t a PDF problem or even an iText problem; it’s a simple Java
issue. If you have hard-coded String values in your source, make sure
you compile your code using the correct encoding. The same goes for
values that are retrieved from a database: Check the encoding that is
used by your database. Java uses a default encoding to translate bytes
into Strings. If you use the wrong encoding, you can get garbled text.

Notice that in the last example, only a subset of the font is embedded (just like in
the other TrueType example). The next example gives you an idea of the impact
of embedding a font into your documents:

/* chapter08/FileSizeComparison.java */
document1.add(new Paragraph(
 "quick brown fox jumps over the lazy dog", font_not_embedded));
document2.add(new Paragraph(
 "quick brown fox jumps over the lazy dog", font_embedded));

Figure 8.11 OpenType TrueType font with different encodings
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

248 CHAPTER 8
Choosing the right font
document3.add(new Paragraph(
 "ooooo ooooo ooo ooooo oooo ooo oooo ooo", font_embedded));

The first document with the fox/dog sentence doesn’t embed the font and is about
2 KB. The second document embeds 26 letters of the alphabet (plus the space
character) and is about 13 KB. In the third document, you add a String with the
same length, but you only use the letter o and the space character. You use the same
embedded font as in the second document. The resulting file is only 7 KB.

 I’ve already explained some of the aspects in the Q&A quote at the start of this
section on OpenType fonts, but I’ll have to postpone the part on advanced typog-
raphy till after we’ve dealt with composite fonts. You’ll need composite fonts to
create basic building blocks with Asian text.

8.3 Composite fonts

The previous examples have used single-byte characters to compose text Strings.
Now we’ll look at some languages with huge character sets—for instance, Chi-
nese, Japanese, and Korean. You need a composite font for these languages;
characters need to be defined using two or more bytes, and you use a special
encoding that maps these characters to the corresponding glyphs.

 In this section, you’ll make some more movie examples, but this time you’ll
display Asian titles. For Chinese, Japanese, and Korean titles, you can choose a
CJK font. Such a font can’t be embedded into the PDF; Adobe Reader will ask you
to download and install the font as you open a file that uses one of these fonts. If
you want to avoid this, you can embed a CID font using an OpenType font or a
TrueType collection that has the required glyph descriptions.

 In any case, you need to know about Unicode, so let’s start with a definition.

8.3.1 What is Unicode?

The opening sentence of the “What is Unicode?” page at the site of the Unicode
Consortium7 is clear and simple:

Unicode provides a unique number for every character,

■ no matter what the platform
■ no matter what the program
■ no matter what the language

7 http://www.unicode.org/standard/WhatIsUnicode.html
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composite fonts 249
In the Shavian example, two different code pages use the same character number
for two different graphemes. It’s also possible for two different character num-
bers to be used for the same grapheme. This is dangerous when you’re passing
files from one system to another. If they use a different encoding, the data risks
getting corrupted. By providing a unique number for every grapheme, Unicode
avoids this kind of problem.

 Unicode characters vary between U+000000 and U+10FFFF; this means there
are 1,114,112 code points, of which more than 96,000 are assigned. The most com-
mon graphemes can be represented by two-byte characters. The area U+0000–
U+FFFF is called the basic multilingual plane (BMP). Notice that this is the platform-
specific encoding ID you already met in the example with the arial. ttf font.

 All the graphemes are listed in the Unicode Standard and in the International
Standard ISO/IEC 10646. The characters are organized in blocks (for reasons of
convenience). The first 256 code points correspond with ISO-8859-1 (Latin-1).
The Braille symbols, for instance, are in the range U+2800–U+28FF. You can
look for the character you need in the Unicode Standard 4.1 or on the “Where is
my character?” page at Unicode.org.

Using Unicode in CID fonts
1,114,112 code points—that’s a large number of possible addresses for a glyph.
Even if you know that fewer than 10 percent of the code points have been
assigned, you realize that working with code pages that can map only 256
characters won’t be efficient; certainly not when dealing with languages with
huge character sets such as Chinese, Japanese, and Korean. That’s why the
CID-keyed font architecture was developed. CID-keyed fonts don’t have an
encoding built into the font, and the glyphs don’t have names. Instead, a char-
acter identifier (CID) is used to refer to glyphs in the character collections.

 These glyphs are stored in a CIDFont. CIDFonts are font-like objects: A
Type 0 CIDFont contains glyph descriptions based on the Type 1 font format; a
Type 2 CIDFont contains glyph descriptions based on the TrueType format.
Notice that the numbers of the types have different meanings in different con-
texts. In PDF, a composite font is also called a Type 0 font, but Type 0 has a dif-
ferent meaning when used in the context of a CIDFont. But again, you don’t
have to worry about the theory.

 A CID can be a number between 0 and 65,535. The association between the
Unicode code point and its CID is specified in a CMap. A CMap is like a very large
code page, but it’s different from the encodings you’ve seen up till now. In PDF, a
CMap may be specified in two ways:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

250 CHAPTER 8
Choosing the right font
■ As a name object identifying a predefined CMap, whose definition is
known to the consumer application

■ As a stream object whose contents are a CMap file

Table 5.15 in the PDF Reference lists the names of the predefined CMaps. Table 8.5
lists the CMaps that are provided in the extra iTextAsian.jar file (to be downloaded
separately), along with some property files.

The UCS-2 in the CMap names stands for Universal Character Set. There’s also
the Unicode Transformation Format (UTF). Both standards map Unicode code
points to a unique byte sequence:

■ UTF-8 is a variable length encoding using 1 to 4 bytes (sequences of 8 bit).
■ UCS-2 is almost identical to UTF-16 and uses 16-bit words.
■ UCS-4 corresponds with UTF-32, using the fixed amount of exactly 32 bits.

The H in the CMap names refers to horizontal writing mode and the V to vertical
writing mode. Many Asian languages can be written from left to right; but often
you can also use a writing system that writes glyphs from top to bottom in col-
umns from right to left. You’ll see an example using this vertical writing system in
the next chapter.

 I have looked at my personal movie database and I found some titles of Asian
movies I really liked. I have put them in a PDF document using some of the fonts
mentioned in table 8.5.

Table 8.5 CJK fonts supported in the iTextAsian.jar file

Language Fonts CMap names

Chinese (Simplified) STSong-Light
STSongStd-Light

UniGB-UCS2-H
UniGB-UCS2-V

Chinese (Traditional) MHei-Medium
MSung-Light
MSungStd-Light

UniCNS-UCS2-H
UniCNS-UCS2-V

Japanese HeiseiMin-W3
HeiseiKakuGo-W5
KozMinPro-Regular

UniJIS-UCS2-H
UniJIS-UCS2-V
UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

Korean HYGoThic-Medium
HYSMyeongJo-Medium
HYSMyeongJoStd

UniKS-UCS2-H
UniKS-UCS2-V
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composite fonts 251
8.3.2 Introducing Chinese, Japanese, Korean (CJK) fonts

Figure 8.12 demonstrates the use of some of the CJK fonts listed in table 8.5.
 The fonts aren’t embedded (even if you set the embedded parameter to

true), but if you open Adobe Reader and the fonts aren’t available, a dialog box
opens and asks if you want to update the reader. If you agree, the necessary
font packs are downloaded and installed. You’ll find the font files in the direc-
tory where Adobe Reader was installed, such as C:/Program Files/Adobe/Acrobat
7.0/Resource/.

 Creating a BaseFont object for one of the fonts listed in table 8.5 is as easy as
creating any other BaseFont object: You just combine a value from the second col-
umn with a value from the third column in the same row:

/* chapter08/ChineseKoreanJapaneseFonts.java */
bf = BaseFont.createFont(
 "STSong-Light", "UniGB-UCS2-H", BaseFont.NOT_EMBEDDED);
font = new Font(bf, 12);
System.err.println(bf.getClass().getName());
document.add(new Paragraph("\u5341\u950a\u57cb\u4f0f", font));
bf = BaseFont.createFont(
 "KozMinPro-Regular", "UniJIS-UCS2-H", BaseFont.EMBEDDED);
font = new Font(bf, 12);
document.add(
 new Paragraph("\u8ab0\u3082\u77e5\u3089\u306a\u3044", font));

Figure 8.12 CJK fonts in a PDF

Return com.lowagie.
text.pdf.CJKFont
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

252 CHAPTER 8
Choosing the right font
bf = BaseFont.createFont(
 "HYGoThic-Medium", "UniKS-UCS2-H", BaseFont.NOT_EMBEDDED);
font = new Font(bf, 12);
document.add(new Paragraph("\ube48\uc9d1", font));

You pass the original movie titles as Java Unicode characters. In most cases,
you’re not going to write a String this way; that would be quite a bit of work.
Instead, you get the String from a database—for instance, in UCS-2/UTF-16.

Using other CMaps
If you want to use this functionality for an encoding that isn’t supported by the
CMaps in iTextAsian.jar, you can download the iTextAsianCmaps.jar file and use
it like this:

PdfEncodings.loadCmap("GBK2K-H", PdfEncodings.CRLF_CID_NEWLINE);
byte text[] = my_GB_encoded_text;
String cid = PdfEncodings.convertCmap("GBK2K-H", text);
BaseFont bf = BaseFont.createFont("STSong-Light",
 BaseFont.IDENTITY_H, BaseFont.NOT_EMBEDDED);
Paragraph p = new Paragraph(cid, new Font(bf, 14));
document.add(p);

I insert this sample for the sake of completeness. In the past three years, only a
handful of people have posted questions about it on the iText mailing list. I won’t
go much deeper into the code in this book; I only want to point to these special
encodings. BaseFont.IDENTITY_H and BaseFont.IDENTITY_V are the horizontal
and vertical identity mapping for 2-byte CIDs. The PdfConvertEncodings class can
convert a String in a specific encoding to a String with 2-byte CIDs D. In this
case, the original String C was encoded in the GB 18030-2000 character set b;
GB is the abbreviation of the People’s Republic of China’s National Standards.

 In iText, you use Identity-H and Identity-V to embed a CIDFont.

8.3.3 Embedding CIDFonts

The Identity-H and Identity-V CMaps map 2-byte character codes to the same 2-
byte CID value; they can be used to refer to glyphs directly by their CIDs. If you
were allowed to use the fonts from the Adobe font packs, you could generate a
PDF file like the one in figure 8.13.

 Unfortunately, if you download the font packs for free, the font software is
licensed to you solely for use with Adobe Reader and is subject to the terms and
conditions of the End-User License Agreement accompanying Acrobat Reader.
It’s hard to find an OTF font that can be distributed freely, so I’ll only insert an
example using a Type 2 CIDFont.

 b
 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Composite fonts 253
When you use Identity-H and Identity-V with an OpenType font with TrueType
outlines, the two-byte characters values in your strings correspond with the indi-
ces for the glyph descriptions in the font program. The PDF Reference explains
that you can get this to work only if the TrueType font program is embedded.
That’s why iText always embeds fonts created with Identity-H or Identity-V, no
matter what value you’re passing with the embedded parameter.

 One of the previous examples combined different fonts to write a text in the
Latin alphabet and the same text in the Shavian alphabet. It used the same char-
acters for different graphemes. I downloaded another font file from Ethan Lam-
oreaux’s site: esl_gothic_unicode.ttf. In this font, the Shavian glyphs are added in
the range U+E700–U+E72F, in the private use area.

FAQ Can font designers use unassigned code points as they wish? The Unicode.
org FAQ is clear: “Absolutely not!” Just because there are a lot of unused
characters in the Unicode standard doesn’t mean you can use unas-
signed characters for new graphemes at will. Only the values in the pri-
vate-use area (U+E000–U+F8FF, U+F0000–U+FFFFD, and U+100000–
U+10FFFD) are legal for private use.

Figure 8.14 shows the result of adapting the String representing the first article
of the Universal Declaration of Human Rights.

 In the Fonts tab, you see that only one font is used for both the Latin and the
Shavian alphabet. The BaseFont object is created exactly the same way it’s always
been up to this point:

Figure 8.13 A document with a Type 0 CIDFont (glyph descriptions based on the Type 1
font format)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

254 CHAPTER 8
Choosing the right font
/* chapter08/CIDTrueTypeOutlines.java */
BaseFont bf =
 BaseFont.createFont("../resources/esl_gothic_unicode.ttf",
 BaseFont.IDENTITY_H, BaseFont.NOT_EMBEDDED);
Font font = new Font(bf, 12);
System.err.println(bf.getClass().getName());
document.add(new Paragraph("All human beings ...", font));
document.add(new Paragraph(
 "\ue727\ue714 \ue713\ue72f\ue715\ue719\ue71f ...", font));

If you go to Ethan Lamoreaux’s site, you’ll also find an OTF version of the Sha-
vian Unicode font. Unfortunately, replacing the TTF with the OTF in the source
code of the previous example won’t work. You can only use the Identity-H or
Identity-V encoding on OTF fonts that contain CIDFonts.

 We’re almost done with the overview of the font types and font files sup-
ported in iText. Let’s finish this section with Type 2 CIDFonts bundled in a True-
Type collection.

8.3.4 Using TrueType collections

A TrueType collection (TTC) is—as the name indicates—a collection of TrueType
fonts bundled in one TTC file. With the static method BaseFont.enumerateTTC-
Names(), you can ask a file which fonts it contains:

/* chapter08/TrueTypeCollections.java */
String[] names =
 BaseFont.enumerateTTCNames("c:/windows/fonts/msgothic.ttc");
for (int i = 0; i < names.length; i++) {
 document.add(new Paragraph("font " + i + ": " + names[i], font));
}

I used a font that can be found on the CD that comes with the Windows OS (it isn’t
installed automatically). In figure 8.15, you see that this TTC file contains three
fonts: MS-Gothic, MS-PGothic, and MS-UIGothic.

Return com.lowagie.text.pdf.
TrueTypeFontUnicode

Figure 8.14 A document with a Type 2 CIDFont (glyph descriptions based on the TrueType
font format)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 255
You need the index of these fonts in the createFont() method. When you use
TrueType collections, it isn’t sufficient to pass the path to the file; you need to add
the index of the font you want to use. In the case of msgothic.ttc, you can pass
"c:/windows/fonts/msgothic.ttc,0", "c:/windows/fonts/msgothic.ttc,1", or
"c:/windows/fonts/msgothic.ttc,2":

/* chapter08/TrueTypeCollections.java */
bf = BaseFont.createFont(
 "c:/windows/fonts/msgothic.ttc,0",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
font = new Font(bf, 12);
System.err.println(bf.getClass().getName());
document.add(new Paragraph("Rashômon", font));
document.add(new Paragraph("Directed by Akira Kurosawa", font));
document.add(new Paragraph("\u7f85\u751f\u9580", font));

We’re finished with the font-type overview. You know how to create Font and
BaseFont objects using paths to font files, but there’s still a lot to learn about fonts.

 If you want to create a movie database for the world, you can’t add mov-
ies from Israel or from Arabic countries, because you don’t know how to add
text that is written from right to left. We’ll discuss this and much more in the
next chapter.

8.4 Summary

This wasn’t an easy chapter. It juggles font types and all sorts of font files. It must
have been hard to follow from time to time because of the terminology, which is

Figure 8.15 A PDF with a Type 2 CIDFont that comes from a TrueType collection

Use first font in ttc: MS-Gothic

Return com.lowagie.text.pdf.
TrueTypeFontUnicode
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

256 CHAPTER 8
Choosing the right font
sometimes confusing. If you really want to know more about the types, consult the
books on font technology listed in appendix G.

 You now have sufficient information to start using different fonts in iText.
The next chapter also contains some interesting functionality; as promised,
we’ll deal with vertical text and writing from right to left, but also with diacrit-
ics and ligatures.

 Furthermore, we’ll introduce two convenience classes, FontFactory and Font-
Selector. These classes can significantly reduce the complexity of your code.

 We also haven’t forgotten Laura’s next assignment. In the next chapter, you’ll
use the fonts that were introduced to help her send a message of peace.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Using fonts
This chapter covers
■ How to write from top to bottom
■ How to write from right to left
■ How to deal with diacritics and ligatures
■ How to automate font selection
257

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

258 CHAPTER 9
Using fonts
In the previous chapter, you learned how to get a font object of type Font or BaseFont.
You’ve worked with these objects in the most common situations: using paragraphs
of text written from left to right in horizontal lines. In this chapter, we’ll look at some
other writing directions. I’ll have to find extra Asian movie titles to demonstrate how
you can write a text in vertical columns; and I need Hebrew and Arabic titles to
explain how to change the run direction so that text is written from right to left. This
will allow you to implement the first part of Laura’s “message of peace” assignment.

 Furthermore, we’ll discuss some advance typography issues, such as diacritics
and ligatures. You’ll also learn how to manage fonts in a FontFactory and how to
automate the font-selection process with class FontSelector. This functionality will
be useful once you complete Laura’s assignment, writing the word peace in hun-
dreds of languages. You’ll let the FontSelector select the appropriate font for each
language. But before we start with the examples, I have to make a confession.

9.1 Other writing directions

I plead guilty: I’m a movie addict. I like to watch movies from all over the world,
and when I’m watching a film from the Middle or Far East, I’m always intrigued
by the way the opening titles appear on the screen. I’m interested to see how pro-
tagonists in the film use a computer—for instance, working with a Hebrew ver-
sion of Windows or chatting with a Japanese chat program.

 You, on the other hand, may have been waiting for examples on how to create
a PDF document with text that is written in vertical right-to-left columns—that is,
if you live in Asia. If you need to write text in Hebrew or Arabic, you’re probably
more interested to know how to write text horizontally from right to left. That’s
what you’re going to do in this section.

9.1.1 Vertical writing

I ended the previous chapter with an example that printed the movie title Rashô-
mon in Japanese. I’ll continue with the Japanese director Akira Kurosawa, and
add a quote from his movie The Seven Samurai (1954) vertically (see figure 9.1).

 The text starts at the right, with the movie title in Japanese. In the next col-
umn, you see the first words of the quote, and you can read the lines from right to
left (starting with “You embarrass me. You’re overestimating me.”). This text was
added with the class VerticalText.

 VerticalText is similar to the ColumnText object. The method go() also returns
VerticalText.NO_MORE_TEXT or VerticalText.NO_MORE_COLUMN. You can use these
values in a loop. This example invokes go() and assumes that the text fits the page:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Other writing directions 259
/* chapter09/VerticalTextExample.java */
PdfContentByte cb = writer.getDirectContent();
BaseFont bf = BaseFont.createFont(
 "KozMinPro-Regular", "UniJIS-UCS2-V", BaseFont.NOT_EMBEDDED);
Font font = new Font(bf, 20);
vt = new VerticalText(cb);
vt.setVerticalLayout(PageSize.A4.width() * 0.75f,
 PageSize.A4.height() - 36, PageSize.A4.height() - 72, 8, 30);
vt.addText(new Chunk(movie, font));
vt.go();
vt.addText(new Phrase(quote_p1, font));
vt.go();
vt.setAlignment(Element.ALIGN_RIGHT);
vt.addText(new Phrase(quote_p2, font));
vt.go();

Note that you create the VerticalText object the same way you created a Column-
Text object, using a PdfContentByte object b. You define an area and a number of
lines C: The upper-right corner of the rectangle is positioned at three-quarters

Figure 9.1 The vertical writing system

 B

 C
 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

260 CHAPTER 9
Using fonts
of the page width and at the top of the page minus the margin. The columns can
be as tall as the page minus the top and bottom margin. You want a maximum of
eight lines, and the space between the columns (the leading) is 30.

 First, you add the Japanese text to the VerticalText object and call go() to
write it to the PdfContentByte D. Then, you add the English text E. The default
alignment is Element.ALIGN_LEFT. In a VerticalText object, left corresponds with
the top of the columns. Finally, you add the English text again, but you change
the alignment to Element.ALIGN_RIGHT F. In a VerticalText object, right corre-
sponds with the bottom of the columns. Note that there is something special
about the last string you added.

 In figure 9.1, you can see that Latin text isn’t well suited to be printed verti-
cally. To solve this problem, the original quote is converted to a String that con-
tains the character identifiers (CIDs) of glyphs that represent graphemes of the
Latin alphabet, but of which every letter is rotated 90 degrees clockwise. The
method convertCIDs() calculates the CIDs of the rotated glyphs:

/* chapter09/VerticalTextExample.java */
bf = BaseFont.createFont(
 "KozMinPro-Regular", "Identity-V", BaseFont.NOT_EMBEDDED);
font = new Font(bf, 20);
vt = new VerticalText(cb);
vt.setVerticalLayout(PageSize.A4.width() * 0.25f,
 PageSize.A4.height() - 36, PageSize.A4.height() - 72, 8, 30);
vt.addText(new Phrase(convertCIDs(quote_p1), font));
vt.go();

Note that the example uses Identity-V for the encoding parameter (V for
Vertical).

 With class VerticalText, you write from right to left; but when you look at the
result, you see that it’s different from what you need to write Semitic languages.
To write movie titles in Hebrew or Arabic, you must be able to write horizontal
lines from right to left.

9.1.2 Writing from right to left

Some interesting films were made in Israel over the past years: James’ Journey to
Jerusalem, The Syrian Bride, and so on; but let’s look at the winner of 11 Israeli
Oscars in 2003. At first sight, you won’t see anything different from the previous
examples in figure 9.2, except for the fact that Hebrew glyphs are used.

 If you don’t know Hebrew, you’ll probably try to read the Hebrew glyphs from
left to right. You see four glyphs, a space, two glyphs, a space, and the rest of the
title. Let’s compare this with the original String in the source code:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Other writing directions 261
/* chapter09/RightToLeftExample.java */
BaseFont bf = BaseFont.createFont(
 "c:/windows/fonts/arial.ttf", BaseFont.IDENTITY_H, true);
Font font = new Font(bf, 14);
MultiColumnText mct = new MultiColumnText();
mct.addSimpleColumn(36, PageSize.A4.width() - 36);
mct.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
mct.addElement(new Paragraph(
 "\u05d4\u05d0\u05e1\u05d5\u05e0\u05d5\u05ea \u05e9\u05dc "
 + "\u05e0\u05d9\u05e0\u05d4", font));
document.add(mct);

The String that’s passed to the ColumnText object includes seven two-byte char-
acters, space, two characters, space, and four characters. In reality, the first
glyph on the title line in figure 9.2 is \u05d4, followed by \u05e0, and so on. In
other words, the characters are added in reverse order.

 Notice that the text is wrapped in a MultiColumnText object. Unless you add
the String at an absolute position (see part 3), you can only add text written from
right to left if you wrap it in a PdfPCell, ColumnText or MultiColumnText object.

 These objects have a setRunDirection() method that takes one of the follow-
ing parameters:

■ PdfWriter.RUN_DIRECTION_DEFAULT—Use the default run direction.
■ PdfWriter.RUN_DIRECTION_LTR—Use bidirectional reordering with a left-to-

right preferential run direction.
■ PdfWriter.RUN_DIRECTION_NO_BIDI—Don’t use bidirectional reordering.
■ PdfWriter.RUN_DIRECTION_RTL—Use bidirectional reordering with a right-

to-left preferential run direction.

To explain what bidirectional means, let’s look at Laura’s next assignment: She
needs to write a message in different languages. In her text, the term I18N
(Internationalization) is used. If you choose RTL as the run direction, you don’t
want this term to be reordered as N81I; you want to preserve the order of the

Figure 9.2
Right-to-left writing in iText
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

262 CHAPTER 9
Using fonts
Latin text. That’s what bidirectional reordering is about. RUN_DIRECTION_RTL
means that the characters in the String are reordered from right to left by pref-
erence, but if Latin text is encountered, the left-to-right order is preserved.

 Arabic text is also written from right to left. Does this mean you can now also
write a movie title in Arabic? Let’s give it a try and write some code to send a mes-
sage of peace.

9.2 Sending a message of peace (part 1)

Frank Da Cruz, Marco Cimarosti, and others have made a web page translating
the word peace in (almost) all languages. This page starts with a message in Eng-
lish, Arabic, and Hebrew. I wrote to Frank and Marco and received permission to
copy the page and make some XML files for Laura; I made an XML file with the
Say Peace message.

 The encoding of this XML file is UTF-8; as explained in the previous chapter,
this means a sequence of one or more bytes is used per character. If you open it in
WordPad (see figure 9.3), you can see that the English text is readable. One byte is
used for the Latin characters. In the Arabic and Hebrew text, you only recognize

Figure 9.3 UTF-8 encoded XML file
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Sending a message of peace (part 1) 263
the exclamation mark and the abbreviation of Internationalization (I18N). All the
other glyphs are represented by two-byte characters.

 The text in the XML is written in logical order, starting with the glyphs that
should be read first at the left. In figure 9.4, if you read the text from left to right,
it starts with the exclamation point. The order has been reversed, except for the
string “(I18N).”

 The example SayPeace.java is similar to the previous Foobar examples. It
parses the XML file shown in figure 9.3 and converts it to a PDF document as
demonstrated in figure 9.4.

 Only one font file was used to produce this text: Arial Unicode MS (ari-
aluni.ttf). The sentence in bold was rendered differently by using setTextRender-
Mode() (discussed in chapter 4). Here is the code:

/* chapter09/SayPeace.java */
public void startElement(
 String uri, String localName, String qName, Attributes attributes)
 throws SAXException {
 if ("message".equals(qName)) {
 buf = new StringBuffer();
 column = new MultiColumnText();
 column.addSimpleColumn(36, PageSize.A4.width() - 36);
 if ("RTL".equals(attributes.getValue("direction"))) {
 column.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
 }
 }
}

Figure 9.4 PDF file with a message of peace in English, Arabic, and Hebrew

Map <message>
to MultiColumn
Text

Change run
direction if
necessary
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

264 CHAPTER 9
Using fonts
public void endElement(String uri, String localName, String qName)
 throws SAXException {
 try {
 if ("big".equals(qName)) {
 Chunk bold = new Chunk(strip(buf), f);
 bold.setTextRenderMode(
 PdfContentByte.TEXT_RENDER_MODE_FILL_STROKE,
 0.5f, new Color(0x00, 0x00, 0x00));
 Paragraph p = new Paragraph(bold);
 p.setAlignment(Element.ALIGN_LEFT);
 column.addElement(p);
 }
 if ("message".equals(qName)) {
 Paragraph p = new Paragraph(strip(buf), f);
 p.setAlignment(Element.ALIGN_LEFT);
 column.addElement(p);
 document.add(column);
 column = null;
 }
 } catch (DocumentException e) {
 e.printStackTrace();
 }
 buf = new StringBuffer();
}

The Arabic text looks all right, but it’s important to understand that iText has
done a lot of work behind the scenes. Not every character in the XML file is ren-
dered as a separate glyph. Some characters/glyphs are combined and replaced.

 To understand what happens, we need to talk about diacritics and ligatures.

9.3 Advanced typography

I once saw a Thai cowboy movie with a poor hero who fell in love with a girl from
the upper classes. It was a very good and entertaining movie. Figure 9.5 shows the
poster and the title of this film.

 The first version of the title in Thai was written with the font AngsanaNew
(angsa.ttf), a font that comes with Windows XP if you install the OS with extended
(international) font support. The second version was written using Arial Unicode
MS (arialuni.ttf):

/* chapter09/Diacritics1.java */
String movieTitle = "\u0e1f\u0e49\u0e32\u0e17" +
 "\u0e30\u0e25\u0e32\u0e22\u0e42\u0e08\u0e23";
...
bf = BaseFont.createFont("c:/windows/fonts/angsa.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
font = new Font(bf, 20);

Map </big> to chunk
with style bold
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Advanced typography 265
document.add(new Paragraph("Font: " + bf.getPostscriptFontName()));
document.add(new Paragraph(movieTitle, font));
bf = BaseFont.createFont("c:/windows/fonts/arialuni.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
font = new Font(bf, 12);
document.add(new Paragraph("Font: " + bf.getPostscriptFontName()));
document.add(new Paragraph(movieTitle, font));

The Strings in the code sample are identical, but the titles in the screenshot
aren’t quite the same. The second character in the String is a curl that looks like
a separate character when you write it in Arial Unicode MS. In AngsanaNew, it’s
positioned almost on top of the first character. In reality, it should be above the
first character, as you can see on the movie poster (if you look closely).

 This is a diacritical mark. We talked about diacritical marks earlier, before you
knew what they’re called; when we discussed different encodings, we talked about
the cedilla, the hacek, and so on. You used different character codes for combina-
tions of a letter and diacritical marks; but in some languages, diacritical marks
are stored in a separate character, using two characters instead of one.

9.3.1 Handling diacritics

For the moment, I’m typing on an AZERTY keyboard (instead of QWERTY). This
keyboard has a key with an umlaut and a circumflex. If I type the keys ^ and e, I
get the character ê (as in the French word être).

 If you want to save the word être in a file, you may expect it to be four charac-
ters long; but in some languages, it’s common to store both characters sepa-
rately—for instance, ^etre or e^tre instead of être. That is what happened in the

Figure 9.5 Problems with diacritics
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

266 CHAPTER 9
Using fonts
previous example; iText just shows the glyphs corresponding with the characters.
In most cases, no mechanism replaces the letter and its diacritical mark with
another combined character.

Changing the character advance
Some fonts deal with this issue by adapting the character advance. The advance of
a character is the horizontal distance between the starting point of the character
and the starting point of the next character. If you look at the way different fonts
deal with these diacritics, you see that AngsanaNew does a better job than Arial
Unicode MS. The character advance is stored in the font’s metrics. You can
change this value in the iText BaseFont object. This can be useful to deal with dia-
critics, as shown in the PDF document in figure 9.6.

Here’s the code:

/* chapter09/Diacritics2.java */
bf = BaseFont.createFont("c:/windows/fonts/arial.ttf",
 BaseFont.CP1252, BaseFont.EMBEDDED);
font = new Font(bf, 12);
document.add(new Paragraph("Tomten är far till alla barnen", font));
System.err.println("Width in arial.ttf: " + bf.getWidth('¨'));
bf.setCharAdvance('¨', -100);
document.add(new Paragraph("Tomten ¨ar far till alla barnen", font));
bf = BaseFont.createFont("c:/windows/fonts/cour.ttf",
 BaseFont.CP1252, BaseFont.EMBEDDED);
System.err.println("Width in cour.ttf: " + bf.getWidth('¨'));
bf.setCharAdvance('¨', 0);
font = new Font(bf, 12);
document.add(new Paragraph("Tomten ¨ar far till alla barnen", font));

The first time the example adds the Swedish title, it uses the String “Tomten är
far till alla barnen” (“Santa Claus is the father of all children”) b. The second D
and third time E, it uses ¨ar instead of är.

Figure 9.6 Dealing with diacritics

 b

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Advanced typography 267
 The width of the umlaut/dieresis glyph is 333 units in Arial (glyph space). To
get the umlaut or dieresis above the letter a, you change the width of the ¨ char-
acter to a negative value C.

 In CourierNew, you can set the advance to 0 without any problem D. Courier
is a monospace or fixed-width font: Every character has the same width (in this case,
600 units). If you set the width of the character to 0 in Arial, the diacritic doesn’t
exactly match with the letter a. The width of this font is proportional, which means
glyphs of varying widths are used. The example uses a negative value (in glyph
space), and it looks all right, but in reality it isn’t OK. The space before the ä isn’t
as wide as it should because of the negative character advance of the umlaut/
dieresis. If the ä was in the middle of a word, you’d have overlapping glyphs.
This is only a good idea for fixed-width fonts.

Changing a proportional font into a monospace font
Now that you know how to change the width of the glyphs, you can turn a propor-
tional font into a monospace font, as is done with the last line in figure 9.7.

 The first title line is written in a proportional font, the second in a real fixed-
width font, and the third in a proportional font whose glyph widths have been
changed so they’re all 600 units wide (in glyph space). This doesn’t look nice for
Latin text, but it can be a useful feature if, for instance, you’re writing Chinese
text. Here’s the code:

/* chapter09/Monospace.java */
bf3 = BaseFont.createFont("c:/windows/fonts/arialbd.ttf",
 BaseFont.CP1252, BaseFont.EMBEDDED);
font3 = new Font(bf3, 12);
int widths[] = bf3.getWidths();
for (int k = 0; k < widths.length; ++k) {
 if (widths[k] != 0)
 widths[k] = 600;
}
bf3.setForceWidthsOutput(true);

Figure 9.7
Proportional font versus
monospace font
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

268 CHAPTER 9
Using fonts
Changing the character advance is a possible solution to deal with diacritics, but
you also have to tackle problems that arise when you use languages that have liga-
tures. Maybe we can think of a global solution that deals with both problems at
the same time.

9.3.2 Dealing with ligatures

A ligature occurs when a combination of two or more characters is considered to
be one and only one glyph. A letter with a diacritic isn’t usually called a ligature,
but the same principle applies. One of the ligatures we all know (but we may have
forgotten it’s a ligature) is the ampersand sign (&).

Ligatures in the Latin alphabet
The ampersand sign was originally a ligature for the Latin word et (meaning and).
As is the case with diacritics, you usually aren’t confronted with a problem in lan-
guages using Latin text.

 Figure 9.8 shows a movie title containing a ligature.
The first title line uses the character æ in the String. This is a ligature of the let-
ters a and e. In the second title line, both characters are written separately:

/* chapter09/Ligatures1.java */
bf = BaseFont.createFont("c:/windows/fonts/arial.ttf",
 BaseFont.CP1252, BaseFont.EMBEDDED);
font = new Font(bf, 12);
document.add(new Paragraph("Kærlighed ved første hik", font));
document.add(new Paragraph(ligaturize("Kaerlighed ved f/orste hik"),
 font));

Figure 9.8 Writing your own ligaturizer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Advanced typography 269
If you write Kaerlighed instead of Kærlighed, iText doesn’t make the ligature auto-
matically. You need to write a method that makes the ligatures. In the example, I
wrote a simple method that deals with the æ ligature and the ø diacritic:

/* chapter09/Ligatures1.java */
private static String ligaturize(String s) {
 int pos;
 while ((pos = s.indexOf("ae")) > -1) {
 s = s.substring(0, pos) + 'æ' + s.substring(pos + 2);
 }
 while ((pos = s.indexOf("/o")) > -1) {
 s = s.substring(0, pos) + 'ø' + s.substring(pos + 2);
 }
 return s;
}

In Laura’s assignment, you’ll have to write the word peace in many different lan-
guages. You’ll see that some translations aren’t rendered correctly. The Indic ren-
dering of the word nti will be completely wrong because iText can’t handle the
ligatures. For the moment, only Arabic ligatures are supported.

Arabic ligatures
I have seen several Arabic and Persian films (Zinat, The Girl in the Sneakers, The
Riverside, and so on), but it’s difficult to find those titles in their original language
on the Web because I don’t understand Arabic or Persian. I do know a pretty good
English film about Arabia (see figure 9.9).

sa´

Figure 9.9 Automatic ligatures in Arabic
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

270 CHAPTER 9
Using fonts
The first version of the Arabic title is wrong, because the different glyphs are
added from left to right. For the second version, I added all the Arabic characters
individually, separated by the space character. This is also wrong because the lig-
atures weren’t made. Compare the second line with the third line: The same char-
acters are used in the Java String, but iText applies the ligatures automatically.
Do you see the differences?

/* chapter09/Ligatures2.java */
String movieTitle = "\u0644\u0648\u0631\u0627\u0646\u0633 " +
 "\u0627\u0644\u0639\u0631\u0628";
String movieTitleWithExtraSpaces = "\u0644 \u0648 \u0631 \u0627 " +
 "\u0646 \u0633 \u0627 \u0644 \u0639 \u0631 \u0628";
...
document.add(new Paragraph("Wrong: " + movieTitle, font));
MultiColumnText mct = new MultiColumnText();
mct.addSimpleColumn(36, PageSize.A4.width() - 36);
mct.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
mct.addElement(new Paragraph(
 "Wrong: " + movieTitleWithExtraSpaces, font));
document.add(mct);
mct = new MultiColumnText();
mct.addSimpleColumn(36, PageSize.A4.width() - 36);
mct.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
mct.addElement(new Paragraph(movieTitle, font));
document.add(mct);

If you study the source code, you can see that you don’t have to do anything
special to invoke the methods of class ArabicLigaturizer. If the run direction
is RTL and Unicode characters in the Arabic character set are used, this is
done automatically.

 For the sake of completeness, I must mention that classes PdfPTable, Column-
Text, and MultiColumnText also have a method setArabicOptions(). That’s
because there are different ways to deal with vowels in Arabic. These are possible
values for the Arabic Options:

■ ColumnText.AR_NOVOWEL—Eliminates Arabic vowels
■ ColumnText.AR_COMPOSEDTASHKEEL—Composes the tashkeel in the ligatures
■ ColumnText.AR_LIG—Does some extra double ligatures

None of these options have any effect on this example, but it can be useful infor-
mation if you need advanced Arabic support. This is specialized stuff; it’s time to
return to everyday use of iText and look at some classes that make working with
fonts easier.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automating font creation and selection 271
9.4 Automating font creation and selection

In the previous section, you created instances of the Font class with a BaseFont
object as a parameter. In most cases, you needed to pass the path to a filename.
That’s not very elegant. For instance, I’m used to developing on Windows, but my
projects are in most cases deployed on a Sun server with Solaris as the operating
system. It’s evident that all references to the C:/windows/fonts directory won’t
work in my production environment. A possible workaround would be to jar the
font and ship this jar with my web application (in my war or my ear file). If iText
doesn’t find a font on the file system, it will try to load the file as a resource from
the jars. Remember that you already did this once: In the previous chapter, you
loaded an AFM file from iText.jar.

 Font files can be large, and if they’re already present somewhere on the file sys-
tem, it can be overkill to ship them with every application. Using a properties file
with the location of each font on the file system is one option to solve this prob-
lem, but there’s a better way. If you use class FontFactory, you can avoid some of
the most common problems that occur when you want to get a font the way you
did in the previous chapter.

9.4.1 Getting a Font object from the FontFactory

The FontFactory class has a series of static getFont() methods that allow you to
replace the two lines used in the previous chapter with one line. For instance:

 BaseFont bf = BaseFont.createFont("c:/windows/fonts/arial.ttf",
 BaseFont.CP1252, BaseFont.EMBEDDED);
 Font font = new Font(bf, 14);

can be replaced by the following single line:

 Font font = FontFactory.getFont("c:/windows/fonts/arial.ttf",
 BaseFont.CP1252, BaseFont.EMBEDDED, 14);

At first sight, there’s nothing special about this single line. The real strength of
FontFactory is that you can register font files and font directories when your
application starts up. Once registered, all applications using the same JVM can
ask the FontFactory for the font by its name, or even by an alias.

 If you’re writing web applications, you no longer need to work with the path
to the font file; you can load these files in the start-up script of your applica-
tion server.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

272 CHAPTER 9
Using fonts
Registering separate fonts
Figure 9.10 shows a PDF with our fox/dog sentence displayed using differ-
ent fonts.

 There’s a big difference between the way the font was retrieved for the first five
lines and the way the fonts of the last lines were created. For the first five lines, the
code uses the name of a standard Type 1 font or the path to a TTF file:

/* chapter09/FontFactoryExample1.java */
fonts[0] = FontFactory.getFont("Times-Roman");
fonts[1] = FontFactory.getFont("Courier", 10);
fonts[2] = FontFactory.getFont("Courier", 10, Font.BOLD);
fonts[3] = FontFactory.getFont(
 FontFactory.TIMES, 10, Font.BOLD, new CMYKColor(255, 0, 0, 64));
fonts[4] = FontFactory.getFont(
 "c:/windows/fonts/arial.ttf", BaseFont.CP1252, BaseFont.EMBEDDED);

You immediately recognize the parameters; there’s little difference from what
you did to get a font in the previous chapter. Then there’s the sixth line, in Com-
puter Modern:

Figure 9.10 Different ways to get a font from FontFactory
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automating font creation and selection 273
/* chapter09/FontFactoryExample1.java */
FontFactory.register("../../chapter08/resources/cmr10.afm");
fonts[5] = FontFactory.getFont(
 "CMR10", BaseFont.CP1252, BaseFont.EMBEDDED);
fonts[5].getBaseFont().setPostscriptFontName("Computer Modern");

First you register the AFM file to the FontFactory. Remember from the previous
chapter that the name of this font is CMR10. From now on, this name will be
known to the FontFactory for the complete JVM. This means you can get the font
with its name: "CMR10".

 I did an extra trick in the last line of the code snippet. In the previous chapter,
the font is listed in the Fonts tab as CMR10 (see figure 8.5). Instead of this acronym,
I want a readable name to show up, so I changed it to Computer Modern. The font
appears in the Fonts tab with this name (see figure 9.10). This is only a cosmetic
operation; it doesn’t mean you can call getFont() using the name Computer Mod-
ern from now on. If you want to use the font by referring to the name Computer
Modern, you should pass this name as an alias when you register the font file.

 The font family that is used in Manning books is Garamond. Let’s register
some fonts in the Garamond family with the alias Manning.

/* chapter09/FontFactoryExample1.java */
FontFactory.register("c:/windows/fonts/gara.ttf", "Manning");
FontFactory.register(
 "c:/windows/fonts/garabd.ttf", "Manning-bold");
FontFactory.register(
 "c:/windows/fonts/garait.ttf", "Manning-italic");
fonts[6] = FontFactory.getFont(
 "Manning", BaseFont.CP1252, BaseFont.EMBEDDED);
fonts[7] = FontFactory.getFont(
 "Manning-bold", BaseFont.CP1252, BaseFont.EMBEDDED, 10);
fonts[8] = FontFactory.getFont(
 "Manning", BaseFont.CP1252, BaseFont.EMBEDDED, 10, Font.ITALIC);

You register different styles of the Garamond font family, each with a different
alias. In the Font instances font[6] and font[7], you get the font based on this
alias. If you check figure 9.10, you see that lines 7 and 8 are printed in Garamond
regular and Garamond bold.

 But look at what happens with line 9. When you ask the FontFactory for
font[8], you pass the name Manning and the style Italic. Because you registered
different fonts of the same family, you’re now able to switch from one font to the
other, not by changing the name, but by passing a style parameter!

 Finally, you can also get the registered Garamond font by passing one of its
original names; it doesn’t matter in what language. For instance, I can get the
font Garamond bold by passing its name in Dutch:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

274 CHAPTER 9
Using fonts
/* chapter09/FontFactoryExample1.java */
fonts[9] = FontFactory.getFont("garamond vet",
 BaseFont.CP1252, BaseFont.EMBEDDED, 10,
 Font.UNDEFINED, new CMYKColor(0, 255, 0, 64));

This won’t work with all fonts. Not every font file has all the names of the font in
every language. An interesting static method allows you to retrieve all the valid
names of the fonts and font families supported in the FontFactory:

/* chapter09/FontFactoryExample1.java */
System.out.println("Registered fonts");
for (Iterator i = FontFactory.getRegisteredFonts().iterator();
 i.hasNext();) {
 System.out.println((String) i.next());
}
System.out.println("Registered font families");
for (Iterator i = FontFactory.getRegisteredFamilies().iterator();
 i.hasNext();) {
 System.out.println((String) i.next());
}

The names that are printed to System.out resemble the output shown in fig-
ure 8.8, with one difference: All font names are changed to lowercase. Note
that the process of getting a Font with the FontFactory is case insensitive.

 You’ve already seen some interesting features of the FontFactory, but you still
have to pass a path to the individual font files. If you register Garamond regular
and bold, but you forget to register Garamond italic, you can’t benefit from the
functionality that switches from font to font based on the style parameter. It
would be handy to register a complete font directory in one statement.

Registering font directories
The output of the next examples resembles figure 9.10, but some different fonts
were used to produce the PDF shown in figure 9.11.

 The first five lines used fonts that you encountered in the previous chapter.
You register the resources directory from chapter 8:

/* chapter09/FontFactoryExample2.java */
FontFactory.registerDirectory("../../chapter08/resources");
System.out.println("Registered fonts");
for (Iterator i = FontFactory.getRegisteredFonts().iterator();
 i.hasNext();) {
 System.out.println((String) i.next());
}
fonts[0] = FontFactory.getFont("utopia-regular");
fonts[1] = FontFactory.getFont("cmr10", 10);
fonts[2] = FontFactory.getFont("utopia-regular", 10, Font.BOLD);
fonts[3] = FontFactory.getFont("esl gothic unicode", 10,
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automating font creation and selection 275
 Font.UNDEFINED, new CMYKColor(255, 0, 0, 64));
fonts[4] = FontFactory.getFont("utopia-regular",
 BaseFont.CP1252, BaseFont.EMBEDDED);

List the font names with getRegisteredFonts(), and use some of those names to
create a Font object. Notice the difference between line 1 and line 5 in figure 9.11:
Line 1 is supposed to be in the font Utopia, but the nonembedded font was
replaced. Line 5 uses the embedded Utopia font.

The method registerDirectory()registers all the files with extensions AFM, OTF,
TTF, and TTC (see chapter 8) in the directory that is passed as a parameter.

 There’s also a method registerDirectories() that doesn’t need a parame-
ter. It tries to register all the directories that are normally used by Windows,
Linux, or Solaris to store fonts. In the current iText version, the following direc-
tories are registered:

■ c:/windows/fonts
■ c:/winnt/fonts
■ d:/windows/fonts

Figure 9.11 Registering font dictionaries to get a font from a FontFactory
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

276 CHAPTER 9
Using fonts
■ d:/winnt/fonts
■ /usr/X/lib/X11/fonts/TrueType
■ /usr/openwin/lib/X11/fonts/TrueType
■ /usr/share/fonts/default/TrueType
■ /usr/X11R6/lib/X11/fonts/ttf

You can get a list of the font families available on your machine by running this
code sample:

/* chapter09/FontFactoryExample2.java */
FontFactory.registerDirectories();
System.out.println("Registered font families");
for (Iterator i = FontFactory.getRegisteredFamilies().iterator();

i.hasNext();) {
 System.out.println((String) i.next());
}

If the families AngsanaNew and Garamond are present, you can get them
by name:

/* chapter09/FontFactoryExample2.java */
fonts[5] = FontFactory.getFont("angsana new", BaseFont.CP1252,
 BaseFont.EMBEDDED, 14);
fonts[6] = FontFactory.getFont("garamond", BaseFont.CP1252,
 BaseFont.EMBEDDED, 10, Font.ITALIC);
fonts[7] = FontFactory.getFont(
 "garamond bold", BaseFont.CP1252, BaseFont.EMBEDDED, 10,
 Font.UNDEFINED, new CMYKColor(0, 255, 0, 64));

This is a convenient way to get a Font object, but what if you want to write sen-
tences that need glyphs from different Font objects? You need to get all the
different font objects, use them to create Chunk and Phrase objects, and con-
catenate everything into a Paragraph. That’s quite a bit of work. Can’t iText do
this for us?

9.4.2 Automatic font selection
When I started to work at Ghent University, I had to produce lots of documents
with the names of dissertation subjects chosen by the students. The thesis titles
from students in the Department of Sciences, in particular, contained many
Greek symbols that are used in mathematical formulas.

Automatic selection of Greek symbols
Figure 9.12 shows a title of a fictional dissertation: What is the a-coefficient of the
b-factor in the g-equation?
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automating font creation and selection 277
One way to produce this title would be to create Chunk objects with “What is the”,
“-coefficient of the”, “-factor in the”, and “-equation” in the font Helvetica; and
Chunks with the Symbol glyphs a, b, and g. Then you would have to concatenate
everything in the right order to get the final Phrase. But I was kind of lazy. I
wanted iText to recognize a range of symbols, so I wrote the class SpecialSymbol.
This class knows how to change characters with values 913 to 969 into the corre-
sponding Greek symbols. Maybe you’ve already used these numbers when writing
an HTML page. If you want to add an a symbol in a web page, you can do so by
inserting the entity α.

 This class SpecialSymbol is used in a special static method of Phrase. You can
use it to produce the title shown in figure 9.12 in a more user-friendly way:

/* chapter09/SymbolSubstitution.java */
String text = "What is the " + (char) 945 + "-coefficient of the "
 + (char) 946 + "-factor in the " + (char) 947 + "-equation?";
document.add(Phrase.getInstance(text));

In figure 9.12, you can look up the symbols and their corresponding numbers.
This feature isn’t useful in a broader context, but maybe it inspired Paulo Soares
to write the class FontSelector.

Automatic selection of glyphs
Imagine that you need to write some text in Times-Roman, but the text contains
lots of Chinese glyphs. You’ll have the same problem I had with the Greek sym-
bols in the mathematical formulas.

 Figure 9.13 lists the names of the protagonists in the movie Hero by
Zhang Yimou. Again, it would be possible to construct the complete sen-
tence using separate Chunks or Phrases, with the English text in Times-Roman
and the Chinese names in a traditional Chinese font. But there’s an easier
way; you can use the FontSelector class to do this work for you:

Figure 9.12 Automatic symbol substitution
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

278 CHAPTER 9
Using fonts
/* chapter09/FontSelectionExample.java */
String text = "These are the protagonists in 'Hero', "
 + "a movie by Zhang Yimou:\n"
 + "\u7121\u540d (Nameless), \u6b98\u528d (Broken Sword), "
 + "\u98db\u96ea (Flying Snow), \u5982\u6708 (Moon), "
 + "\u79e6\u738b (the King), and \u9577\u7a7a (Sky).";
FontSelector selector = new FontSelector();
selector.addFont(
 FontFactory.getFont(FontFactory.TIMES_ROMAN, 12));
selector.addFont(
 FontFactory.getFont("MSung-Light", "UniCNS-UCS2-H",
 BaseFont.NOT_EMBEDDED));
Phrase ph = selector.process(text);
document.add(new Paragraph(ph));

What happens in this code sample? You have a String containing characters
referring to glyphs from the Latin alphabet as well as to Chinese glyphs. You pass
this String to a FontSelector object, and iText looks at the String character per
character. If the glyph corresponding with the character is available in the stand-
ard Type 1 font Times-Roman (the first font added to the selector object), it’s
added as a Chunk with the font Times-Roman. It the character isn’t available, the
selector object looks it up in the next font that was registered (in this case, MSung-
Light), and so on.

 The only thing you have to be careful about is the order you use to add the
fonts. If you switch the order of both fonts, there will be a clear difference (com-
pare figures 9.13 and 9.14). Because the Latin characters are also available in the
Chinese font, Times-Roman wasn’t used.

Figure 9.13 Automatic font selection

Create
FontSelector
object

Add fonts to
FontSelector

Process String
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Sending a message of peace (part 2) 279
Now that she knows about FontFactory and FontSelector, Laura can write some
code to produce a PdfPTable showing the translation of the word peace in hun-
dreds of languages.

9.5 Sending a message of peace (part 2)

You know that an OpenType font can contain 65,536 characters, but no font
can contain all the glyphs that are in the Unicode standard. You’ll need more
than one font file to finish Laura’s assignment: writing the word peace in differ-
ent languages.

 As a primary font, you’ll use arialuni.ttf. Next, you’ll add the free font Aborig-
inal Serif (© Chris Harvey) that is distributed on the Language Geek site.1 It con-
tains, among others, the glyphs for the Inuktitut language. Finally, you’ll add the
public-domain font Damase and the free font Fixedsys Excelsior. But this won’t be
enough to render each character in the data source. Also remember that the word
peace in Thai (pronounced “santipap”) won’t be rendered correctly due to the dia-
critics. Nor will the word nti in Hindi, because of the ligatures.

 Just as with the “Say Peace” message, I parsed the web page made by Frank
Da Cruz and put all the translations in an XML file (see figure 9.15). I put the
translations inside a pace tag (pace is Latin for peace). The name of each lan-
guage and the countries where the language is spoken are added as attributes
of the tag. Languages that are written from right to left get the attribute
direction="RTL".

 There are some languages for which the composers of the list don’t know
the translation yet. In that case, a question mark was added (for instance,

Figure 9.14 Automatic font selection

1 www.languagegeek.com

sa´
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

280 CHAPTER 9
Using fonts
for the Caucasian language Abkhaz). The fonts I listed don’t contain every
glyph you need; that’s why you’ll see a gap in the PDF here and there.
Figure 9.16 gives you a good idea of the resulting PDF.

 The XML file in figure 9.15 doesn’t exactly look like a tabular structure,
but that doesn’t mean you can’t parse the XML into a PdfPTable object. Notice
that you need a PdfPTable because PdfPCell allows RTL text; the other table
objects don’t.

 When creating the Peace object, you add the fonts you want to use to the Font-
Selector and construct a PdfPTable object with three columns:

Figure 9.15 The XML source of the translations of the word peace

Figure 9.16 The word peace in different languages
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Sending a message of peace (part 2) 281
/* chapter09/Peace.java */
public Peace() {
 fs = new FontSelector();
 fs.addFont(FontFactory.getFont("c:/windows/fonts/arialuni.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED));
 fs.addFont(FontFactory.getFont("../resources/abserif4_5.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED));
 fs.addFont(FontFactory.getFont("../resources/damase.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED));
 fs.addFont(FontFactory.getFont("../resources/fsex2p00_public.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED));
 table = new PdfPTable(3);
 table.getDefaultCell().setPadding(3);
 table.getDefaultCell().setUseAscender(true);
 table.getDefaultCell().setUseDescender(true);
}

While parsing the XML, you keep track of the properties of each tag in the start-
Element() method:

/* chapter09/Peace.java */
public void startElement(
 String uri, String localName, String qName, Attributes attributes)
 throws SAXException {
 if ("pace".equals(qName)) {
 buf = new StringBuffer();
 language = attributes.getValue("language");
 countries = attributes.getValue("countries");
 if ("RTL".equals(attributes.getValue("direction"))) {
 rtl = true;
 }
 else {
 rtl = false;
 }
 }
}

Every time you encounter a starting tag B, you store the name of the language
C, the countries where it’s spoken D, and whether the word peace should be writ-
ten from right to left E.

 When you encounter an ending tag, you add three cells to the table. Note that
you read the word peace into a StringBuffer object buf in the characters()
method of the SAX handler:

/* chapter09/Peace.java */
public void endElement(String uri, String localName, String qName)
 throws SAXException {
 if ("pace".equals(qName)) {
 PdfPCell cell = new PdfPCell();
 cell.addElement(fs.process(buf.toString()));

 b

 C
 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

282 CHAPTER 9
Using fonts
 cell.setPadding(3);
 cell.setUseAscender(true);
 cell.setUseDescender(true);
 if (rtl) {
 cell.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
 }
 table.addCell(language);
 table.addCell(cell);
 table.addCell(countries);
 }
}

Laura is happy with the result. Perhaps this example will also be useful for you if
you need to prove that iText is capable of rendering text in different languages. It
also demonstrates the limits of the library: For instance, Indic languages aren’t
rendered the way they should be because there is no Indic ligaturizer as there is
for Arabic languages.

9.6 Summary

In the previous chapter, the emphasis was on the different font types. This chap-
ter showed “fonts in action” (wouldn’t that be a great title for a book?) in an inter-
national context.

 You can use a plethora of fonts and font types in combination with the basic
building blocks discussed in part 2. In chapter 11, you’ll see how to use class
BaseFont to write text to the direct content. In chapter 12, you’ll even learn a way
to work around the Indic ligatures problem.

 The next chapter will focus on graphics. You’ll learn all about the methods
you’ve already experimented with when creating a Type 3 font.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Constructing and
painting paths
This chapter covers
■ PDF’s graphics state
■ iText’s direct content
■ PDF’s Coordinate System
283

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

284 CHAPTER 10
Constructing and painting paths
This chapter will discuss the graphics state of a PDF page. This is a data structure
that describes the appearance of a page using PDF operators and operands. This
is the short explanation; the PDF Reference spends almost 300 pages on graphics
and text, so you’ll understand this definition is incomplete.

 I have selected the most important issues, and I’ll explain them from the point
of view of the iText developer in the next three chapters. You’ll learn how to draw
lines and shapes, and you’ll use this newly acquired knowledge in combination
with class PdfPTable (see chapter 6) to draw custom cell borders and back-
grounds. We’ll talk about graphics state operators, for instance, to change the line
style. One of the most important sections in this chapter will deal with the coor-
dinate system in PDF.

 After reading this chapter, you’ll be able to help Laura draw a map of the city
of Foobar. The first thing you need to know is how to draw lines and shapes; in
PDF terminology this is called constructing and painting paths.

10.1 Path construction and painting operators

In chapter 7, you used the PdfContentByte class to draw a horizontal line at spe-
cific Y positions. You created an instance of this object by asking the writer object
for its direct content (as opposed to content that was added using high-level
objects). You drew lines without knowing much about the background of the iText
methods you were using or the corresponding PDF operators. You’ve been pass-
ing coordinates as parameters (iText) or operands (PDF), but you don’t know
much about the coordinate system yet.

 Remember from chapter 2 that the width of an A4 page is 595 units; the
height is 842 units. On a side note, I already mentioned that the origin of the
coordinate system (x = 0, y = 0) is the lower-left corner of the page. This means
that the coordinate of the upper-right corner is (x = 595, y = 842). You’ll learn
how to change the origin, the orientation of the x- and the y-axis, and the length
of the units along each axis in section 10.4.

 For now, you’ll work in the default coordinate system, and you’ll construct
some paths.

10.1.1 Seven path construction operators

In PDF, there are seven path construction operators. Table 10.1 lists the opera-
tors, their operands, and their corresponding method in iText (see also Table 4.9
in the PDF Reference).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Path construction and painting operators 285
The following code snippet constructs the path of a rectangle twice:

■ Once using a sequence of moveTo and lineTo operators
■ Once using a single rectangle operator

/* chapter10/InvisibleRectangles.java */
PdfContentByte cb = writer.getDirectContent();
cb.moveTo(30, 700);
cb.lineTo(490, 700);
cb.lineTo(490, 800);
cb.lineTo(30, 800);
cb.closePath();
cb.rectangle(30, 700, 460, 100);

Table 10.1 PDF path construction operators and operands

Operator iText method Operands / parameters Description

m moveTo (x, y) Moves the current point to coordinates
(x, y), omitting any connecting line seg-
ment. This begins a new (sub)path.

l lineTo (x, y) Moves the current point to coordinates
(x, y), appending a line segment from the
previous to the new current point.

c curveTo (x1, y1, x2, y2, x3, y3) Moves the current point to coordinates
(x3, y3), appending a cubic Bézier curve
from the previous to the new current
point, using (x1, y1) and (x2, y2) as Bézier
control points.

v curveTo (x2, y2, x3, y3) Moves the current point to coordinates
(x3, y3), appending a cubic Bézier curve
from the previous to the new current
point, using the previous current point and
(x2, y2) as Bézier control points.

y curveFromTo (x1, y1, x3, y3) Moves the current point to coordinates
(x3, y3), appending a cubic Bézier curve
using (x1, y1) and (x3, y3) as control points.

h closePath () Closes the current subpath by appending
a straight line segment from the current
point to the starting point of the subpath.

re Rectangle (x, y, width, height) Appends a rectangle to the current
path as a complete subpath. (x, y) is the
lower-left corner; width and height
define the dimensions of the rectangle.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

286 CHAPTER 10
Constructing and painting paths
If you open the resulting PDF file in a text editor, you immediately see that
something went wrong. The complete example code adds a paragraph of text in
a document.add() statement. This paragraph is rendered on the page. Unfortu-
nately, you don’t see a rectangle anywhere on the page.

 For debugging purposes, you set the Document member variable public static
compress to false. When you read chapter 18, “Under the hood,” you’ll learn about
the content stream of a page in a PDF file. In most PDF files, this stream is com-
pressed; but if you tell iText not to compress these streams, you can inspect the
PDF syntax in a text editor. In this case, you’ll see that the iText path-construction
methods were invoked correctly, and you’ll find this snippet of PDF syntax in the
content stream (this example has only one content stream, so it’s easy to find):

30 700 m
490 700 l
490 800 l
30 800 l
h
30 700 460 100 re

You’ve made an error that almost every iText newbie has made before: You’ve
constructed paths, and these constructions are added to the content stream of
the page, but you’ve forgotten to paint the path. Before you try the other path-
construction operators, let’s look at the path-painting operators.

10.1.2 Path-painting operators

There are 10 path-painting operators; they don’t have any operands. Table 10.2
is based on table 4.10 in the PDF Reference. Again I added a column with the cor-
responding iText method.

moveTo, lineTo, and
closePath

Single rectangle operator

Table 10.2 PDF path-painting operators

Operator iText method Description

S stroke() Stroke the path (lines only; the shape isn’t filled).

s closePathStroke() Close and stroke the path. This is the same as doing
closePath() followed by stroke().

f fill() Fill the path (using the nonzero winding number rule).
Open subpaths are closed implicitly.

continued on next page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Path construction and painting operators 287
I have introduced a lot of new information in table 10.1 and 10.2; paths that are
shaped as Bézier curves and/or filled using the nonzero winding number or the
even-odd rule—this all needs further explaining, but let me jump ahead and
introduce two graphics state operators that will make the examples much easier
to understand: setColorStroke() and setColorFill().

Stroking versus filling
When you’ve constructed a path using the methods described in table 10.1, you
can stroke those paths. Stroking a path means you’re going to draw the line seg-
ments of the subpaths. The color used by default is black. You can change this
color with a number of methods, setColorStroke() being one of them. In PDF, we
talk about graphics state operators.

 You can also fill the subpaths. Again, the default color is black. In the next
example, you’ll change this default with the method setColorFill(). We’ll dis-
cuss the different color classes in the next chapter, but for the moment you’ll use
the GrayColor class. Figure 10.1 shows different squares of which the borders were
(or weren’t) stroked in dark gray (value 0.2) and the shape was (or wasn’t) filled
with light gray (value 0.9). You can clearly see the difference of the effect using
five different path-painting operators.

F - Deprecated! Equivalent to f; included only for compatibil-
ity. The PDF Reference says that PDF producer applica-
tions should use f; so there’s no method to add F in iText.

f* eoFill() Fill the path (using the even-odd rule).

B fillStroke() Fill the path using the nonzero winding number rule, and
then stroke the path (equivalent to the operator f followed
by the operator S).

B* eoFillStroke() Fill the path using the even-odd rule, and then stroke
the path (equivalent to the operator f* followed by the
operator S).

b closePathFillStroke() Close, fill, and stroke the path, as is done with the
operator h followed by B.

b* closePathEoFillStroke() Close, fill, and stroke the path, as is done with the
operator h followed by B*.

n newPath() End the path object without filling or stroking it.

Table 10.2 PDF path-painting operators (continued)

Operator iText method Description
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

288 CHAPTER 10
Constructing and painting paths
Let’s look at the source code:

/* chapter10/ConstructingPaths1.java */
PdfContentByte cb = writer.getDirectContent();
cb.setColorStroke(new GrayColor(0.2f));
cb.setColorFill(new GrayColor(0.9f));
cb.moveTo(30, 700);
cb.lineTo(130, 700);
cb.lineTo(130, 800);
cb.lineTo(30, 800);
cb.stroke();
cb.moveTo(140, 700);
cb.lineTo(240, 700);
cb.lineTo(240, 800);
cb.lineTo(140, 800);
cb.closePathStroke();
cb.moveTo(250, 700);
cb.lineTo(350, 700);
cb.lineTo(350, 800);
cb.lineTo(250, 800);
cb.fill();
cb.moveTo(360, 700);
cb.lineTo(460, 700);
cb.lineTo(460, 800);
cb.lineTo(360, 800);
cb.fillStroke();
cb.moveTo(470, 700);
cb.lineTo(570, 700);
cb.lineTo(570, 800);
cb.lineTo(470, 800);
cb.closePathFillStroke();

You construct five paths using one moveTo() and three lineTo() statements; you
render these paths in five different ways (see figure 10.1). By default, shapes are

Figure 10.1 Painting and filling paths

Draw first (incomplete) square

Draw second square (not filled)

Draw third square (filled, no border)

Draw fourth square (incomplete border)

Draw fifth square (body and border)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Path construction and painting operators 289
filled using the nonzero winding number rule. To understand the difference from
the even-odd rule, you need to construct more complex shapes.

Nonzero winding number vs. even-odd rule
Look at figure 10.2. First, I constructed five stars, but you only see four of them
because I invoked newPath() after the third star. (This star isn’t painted.) Then, I
drew a series of concentric circles that are constructed and/or rendered in differ-
ent ways.

To know what happened, you need to look at the source code. The example con-
tains two convenience methods: one that draws a star, and one that draws a circle.
The code to draw the star is straightforward.

/* chapter10/ConstructingPaths2.java */
public static void
 constructStar(PdfContentByte cb, float x, float y) {
 cb.moveTo(x + 10, y);
 cb.lineTo(x + 80, y + 60);
 cb.lineTo(x, y + 60);
 cb.lineTo(x + 70, y);
 cb.lineTo(x + 40, y + 90);
 cb.closePath();
}

The code to draw a circle uses the curveTo() method to draw four segments of a
circle. You have the option to draw the circle clockwise or counterclockwise:

Figure 10.2 Illustrating the nonzero winding number rule versus the even-odd rule
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

290 CHAPTER 10
Constructing and painting paths
/* chapter10/ConstructingPaths2.java */
public static void constructCircle(PdfContentByte cb,
 float x, float y, float r, boolean clockwise) {
 float b = 0.5523f;
 if (clockwise) {
 cb.moveTo(x + r, y);
 cb.curveTo(x + r, y - r * b, x + r * b, y - r, x, y - r);
 cb.curveTo(x - r * b, y - r, x - r, y - r * b, x - r, y);
 cb.curveTo(x - r, y + r * b, x - r * b, y + r, x, y + r);
 cb.curveTo(x + r * b, y + r, x + r, y + r * b, x + r, y);
 }
 else {
 cb.moveTo(x + r, y);
 cb.curveTo(x + r, y + r * b, x + r * b, y + r, x, y + r);
 cb.curveTo(x - r * b, y + r, x - r, y + r * b, x - r, y);
 cb.curveTo(x - r, y - r * b, x - r * b, y - r, x, y - r);
 cb.curveTo(x + r * b, y - r, x + r, y - r * b, x + r, y);
 }
}

We’ll go into the details of the curveTo() methods and Bézier curves soon, but
first let’s focus on the difference between the nonzero winding number and the
even-odd rule. This code snippet constructs the stars and circles in figure 10.2:

/* chapter10/ConstructingPaths2.java */
PdfContentByte cb = writer.getDirectContent();
cb.setColorStroke(new GrayColor(0.2f));
cb.setColorFill(new GrayColor(0.9f));
constructStar(cb, 30, 720);
constructCircle(cb, 70, 650, 40, true);
constructCircle(cb, 70, 650, 20, true);
cb.fill();
constructStar(cb, 120, 720);
constructCircle(cb, 160, 650, 40, true);
constructCircle(cb, 160, 650, 20, true);
cb.eoFill();
constructStar(cb, 250, 650);
cb.newPath();
constructCircle(cb, 250, 650, 40, true);
constructCircle(cb, 250, 650, 20, true);
constructStar(cb, 300, 720);
constructCircle(cb, 340, 650, 40, true);
constructCircle(cb, 340, 650, 20, false);
cb.fillStroke();
constructStar(cb, 390, 720);
constructCircle(cb, 430, 650, 40, true);
constructCircle(cb, 430, 650, 20, true);
cb.eoFillStroke();

These paths are filled in five different ways. The star and circles are filled
using the nonzero winding number rule B. The inner circle overlaps the outer

 b

 C

 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Path construction and painting operators 291
circle, but it has the same color; you can’t distinguish the inner circle from the
outer one.

 The star and circle are filled using the even-odd rule C. The middle part of
the star isn’t filled; nor is the inner circle.

 Now, you start a new path after drawing the star; the star isn’t rendered D. You
stroke the star and circles and fill them using the nonzero winding number rule
E. Note the difference between the third and fourth concentric circles. In the
third column, the subpaths of the concentric circles are constructed clockwise. In
the fourth column, the subpath of the outer circle is constructed clockwise and
the subpath of the inner circle counterclockwise. Then, you stroke the star and
circles F and fill them using the even-odd rule. You’ll find the definitions of the
nonzero winding number rule and the even-odd rule in the PDF reference,1 but I
hope figure 10.2 gives you a good idea.

 Bézier curves2 are used to draw the circles.

Bézier curves
Bézier curves are parametric curves developed in 1959 by Paul de Casteljau (using
de Casteljau’s algorithm). They were widely publicized in 1962 by Paul Bézier,
who used them to design automobile bodies. Nowadays they’re important in com-
puter graphics.

 Cubic Bézier curves are defined by four points: the two endpoints—the current
point and point (x3, y3)—and two control points, (x1, y1) and (x2, y2). The curve
starts at the first endpoint going toward the first control point, and it arrives at
the second endpoint coming from the second control point. In general, the curve
doesn’t pass through the control points; they’re only there to provide directional
information. The distance between an endpoint and its corresponding control
point determines how long the curve moves toward the control point before turn-
ing toward the other endpoint.

 But why write these difficult definitions if I can generate examples that
illustrate what all this means? In figure 10.3, the three curve methods listed in
table 10.1 are demonstrated.

 The extra lines in figure 10.3 connect the endpoints with the corresponding
control points. Here’s the code that generates the curves in the figure:

1 PDF Reference 1.6 (5th ed) section 4.4.2 and figure 4.10 (pages 202–203)
2 PDF Reference 1.6 (5th ed) section 4.4.1 and figure 4.8 and 4.9 (pages 197–199)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

292 CHAPTER 10
Constructing and painting paths
/* chapter10/ConstructingPaths3.java */
PdfContentByte cb = writer.getDirectContent();
float x0, y0, x1, y1, x2, y2, x3, y3;
x0 = 30; y0 = 720;
x1 = 40; y1 = 790;
x2 = 100; y2 = 810;
x3 = 120; y3 = 750;
cb.moveTo(x0, y0);
cb.lineTo(x1, y1);
cb.moveTo(x2, y2);
cb.lineTo(x3, y3);
cb.moveTo(x0, y0);
cb.curveTo(x1, y1, x2, y2, x3, y3);
x0 = 180; y0 = 720;
x2 = 250; y2 = 810;
x3 = 270; y3 = 750;
cb.moveTo(x2, y2);
cb.lineTo(x3, y3);
cb.moveTo(x0, y0);
cb.curveTo(x2, y2, x3, y3);
x0 = 330; y0 = 720;
x1 = 340; y1 = 790;
x3 = 420; y3 = 750;
cb.moveTo(x0, y0);
cb.lineTo(x1, y1);
cb.moveTo(x0, y0);
cb.curveTo(x1, y1, x3, y3);
cb.stroke();

In the second example, the endpoint to the left coincides with the first control
point C; the same goes for the endpoint to the right in the third example D. You
could draw these curves using one curveTo() method with six parameters b, the
coordinates of the control points and the coordinates of one endpoint; the cur-
rent point would then act as the other endpoint. But in accordance with the oper-
ators included in the PDF Reference, two extra methods are provided.

Figure 10.3
Bézier curves

 b

 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Path construction and painting operators 293
 The code to draw a circle in the previous example looked complex, but you
don’t need to worry about that: iText comes with convenience methods that make
it easy to draw custom shapes. Behind the scenes, Bézier curves are used.

Convenience methods to draw shapes
PdfContentByte has different methods that make it easier for you to draw circles,
ellipses, arcs, rectangles, and combinations of these shapes. Figure 10.4 shows
these methods in action.

The shapes in the first row and the first shape in the second row were constructed
using only one line of code:

/* chapter10/ConstructingPaths4.java */
PdfContentByte cb = writer.getDirectContent();
cb.setColorStroke(new GrayColor(0.2f));
cb.setColorFill(new GrayColor(0.9f));
cb.circle(70, 770, 40);
cb.ellipse(120, 730, 240, 810);
cb.arc(250, 730, 370, 810, 45, 270);
cb.roundRectangle(30, 620, 80, 100, 20);
cb.fillStroke();

The centre of the first circle is (70, 770); its radius is 40 user units b. The ellipse
next to the circle fits into the rectangle with lower-left corner (120, 730) and
upper-right corner (240, 810) C. Note that if you define a square instead of a rect-
angle, the ellipse will be a circle. The ellipse on the right fits inside the rectangle
(250, 730) and (370, 810); but only 270 degrees of the ellipse are drawn, starting

Figure 10.4
Circles, ellipses, arcs,
and rectangles

 b
 C

 D
 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

294 CHAPTER 10
Constructing and painting paths
at 45 degrees D. In the next row, you see a rectangle with rounded corners. The
lower-left corner is (30, 620); the width is 80, the height is 100 user units; the
radius of the circle segments in the corners is 20 user units E. These four shapes
are constructed using moveTo(), lineTo(), and/or curveTo() methods internally.
The convenience methods don’t stroke or fill the path.

 The two rectangles with the thick borders are constructed with the Rectangle
object and added with a method that not only constructs the path, but also strokes
and fills it:

/* chapter10/ConstructingPaths4.java */
Rectangle rect;
rect = new Rectangle(120, 620, 240, 720);
rect.setBorder(Rectangle.BOX);
rect.setBorderWidth(5);
rect.setBorderColor(new GrayColor(0.2f));
rect.setBackgroundColor(new GrayColor(0.9f));
cb.rectangle(rect);
rect = new Rectangle(250, 620, 370, 720);
rect.setBorder(Rectangle.BOX);
rect.setBorderWidthTop(15);
rect.setBorderWidthBottom(1);
rect.setBorderWidthLeft(5);
rect.setBorderWidthRight(10);
rect.setBorderColorTop(new GrayColor(0.2f));
rect.setBorderColorBottom(new Color(0xFF, 0x00, 0x00));
rect.setBorderColorLeft(new Color(0xFF, 0xFF, 0x00));
rect.setBorderColorRight(new Color(0x00, 0x00, 0xFF));
rect.setBackgroundColor(new GrayColor(0.9f));
cb.rectangle(rect);
cb.variableRectangle(rect);

Before we move on to the graphics state operators, let’s look at some practi-
cal examples.

10.2 Working with iText’s direct content

Originally, the methods of PdfContentByte were designed for internal use by
iText only—for instance, to draw the borders of a PdfPTable. Later, the class and
most of its methods were made public because they can be used to customize
iText’s functionality—for instance, to create PdfPCell objects with rounded bor-
ders. When we discussed the (Multi)ColumnText object, we used some of the
methods to draw extra shapes in the examples with irregular columns. Let’s add
more examples.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Working with iText’s direct content 295
 First we’ll look at content layers in general; then, you’ll discover interest-
ing table functionality that allows you to draw custom cell and table borders
and backgrounds.

10.2.1 Direct content layers

When you add basic building blocks to a document (also referred to as adding
high-level content), two PdfContentByte objects are created: one with text (the con-
tent of chunks, phrases, paragraphs, and so on) and another one with graphics
(the background of a chunk, the borders of a cell, images, and so forth). When a
page is full, iText draws these layers on top of each other: first the graphics layer,
and then the text layer (otherwise, the background of a chunk or cell would cover
the text). You can’t manipulate these two PdfGraphics objects directly; they’re
managed by iText internally.

 There are two extra layers that you can use directly: one that goes on top of the
high-level text and graphics layers, and one that goes under them. In iText ter-
minology, this is called direct content; figure 10.5 shows how it works. The Para-
graph quick brown fox jumps over the lazy dog was added in the text layer. The gray
background of the jumps Chunk was added in the graphics layer. But extra shapes
were added above and below these two layers.

 In the source code, the first two shapes are inserted before adding the para-
graphs; the next two shapes are added after the paragraphs and chunks:

Figure 10.5
Direct content under and
above the high-level layers
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

296 CHAPTER 10
Constructing and painting paths
/* chapter10/DirectContent.java */
PdfContentByte over = writer.getDirectContent();
PdfContentByte under = writer.getDirectContentUnder();
drawLayer(over, 70, 750, 150, 100);
drawLayer(under, 70, 730, 150, 100);
Paragraph p = new Paragraph("quick brown fox ");
Chunk c = new Chunk("jumps");
c.setBackground(new GrayColor(0.5f));
p.add(c);
p.add(" over the lazy dog");
for (int i = 0; i < 10; i++) {
 document.add(p);
}
drawLayer(over, 70, 670, 150, 100);
drawLayer(under, 70, 650, 150, 100);

If you compare the code with figure 10.5, you see that the shapes written to the
PdfContentByte object obtained with the method getDirectContent() b cover
the other content D, even the shape you draw before adding anything else. When
you use the method getDirectContentUnder() C, you can add shapes that go
under the rest of the content E.

NOTE You saw similar functionality before when we talked about PdfStamper in
chapter 2. With PdfStamper, you use the methods getOverContent()
and getUnderContent() to write on top of or under existing content.
The existing content is seen as one layer.

In chapter 14, you’ll use getUnderContent() to add watermarks. You can use get-
OverContent() to cover parts of the document. In the next section, you’ll use four
layers to customize tables.

10.2.2 PdfPTable and PdfPCell events
In chapter 6, you drew tables and cells with all kinds of borders. But suppose you
want to define custom borders and backgrounds for each cell. In this case, it
would be handy to grab the direct content and draw paths based on the coordi-
nates of the cell.

Implementing PdfPCellEvent
Figure 10.6 shows a simple sheet with a table that has cells with rounded borders.
This could be an insert for a pharmaceutical product. It shows a period of 30
days: You need to remember to do something every 4 days (the days marked with
a red ellipse), and you must avoid something every 3 days (these cells stricken
through in blue).

 b
 C

 D
 E

 D
 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Working with iText’s direct content 297
The text in this table (day 1, day 2, and so on) is added using methods already dis-
cussed in chapter 6, but the lines and shapes are drawn in a cell event. The exam-
ple uses three inner classes implementing the PdfPCellEvent interface:

/* chapter10/PdfPTableCellEvents.java */
class RoundRectangle implements PdfPCellEvent {
 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb = canvas[PdfPTable.LINECANVAS];
 cb.setColorStroke(new GrayColor(0.8f));
 cb.roundRectangle(rect.left() + 4, rect.bottom(),
 rect.width() - 8, rect.height() - 4, 4);
 cb.stroke();
 }
}
class Ellipse implements PdfPCellEvent {
 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb = canvas[PdfPTable.BACKGROUNDCANVAS];
 cb.setRGBColorFill(0xFF, 0x00, 0x00);
 cb.ellipse(rect.left(), rect.bottom(),
 rect.right(), rect.top());
 cb.fill();
 cb.resetRGBColorFill();
 }
}
class Strike implements PdfPCellEvent {
 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb = canvas[PdfPTable.TEXTCANVAS];
 cb.setRGBColorStroke(0x00, 0x00, 0xFF);
 cb.moveTo(rect.left(), rect.bottom());
 cb.lineTo(rect.right(), rect.top());
 cb.stroke();
 cb.resetRGBColorStroke();
 }
}

Figure 10.6
Custom PdfPCell
behavior

Draw borders with
rounded corners

Draw red
ellipse

Draw blue
diagonal
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

298 CHAPTER 10
Constructing and painting paths
The rectangle that is passed to the event holds the coordinates of the cell. As you
can see in the examples, you use these coordinates to construct your paths—for
instance, to draw an ellipse that fits inside the cell.

 The canvas array needs more explanation. This array holds four PdfContent-
Byte objects:

■ PdfPTable.BASECANVAS—The original PdfContentByte. Anything placed
here is under the surface (under the background) of the cell.

■ PdfPTable.BACKGROUNDCANVAS—The layer where the background goes (for
instance, if you define a background color at the cell level).

■ PdfPTable.LINECANVAS—The layer where the (border) lines go. Content
added to this layer is under the text.

■ PdfPTable.TEXTCANVAS—The layer where the text goes. Anything placed
here covers the cell content.

As you can see in figure 10.6, the ellipse is drawn under all the other content
(BACKGROUNDCANVAS); the borders cover the ellipse (LINECANVAS). The blue line that
strikes through the cell covers the text (TEXTCANVAS).

NOTE The PdfPCell object passed to the cellLayout() method should be
considered ReadOnly. At the moment the method cellLayout() is trig-
gered, the cell has already been rendered, so don’t perform actions on it
such as setBackgroundColor(). They won’t have any effect. The cell is
passed to the event to allow the retrieval of properties such as padding,
dimensions, and so on.

Now that you’ve defined the events, you can add them to a PdfPCell:

/* chapter10/PdfPTableCellEvents.java */
PdfPTableCellEvents example = new PdfPTableCellEvents();
RoundRectangle border = example.new RoundRectangle();
Ellipse ellipse = example.new Ellipse();
Strike strike = example.new Strike();
PdfPTable table = new PdfPTable(6);
PdfPCell cell;
for (int i = 1; i <= 30; i++) {
 cell = new PdfPCell(new Phrase("day " + i));
 cell.setHorizontalAlignment(Element.ALIGN_CENTER);
 cell.setBorder(Rectangle.NO_BORDER);
 cell.setPadding(4);
 cell.setCellEvent(border);
 if (i % 3 == 0) cell.setCellEvent(strike);
 if (i % 4 == 0) cell.setCellEvent(ellipse);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Working with iText’s direct content 299
 table.addCell(cell);
}
document.add(table);

You set the border of the PdfPCell to NO_BORDER. Otherwise, each cell would have
two borders: one drawn by the high-level object, and the other drawn in your cus-
tom cell event.

 Cell events are practical, but you can work with only one cell at a time. If
you want to construct paths that affect all cells, you can implement the Pdf-
PTableEvent class.

Implementing PdfPTableEvent
The PdfPTableEvent interface has a tableLayout() method. It allows you to con-
struct paths based on the coordinates of multiple cells. For instance, you can draw
a rectangle around all the header cells, as is done in figure 10.7.

This tableLayout() method is more complex than the cellLayout() method.
Let’s split the body of the implementation that was used to produce the PDF
shown in figure 10.7 into different parts.

/* chapter06/PdfPTableEvents.java */
public void tableLayout(PdfPTable table, float[][] width,
 float[] height, int headerRows, int rowStart,
 PdfContentByte[] canvas) {
 float widths[] = width[0];
 PdfContentByte cb = canvas[PdfPTable.TEXTCANVAS];
 cb.saveState();
 cb.setLineWidth(2);
 cb.setRGBColorStroke(255, 0, 0);
 cb.rectangle(widths[0],
 height[height.length - 1],

Figure 10.7
Implementing
PdfPTableEvent

Get widths array
of first row

Left X
coordinate Bottom Y

coordinate
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

300 CHAPTER 10
Constructing and painting paths
 widths[widths.length - 1] - widths[0],
 height[0] - height[height.length - 1]);
 cb.stroke();

The table that is passed is the PdfPTable to which the event was added (use it as
if it was read-only). The canvas parameter contains the four PdfContentByte
objects as described when we discussed cell events. The parameter width is a
two-dimensional array, containing the positions of all the borders of every row in
the table. In the code fragment, you get the widths of the first row and use this
array to get the left and right X coordinate of the table. The parameter height
contains the heights of all the rows. You use this array to get the top and bottom
Y coordinate of the table. With these coordinates, you draw a rectangle around
the complete table.

 The example continues by adding an extra border around the header rows.
The code is similar, but now the bottom of the rectangle is the height of the last
header row:

/* chapter06/PdfPTableEvents.java */
if (headerRows > 0) {
 cb.setRGBColorStroke(0, 0, 255);
 cb.rectangle(widths[0], height[headerRows],
 widths[widths.length - 1] - widths[0],
 height[0] - height[headerRows]);
 cb.stroke();
}
cb.restoreState();

The rowStart parameter is the same parameter you passed to the writeSelect-
Rows() method in section 6.1.5. It gives you the number of the first row that is
written after the header. It doesn’t have a meaning when you add the table with
document.add(). The example also draws borders with random colors around
each cell and even adds an action (see chapter 13) to one specific cell:

/* chapter06/PdfPTableEvents.java */
cb = canvas[PdfPTable.BASECANVAS];
cb.saveState();
cb.setLineWidth(.5f);
for (int line = 0; line < height.length - 1; ++line) {
 widths = width[line];
 for (int col = 0; col < widths.length - 1; ++col) {
 if (line == 0 && col == 0)
 cb.setAction(new PdfAction(
 "http://www.lowagie.com/iText/"),
 widths[col], height[line + 1],
 widths[col + 1], height[line]);

Table width
Table height

Loop over rows

Loop over columns

Add action to cell
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Working with iText’s direct content 301
 cb.setRGBColorStrokeF((float)Math.random(),
 (float)Math.random(), (float)Math.random());
 cb.moveTo(widths[col], height[line]);
 cb.lineTo(widths[col + 1], height[line]);
 cb.stroke();
 cb.setRGBColorStrokeF((float)Math.random(),
 (float)Math.random(), (float)Math.random());
 cb.moveTo(widths[col], height[line]);
 cb.lineTo(widths[col], height[line + 1]);
 cb.stroke();
 }
}
cb.restoreState();

Cell and table events work for tables that are added with document.add() as well
as with writeSelectedRows():

/* chapter06/PdfPTableEvents.java */
PdfPTable table = new PdfPTable(4);
table.getDefaultCell().setBorder(Rectangle.NO_BORDER);
for (int k = 0; k < 24; ++k) {
 if (k != 0)
 table.addCell(String.valueOf(k));
 else
 table.addCell("This is an URL");
}
PdfPTableEvents event = new PdfPTableEvents();
table.setTableEvent(event);
document.add(table);
table.setTotalWidth(300);
table.writeSelectedRows(0, -1, 100, 600,
 writer.getDirectContent());

Table events can also deal with tables added with document.add() that are split
over several pages:

/* chapter06/PdfPTableEvents.java */
table = new PdfPTable(4);
table.getDefaultCell().setBorder(Rectangle.NO_BORDER);
for (int k = 0; k < 500 * 4; ++k) {
 if (k == 0) {
 table.getDefaultCell().setColspan(4);
 table.getDefaultCell()
 .setHorizontalAlignment(Element.ALIGN_CENTER);
 table.addCell(new Phrase("This is an URL"));
 table.getDefaultCell().setColspan(1);
 table.getDefaultCell()
 .setHorizontalAlignment(Element.ALIGN_LEFT);
 k += 3;
 }
 else

Draw horizontal border

Draw vertical border
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

302 CHAPTER 10
Constructing and painting paths
 table.addCell(new Phrase(String.valueOf(k)));
}
table.setTableEvent(event);
table.setHeaderRows(3);
document.add(table);

As you can see, you set the colspan of the first cell to 4. This way, the array
width[0] contains only two values: the left and the right border of the table. You
also define the header rows to demonstrate that the event that adds an extra bor-
der around the header really works.

 Notice that instead of putting all these events in one event class, you could
use separate PdfPTable implementation classes as you did in the PdfPCell-
Event example.

Combining table and cell events
In a final example, you’ll combine table and cell events to put a border around
the table and simulate the HTML table attribute cellspacing (complementary
to cellpadding), which defines the space between the cells. I won’t repeat the
code to add the table border, only the cellLayout() implementation to draw
the cell border:

/* chapter06/PdfPTableFloatingBoxes.java */
public void cellLayout(
 PdfPCell cell, Rectangle position, PdfContentByte[] canvas) {
 float x1 = position.left() + 2;
 float x2 = position.right() - 2;
 float y1 = position.top() - 2;
 float y2 = position.bottom() + 2;
 PdfContentByte cb = canvas[PdfPTable.LINECANVAS];
 cb.setRGBColorStroke(0xFF, 0x00, 0x00);
 cb.rectangle(x1, y1, x2 - x1, y2 - y1);
 cb.stroke();
 cb.resetRGBColorStroke();
}

Because you want every cell to have such a border, you add the cell event to the
default cell:

/* chapter06/PdfPTableFloatingBoxes.java */
PdfPTable table = new PdfPTable(2);
PdfPTableFloatingBoxes event = new PdfPTableFloatingBoxes();
table.setTableEvent(event);
table.getDefaultCell().setBorder(Rectangle.NO_BORDER);
table.getDefaultCell().setCellEvent(event);
table.getDefaultCell().setPadding(5f);
table.addCell("value");
table.addCell("name");
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Graphics state operators 303
table.addCell(new Paragraph("fox"));
table.addCell(new Paragraph("dog"));
document.add(table);

We have illustrated the theory about path construction and painting operators
with interesting PdfPTable functionality, but we still have a lot of graphics state
theory to deal with. In the last two examples, you used methods to set the color
and the line width. These are graphics state operators.

10.3 Graphics state operators

The graphics state is initialized at the beginning of each page. Inside the page,
the graphics state can be changed and stacked. All parameters, such as current
color (one for filling and one for stroking), current line width, and so on, have
default values. When using iText, you can change most of these defaults with Pdf-
ContentByte methods. Some parameters can only be changed with the PdfGState
object, as you’ll see in the next chapter when we discuss colors and transparency.

 In this section, we’ll discuss how to change colors and line characteristics.

10.3.1 The graphics state stack

The PDF Reference says the following:

[A] well-structured PDF document typically contains many graphical elements
that are essentially independent of each other and sometimes nested to multi-
ple levels. The Graphics State stack allows these elements to make local
changes to the graphics state without disturbing the graphics state of the sur-
rounding environment. The stack is a LIFO (last in, first out) data structure in
which the contents of the graphics state can be saved and later restored.

What does this mean? Let’s look at the cell event you wrote earlier that draws a
red ellipse:

/* chapter10/PdfPTableCellEvents.java */
class Ellipse implements PdfPCellEvent {
 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb = canvas[PdfPTable.BACKGROUNDCANVAS];
 cb.setRGBColorFill(0xFF, 0x00, 0x00);
 cb.ellipse(rect.left(), rect.bottom(),
 rect.right(), rect.top());
 cb.fill();
 cb.resetRGBColorFill();
 }
}

Change current fill color

Construct path

Paint path
Reset color
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

304 CHAPTER 10
Constructing and painting paths
There are different reasons why this code isn’t elegant. When you reset the RGB
color, you set the color to black. This may not be what you want. Maybe the cur-
rent fill color was yellow before you set it to red. If you reset the color, you want it
to be yellow, not black.

 If you’re changing not only the fill color but also the stroke color, the line
width, and so on, you have to reset all these values. You can save a lot of work (and
write less error-prone code) if you do it this way:

PdfContentByte cb = canvas[PdfPTable.BACKGROUNDCANVAS];
cb.saveState();
cb.setRGBColorFill(0xFF, 0x00, 0x00);
cb.ellipse(rect.left(), rect.bottom(), rect.right(), rect.top());
cb.fill();
cb.restoreState();

The method saveState() (corresponding with the PDF operator q) saves the cur-
rent graphics state (for instance, a state with yellow as the fill color). You change
the current fill color to red, do other stuff, and then call restoreState() (corre-
sponding with the PDF operator Q). All the changes you’ve made to the graphics
state after saveState() are then reset to the state before saveState().

 An example should clarify what this means in practice. In figure 10.8, you see
five concentric circles in different colors depending on the color in the current
graphics state.

Figure 10.8
Illustrating the graphics state stack
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Graphics state operators 305
The source code makes clear how the graphics state stack works:

/* chapter10/GraphicsStateStack.java */
PdfContentByte cb = writer.getDirectContent();
cb.circle(260.0f, 500.0f, 250.0f);
cb.fill();
cb.saveState();
cb.setColorFill(Color.yellow);
cb.circle(260.0f, 500.0f, 200.0f);
cb.fill();
cb.saveState();
cb.setColorFill(Color.red);
cb.circle(260.0f, 500.0f, 150.0f);
cb.fill();
cb.restoreState();
cb.circle(260.0f, 500.0f, 100.0f);
cb.fill();
cb.restoreState();
cb.circle(260.0f, 500.0f, 50.0f);
cb.fill();

First you draw a circle in the default fill color (black) b. Before you save the state,
the fill color is black C, but you change it to yellow D. Therefore, the next circle
that is drawn is yellow E. You save the state a second time (this adds another
graphics state to the graphics stack) F, and you change the fill color to red G.
The circle that is drawn in this graphics state is red H. But then you restore the
state I and remove one graphics state from the stack. You return to the graphics
state with fill color yellow. This is why the fourth circle is yellow J. Finally, you go
back to the initial graphics state and draw another black circle .

 This is a simple example because you only change one characteristic of the
graphics state: the fill color. In the next sections, you’ll change line characteristics
and the coordinate system. These changes can be complex, and saving and
restoring the state can help keep your code maintainable. Remember that the
saveState() and restoreState() methods must be balanced. If you try to restore
the state without having saved the state, an exception will be thrown.

 Let’s start with some of the simplest graphics state operators and gradually
increase the complexity.

10.3.2 Changing the characteristics of a line

If you stroke a path in the default graphics state, the subpaths are drawn using
solid lines that are 1 point thick. Figure 10.9 shows a series of lines painted with
different line widths.

 b
 C

 D

 E
 F

 G

 H
 I

 J
 1)

 1!

1) 1!
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

306 CHAPTER 10
Constructing and painting paths
A float value in a range from 0.1 to 2.5 is used as the line width for the lines in
figure 10.9:

/* chapter10/LineCharacteristics.java */
for (int i = 25; i > 0; i--) {
 cb.setLineWidth((float)i / 10);
 cb.moveTo(40, 806 - (5 * i));
 cb.lineTo(320, 806 - (5 * i));
 cb.stroke();
}

It’s important to understand that not all devices are able to render lines with the
width you specify in your PDF. The actual line width can differ from the requested
width by as much as 2 device pixels, depending on the positions of the lines with
respect to the pixel grid.

NOTE With the method PdfContentByte.setFlatness(), you can set the pre-
cision with which curves are rendered on the output device. The param-
eter gives the maximum error tolerance, measured in output device
pixels. Smaller numbers give smoother curves at the expense of more
computation and memory use.

The PDF Reference advises against it, but you can also define a 0 width. When
setting the line width to 0, you indicate you want the thinnest line that can be

Figure 10.9 Different line widths
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Graphics state operators 307
rendered at device resolution: 1 device pixel wide. The PDF Reference warns that
“some devices cannot reproduce 1-pixel lines, and on high-resolution devices,
they are nearly invisible.”

 When you draw lines from one point to another, other parameters can be set.

Line cap and line join styles
Figure 10.10 demonstrates the different line cap and line join possibilities.

The three parallel lines at the left in figure 10.10 theoretically have the same
length (1 in). They’re drawn between x=72 and x=144 (see the two vertical
lines), but the style used at the ends of the horizontal lines is different:

■ Butt cap—The stroke is squared off at the end point of the path.
■ Round cap—A semicircular arc with diameter equal to the line width is

drawn around the end point.
■ Projecting square cap—The stroke continues beyond the endpoint of the

path for a distance equal to half the line width.

For each of these styles, there’s a static final member variable in class Pdf-
ContentByte:

/* chapter10/LineCharacteristics.java */
cb.setLineWidth(8);
cb.setLineCap(PdfContentByte.LINE_CAP_BUTT);
cb.moveTo(72, 640); cb.lineTo(144, 640); cb.stroke();
cb.setLineCap(PdfContentByte.LINE_CAP_ROUND);
cb.moveTo(72, 625); cb.lineTo(144, 625); cb.stroke();
cb.setLineCap(PdfContentByte.LINE_CAP_PROJECTING_SQUARE);
cb.moveTo(72, 610); cb.lineTo(144, 610); cb.stroke();

The three hook shapes to the right in figure 10.10 demonstrate different line
join styles. If a subpath consists of different line segments, they can be joined
in three ways:

Figure 10.10
Line cap and line
join styles
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

308 CHAPTER 10
Constructing and painting paths
■ Miter join—The outer edges of the strokes for two segments are extended
until they meet at an angle.

■ Rounded join—An arc of a circle with diameter equal to the line width is
drawn around the point where the two line segments meet.

■ Bevel join—The two segments are finished with butt caps.

There are also static final member variables in PdfContentByte for the line
join styles:

/* chapter10/LineCharacteristics.java */
cb.setLineWidth(8);
cb.setLineJoin(PdfContentByte.LINE_JOIN_MITER);
cb.moveTo(200, 610); cb.lineTo(215, 640);
cb.lineTo(230, 610); cb.stroke();
cb.setLineJoin(PdfContentByte.LINE_JOIN_ROUND);
cb.moveTo(240, 610); cb.lineTo(255, 640);
cb.lineTo(270, 610); cb.stroke();
cb.setLineJoin(PdfContentByte.LINE_JOIN_BEVEL);
cb.moveTo(280, 610); cb.lineTo(295, 640);
cb.lineTo(310, 610); cb.stroke();

When you define mitered joins (the default), and two line segments meet at a
sharp angle, it’s possible for the miter to extend far beyond the thickness of the
line stroke. If j is the angle between both line segments, the miter limit equals
the line width divided by sin(j/2).

 You can define a maximum value for the ratio of the miter length to the line
width. This maximum is called the miter limit. When this limit is exceeded, the
join is converted from a miter to a bevel. Figure 10.11 shows two rows of hooks
that were drawn using the same line widths and almost the same paths. The angle
of the hooks decreases from left to right. In the first row, the miter limit is set to 2;
in the second row, the miter limit is 2.1.

Figure 10.11
Miter limit of 2 (top row)
and 2.1 (bottom row)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Graphics state operators 309
The miter limit for the hooks in the first row is exceeded in the fourth hook of the
first row. In the second row, it’s exceeded just after the fourth hook. Let’s compare
the code for the fourth hook for both rows:

/* chapter10/LineCharacteristics.java */
cb.setLineWidth(8);
cb.setLineJoin(PdfContentByte.LINE_JOIN_MITER);
cb.setMiterLimit(2);
cb.moveTo(198, 560);
cb.lineTo(215, 590);
cb.lineTo(232, 560);
cb.stroke();
cb.setMiterLimit(2.1f);
cb.moveTo(198, 500);
cb.lineTo(215, 530);
cb.lineTo(232, 500);
cb.stroke();

Until now, you’ve been drawing solid lines; you can also paint dashed lines.

Line dash pattern
Before a path is stroked, the dash array is cycled through, adding the lengths of
dashes and gaps. When the accumulated length equals the phase, stroking of the
path begins. (The phase defines where the pattern starts.) The default dash array
is empty, and the phase is 0; when you stroke a line, you get a solid line just like
the first line in figure 10.12. This screenshot also shows lines drawn using differ-
ent dash arrays and phases.

Figure 10.12 Dash patterns
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

310 CHAPTER 10
Constructing and painting paths
Let’s examine the source code to understand the meaning of the dash array and
the phase:

/* chapter10/LineCharacteristics.java */
cb.setLineWidth(3);
cb.moveTo(40, 480); cb.lineTo(320, 480); cb.stroke();
cb.setLineDash(6, 0);
cb.moveTo(40, 470); cb.lineTo(320, 470); cb.stroke();
cb.setLineDash(6, 3);
cb.moveTo(40, 460); cb.lineTo(320, 460); cb.stroke();
cb.setLineDash(15, 10, 5);
cb.moveTo(40, 450); cb.lineTo(320, 450); cb.stroke();
float[] dash1 = { 10, 5, 5, 5, 20};
cb.setLineDash(dash1, 5);
cb.moveTo(40, 440); cb.lineTo(320, 440); cb.stroke();
float[] dash2 = { 9, 6, 0, 6 };
cb.setLineCap(PdfContentByte.LINE_CAP_ROUND);
cb.setLineDash(dash2, 0);
cb.moveTo(40, 430); cb.lineTo(320, 430); cb.stroke();

The first line drawn in figure 10.12 is solid b; this is the default graphics
state. You set the line dash to a pattern of 6 units with phase 0 C: This means
you start the line with a dash 6 units long, leave a gap of 6 units, paint a dash
of 6 units, and so on. The same goes for the third line, but you use a different
phase D.

 In line 4, you paint a dash of 15 units, then leave a gap of 10 units, and so
on. The phase is 5, so the first dash you see is only 10 units long (15 – 5) E.
Line 5 uses a more complex pattern F: You start with a dash of 5 (10 – 5) long,
then you have a gap of 5, a dash of 5, a gap of 5 and a dash of 20. The next
sequence is as follows: a gap of 10, a dash of 5, a gap of 5, a dash of 5, a gap of
20, and so on.

 G is also a special example: a dash of 9, a gap of 6, a dash of 0, and a gap of 6.
The dash of 0 may seem odd, but you used round caps—instead of a zero-length
dash, a dot is drawn.

Overview
Table 10.3 gives an overview of the operators/iText methods discussed in
this section.

 You almost have sufficient information to help Laura with her first graphical
assignment: You can stroke and fill paths that represent streets and squares on the

 B

 C

 D

 E

 F

 G
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Graphics state operators 311
map of Foobar. But before you reward yourself with a visit to Laura, let’s see how
to transform the coordinate system.

 To demonstrate how the different transformations work, I need an irregular
shape—for instance, the eye that is used for the iText logo. I’ll teach you a trick
that allows you to write your own PDF syntax.

Literal PDF syntax
For the examples in this chapter, I set compression to false. If you open the
PDF files in a text editor, you can see what the different PDF operators look
like. If you need a PDF operator that isn’t supported in iText, you can con-
struct your own strings of operators and operands and use the setLiteral()
method in PdfContentByte.

 Do you recognize the following sequence of operators and operands?

Table 10.3 Graphics state operators relating to lines

Operator iText method Operands / parameters Description

w setLineWidth (width) The parameter represents the thickness
of the line in user units (default = 1).

J setLineCap (style) Defines the line cap style, which can be
one of the following values:
LINE_CAP_BUTT (default)
LINE_CAP_ROUND
LINE_CAP_PROJECTING_SQUARE

j setLineJoin (style) Defines the line join style, which can be
one of the following values:
LINE_JOIN_MITER (default)
LINE_JOIN_ROUND
LINE_JOIN_BEVEL

M setMiterLimit (miterLimit) The parameter is a limit for joining lines.
When it’s exceeded, the join is con-
verted from a miter to a bevel.

d setLineDash (unitsOn, phase) The default line dash is a solid line, but
by using the different iText methods that
change the dash pattern, you can create
all sorts of dashed lines.

(unitsOn, unitsOff,
phase)

(array, phase)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

312 CHAPTER 10
Constructing and painting paths
12 w
22.47 64.67 m
37.99 67.76 52.24 75.38 63.43 86.57 c
120 110 m
98.78 110 78.43 101.57 63.43 86.57 c
S
1 J
120 110 m
97.91 110 80 92.09 80 70 c
80 47.91 97.91 30 120 30 c
125 70 m
125 72.76 122.76 75 120 75 c
117.24 75 115 72.76 115 70 c
115 67.24 117.24 65 120 65 c
122.76 65 125 67.24 125 70 c
S

If you study tables 10.1, 10.2, and 10.3 (or if your knowledge of the PDF syntax is
fluent), you may recognize the eye of the iText logo. You can put this syntax inside
a String and add it directly to the PdfContentByte:

/* chapter10/EyeLogo.java */
PdfContentByte cb = writer.getDirectContent();
String eye = "12 w\n22.47 64.67 m\n"
 + "37.99 67.76 52.24 75.38 63.43 86.57 c\n"
 + "120 110 m\n98.78 110 78.43 101.57 63.43 86.57 c\n"
 + "S\n1 J\n120 110 m\n97.91 110 80 92.09 80 70 c\n"
 + "80 47.91 97.91 30 120 30 c\n125 70 m\n"
 + "125 72.76 122.76 75 120 75 c\n"
 + "117.24 75 115 72.76 115 70 c\n"
 + "115 67.24 117.24 65 120 65 c\n"
 + "122.76 65 125 67.24 125 70 c\nS\n";
cb.setLiteral(eye);

The resulting PDF shows the iText eye at the bottom of the page (see figure 10.13).

Figure 10.13
Drawing the iText eye
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Changing the coordinate system 313
There’s little chance you’ll ever need this functionality, but we’ll use this eye
string to demonstrate the effect of changing the coordinate system.

10.4 Changing the coordinate system

The coordinates you use to draw the iText eye in figure 10.13 assume that the ori-
gin of the coordinate system is in the lower-left corner and that the x-axis points
to the left and the y-axis points to the top of the page. Let’s start by turning the
coordinate system upside down so that the eye looks like figure 10.14.

The eye variable is identical to the String used to draw the eye in figure 10.13:

/* chapter10/EyeCoordinates.java */
PdfContentByte cb = writer.getDirectContent();
String eye = "12 w\n22.47 64.67 m ...";
cb.saveState();
cb.concatCTM(1f, 0f, 0f, -1f, 0f, PageSize.A4.height());
cb.setLiteral(eye);
cb.restoreState();

With the method concatCTM(), you use the PDF operator that changes the current
transformation matrix (CTM). In figure 10.13, the eye is in the lower-left corner;
in figure 10.14, the eye is mirrored in the upper-left corner.

10.4.1 The CTM

Section 5.4.2 discussed translating, scaling, and rotating images. I referred to
analytical geometry, and I told you it’s possible to translate, scale, and rotate
images using algebra and matrices. Let’s take a closer look at these matrices.

Figure 10.14
Drawing the iText eye upside down
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

314 CHAPTER 10
Constructing and painting paths
Doing the math
The six values in the concatCTM() method are elements of a matrix that has three
rows and three columns. This is what the CTM looks like:

 a b 0
 c d 0
 e f 1

I was about 17 years old when I first learned this elementary algebra. In case it’s
been a long time for you, too, let’s refresh your memory. Coordinate transforma-
tions in a two-dimensional system can be expressed as matrix multiplications:

 a b 0
[x' y' 1] = [x y 1] x c d 0
 e f 1

Or like this, if you carry out the multiplication:

x’ = a * x + c * y + e;
y’ = b * x + d * y + f;

The third column in the CTM is fixed: You’re working in two dimensions, and you
don’t need to calculate a new Z coordinate.

 Suppose you want to transform the iText eye. You could recalculate all the
coordinates you used in the literal string, but that’s not elegant. It’s better to
change the CTM. To do this, you need to define values for a, b, c, d, e, and
f. Let’s disentangle the transformations we already discussed when dealing
with images:

Translating a shape is done like this:

x’ = 1 * x + 0 * y + dX;
y’ = 0 * y + 1 * y + dY;

These formulas scale a shape:

x’ = sX * x + 0 * y + 0;
y’ = 0 * x + sY * y + 0;

There formulas rotate the shape with an angle j:

x’ = cos(j) * x – sin(j) * y + 0;
y’ = sin(j) * x + cos(j) * y + 0;

Finally, you can also skew the shape, where a is the new angle of the x-axis and b
is the new angle of the y-axis:

x’ = x + tan(b) * y + 0;
y’ = tan(a) * x + y + 0;
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Changing the coordinate system 315
If you want to combine the most common transformations in one operation—
translation (dX, dY), scaling (sX, sY), and rotation j—you can calculate your a, b,
c, d, e, and f values like this:

a = sX * cos(j);
b = sY * sin(j);
c = sX * -sin(j);
d = sY * cos(j);
e = dX;
f = dY;

You now understand the code that was used to turn the eye in figure 10.13 into
the eye on figure 10.14: j is 0 degrees, but sY is -1, so the y-axis points down
instead of up. You also perform a translation dY = PageSize.A4.height(); other-
wise, your shape would be drawn outside the page.

NOTE The order is important when performing transformations one after the
other. For example, a translation (using a matrix MT) followed by a rota-
tion (MR) doesn’t necessarily have the same result as the same rotation
(using MR) followed by the same translation (MT).

In mathematics, these transformations are called affine. If you don’t like doing the
math that is necessary to get the parameter values for method concatCTM(), you
can use the standard Java class java.awt.geom.AffineTransform.

Affine transformations
The standard Java class AffineTransform has constructors that help you define
transformations in a more intuitive way. Apart from the constructors, there are
the static methods getTranslateInstance() and getScaleInstance() and two dif-
ferent getRotateInstance() methods that return an AffineTransform instance.

 Figure 10.15 shows a complete page made in the example EyeCoordinates.
You’ve already seen how the eyes in the left corners were added; the following
code snippet demonstrates how you can use the AffineTransform class to add the
eyes in the middle of the page:

/* chapter10/EyeCoordinates.java */
PdfContentByte cb = writer.getDirectContent();
String eye = "12 w\n22.47 64.67 m ...";
cb.transform(AffineTransform.getTranslateInstance(100, 400));
cb.setLiteral(eye);
cb.transform(AffineTransform.getRotateInstance(-Math.PI / 2));
cb.transform(AffineTransform.getScaleInstance(2, 2));
cb.setLiteral(eye);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

316 CHAPTER 10
Constructing and painting paths
You didn’t save and restore the state as you did before. Be careful when you work
like this: Invoking concatCTM() or transform() doesn’t replace the current trans-
formation matrix. These methods add a transformation on top of the existing
transformation. If you look closely, you also see that the edge of the eye that was
scaled is rounded instead of butt-capped. The line cap style was changed to
round cap while drawing the iris of the previous eye.

 You may prefer working with method transform() because it looks easier than
working with concatCTM() (it’s a matter of taste), but that doesn’t mean you’ll
never have to use the formulas to calculate the a, b, c, d, e, and f values of the
transformation matrix. You’ll still need these values when you want to add an
XObject to the direct content.

10.4.2 Positioning external objects

I want to stress that what you did in the previous example isn’t how you’ll work in
practice. I used the string with the PDF syntax only to show how you can add the

Figure 10.15
Affine transformations
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Changing the coordinate system 317
same path definition in different positions by changing the current transforma-
tion matrix.

 If you open the PDF file in a text editor, you’ll see that the same string ("12
w\n22.47 64.67 m...") is repeated four times (because you’re drawing the iText
eye four times). If you’d like to add the iText eye as a watermark on every page
in a document with hundreds of pages, you’ll have a lot of syntax that is
repeated over and over. There is a better solution: Add the syntax to draw the
iText eye as an external object (XObject). There are three types of external objects:
image XObjects, PostScript XObjects, and form XObjects. You’ve already encoun-
tered one XObject type in chapter 5: images.

Image XObjects
In chapter 5, you added images to a document with document.add(). It’s also pos-
sible to add an image directly to the content with PdfContentByte.addImage().
Figure 10.16 shows a PDF file to which iTextLogo.gif was added twice.

Figure 10.16
Adding Image objects to
the direct content
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

318 CHAPTER 10
Constructing and painting paths
If you only need a translation (like the logo in the upper-left corner), you can use
the method you used in chapter 5 (Image.setAbsolutePositions()) and Pdf-
ContentByte.addImage(Image img). If you want to perform other transformations
as well, you need the addImage() method with the parameters a, b, c, d, e, and f
that define the transformation matrix.

 In figure 10.16, the image is skewed, scaled, and translated:

/* chapter10/EyeImages.java */
PdfContentByte cb = writer.getDirectContent();
Image eye = Image.getInstance("../resources/iTextLogo.gif");
eye.setAbsolutePosition(36, 780);
cb.addImage(eye);
cb.addImage(eye, 271, -50, -30, 550, 100, 100);

Note that images can also be added inline. In this case, the image is added
directly within the content stream. The source code is almost identical to images
added as XObjects:

/* chapter10/EyeInlineImage.java */
PdfContentByte cb = writer.getDirectContent();
Image eye = Image.getInstance("../resources/iTextLogo.gif");
eye.setAbsolutePosition(36, 780);
cb.addImage(eye, true);
cb.addImage(eye, 271, -50, -30, 550, 100, 100, true);

If you compare the resulting PDF files of both examples in Adobe Reader, they
look identical. If you compare the file size, the first file is about 3 KB; the second
file is about 4 KB. Open both files in a text editor, and you can see why the file size
is different.

 In the first file, the content stream contains only two lines:

q 80 0 0 32 36 780 cm /img0 Do Q
q 271 -50 -30 550 100 100 cm /img0 Do Q

There is only a reference to an XObject named /img0. This image is stored only
once, outside the content stream. The content stream of the second PDF file
includes the same graphics state operators q/Q (to save and restore the state) and
cm (to change the current transformation matrix); but where you’d expect /img0
Do', find a sequence of PDF syntax including binary image data between a begin
image (BI) and end image (EI) statement.

 For the sake of completeness, I’ll also say a word about PostScript XObjects.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Changing the coordinate system 319
PostScript XObjects
A PostScript XObject contains a fragment of code expressed in PostScript. There
is basic support for PostScript XObjects in iText with the class PdfPSXObject. It
has all the methods that are in PdfContentByte, and you can add PS code using
the method setLiteral(). I won’t discuss this functionality because it’s no
longer recommended that you use PostScript XObjects in PDF. These PS frag-
ments are used only when printing to a PostScript output device. They should be
used with extreme caution, because they can cause PDF files to print incorrectly.
See section 4.7.1 in the PDF Reference manual: “This feature is likely to be
removed from PDF in a future version.”

 There is one XObject type left; it’s called a form XObject, but the word form is
confusing. We aren’t talking about forms that can be filled in. To avoid confusion
with AcroForms, I prefer talking about PdfTemplate objects in iText instead of
using the PDF term form XObjects.

PdfTemplates
A PdfTemplate is a PDF content stream that is a self-contained description of any
sequence of graphics objects. PdfTemplate extends PdfContentByte and inherits
all its methods. A PdfTemplate object is a kind of extra layer with custom dimen-
sions that can be used for different purposes:

■ To create a graphical object using the methods discussed in this chapter
(and in the next one) and add this object to your PDF file in a user friendly
way. This is what you’ll do when you draw the map of Foobar. You’ll create
a PdfTemplate, wrap it in an Image object, and add it to your document
with document.add().

■ To repeat a certain sequence of PDF syntax (for instance, the code that gen-
erated the iText eye), but reuse the byte stream to save disk space, processing
time, and/or band width. You’ll see how this is done in the next example.

■ To add content to a page when you don’t know in advance what that con-
tent will be. For instance, you want to add a footer saying this is page x of y,
but at the moment the page is constructed and sent to the output stream,
you don’t know the value of y (you don’t know how many pages will be in
your document). In this case, you can add a template for y but wait to add
content to this template until you know the exact number of pages. This
will be demonstrated in chapter 14.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

320 CHAPTER 10
Constructing and painting paths
Let’s rewrite the example repeating the iText eye at different positions and pro-
duce a PDF that looks (almost) exactly like the one in figure 10.15, but reducing
the file size by reusing the eye syntax-string:

/* chapter10/EyeTemplate.java */
PdfContentByte cb = writer.getDirectContent();
PdfTemplate template = cb.createTemplate(150, 150);
template.setLineWidth(12f);
template.arc(
 40f - (float) Math.sqrt(12800), 110f + (float) Math.sqrt(12800),
 200f - (float) Math.sqrt(12800), -50f + (float) Math.sqrt(12800),
 281.25f, 33.75f);
template.arc(40f, 110f, 200f, -50f, 90f, 45f);
template.stroke();
template.setLineCap(PdfContentByte.LINE_JOIN_ROUND);
template.arc(80f, 30f, 160f, 110f, 90f, 180f);
template.arc(115f, 65f, 125f, 75f, 0f, 360f);
template.stroke();
cb.addTemplate(template, 0f, 0f);
cb.addTemplate(template, 1f, 0f, 0f, -1f, 0f, PageSize.A4.height());
cb.addTemplate(template, 100, 400);
cb.addTemplate(template, 0, -2, 2, 0, 100, 400);

Create a PdfTemplate object with the method createTemplate(), defining the
dimensions of the XObject. Everything drawn outside these dimensions will
be invisible.
Compose the iText eye. This code creates the same syntax you used before.
Add the iText eye four times to the direct content. The actual PDF stream
describing the eye is added to the PDF file only once.

Again, the PDF file created with XObjects is smaller in size than the PDF file that
repeated the syntax over and over (1388 bytes versus 2023 bytes). The eye string
is now in a separate object. If you inspect the PDF file, you see that there’s a ref-
erence to this object in the content stream:

q 1 0 0 1 0 0 cm /Xf1 Do Q
q 1 0 0 -1 0 842 cm /Xf1 Do Q
q 1 0 0 1 100 400 cm /Xf1 Do Q
q 0 -2 2 0 100 400 cm /Xf1 Do Q

Comparing the iText source code with the resulting PDF syntax, you immediately
understand the meaning of the two addTemplate() methods in the class PdfCon-
tentByte. The method that adds the template along with two float parameters
can be used to translate the XObject. The a, b, c, and d values of the transforma-
tion matrix are 1, 0, 0, and 1. The second addTemplate() method allows you to

 b

 C

 D

 B

 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Drawing a map of a city (part 1) 321
define the complete matrix needed for a two-dimensional transformation. iText
gives a name to the XObject: /Xf1.

 With the class PdfTemplate, you have the final puzzle piece that is needed to
draw a map of Foobar.

10.5 Drawing a map of a city (part 1)

Readers familiar with PS will say that there’s nothing new about this chapter; all
these path-construction and painting operators are identical to what you know
from PostScript. Other readers who know something about Scalable Vector
Graphics (SVG) will say this looks much like SVG. Both are right. As I mentioned
in the chapter 3, PDF has evolved from PostScript, and the imaging system is sim-
ilar. PDF and PS have many graphic operators and operands in common. But
people who define graphics in XML format—more specifically, in SVG—also have
a point.

 SVG is an XML markup language for describing 2D vector graphics. It was
developed by the World Wide Web Consortium (W3C) after Macromedia and
Microsoft introduced Vector Markup Language (VML) and Adobe and Sun devel-
oped a competing format Precision Graphics Markup Language (PGML). If you
read the SVG specification,3 you’ll find path construction and painting operators
and operands that are similar to the ones described in this chapter.

 Laura has an SVG file that contains the streets and squares of Foobar, and she
want to convert this file to a PDF document.

10.5.1 The XML/SVG source file
If you look at the file foobar.svg, you’ll immediately recognize the terminology
(see figure 10.17).

 There are path tags with move-to (M) and line-to (L) commands in the path
data (d) attribute; there are also fill and stroke attributes defining the fill and
stroke color. The attribute points in the polyline tags defines all the coordinates
of the points in the polyline.

 Different browsers and tools let you view this file, but you want to render the
SVG file on a page in a PDF file as shown in figure 10.18.

 Laura suggests that you should write your own SVG parser. Given the number
of pages in the SVG Specification, you immediately realize that this will be a lot of
work; but against your better judgment, you start writing some code.

3 http://www.w3.org/Graphics/SVG/ contains links to the specifications of the different SVG versions.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

322 CHAPTER 10
Constructing and painting paths
Figure 10.17 An SVG file with the map of Foobar

Figure 10.18 The SVG file rendered on a PDF page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Drawing a map of a city (part 1) 323
10.5.2 Parsing the SVG file

The code of the main class FoobarCity is simple. You create a FoobarSvgHandler
instance and ask this custom SVG handler to return an image:

/* chapter10/FoobarCity.java */
FoobarSvgHandler handler = new FoobarSvgHandler(writer,
 new InputSource(
 new FileInputStream("../resources/foobarcity.svg")));
Image image = handler.getImage();
image.scaleToFit(PageSize.A4.width(), PageSize.A4.height());
image.setAbsolutePosition(0,
 PageSize.A4.height() - image.scaledHeight());
document.add(image);

The image you retrieve from the handler is constructed using a PdfTemplate:

/* chapter10/FoobarSvgHandler */
public Image getImage() throws BadElementException {
 return Image.getInstance(template);
}

The content of this PdfTemplate is added by parsing the SVG file. The custom SVG
handler, written especially for this example, takes the following tags into account:
svg (the root tag), polyline, and path:

/* chapter10/FoobarSvgHandler */
public void startElement(String uri, String localName,
 String qName, Attributes attributes) throws SAXException {
 if ("polyline".equals(qName)) {
 drawPolyline(attributes);
 }
 else if ("path".equals(qName)) {
 drawPath(attributes);
 }
 else if ("svg".equals(qName)) {
 calcSize(attributes);
 }
}

The PdfTemplate member variable is created in the calcSize() method, based on
coordinates that are retrieved from the viewbox attribute or the width and height
attributes in the svg root tag (see the SVG specification for more information on
this subject):

/* chapter10/FoobarSvgHandler */
template = content.createTemplate(coordinates[4], coordinates[5]);

Paths and polylines are drawn in the methods drawPolyline() and drawPath():

/* chapter10/FoobarSvgHandler */
private void drawPolyline(Attributes attributes) {
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

324 CHAPTER 10
Constructing and painting paths
 template.saveState();
 setFill(attributes);
 setStroke(attributes);
 computePoints(attributes);
 template.stroke();
 template.restoreState();
}
private void drawPath(Attributes attributes) {
 template.saveState();
 setFill(attributes);
 setStroke(attributes);
 computeData(attributes);
 template.stroke();
 template.restoreState();
}

The methods setFill() and setStroke() invoke the PdfTemplate methods set-
ColorFill(), setColorStroke(), and setLineWidth() based on the values of the
attributes; computePoints() and computeData() invoke the moveTo(), lineTo(),
and closePathFillStroke() methods.

 This example is interesting because it demonstrates how graphics operators
work in PDF as well as in SVG, but I must stress that this isn’t a good way to convert
SVG to PDF. In chapter 12, you’ll write an example converting the file foobar.svg
in a way that is much more robust.

 For now, Laura is happy with the result. In the next chapter, we’ll extend the
example and add some street names—that is, after we have discussed a subset of
the graphics state: text state.

10.6 Summary

This was the first of a set of three chapters discussing how the basic building
blocks discussed in part 2 are translated to PDF syntax by iText. We’ve worked
through a lot of theory, but we’ve also dealt with practical issues.

 You’ve learned how to construct and paint paths, and you’ve used this func-
tionality to add custom borders, lines, and shapes to a PdfPTable. You can now
create your own Type 3 font—maybe one that contains a character that corre-
sponds with the iText eye. You’ve also learned about the coordinate system and
PdfTemplate, and you created an Image object based on a file containing vec-
tor graphics.

 In the next chapter, we’ll continue discussing the graphics state. We’ll talk
about color and colorspaces. We’ll also deal with text state so that we can add
street names to the map of Foobar.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding color and text
This chapter covers
■ PDF and Color spaces
■ Transparency and clipping
■ PDF’s text state
325

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

326 CHAPTER 11
Adding color and text
We already dealt with a great deal of the theory described in chapter 4 of the PDF
Reference (”Graphics”). We’ll continue by discussing colors and colorspaces. Each
object in PDF can be in 11 different colorspaces, but you don’t have to worry
about that; iText provides color classes that hide the complex theory.

 While we’re talking about color, we’ll also discuss rendering (chapter 6 of the
PDF Reference) and transparency (chapter 7). You’ll also learn how to apply
masks to an image.

 We’ll complete this chapter by explaining how text state is implemented in
iText. This will let you add street names to the map of Foobar.

11.1 Adding color to PDF files

You’ve worked with colors in previous examples, mostly using the class java.-
awt.Color. If you look at the class diagram in appendix A, section A.8, you see
that iText extends this class. There’s an abstract class ExtendedColor and lots of
subclasses. You can pass any of these subclasses as a color property of iText’s basic
building blocks. To change the color of the direct content, you can use one of the
setColorFill() and setColorStroke() methods.

 The Java class Color defines an RGB color. When we talked about PDF/X, we
said RGB colors aren’t allowed; you should use the class CMYKColor instead. In the
previous chapter, you used the GrayColor class to define a fill or a stroke color.
These three classes correspond with the colorspace families that are referred to as
the DeviceRGB, DeviceCMYK, and DeviceGray colorspaces.

11.1.1 Device colorspaces

A colorspace is an abstract mathematical model describing the way colors can be
represented a sequence of numbers. Gray color is expressed as the intensity of
achromatic light, on a scale from black to white:

/* chapter11/DeviceColor.java */
PdfContentByte cb = writer.getDirectContent();
cb.setColorFill(new GrayColor(0.5f));
cb.rectangle(252, 770, 36, 36);
cb.fillStroke();
cb.setColorFill(new GrayColor(255));
cb.rectangle(470, 770, 36, 36);
cb.fillStroke();
cb.setGrayFill(0.75f);
cb.rectangle(360, 716, 36, 36);
cb.fillStroke();

 b

 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding color to PDF files 327
The intensity can be expressed as a float between 0 and 1 b or as an int between
0 and 255 c. These values can be used as parameters to construct an instance of
the GrayColor class. The parameter of the methods setGrayFill() d and set-
GrayStroke() has to be a float.

 For RGB, values for red, green, and blue are defined. RGB is an additive color
model: Red, green, and blue light is used to produce the other colors (for instance,
the colors on your TV are composed of red, green, and blue dots). RGB is typically
used for graphics that need to be rendered on a screen. Here’s an example:

/* chapter11/DeviceColor.java */
cb.setColorFill(new Color(0x00, 0xFF, 0x00));
cb.rectangle(144, 662, 36, 36);
cb.fillStroke();
cb.setColorFill(new Color(1f, 1f, 0));
cb.rectangle(360, 662, 36, 36);
cb.fillStroke();
cb.setRGBColorFill(0x00, 0xFF, 0xFF);
cb.rectangle(198, 608, 36, 36);
cb.fillStroke();
cb.setRGBColorFillF(1f, 0f, 1f);
cb.rectangle(306, 608, 36, 36);
cb.fillStroke();

The java.awt.Color class can be constructed using int (0–255) b or float (0–1)
c values for the red, green, and blue values. In PdfContentByte, you can also
use setRGBColorFill() (setRGBColorStroke()) if you define the color as a series
of int values d, or setRGBColorFillF() (setRGBColorStrokeF()) if you use float
values e.

 You may recognize cyan, magenta, and yellow, the CMY in CMYK, as the colors
in the cartridge of an ink-jet printer. The K (key) corresponds with black. CMYK is
a subtractive color model. If you look at a yellow object using white light, the object
appears yellow because it reflects and absorbs some of the wavelengths that make
up the white light. A yellow object absorbs blue and reflects red and green. In
comparison with RGB, you have white (#FFFFFF) minus blue (#0000FF) equals
yellow (#FFFF00). CMYK is typically used for graphics that need to be printed.
Here’s an example:

/* chapter11/DeviceColor.java */
cb.setColorFill(new CMYKColor(0x00, 0x00, 0xFF, 0x00));
cb.rectangle(90, 554, 36, 36);
cb.fillStroke();
cb.setColorFill(new CMYKColor(1f, 0f, 0f, 0.5f));
cb.rectangle(360, 554, 36, 36);
cb.fillStroke();
cb.setCMYKColorFill(0x00, 0xFF, 0xFF, 0x0F);

 b

 C

 D

 E

 b

 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

328 CHAPTER 11
Adding color and text
cb.rectangle(144, 500, 36, 36);
cb.fillStroke();
cb.setCMYKColorFillF(0f, 0f, 0f, 1f);
cb.rectangle(416, 500, 36, 36);
cb.fillStroke();

The CMYKColor class extends iText’s ExtendedColor class and can be constructed
using int (0–255) b or float (0–1) c values for cyan, magenta, yellow, and
black. Just as with RGB, there’s also setCMYKColorFill() (setCMYKColorStroke())
d or setCMYKColorFillF() (setCMYKColorStrokeF()) e.

 This was the simple part. Now, let’s look at the other classes that extend
ExtendedColor.

11.1.2 Separation colorspaces
I referred to ink in the printer on your desk when I talked about CMYK colors, but
not all printing devices use (only) these colors. Some device can apply special col-
ors, often called spot colors, to produce effects that can’t be achieved with CMYK—
for instance, metallic colors, fluorescent colors, and special textures.

 A spot color is any color generated by an ink (pure or mixed) that is printed in
a single run. The PDF Reference says the following:

When printing a page, most devices produce a single composite page on which
all process colorants (and spot colors, if any) are combined. However, some
devices such as imagesetters, produce a separate, monochromatic rendition of
the page, called a separation, for each colorant. When the separations are later
combined—on a printing press, for example—and the proper inks or other
colorants are applied to them, the result is a full-color page.

Using the separation colorspace allows you to specify the use of additional colors
or to isolate the control of individual color components. The current color is a
single-component value, called a tint (defined in iText by a float in the range
from 0 to 1). There are two spot color classes in iText: PdfSpotColor is the actual
class, and SpotColor is a wrapper class, a subclass of java.awt.Color. Use the first
class if you need to define a spot color for the direct content and the latter if you
need a spot color in a high-level object.

 The dominant spot-color printing system in the United States is Pantone. Pan-
tone Inc. is a New Jersey company, and the company’s list of color numbers and
values is its intellectual property. Free use of the list isn’t allowed; but if you buy a
house style and the colors include Pantones, you can replace the name
iTextSpotColorX in the following example with the name of your Pantone color,
as well as the corresponding color value:

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding color to PDF files 329
/* chapter11/SeparationColor.java */
PdfSpotColor psc_g = new PdfSpotColor(
 "iTextSpotColorGray", 0.5f, new GrayColor(0.9f));
PdfSpotColor psc_rgb = new PdfSpotColor(
 "iTextSpotColorRGB", 0.9f, new Color(0x64, 0x95, 0xed));
PdfSpotColor psc_cmyk = new PdfSpotColor(
 "iTextSpotColorCMYK", 0.25f, new CMYKColor(0.3f, .9f, .3f, .1f));
SpotColor sc_g = new SpotColor(psc_g);
SpotColor sc_rgb1 = new SpotColor(psc_rgb, 0.1f);
SpotColor sc_cmyk = new SpotColor(psc_cmyk);
cb.setColorFill(sc_g);
cb.rectangle(36, 770, 36, 36);
cb.fillStroke();
cb.setColorFill(psc_g, psc_g.getTint());
cb.rectangle(90, 770, 36, 36);
cb.fillStroke();
cb.setColorFill(sc_rgb1);
cb.rectangle(36, 716, 36, 36);
cb.fillStroke();
cb.setColorFill(psc_rgb, 0.1f);
cb.rectangle(36, 662, 36, 36);
cb.fillStroke();
cb.setColorFill(psc_cmyk, psc_cmyk.getTint());
cb.rectangle(90, 608, 36, 36);
cb.fillStroke();

The next type of color isn’t really a color in the strict sense of the word. In the PDF
Reference, it’s listed with the special colorspaces.

11.1.3 Painting patterns

When stroking or filling a path, you always used a single color, but it’s also possi-
ble to apply paint that consists of repeating graphical figures or a smoothly vary-
ing color gradient. In this case, we’re talking about a pattern. There are two kinds
of patterns: tiled (a repeating figure) and shading (a smooth gradient).

Tiling patterns
To use a pattern as fill or stroke color, you must create a pattern cell. This cell is
repeated at fixed horizontal and vertical intervals when you fill a path (the area is
tiled). See figure 11.1 for some examples of tiled patterns.

 We distinguish two kinds of tiling patterns: colored tiling patterns and uncolored
tiling patterns. A colored tiling pattern’s color is self-contained. A PdfPattern-
Painter object is created with the PdfContentByte method createPattern(). You
define the width and the height of the pattern cell. Optionally, you can also define
an X and Y step: the desired horizontal and vertical spacing between pattern cells.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

330 CHAPTER 11
Adding color and text
In the course of painting the pattern cell, the pattern’s content stream explicitly
sets the color of each graphical element it paints. A pattern cell can contain ele-
ments that are painted in different colors.

/* chapter11/Patterns.java */
PdfPatternPainter square = cb.createPattern(15, 15);
square.setColorFill(new Color(0xFF, 0xFF, 0x00));
square.setColorStroke(new Color(0xFF, 0x00, 0x00));
square.rectangle(5, 5, 5, 5);
square.fillStroke();
PdfPatternPainter ellipse = cb.createPattern(15, 10, 20, 25);
ellipse.setColorFill(new Color(0xFF, 0xFF, 0x00));
ellipse.setColorStroke(new Color(0xFF, 0x00, 0x00));
ellipse.ellipse(2f, 2f, 13f, 8f);
ellipse.fillStroke();

An uncolored tiling pattern is a pattern that has no inherent color: The color
must be specified separately whenever the pattern is used. The content stream
describes a stencil through which the color is poured.

 You can create a PdfPatternPainter for an uncolored tiling pattern with the
same methods you used to create a colored pattern, but with an extra parameter:
the color that has to be applied to the stencil. You can pass null as color value; in
that case, you’ll have to define the color each time you use the pattern.

Figure 11.1 Tiled patterns
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding color to PDF files 331
/* chapter11/Patterns.java */
PdfPatternPainter circle =
 cb.createPattern(15, 15, 10, 20, Color.blue);
circle.circle(7.5f, 7.5f, 2.5f);
circle.fill();
PdfPatternPainter line = cb.createPattern(5, 10, null);
line.setLineWidth(1);
line.moveTo(3, -1);
line.lineTo(3, 11);
line.stroke();

With these PdfPatternPainter objects, you can create PatternColor objects that
can be used in iText’s building blocks or as parameter for the methods setColor-
Fill() and setColorStroke():

/* chapter11/Patterns.java */
PatternColor squares = new PatternColor(square);
PatternColor ellipses = new PatternColor(ellipse);
PatternColor circles = new PatternColor(circle);
PatternColor lines = new PatternColor(line);

You defined the fill color of the squares and the ellipse in figure 11.1 in differ-
ent ways:

/* chapter11/Patterns.java */
cb.setColorFill(squares);
cb.rectangle(36, 716, 72, 72);
cb.fillStroke();
cb.setColorFill(ellipses);
cb.rectangle(144, 716, 72, 72);
cb.fillStroke();
cb.setColorFill(circles);
cb.rectangle(252, 716, 72, 72);
cb.fillStroke();
cb.setColorFill(lines);
cb.rectangle(360, 716, 72, 72);
cb.fillStroke();
cb.setPatternFill(circle, Color.red);
cb.rectangle(470, 716, 72, 72);
cb.fillStroke();
cb.setPatternFill(line, Color.blue);
cb.rectangle(252, 608, 72, 72);
cb.fillStroke();
cb.setPatternFill(img_pattern);
cb.ellipse(36, 520, 360, 590);
cb.fillStroke();

Notice that we forgot to specify a color for the uncolored tiling pattern line: We
passed a null value to the createPattern() method. The square with the lines in
the first row looks OK, but you can’t count on that. You should always define a

As fill color

Using setPatternFill()
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

332 CHAPTER 11
Adding color and text
color for uncolored tiling patterns as is done for the squares in the second row of
figure 11.1. For colored tiling patterns, adding a color will throw an exception.

 Observe that the img_pattern looks kind of special because you use a GIF file
in the pattern cell. In reality, there’s nothing special about it. As you can see in the
class diagram in appendix A, section A.8, the class PdfPatternPainter extends
PdfTemplate, and you’ve been using standard operators and operands of the
graphics state.

 The other pattern type is more complex. I won’t go into much detail about it;
we’ll just look at some examples that will help you get the idea. For more infor-
mation, please consult the PDF Reference.

Shading patterns
First you need to know something about shading. Shading patterns provide a
smooth transition between colors across an area to be painted. The PDF Refer-
ence lists seven types of shading. iText provides convenience methods for two
types: axial shadings and radial shadings. These two shadings are demonstrated in
figure 11.2. (Try the example if you want to see the PDF in full color.)

Figure 11.2 Axial and radial shading
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding color to PDF files 333
The background color of the first page in figure 11.2 changes from orange
(lower-left corner) to blue (upper-right corner). This is an axial shading; axial
shadings (type 2 in the PDF Reference) define a color blend that varies along a
linear axis between two endpoints and extends indefinitely perpendicular to that
axis. In the iText object PdfShading, a static method simpleAxial() allows you to
pass the start and end coordinates of the axis, as well as a start and end color:

/* chapter11/ShadingPatterns.java */
PdfShading axial = PdfShading.simpleAxial(writer,
 36, 716, 396, 788, Color.orange, Color.blue);
cb.paintShading(axial);

This code snippet defines that the color at coordinate (36, 716) should be orange;
the color at coordinate (396, 788) should be blue. The color of the lines perpen-
dicular to the axis connecting these two points varies between these two colors.
With the method paintShading(), you fill the page (or, as you’ll see later, the cur-
rent clipping path) with this shading; see the background of figure 11.3.

 Radial shadings (type 3 in the PDF Reference) define a color blend that varies
between two circles; see the shape in the middle of the first page in figure 11.2.
You define these circles in the static method PdfShading.simpleRadial():

/* chapter11/ShadingPatterns.java */
PdfShading radial = PdfShading.simpleRadial(writer,
 200, 500, 50, 300, 500, 100,
 new Color(255, 247, 148), new Color(247, 138, 107),
 false, false);
cb.paintShading(axial);

If you pass two extra boolean values with these methods, you can define whether
the shading has to be extended at the start and/or the ending. You could define
axial shading like this:

PdfShading axial = PdfShading.simpleAxial(writer,
 36, 716, 396, 788, Color.orange, Color.blue, false, false);

In this case, only the strip with the varying color would be painted. In figure 11.12,
the complete page is painted—the part beyond the starting point in orange, the
part beyond the ending in blue.

NOTE As I already mentioned, the PDF Reference includes five more types of
shadings. If you want to use the other types, you need to combine one or
more of the static type functions of class PdfFunction. Please consult
the PDF Reference to learn which type of function you need, and inspect
the iText source code for inspiration (look at how the methods simple-
Axial() and simpleRadial() work).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

334 CHAPTER 11
Adding color and text
Now that you have a PdfShading object, you can create a PdfShadingPattern
object and (if you need it as a color for a basic building block) a ShadingColor.
This code snippet generates the rectangles on the second page in figure 11.2:

/* chapter11/ShadingPatterns.java */
PdfShadingPattern axialPattern = new PdfShadingPattern(axial);
cb.setShadingFill(axialPattern);
cb.rectangle(36, 716, 72, 72);
cb.fillStroke();
ShadingColor axialColor = new ShadingColor(axialPattern);
cb.setColorFill(axialColor);
cb.rectangle(144, 608, 72, 72);
cb.fillStroke();
PdfShadingPattern radialPattern = new PdfShadingPattern(radial);
ShadingColor radialColor = new ShadingColor(radialPattern);
cb.setColorFill(radialColor);
cb.rectangle(252, 500, 72, 72);
cb.fillStroke();

To conclude the overview of colors supported in iText, let’s use these colors in an
example with colored paragraphs.

11.1.4 Using color with basic building blocks

Using Color, CMYKColor or GrayColor is easy; you can define these colors with only
one class. With SpotColor, PatternColor, and ShadingColor, more classes are
needed. You created PdfSpotColor, PdfPatternPainter, and PdfShadingPattern
objects when you added direct content, but you need subclasses of ExtendedColor
if you want to use color in basic building blocks.

 Figure 11.3 shows paragraphs created using these special colors. The first
paragraph is painted in a spot color. If you look closely, you’ll recognize the fox

Figure 11.3
Paragraphs painted
with a spot color, a
pattern color, and a
shading color
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

The transparent imaging model 335
and the dog image in the second paragraph. In the third paragraph, the color
varies from orange to blue using the axial shading displayed in figure 11.2.

 Compose the color as you did in the previous sections, and construct a font
object with this color:

/* chapter11/ColoredParagraphs.java */
PdfShading axial = PdfShading.simpleAxial(writer, 36, 716, 396, 788,
 Color.orange, Color.blue);
PdfShadingPattern axialPattern = new PdfShadingPattern(axial);
ShadingColor axialColor = new ShadingColor(axialPattern);
document.add(new Paragraph(
 "This is a paragraph painted using a shading pattern",
 new Font(Font.HELVETICA, 24, Font.BOLD, axialColor)));

I’m sure you can think of many other examples where it’s useful to combine
one of these special colors with basic building blocks. You can, for instance, use
an image pattern to paint a cell; that way, you have a cell with a tiled image as
a background.

 Before we move on, look again at figure 11.2. You filled the first page with
axial shading and then added radial shading. The radial shading overlaps the
axial shading, covering part of it. At first sight, this seems normal; but if you look
at table 3.1, you see that PDF-1.4 introduced a new concept into the PDF specifi-
cation: transparency.

 With the introduction of the transparent imaging model, overlapping content
doesn’t necessarily cover the content below it (“cover” in the sense of making it
disappear). In the next section, you’ll add one shape over the other and learn
how to blend the colors of the different shapes so that all the layers contribute to
what is shown on a page.

11.2 The transparent imaging model

If you think of the graphical objects on a page like a stack similar to the canvases
we talked about in the previous chapter (but more fine-grained), the color at each
point on the page is that of the topmost object by default. You can change this
such that the color at each point is composed using a combination of the color of
the object with the colors below the topmost object (the backdrop), following the
compositing rules defined by the transparency model.

 These rules involve variables such as the blend mode, shape, and opacity. The
blend mode determines how the colors interact; both shape and opacity vary from
0 (no contribution) to 1 (maximum contribution). Shape and opacity can usually
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

336 CHAPTER 11
Adding color and text
be combined into a single value, called alpha, which controls both the color com-
positing computation and the fading between an object and its backdrop.

 Again, I won’t go deeper into the theory, but I’ll explain some concepts using
examples. You’ll learn about transparent groups, isolation and knockout, and soft
masks for images.

11.2.1 Transparency groups

One or more consecutive objects in a stack can be collected into a transparency
group. The group as a whole can have properties that modify the compositing
behavior of objects within the group and their interactions with its backdrop.

 Figure 11.4 shows four identical paths. The background (referred to as the
backdrop) is a square that is half gray, half white. Inside the square, three circles
are painted. The first one is red, the second is blue, and the third is yellow.
Each version of the paths shown in figure 11.4 is filled using a different trans-
parency model.

 Figure 11.4 is a reconstruction of plate 16 in the PDF Reference. The figure is
explained like this (PDF Reference, section 7.1):

In the upper two figures, three colored circles are painted as independent
objects with no grouping. At the upper left, the three objects are painted
opaquely (opacity = 1.0); each object completely replaces its backdrop (includ-
ing previously painted objects) with its own color. At the upper right, the same
three independent objects are painted with an opacity of 0.5 causing them to
composite with each other and with the gray and white backdrop.

The upper-left square and circles show the default behavior; the examples
include two methods, one that draws the backdrop and another that draws
the circles:

/* chapter11/Transparency1.java */
pictureBackdrop(gap, 500, cb);
pictureCircles(gap, 500, cb);

You repeat these two lines four times, but in between you change the graphics
state. This is one of the examples for which you need the PdfGState object. Before
painting the circles of the upper-right square, set the opacity to 0.5 like this:

/* chapter11/Transparency1.java */
PdfGState gs1 = new PdfGState();
gs1.setFillOpacity(0.5f);
cb.setGState(gs1);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

The transparent imaging model 337
The PDF Reference continues:

In the two lower figures, the three objects are combined as a transparency
group. At the lower left, the individual objects have an opacity of 1.0 within the
group, but the group as a whole is painted in the Normal blend mode with an
opacity of 0.5. The objects thus completely overwrite each other within the
group, but the resulting group then composites transparently with the gray and
white backdrop. At the lower right, the objects have an opacity of 0.5 within the
group and thus composite with each other. The group as a whole is painted
against the backdrop with an opacity of 1.0 but in a different blend mode
(HardLight), producing a different visual effect.

Figure 11.4 Transparency groups
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

338 CHAPTER 11
Adding color and text
To group objects, you create a PdfTemplate, draw the circles on this template, and
specify that the objects in this template belong to the same group:

/* chapter11/Transparency1.java */
PdfTemplate tp = cb.createTemplate(200, 200);
pictureCircles(0, 0, tp);
PdfTransparencyGroup group = new PdfTransparencyGroup();
tp.setGroup(group);
cb.setGState(gs1);
cb.addTemplate(tp, gap, 500 - 200 - gap);

For the lower-left square, you change the blend mode. If you want to know what
blend modes are available, look at the static final member variables in the PdfG-
State class (they all have the prefix BM):

/* chapter11/Transparency1.java */
tp = cb.createTemplate(200, 200);
PdfGState gs2 = new PdfGState();
gs2.setFillOpacity(0.5f);
gs2.setBlendMode(PdfGState.BM_SOFTLIGHT);
tp.setGState(gs2);
pictureCircles(0, 0, tp);
tp.setGroup(group);
cb.addTemplate(tp, 200 + 2 * gap, 500 - 200 - gap);

A group can be isolated or nonisolated; it can be knockout or nonknockout. As prom-
ised, we won’t go deeper into the theory, but let’s look at an example.

11.2.2 Isolation and knockout

Figure 11.5 shows four squares filled with a shading pattern. If you run this exam-
ple, you’ll see that the color of the backdrop varies from yellow (left) to red
(right). Four gray circles are added inside the squares (CMYK color C = M = Y =
0 and K = 0.15; opacity = 1.0; blend mode Multiply).

 The code to draw the four squares and their circles is almost identical (similar
to what you did in the previous example); the only difference is the isolation and
knockout mode:

/* chapter11/Transparency2.java */
tp = cb.createTemplate(200, 200);
pictureCircles(0, 0, tp);
group = new PdfTransparencyGroup();
group.setIsolated(true);
group.setKnockout(true);
tp.setGroup(group);

For the two upper squares, the group with the circles is isolated (it doesn’t interact
with the backdrop); for the two lower squares, the group is nonisolated (the
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

The transparent imaging model 339
group composites with the backdrop). For the two squares to the left, knockout is
set to true (they don’t composite with each other); for the two to the right, it’s set
to false (they composite with each other).

 The PdfGState object includes other methods to set the overprint parameter and
overprint mode, such as setOverPrintStroking() (for stroking operations), setOver-
PrintNonStroking() (for other painting operations) and setOverprintMode().
Note that not all devices support overprinting. Let me summarize some of the
definitions listed in section 4.5.6 of the PDF Reference:

 The overprint parameter is “a boolean flag that determines how painting
operations affect colorants other than those explicitly or implicitly specified by
the current colorspace”:

■ If it’s set to true and the output device supports overprinting, “anything
previously painted in other colorants is left undisturbed. Consequently, the
color at a given position may be a combined result of several painting oper-
ations in different colorants.” In a deviceCMK colorspace, this combined

Figure 11.5 Examples of isolation and knockout
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

340 CHAPTER 11
Adding color and text
result depends on the overprint mode. Note that method setOverprint-
Mode() only makes sense when the overprint parameter is true. Possible val-
ues are 0 (zero overprint mode) and 1 (nonzero overprint mode).

■ If it’s set to false, “painting a color in any colorspace causes the corre-
sponding areas of unspecified colorants to be erased. The effect is that
the color at any position on the page is whatever was painted there last,
which is consistent with the normal painting behavior of the Opaque
Imaging Model.”

A lot more can be said about transparency and colors, but that would lead us too far
from the subject of this book. We’ll conclude this section on transparency with an
example that demonstrates the practical use of the transparent imaging model.

11.2.3 Applying a soft mask to an image

In section 5.2.3, you applied a mask to an image. This made part of the image
invisible. Now that you know about transparency, you can also apply a soft mask.
The mask in chapter 5 was used as a hard clipping path. The mask value of a soft
mask at a given point isn’t limited to just 0 or 1 (as in figure 5.11) but can take
intermediate fractional values as well. Figure 11.6 shows an example of an image
to which a soft mask has been applied.

Figure 11.6 Images and transparency: using a soft mask
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Clipping content 341
The source code of this example is similar to the source code from chapter 5:

/* chapter11/Transparency3.java */
Image img =
 Image.getInstance("../../chapter05/resources/foxdog.jpg");
img.setAbsolutePosition(50, 550);
byte gradient[] = new byte[256];
for (int k = 0; k < 256; ++k)
 gradient[k] = (byte)k;
Image smask = Image.getInstance(256, 1, 1, 8, gradient);
smask.makeMask();
img.setImageMask(smask);
writer.getDirectContent().addImage(img);

You use getDirectContent().addImage() instead of document.add(), to make sure
the image is added on top of the text instead of to the graphics layer below the
text layer.

 Another difference from the earlier example is the way you define the mask. I
referred to the example with the mask shown in figure 5.11 as an example of
using a hard clipping path. You defined this clipping path using an image, but it
would be interesting if you could use a clipping path defined using path construc-
tion operators and operands. Let’s try an example with a PDF that is similar to the
one in figure 5.10, but that looks a lot better.

11.3 Clipping content

A question that pops up on the iText mailing list now and then concerns how to
cut an image in pieces—for instance, to spread it over different pages. You can do
this several ways. One way is to add the Image to different PdfTemplate objects
with a smaller size. Figure 11.7 shows the result of doing this to cut the foxdog.jpg
from chapter 5 into four pieces.

 You should already know how this is done; to refresh your memory, here’s a
short code snippet:

/* chapter11/TemplateClip.java */
Image img =
 Image.getInstance("../../chapter05/resources/foxdog.jpg");
float w = img.scaledWidth();
float h = img.scaledHeight();
PdfContentByte cb = writer.getDirectContent();
PdfTemplate t1 = cb.createTemplate(w / 2, h / 2);
t1.addImage(img, w, 0, 0, h, 0, - h / 2);
cb.addTemplate(t1, 36, PageSize.A4.height() - 36 - h / 2);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

342 CHAPTER 11
Adding color and text
What happens with the image in the template is valid for all the objects you add
to the direct content. If you add objects that are outside the boundaries of a
PdfTemplate or a page, these objects are in the PDF, but you won’t necessarily see
them in Adobe Reader.

 This is one way to clip an image (or any other type of content), but a Pdf-
Template is always rectangular. Suppose you want to define a hard clipping path
that has the form of a circle, a rectangle with rounded borders, or even a star, as in
figure 11.8.

 You achieve this result by constructing a path as you did in the previous chap-
ter and define it as a clipping path. You don’t want to fill or stroke this path, so
don’t forget to call newPath() after clip():

/* chapter11/ClippingPath.java */
cb.saveState();
cb.circle(260, 700, 70);
cb.clip();
cb.newPath();
cb.addImage(img, w, 0, 0, h, 36, 620);
cb.restoreState();

Figure 11.7 Clipped image using PdfTemplate
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Clipping content 343
In other words, you change the graphics state so that the canvas is limited to a circle
with a radius of 70 user units. If you add an image to the direct content afterward,
only the part that is inside the clipping path (the head of the fox in figure 11.8) is
visible. The math to make the clipping path and the corresponding content gets
easier if you use PdfTemplate:

/* chapter11/ClippingPath.java */
PdfTemplate tp1 = cb.createTemplate(w, h);
img.setAbsolutePosition(0, 0);
tp1.roundRectangle(0, 0, w, h, 10);
tp1.clip();
tp1.newPath();
tp1.addImage(img);
cb.addTemplate(tp1, 36, 420);

Figure 11.8 Hard clipping paths in different shapes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

344 CHAPTER 11
Adding color and text
In addition to the method clip(), there’s also a method eoClip(). In figure 11.8,
you recognize the stars from the previous chapter. The clipping path for the full
star is defined using the nonzero winding number rule (clip()); the star with the
missing body is defined using the even-odd rule (eoClip()).

 Any graphical shape can be used as a clipping path, including text. You’ll see
how to do so in the next section, which deals with text state.

11.4 PDF’s text state

The text state is a subset of the graphics state. A glyph is a graphical shape and is
subject to all graphical manipulations, such as coordinate transformations, but
PDF also includes some text-specific objects and operators. You encountered
some of them in chapter 2 (see listing 2.2):

BT
36 806 Td
0 -18 Td
/F1 12 Tf
(Hello World)Tj
ET

The part between BT (begin text) and ET (end text) is responsible for putting the
words Hello World on the page. A sequence of operators and operands inside
the BT and ET operator is called a text object.

 First we’ll give you an overview of these text objects. Afterward, you’ll learn
about convenience methods that let you add text to the direct content in a more
programmer-friendly way.

11.4.1 Text objects

Text space is the coordinate system in which text is shown. By default, the text matrix
is the identity matrix (a = c = 1; b = d = e = f = 0), meaning text space and user
space coincide. There are three types of text-specific operators:

■ Text-positioning operators
■ Text-showing operators
■ Text-state operators

Text-showing operators update the text matrix (changing the value of e and f).
Additionally, a text object keeps track of a text-line matrix, which captures the value
of the text matrix at the beginning of a line of text. The text-positioning and text-
showing operators read and set the text-line matrix. The text-rendering matrix is an
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s text state 345
intermediate result that combines the effects of text-state parameters, the text
matrix, and the current transformation matrix.

Text-positioning and text-showing operators
Table 11.1 is based on table 5.5 in the PDF Reference and shows which iText
methods correspond with the different text-positioning operators in PDF.

Notice that the concept of leading is also used when working with the direct
content. The text state is aware of the start of a line and of the space between
the lines.

 Table 11.2 is based on table 5.6 in the PDF Reference.

Table 11.1 PDF text-positioning operators and the corresponding iText methods

Operator iText Method
Operands /
parameters

Description

Td moveText (tx, ty) Moves to the start of the next
line, offset from the start of
the current line by (tx, ty).

TD moveTextWithLeading (tx, ty) The same as Td, but sets the
leading to –ty.

Tm setTextMatrix (e, f)
(a, b, c, d, e, f)

Sets the text matrix and the
text-line matrix. The parame-
ters a, b, c, d, e, and f have
the same meaning as
described in section 10.4.1.

T* newlineText - Moves to the start of the
next line (depending on the
leading).

Table 11.2 PDF text-showing operators and the corresponding iText methods

Operator iText Method Operands / parameters Description

Tj showText (string) Shows a text string.

‘ newlineShowText (string) Moves to the next line, and shows a
text string.

“ newlineShowText (aw, ac, string) Moves to the next line, and shows a
text string using aw as word spacing
and ac as character spacing.

TJ showText (array) Shows one or more text strings,
allowing individual glyph positioning.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

346 CHAPTER 11
Adding color and text
Let’s use these operators in an example. The words AWAY again in figure 11.9
look much like what is shown in figure 5.11 of the PDF Reference.

 Let’s look at the source code that writes these words:

/* chapter11/TextOperators.java */
cb.beginText();
cb.moveText(36, 806);
cb.setFontAndSize(bf, 24);
cb.moveTextWithLeading(0, -36);
cb.showText(text);
cb.newlineText();
PdfTextArray array = new PdfTextArray("A");
array.add(120);
array.add("W");
array.add(120);
array.add("A");
array.add(95);
array.add("Y again");
cb.showText(array);
cb.endText();

In this example, you do the following:

Move to the top of the page.
Move down 36 points (setting the leading).
Show the text.
Move down 36 units.
Create a PDF text array.
Show the text array.

You add the words AWAY again twice: once using the character advance as
described in the font program (see chapter 9), and a second time specifying some
extra glyph-positioning information (in thousandths of a unit). The amount is
subtracted from the current horizontal or vertical coordinate, depending on the
writing mode.

Figure 11.9
Text-positioning and text-showing
operators

 b

 C
 D

 E

 F

 G

 B

 C

 D

 E

 F

 G
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s text state 347
 In the code snippet, you see one method that changes the text state: set-
FontAndSize(); in the next code sample, you’ll see the other text-state operators
in action.

Text-state operators
Table 5.2 of the PDF Reference lists the text-state operators; table 11.3 lists the
corresponding iText methods.

Let’s look at what some of these operators do in a PDF file (see figure 11.10).
 You’ve already added chunks using this functionality to a document in

chapter 4, when we did some Chunk magic, but now you can see how iText
does it internally:

/* chapter11/TextOperators.java */
cb.setWordSpacing(50);
cb.newlineShowText(text);

Table 11.3 PDF text-state operators and the corresponding iText methods

Operator iText Method
Operands /
parameters

Description

Tc setCharacterSpacing (charSpace) Sets the character spacing
(initially 0).

Tw setWordSpacing (wordSpace) Sets the word spacing
(initially 0).

Tz setHorizontalScaling (scale) Sets the horizontal scaling
(initially 100).

TL setLeading (leading) Sets the leading (initially 0).

Tf setFontAndSize (font, size) Sets the text font (a Base-
Font object) and size.

Tr setTextRenderingMode (render) Specifies a rendering mode
(a combination of stroking
and/or filling). By default,
glyphs are filled.

Ts setTextRise (rise) Sets the text rise (initially 0).

TK PdfGState.setTextKnockout (true | false) Determines whether text ele-
ments are considered elemen-
tary objects for purposes of
color compositing in the trans-
parent imaging model.

 B
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

348 CHAPTER 11
Adding color and text
cb.setCharacterSpacing(20);
cb.newlineShowText(text);
cb.setWordSpacing(0);
cb.setCharacterSpacing(0);
cb.setLeading(56);
cb.newlineShowText("Changing the leading: " + text);
cb.setLeading(36);
cb.setHorizontalScaling(50);
cb.newlineShowText(text);
cb.setHorizontalScaling(100);
cb.newlineShowText(text);
cb.setTextRise(15);
cb.setFontAndSize(bf, 12);
cb.setColorFill(Color.red);
cb.showText("2");

First, you change the word spacing b. As you can see, there is more space
between the words AWAY and again than before. Then, you change the character
spacing c; there’s a lot more space between the letters. Do you remember the
character/space ratio you set for table cells with justified content? The two meth-
ods we discussed are used by iText internally to justify a line of text. For the next
line, you increase the leading: There’s more space between the lines d. Next, you
change the scaling to 50 percent e. In the last line, you add a red 2 after chang-
ing the fill color, the font size, and the text rise f.

 In chapter 4, you learned how to change the way text is rendered. Figure 11.11
shows the rendering modes you already knew and adds examples of rendering
modes that can be used for clipping.

 The stroke color of the strings in figure 11.11 is black, and the fill color is
red. In the left column, some extra lines are added, but they’re clipped by the
characters. Table 11.4 shows the rendering modes used. Every row in the table
corresponds with a row in figure 11.11.

Figure 11.10
Text-state operators

 C

 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s text state 349
The code used to write the words in the first column looks like this:

/* chapter11/TextOperators.java */
PdfTemplate tp1 = cb.createTemplate(160, 36);
tp1.beginText();
tp1.setTextRenderingMode(PdfContentByte.TEXT_RENDER_MODE_FILL);
tp1.setFontAndSize(bf, 24);
tp1.moveText(6, -6);
tp1.showText(text);
tp1.endText();
cb.addTemplate(tp1, 36, 240);

The code for the words and lines in the second column looks like this:

/* chapter11/TextOperators.java */
PdfTemplate tp5 = cb.createTemplate(200, 36);
tp5.beginText();
tp5.setTextRenderingMode(PdfContentByte.TEXT_RENDER_MODE_FILL_CLIP);
tp5.setFontAndSize(bf, 24);
tp5.moveText(6, -6);
tp5.showText(text);
tp5.endText();

Table 11.4 Rendering modes used in figure 11.11

PdfContentByte.
TEXT_RENDER_MODE_FILL

PdfContentByte.
TEXT_RENDER_MODE_FILL_CLIP

PdfContentByte.
TEXT_RENDER_MODE_STROKE

PdfContentByte.
TEXT_RENDER_MODE_STROKE_CLIP

PdfContentByte.
TEXT_RENDER_MODE_FILL_STROKE

PdfContentByte.
TEXT_RENDER_MODE_FILL_STROKE_CLIP

PdfContentByte.
TEXT_RENDER_MODE_INVISIBLE

PdfContentByte.
TEXT_RENDER_CLIP

Figure 11.11
Examples of rendering modes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

350 CHAPTER 11
Adding color and text
tp5.setLineWidth(2);
for (int i = 0; i < 6; i ++) {
 tp5.moveTo(0, i * 6 + 3);
 tp5.lineTo(200, i * 6 + 3);
}
tp5.stroke();
cb.addTemplate(tp5, 210, 240);

All the text-state operators (and the corresponding iText methods) in
tables 11.1, 11.2, and 11.3 are useful—for instance, if you want to add text at
an absolute position.

 If you want to rotate text, you have to calculate a value for the text matrix,
defining the transformation. Fortunately you can let iText do the math using one
of its convenience methods.

11.4.2 Convenience methods to position and show text

To add text at an absolute position, you can set the text matrix like this:

/* chapter11/TextMethods.java */
cb.setTextMatrix(50, 700);
cb.showText(text);

The text—you’re still working with the String “AWAY again”—is added starting
from position (X = 50, Y = 700). Suppose you don’t want to start the text at that
coordinate, but you want to center the text at this position. In that case, you must
calculate the effective width of the glyphs “AWAY again” and subtract half of it from
the translation in the X direction. The effective width isn’t necessarily the width
you can retrieve with the BaseFont object (as you did in chapter 8). You may have to
take into account the current text state (scaling, word spacing, and character spac-
ing). You can get this effective width with the method getEffectiveString-
Width(). This method needs a String object, and you also have to say whether you
plan to add the text with showText() (the method you encountered in table 11.2)
or showTextKerned().

 You did some manual kerning when you wrote the word AWAY the second time
as shown in figure 11.10. To kern characters, you reduce (or augment) the char-
acter spacing depending on the sequence of the glyphs. This can be done auto-
matically if the font program contains kerning information (this is a value in
thousandths of a user unit per character pair).

 If you use showTextKerned() and the font allows kerning, iText transforms the
String into a PdfTextArray before adding it. Figure 11.12 shows an unkerned ver-
sion of the text AWAY again Left and a kerned version (see the lower-right corner
of the screenshot).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s text state 351
The text you added after changing the text matrix is in the upper-left corner.
You also see some lines and text that is aligned relative to the intersections of
these lines. Because you want to avoid doing the math and measuring the length
of the Strings, you use the convenience method showTextAligned() (or show-
TextAlignedKerned()):

/* chapter11/TextMethods.java */
cb.showTextAligned(PdfContentByte.ALIGN_CENTER,
 text + " Center", 250, 650, 0);
cb.showTextAligned(PdfContentByte.ALIGN_RIGHT,
 text + " Right", 250, 600, 0);
cb.showTextAligned(PdfContentByte.ALIGN_LEFT,
 text + " Left", 250, 550, 0);
cb.showTextAlignedKerned(PdfContentByte.ALIGN_LEFT,
 text + " Left", 250, 532, 0);

First you define the alignment (ALIGN_CENTER, ALIGN_RIGHT, or ALIGN_LEFT), and
then you pass the String you want to add, followed by the coordinate (the trans-
lation values e and f). With the final parameter, you define the angle.
To rotate text, you can change the text matrix like this:

Figure 11.12 Aligning text
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

352 CHAPTER 11
Adding color and text
/* chapter11/TextMethods.java */
cb.setTextMatrix(0, 1, -1, 0, 100, 200);
cb.showText("Text at position 100,200, rotated 90 degrees.");

Figure 11.13 shows how this text is added. Defining the text matrix to write the
text that is next to this line is more complex, unless you use showTextAligned().

 As you can see in the following code snippet, it’s simple to draw the flowerlike
words in the PDF shown in figure 11.13:

/* chapter11/TextMethods.java */
for (int i = 0; i < 360; i += 30) {
 cb.showTextAligned(PdfContentByte.ALIGN_LEFT, text, 200, 300, i);
}

To add a line of text at an absolute position, you can use the iText methods that
are a direct translation of the text-positioning and text-showing operators to PDF;
but in most cases, it’s easier to use the method showTextAligned(). Of course,
there are always caveats.

Figure 11.13 Rotating text
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

The map of Foobar (part 2) 353
Caveats
One of the most common newbie problems leads to specific error messages given
by Adobe Reader: for instance, Illegal Operation ‘Td’ outside text object or Illegal oper-
ation ‘re’ inside text object. These errors are caused by using a text operation outside
a block that begins with BT (begin text) and ends with ET (end text), or by using a
path construction operator inside such a text block.

 When you use iText’s basic building blocks, you won’t encounter problems
like this; iText takes care of everything. But when you write to the direct con-
tent, you’re responsible for constructing the correct syntax. If you don’t, no
exception will be thrown at compile time (and not even at runtime), but the
resulting PDF will be corrupt. If you forget to begin and/or end the text, iText
can’t throw an exception. In short, if you want to produce PDF with iText’s low-
level methods, you’re responsible for writing code that makes sense.

 You’ll see some practical examples where you need to add text at absolute
positions as soon as we discuss page events. For now, we’ve kept Laura waiting
long; let’s enhance the SVG parsing capabilities so that you can add street names
to the map of Foobar.

11.5 The map of Foobar (part 2)

In the previous chapter, you drew a map (see figure 10.18) based on an SVG file
(see figure 10.17); but at that point, you only knew how to construct and paint
lines and shapes. Now that you’ve learned how to add text, you can insert the
street names.

 Laura has made you an additional SVG file with path definitions and text tags
referring to these paths. For instance:

<defs>
 <path id="s08" d="M 4487 7033 L 4720 7788" />
</defs>
<text font-size="80">
 <textPath xlink:href="#s08">Paulo Soares Way</textPath>
</text>

In the text tag, you recognize the name of a street. There’s also a textPath tag
that refers to a path with coordinates. The text is drawn along this path, as you
can see in figure 11.14.

 You reuse the FoobarSvgHandler class from chapter 10 to draw the map to a
PdfTemplate, but you write an extra FoobarSvgTextHandler to construct a Map
with all the necessary parameters to write the text to the direct content at the
correct positions:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

354 CHAPTER 11
Adding color and text
/* chapter11/FoobarCityStreets.java */
FoobarSvgHandler handler =
 new FoobarSvgHandler(writer,
 new InputSource(new FileInputStream(
 "../../chapter10/resources/foobarcity.svg")));
PdfTemplate template = handler.getTemplate();
FoobarSvgTextHandler text =
 new FoobarSvgTextHandler(new InputSource(
 new FileInputStream("../resources/streets.svg")));
Map streets = text.getStreets();
FoobarSvgTextHandler.Street street;
BaseFont bf = BaseFont.createFont(
 BaseFont.HELVETICA, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
template.beginText();
for (Iterator i = streets.keySet().iterator(); i.hasNext();) {
 street = (FoobarSvgTextHandler.Street) streets.get(i.next());
 template.setFontAndSize(bf, street.fontsize);
 template.showTextAligned(PdfTemplate.ALIGN_LEFT,
 street.name, street.x, street.y, street.alpha);
}
template.endText();

Figure 11.14 The map of Foobar with street names
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 355
You can look at the FoobarSvgTextHandler code if you want to, but you’ll immedi-
ately notice that a lot of SVG functionality is missing. You started writing an SVG
parser against your better judgment, and that wasn’t smart. It would have been
better to first look for an existing library that can parse SVG. Apache Batik is such
a library: It can write the content to a Graphics2D object. The only thing you have
to find out is how to fit this library into iText, so that it writes SVG content to a PDF
file. That’s what we’ll do in the next chapter.

11.6 Summary

In this chapter, we continued exploring PDF’s graphics state. The previous chap-
ter mainly discussed constructing and painting paths, but you didn’t use a lot of
paint. This changed drastically in the first sections of this chapter. You learned
how to construct and apply colors; and with your newly acquired knowledge, you
refined some of the functionality you encountered in the chapter about images.

 The second part of this chapter dealt with a subset of the graphics state: text
state. You learned about the iText mechanics that render basic building blocks
and how you can use this functionality directly—for instance, to add a street name
on a map.

 This wasn’t an easy chapter in the sense that I skipped some of the technical
details. For example, if you want to apply a specific type of shading, you’ll have to
look at the PDF Reference.

 In the next chapter, you’ll rewrite the code that generates the map of Foobar;
this time, you’ll let the cobbler stick to his last. More specifically, you’ll use
Apache Batik to parse the SVG and iText to produce the PDF.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Drawing to Java
Graphics2D
This chapter covers
■ iText and Java’s Graphics2D
■ java.awt.font vs. com.lowagie.text.Font
■ Swing components and PDF
■ PDF and Optional Content
356

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Obtaining a Java.awt.Graphics2D instance 357
In the two previous chapters, we’ve been discussing methods to draw graphics
and text using iText’s direct content object PdfContentByte. You may have rec-
ognized some of the examples from other books on SVG, PostScript, or Java
graphics. For instance, all the graphical shapes you drew in chapter 10 also
exist in the standard Java Developer Kit (JDK): The package java.awt.geom has
objects such as Rectangle2D, Ellipse2D, CubicCurve2D, and so on.

 Maybe you’re already familiar with these objects. If that is the case, you can use
iText as a PDF engine for all your Graphics2D requirements. We’ll start adapting a
simple example from Sun’s tutorial on AWT so that it produces PDF. You’ll learn
how you can integrate iText in Swing applications, and you’ll use external librar-
ies to draw charts and a better version of the map of Foobar.

 Before you can draw this map, you’ll learn about an aspect of the graph-
ics state that was omitted in the previous chapters: optional content. But first
things first: Let’s start by getting a Graphics2D instance that can be used to
generate PDF.

12.1 Obtaining a Java.awt.Graphics2D instance

The Java API says that java.awt.Graphics is “the abstract base class for all graph-
ics contexts that allow an application to draw onto components that are realized
on various devices, as well as onto off-screen images.”

 In the JSDK, the abstract class java.awt.Graphics2D extends java.awt.-
Graphics. Sun’s description of the Graphics2D object matches exactly what you
did using PDF syntax in the previous two chapters; its purpose is “to provide
more sophisticated control over geometry, coordinate transformations, color
management, and text layout. This is the fundamental class for rendering
two-dimensional shapes, text and images on the Java platform.”

 In the previous chapters, you grabbed a PdfContentByte object to add graph-
ical content and text, to perform transformations, and so on. Wouldn’t it be nice if
you could also grab a special implementation of the abstract Graphics2D class?
I’m thinking of a Graphics2D object that doesn’t draw graphics onto Java compo-
nents or to off-screen images, but that produces PDF instead. This is possible with
only a handful of extra lines in your code.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

358 CHAPTER 12
Drawing to Java Graphics2D
12.1.1 A simple example from Sun’s tutorial

In iText’s com.lowagie.text.pdf package, you’ll find the object PdfGraphics2D
and its subclass PdfPrinterGraphics2D. PdfGraphics2D extends java.awt.-

Graphics2D. PdfPrinterGraphics2D implements the java.awt.print.Printer-
Graphics interface.

 In these objects, most of the standard Graphics2D methods are implemented
so that they produce PDF. For instance, the implementation of the abstract Java
method drawstring() uses some of the methods discussed in the previous chap-
ter: beginText(), showText(), and endText().

 In other words, all the Java methods are translated to a sequence of iText
methods. Having the “fundamental class for rendering 2-dimensional shapes,
text and images on the Java platform” produce PDF makes it easy for you to inte-
grate iText into your existing applications.

NOTE What’s the most important feature in iText? In chapter 6, I told you there
can be different answers to the question about the primary goal of iText,
depending on the way you intend to use iText. The table functionality is
the most important functionality in my projects, but other people say
that PdfGraphics2D is the most important class in iText. It will soon
become clear why.

Let’s look at Sun’s tutorial on 2D graphics first:

The 2D Graphics tutorial trail
At java.sun.com, a Tutorials link appears in the Resources category. Choose the
Java Tutorial, and you’ll find a link to 2D Graphics under Specialized Trails and
Lessons. Browse the pages of this tutorial; many words should sound familiar
after reading the previous chapters—stroking, filling, transforming, clipping,
and so on.

 The second chapter of this trail (“Displaying Graphics with Graphics2D”)
includes a section titled “Constructing Complex Shapes from Geometry Primi-
tives.” This section has an interesting example called Pear.java; you can use it
to construct a pear shape from several ellipses, as shown in figure 12.1.

 Now comes the amazing part: You can render this shape to PDF by pasting
the code from this tutorial example into your iText examples. The original
example extends JApplet. You copy the init() and paint() methods and make
slight changes:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Obtaining a Java.awt.Graphics2D instance 359
/* chapter12/SunTutorialExample.java */
Ellipse2D.Double circle, oval, leaf, stem;
Area circ, ov, leaf1, leaf2, st1, st2;
public void init() {
 circle = new Ellipse2D.Double();
 oval = new Ellipse2D.Double();
 leaf = new Ellipse2D.Double();
 stem = new Ellipse2D.Double();
 circ = new Area(circle);
 ov = new Area(oval);
 leaf1 = new Area(leaf);
 leaf2 = new Area(leaf);
 st1 = new Area(stem);
 st2 = new Area(stem);
 // setBackground(Color.white);
}
public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;
 // Dimension d = getSize();
 // int w = d.width;
 // int h = d.height;
 double ew = w/2;
 double eh = h/2;

Figure 12.1
Sun’s 2D Graphics example
rendered in PDF

 B

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

360 CHAPTER 12
Drawing to Java Graphics2D
 g2.setColor(Color.green);
 leaf.setFrame(ew-16, eh-29, 15.0, 15.0);
 leaf1 = new Area(leaf);
 leaf.setFrame(ew-14, eh-47, 30.0, 30.0);
 leaf2 = new Area(leaf);
 leaf1.intersect(leaf2);
 g2.fill(leaf1);
 leaf.setFrame(ew+1, eh-29, 15.0, 15.0);
 leaf1 = new Area(leaf);
 leaf2.intersect(leaf1);
 g2.fill(leaf2);
 g2.setColor(Color.black);
 stem.setFrame(ew, eh-42, 40.0, 40.0);
 st1 = new Area(stem);
 stem.setFrame(ew+3, eh-47, 50.0, 50.0);
 st2 = new Area(stem);
 st1.subtract(st2);
 g2.fill(st1);
 g2.setColor(Color.yellow);
 circle.setFrame(ew-25, eh, 50.0, 50.0);
 oval.setFrame(ew-19, eh-20, 40.0, 70.0);
 circ = new Area(circle);
 ov = new Area(oval);
 circ.add(ov);
 g2.fill(circ);
}

You first specify the shapes needed to draw a pear b and initialize the Ellipse2D
and Area objects c. The only difference between the init() method and the
original example is that you don’t set the background color d. In the original
paint() method, you remove the lines that define the width and height E;
instead, you declare the w and h as member variables so you can use them to
define the page size of the PDF document. Just like in the original example, you
draw the green leaves F, the black stem G, and the yellow pear body H.

 Compare the previous code snippet with the original code in Sun’s tutorial;
the differences are minimal. You haven’t yet used any iText-specific code.

Integrating iText into this example
When you create the SunTutorialExample object, you initialize the values of the
member variables w and h. You also call the init() method you inherited from
the original applet example:

/* chapter12/SunTutorialExample.java */
public SunTutorialExample() {
 w = 150;

 F

 G

 H
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Obtaining a Java.awt.Graphics2D instance 361
 h = 150;
 init();
}

After creating an instance of this object, you invoke your custom method
createPdf(). This is the only iText-specific code in this example:

/* chapter12/SunTutorialExample.java */
public void createPdf() {
 Document document = new Document(new Rectangle(w, h));
 try {
 PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("sun_tutorial.pdf"));
 document.open();
 PdfContentByte cb = writer.getDirectContent();
 Graphics2D g2 = cb.createGraphics(w, h);
 paint(g2);
 g2.dispose();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 }
 document.close();
}

If you have an existing application that draws shapes to a Graphics2D object (for
instance, to a component used in your GUI), you can use this code snippet to add
these shapes to a PDF file. The object returned by the createGraphics() method is
an instance of PdfGraphics2D, but this shouldn’t matter. Your applications will see
it as an instance of the standard Java classes Graphics or Graphics2D.

 You must admit that this is really simple. It would be surprising if there weren’t
any caveats:

■ Don’t forget to call the dispose() method once you finish drawing to the
Graphics2D object; otherwise, nothing will be added to the direct content.

■ The coordinate system in Java’s Graphics2D is different from the default
coordinate system in PDF’s graphics state. The tutorial trail on 2D Graphics
says, “the origin of user space is the upper-left corner of the component’s
drawing area. The x coordinate increases to the right and the y coordinate
increases downward.”

■ Java works in standard Red-Green-Blue (sRGB) as the default color space
internally, so colors need to be translated. Anything with four colors is
assumed to be ARGB when it’s probably CMYK. (ARGB includes the RGB
components plus an alpha transparency factor that specifies what happens
when one color is drawn over another.)

Create Graphics2D
instance

Call original
paint method DO NOT FORGET

THIS LINE!
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

362 CHAPTER 12
Drawing to Java Graphics2D
■ Watch out when using fonts. There is a big difference between the font
classes java.awt.Font and com.lowagie.text.Font.

The next section elaborates on the use of fonts. We’ll add some text with the
Graphics2D drawString() method as shown in figure 12.2.

12.1.2 Mapping AWT fonts to PDF fonts

One way to deal with the difference between the way fonts are handled in AWT
and fonts in PDF is to create the PdfGraphics2D object using an instance of the
FontMapper interface. This font mapper interface has only two methods:

public com.lowagie.text.pdf.BaseFont awtToPdf(java.awt.Font font);
public java.awt.Font pdfToAwt(
 com.lowagie.text.pdf.BaseFont font, int size);

I use the fully quantified class names here so that nobody confuses the AWT class
Font with iText’s Font class. There isn’t an exact correlation between fonts in Java
and fonts in PDF, so each application can define the appropriate mapping.

 There is a default font mapper class called DefaultFontMapper. By default, it
maps some font names to the standard Type 1 fonts:

■ DialogInput, Monospaced, and Courier are mapped to a font from the
Courier family.

■ Serif and TimesRoman are mapped to a font from the Times-Roman family.
■ Dialog and SansSerif are mapped to a font from the Helvetica family (this

is also the default).

Figure 12.2 Sun’s tutorial example with extra text
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Obtaining a Java.awt.Graphics2D instance 363
If you need more fonts, you can add font directories to the mapper with the
method insertDirectory(). Let’s extend the previous example and override
the createPdf() method so that text is added using the font Garamond.

 This example creates the Graphics2D instance from a PdfTemplate object
instead of creating it from the direct content. This allows you to add the graphics
canvas at a specific position on the page:

/* chapter12/SunTutorialExampleWithText.java */
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(w, h);
DefaultFontMapper mapper = new DefaultFontMapper();
mapper.insertDirectory("c:/windows/fonts");
String name;
Map map = mapper.getMapper();
for (Iterator i = map.keySet().iterator(); i.hasNext();) {
 name = (String)i.next();
 System.out.println(name + ": "
 + ((DefaultFontMapper.BaseFontParameters)map.get(name)).fontName);
}
Graphics2D g2 = tp.createGraphics(w, h, mapper);
paint(g2);
g2.setColor(Color.black);
java.awt.Font thisFont =
 new java.awt.Font("Garamond", java.awt.Font.PLAIN, 18);
g2.setFont(thisFont);
String pear = "Pear";
FontMetrics metrics = g2.getFontMetrics();
int width = metrics.stringWidth(pear);
g2.drawString(pear, (w - width) / 2, 20);
g2.dispose();

You first create a PdfTemplate with dimensions w x h b. Next, you create a font
mapper instance C and print the list of mapped fonts D. Then, create a
Graphics2D object E and a Java Font object F. G shows the Java metrics, and H
draws the string.

 In this code sample, the list of font names that are registered in the mapper is
written to the output of the console. In addition to getMapper(), there’s a method
getAliases() that returns all the names that can be used to create the Java AWT
Font object. This includes the name of the font in different languages, provided
the translations are present in the font file. You can also add your own aliases with
the method putAlias().

 In this example, you get the java.awt.FontMetrics so that you can calculate
the width of the text when rendered to the Graphics2D. This is the width accord-
ing to Java. In most cases, you won’t notice any difference; but when you need
special fonts, you’ll find that the metrics in Java don’t always correspond with the

 B

 C

 D

 E

 F

 G

 H
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

364 CHAPTER 12
Drawing to Java Graphics2D
metrics according to PDF. In the next section, you’ll learn to deal with this prob-
lem by obtaining a Graphics2D instance using createGraphicsShapes().

 DefaultFontMapper works for the most common examples; it uses CP1252 as
default encoding. If you need another encoding, you have to write your own
implementation of the FontMapper interface. The class AsianFontMapper in iText
extends the DefaultFontMapper and lets you define a default font and encoding.
For instance, the PDF in figure 12.3 was created using Java’s Graphics2D and a
CJK font.

There’s something strange about the code used to create this example:

/* chapter12/JapaneseExample1.java */
String text = "\u5e73\u548C";
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(100, 50);
AsianFontMapper mapper =
 new AsianFontMapper(
 AsianFontMapper.JapaneseFont_Min,
 AsianFontMapper.JapaneseEncoding_H);
Graphics2D g2 = tp.createGraphics(100, 50, mapper);
java.awt.Font font =
 new java.awt.Font("Arial Unicode MS", java.awt.Font.PLAIN, 12);
g2.setFont(font);
g2.drawString(text, 0, 40);
g2.dispose();
cb.addTemplate(tp, 36, 780);

The code creates an AWT font using the name Arial Unicode MS. But if you look
at figure 12.3, you see that a different font was used. This is normal behavior. The
font mapper can’t find a reference to the font file arialuni.ttf that contains the
glyphs of Arial Unicode, so the mapper uses its default font and encoding. You

Figure 12.3 A String drawn with a Graphics2D method using a CJK font
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Obtaining a Java.awt.Graphics2D instance 365
define these defaults in the AsianFontMapper constructor: JapaneseFont_Min (cor-
responding with HeiseiMin-W3) and JapaneseEncoding_H (UniJIS-UCS2-H).

NOTE This AsianFontMapper class contains static String values correspond-
ing with CJK fonts. Its name refers to Asian fonts, but you can pass any
font name (or any path to a font file) and any encoding with the con-
structor. As soon as a font is used that isn’t found in the font map or in
the aliases, the method awtToPdf() returns a BaseFont object that is
created with the first String used to construct this special FontMapper
instance as font name, and with the second String as an encoding value.

One of the most obvious problems when using this approach lies with the font
metrics. As far as the Java part is concerned, the font Arial Unicode MS is used in
this example, and all the metrics are based on this assumption. In reality, a CJK
font is used. If the Java font metrics differ from the PDF font metrics, you’ll run
into problems.

 Let’s consider another approach: You can drop the PDF font part, and let the
Java code draw the shapes of the glyphs onto the Graphics2D canvas instead of
using fonts.

12.1.3 Drawing glyph shapes instead of using a PDF font

If you create a PdfGraphics2D object using the method createGraphicsShapes()
instead of createGraphics(), you don’t need to map any fonts. The JSDK includes
the object java.awt.font.TextLayout, which uses a font program to draw the
glyphs to the Graphics2D object. This is what happened in figure 12.4.

 There’s a significant difference between this approach and using FontMapper.
When you look at figure 12.4, you see that although the same Java font was used
for both examples, there was definitely another font used in the PDF. In the

Figure 12.4 Drawing the shapes of the glyphs to a Graphics2D object
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

366 CHAPTER 12
Drawing to Java Graphics2D
screenshot, the Fonts tab in the Document Properties window of Adobe Reader is
empty. What happened?

 Compare the following code snippet with the previous sample:

/* chapter12/JapaneseExample2.java */
String text = "\u5e73\u548C";
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(100, 50);
Graphics2D g2 = tp.createGraphicsShapes(100, 50);
java.awt.Font font =
 new java.awt.Font("Arial Unicode MS", java.awt.Font.PLAIN, 12);
g2.setFont(font);
g2.drawString(text, 0, 40);
g2.dispose();
cb.addTemplate(tp, 36, 780);

Because this example uses the method createGraphicsShapes() instead of create-
Graphics(), the glyphs are painted on the canvas using PDF operators and oper-
ands as discussed in chapter 10, not using text state operators as discussed in
chapter 11. As far as the PDF document is concerned, there is no text in this PDF—
just shapes!

NOTE Adobe Reader’s Basic toolbar includes a Select button that you can use
to select characters in a PDF document—for instance, if you want to
copy and paste words or sentences. You can copy and paste the Japa-
nese word for peace in the first example, but it’s impossible to select
the same word in the second example: It isn’t recognized as text, it’s
just some paths that have been filled.

The fact that paths are drawn with pure graphics state operators instead of show-
ing characters using text state operators has advantages and disadvantages. If you
plan to add a lot of text this way, file size may be an issue because the glyph descrip-
tions aren’t reused as is the case if you use a font. The same goes for performance.

 The fact that people can’t copy or paste words, and that only tools that use
Optical Character Recognition (OCR) can extract text from the PDF, can be
advantages or a disadvantages depending on your point of view.

 There are also advantages inherent in the way Java’s TextLayout class works.
Sun’s API documentation indicates that this class provides a lot of extra capabili-
ties. In the context of this book, we’re especially interested in the feature “implicit
bidirectional analysis and reordering.”

 You probably remember that we dealt with diacritics, ligatures, and bidirec-
tional writing in chapter 9. You saw that iText can write Hebrew and Arabic from
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Obtaining a Java.awt.Graphics2D instance 367
right to left, and an example mixed content that was written in two directions. But
there were languages with problems you couldn’t tackle: for instance, the diacrit-
ics in the Thai example and the ligatures in Hindi. For the moment, iText sup-
ports the generation of PDFs using Indic fonts, but iText isn’t able to deal with
diacritics and ligatures.

 You can work around this problem by letting Java’s TextLayout class do the
work. Figure 12.5 clearly shows how iText fails to write the word Peace in Hindi but
succeeds in rendering it correctly when using Graphics2D.

 The same String is used for both lines shown in the screenshot. I don’t
understand Hindi, but I’m told that the glyph order is wrong in the first line
and correct in the second line. The difference is that iText shows the glyphs
using the characters order in the String, whereas Java’s TextLayout() method
reorders the characters and makes ligatures before painting the glyphs on the
canvas. Here’s the example code:

/* chapter12/HindiExample.java */
String text = "\u0936\u093e\u0902\u0924\u093f";
BaseFont bf = BaseFont.createFont("c:/windows/fonts/arialuni.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
document.add(new Paragraph(
 "Pure iText: " + text, new com.lowagie.text.Font(bf, 12)));
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(100, 50);
Graphics2D g2 = tp.createGraphicsShapes(100, 50);
java.awt.Font font = new java.awt.Font(
 "Arial Unicode MS", java.awt.Font.PLAIN, 12);
g2.setFont(font);
g2.drawString("Graphics2D: " + text, 0, 40);
g2.dispose();
cb.addTemplate(tp, 36, 750);

Figure 12.5
Comparing the way ligatures are
(or aren’t) made in iText and
Graphics2D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

368 CHAPTER 12
Drawing to Java Graphics2D
If you add an image to a Graphics2D object, the Java code does something similar
to what is described in chapter 5: The image is analyzed to find out the image
type, and the image data is parsed with the appropriate image class in the JDK.
Note that these classes are different from the ones used by iText.

 The two types of methods to create a PdfGraphics2D object—createGraphics()

and createGraphicsShapes()—also exist with two extra parameters: convert-
ImagesToJPEG and quality. You use these parameters to tell Java that it should
convert the images to a JPEG. This can be an interesting way to reduce the size of
your PDF documents. The price you have to pay depends on the quality of this
conversion. This is similar to what you saw in section 5.2, when you created a
com.lowagie.text.Image object using a java.awt.Image object.

 Now that you know the meaning of all the parameters and the methods to
obtain a Graphics2D object from iText, let’s look at real-world situations where you
can take advantage of the power of iText and Java two-dimensional graphics.

12.2 Two-dimensional graphics in the real world

The fact that you can use iText to translate Graphics2D methods to graphics
state operations has many interesting implications. If you’re writing Swing
applications, you can benefit from iText’s Graphics2D functionality. I could
rewrite the previous chapters from the point of view of the Java Swing devel-
oper. Do you remember chapter 6, about tables? To construct a table, you chose
one of the table objects available in iText; but why not use a JTable? The same
goes for the text objects in chapter 4. Why not use standard Java text objects?

 Using the PdfGraphics2D object, you can export any Swing component to PDF.

12.2.1 Exporting Swing components to PDF

Suppose you’ve written an application with a GUI using Swing components such
as JTable or JTextPane. All these components are derived from the abstract class
javax.swing.JComponent. JComponent has methods that are of interest in the con-
text of this chapter. One of them is print(Graphics g): You can use this method to
let the Swing component print itself to your PdfGraphics2D object.

 Figure 12.6 shows a simple Java application with a JFrame. It contains a JTable
found in Sun’s Java tutorial on Swing components. If you click the first button, the
contents of the table are added to a PDF using createGraphicsShapes() (the upper
PDF in the screenshot). If you click the second button, the table is added using
createGraphics() (the lower PDF, using the standard Type 1 font Helvetica).
Notice the subtle differences between the fonts used for both variants.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Two-dimensional graphics in the real world 369
If you run this example, try changing the content of the JTable; the changes are
reflected in the PDF. If you select a row, the background of the row is shown in a
different color in the Java applications as well as in the PDF.

 The code to achieve this is amazingly simple:

/* chapter12/MyJTable.java */
public void createPdf(boolean shapes) {
 Document document = new Document();
 try {
 PdfWriter writer;
 if (shapes)
 writer = PdfWriter.getInstance(document,
 new FileOutputStream("my_jtable_shapes.pdf"));
 else
 writer = PdfWriter.getInstance(document,
 new FileOutputStream("my_jtable_fonts.pdf"));
 document.open();
 PdfContentByte cb = writer.getDirectContent();
 PdfTemplate tp = cb.createTemplate(500, 500);
 Graphics2D g2;
 if (shapes)
 g2 = tp.createGraphicsShapes(500, 500);
 else
 g2 = tp.createGraphics(500, 500);
 table.print(g2);
 g2.dispose();
 cb.addTemplate(tp, 30, 300);
 } catch (Exception e) {

Figure 12.6 A Swing application with a JTable that is printed to PDF two different ways
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

370 CHAPTER 12
Drawing to Java Graphics2D
 System.err.println(e.getMessage());
 }
 document.close();
}

The next example was posted to the iText mailing list by Bill Ensley (bearprint-
ing.com), one of the more experienced iText users on the mailing list. It’s a sim-
ple text editor that allows you to write text in a JTextPane and print it to PDF.
Figure 12.7 shows this application in action.

The code is a bit more complex than the JTable example. This example performs
an affine transformation before the content of the JTextPane is painted. You
already learned about these transformations in section 10.4.1:

/* chapter12/JTextPaneToPdf.java */
Graphics2D g2 = cb.createGraphics(612, 792, mapper, true, .95f);
AffineTransform at = new AffineTransform();
at.translate(convertToPixels(20), convertToPixels(20));
at.scale(pixelToPoint, pixelToPoint);
g2.transform(at);
g2.setColor(Color.WHITE);
g2.fill(ta.getBounds());
Rectangle alloc = getVisibleEditorRect(ta);
ta.getUI().getRootView(ta).paint(g2, alloc);

Figure 12.7 A simple editor with a JTextPane that is drawn onto a PDF file

Define
transformations

Fill white
rectangle

Paint JTextPane
to PDF
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Two-dimensional graphics in the real world 371
g2.setColor(Color.BLACK);
g2.draw(ta.getBounds());
g2.dispose();

Numerous applications use iText this way. Let me pick two examples; one Free/
Open Source Software (FOSS) product and one proprietary product:

■ JasperReports, a free Java reporting tool from JasperSoft (jaspersoft.com),
allows you to deliver content onto the screen; to the printer; or into PDF,
HTML, XLS, CSV, and XML files. If you choose to generate PDF, iText’s
PdfGraphics2D object is used behind the scenes.

■ ICEbrowser is a product from ICEsoft (icesoft.com). ICEbrowser parses and
lays out advanced web content (XML/HTML/CSS/JS); PDF is generated by
rendering the parsed documents to the PdfGraphics2D object.

It’s not my intention to make a complete list of products that use iText. The main
purpose of these two examples is to answer the following question.

FAQ Can I build iText into my commercial product? Lots of people think open
source is the opposite of commercial, but that’s a misunderstanding. It’s
not because iText is FOSS that it can only be used in other free products.
It’s not because iText is free that it isn’t a “commercial” product. As long
as you respect the license, you can use iText in your closed-source or
proprietary software.

Another useful aspect of iText’s Graphics2D functionality is that it opens the door
to using iText in combination with other libraries with graphical output—for
instance, Apache Batik, a library that is able to parse SVG; or JFreeChart, a library
that will be introduced in the next section.

12.2.2 Drawing charts with JFreeChart

This isn’t one of Laura’s assignments, but as a bonus you’ll help her make
charts showing demographic information. You’ll take the student population
of the Technological University of Foobar and graph the number of students
per continent.

 To make these charts, you’ll combine iText with JFreeChart, an interesting
library developed by David Gilbert and Thomas Morgner. The web site jfree.org
explains that JFreeChart is “a free Java class library for generating charts, includ-
ing pie charts (2D and 3D), bar charts (regular and stacked, with an optional 3D
effect), line and area charts, scatter plots and bubble charts, time series, high/low/

Draw black
border
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

372 CHAPTER 12
Drawing to Java Graphics2D
open/close charts and candle stick charts, combination charts, Pareto charts,
Gantt charts, wind plots, meter charts and symbol charts, and wafer map charts.”
(I won’t go into the details of the JFreeChart library. David Gilbert’s “The JFree-
Chart Developer Guide” can be purchased on the jfree.org web site.)

 These charts can be rendered on an AWT or Swing component, they can be
exported to JPEG or PNG, and you can combine JFreeChart with Apache Batik to
produce SVG or with iText to produce PDF.

 Figure 12.8 shows PDFs with a pie chart and a bar chart created using JFree-
Chart and iText.

 In JFreeChart, you construct a JFreeChart object using the ChartFactory. One
of the parameters passed to one of the methods to create the chart is a dataset
object. The code to create the charts shown in figure 12.8 is simple:

/* chapter12/FoobarCharts.java */
public static JFreeChart getBarChart() {
 DefaultCategoryDataset dataset = new DefaultCategoryDataset();
 dataset.setValue(57, "students", "Asia");
 dataset.setValue(36, "students", "Africa");
 dataset.setValue(29, "students", "S-America");
 dataset.setValue(17, "students", "N-America");
 dataset.setValue(12, "students", "Australia");

Figure 12.8 Foobar statistics represented in a pie chart and a bar chart
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Two-dimensional graphics in the real world 373
 return ChartFactory.createBarChart("T.U.F. Students",
 "continent", "number of students", dataset,
 PlotOrientation.VERTICAL, false, true, false);
}
public static JFreeChart getPieChart() {
 DefaultPieDataset dataset = new DefaultPieDataset();
 dataset.setValue("Europe", 302);
 dataset.setValue("Asia", 57);
 dataset.setValue("Africa", 17);
 dataset.setValue("S-America", 29);
 dataset.setValue("N-America", 17);
 dataset.setValue("Australia", 12);
 return ChartFactory.createPieChart("Students per continent",
 dataset, true, true, false);
}

The previous code snippet creates two JFreeChart objects. The following code
snippet shows how to create a PDF file per chart:

/* chapter12/FoobarCharts.java */
public static void convertToPdf(JFreeChart chart,
 int width, int height, String filename) {
 Document document = new Document(new Rectangle(width, height));
 try {
 PdfWriter writer;
 writer = PdfWriter.getInstance(document,
 new FileOutputStream(filename));
 document.open();
 PdfContentByte cb = writer.getDirectContent();
 PdfTemplate tp = cb.createTemplate(width, height);
 Graphics2D g2d = tp.createGraphics(width, height,
 new DefaultFontMapper());
 Rectangle2D r2d = new Rectangle2D.Double(0, 0, width, height);
 chart.draw(g2d, r2d);
 g2d.dispose();
 cb.addTemplate(tp, 0, 0);
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 document.close();
}

The chart is drawn on a PdfTemplate. This object can easily be wrapped in an
iText Image object if you want to add it to the PDF with document.add().

 This was a nice Foobar interlude. Before you can continue and create a new
version of the map of Foobar, you need to learn about optional content.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

374 CHAPTER 12
Drawing to Java Graphics2D
12.3 PDF’s optional content

All the content you’ve added to documents until now was either visible or invisi-
ble—for instance, because it was clipped or because the rendering was set to invis-
ible. Beginning with PDF-1.5, you can also add optional content to a document; it
can be selectively viewed or hidden by document authors or consumers.

 In this section, you’ll learn more about these optional content layers. You’ll
organize them in different structures and define different properties for each
layer. You’ll learn how to define actions to change the state of a layer and dis-
cover some convenient methods to add a PdfTemplate or Image object to a
layer. The simplest way to turn a layer on or off is using the Layers panel in
Adobe Reader.

12.3.1 Making content visible or invisible

Graphics that can be made visible/invisible dynamically are grouped in optional
content groups. Content that belongs to a certain group is visible when the group
is on and invisible when the group is off. In iText, such groups are called layers.
You can create a PdfLayer object; when adding content to a PdfContentByte
object, you can specify in which layer (or content group) the content should be
shown (or hidden).

 Figure 12.9 shows a simple example of a PDF with optional content.
 In the example, the Layers tab in Adobe Reader shows one layer or optional

content group with the title “Do you see me?” If you see an eye in the check box
preceding the title of the content group, the status of the layer is on; everything in
the content group is visible. You can change the status to off by clicking the eye.
Figure 12.10 shows what happens if you change the status in this example.

Figure 12.9 PDF document with optional content (visible)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s optional content 375
The text Peek-a-Boo!!! has disappeared, because this word was added as optional
content. Here’s how it’s done:

/* chapter11/PeekABoo.java */
PdfLayer layer = new PdfLayer("Do you see me?", writer);
BaseFont bf = BaseFont.createFont(
 BaseFont.HELVETICA, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
PdfContentByte cb = writer.getDirectContent();
cb.beginText();
cb.setTextMatrix(50, 790);
cb.setLeading(24);
cb.setFontAndSize(bf, 18);
cb.showText("Do you see me?");
cb.beginLayer(layer);
cb.newlineShowText("Peek-a-Boo!!!");
cb.endLayer();
cb.endText();

Note that you set the version of the PDF to PdfWriter.VERSION_1_5. This function-
ality wasn’t available yet in PDF 1.4 (the default version of PDF files generated
with iText).

 The optional content of a group can reside anywhere in the document. It
doesn’t have to be consecutive in drawing order or belong to the same content
stream (or page). The previous example was simple, with one layer and one
sequence of optional content. Let’s see how you can work with different layers
that are organized in different structures.

12.3.2 Adding structure to layers

Figure 12.11 demonstrates different features of the PdfLayer class. Let’s start with
the structure that is visible in the Layers tab. It shows a tree with three branches:
Nested Layers, Grouped Layers, and Radio Group. Let’s find out the differences
between these groups.

Figure 12.10 PDF document with optional content (invisible)

Define optional
content group

Start sequence of
optional content

Add content
End of optional content
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

376 CHAPTER 12
Drawing to Java Graphics2D
First, you have a nested structure of layers. If you click the eye next to Nested
Layer 1, the text nested layer 1 disappears from the document. If you click the par-
ent folder Nested Layers, everything that is added to this layer and to its children
(Nested Layer 1 and Nested Layer 2) becomes invisible. The following code snip-
pet shows how this is done:

/* chapter12/OptionalContentExample.java */
PdfLayer nested = new PdfLayer("Nested Layers", writer);
PdfLayer nested_1 = new PdfLayer("Nested Layer 1", writer);
PdfLayer nested_2 = new PdfLayer("Nested Layer 2", writer);
nested.addChild(nested_1);
nested.addChild(nested_2);
cb.beginLayer(nested);
ColumnText.showTextAligned(cb,Element.ALIGN_LEFT,
 new Phrase("nested layers"), 50, 775, 0);
cb.endLayer();
cb.beginLayer(nested_1);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("nested layer 1"), 100, 800, 0);
cb.endLayer();

Figure 12.11 Different groups of optional content

Create parent
layer

Create two
children

Add children
to parent

Add content
to parent

Add content to
first child
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s optional content 377
cb.beginLayer(nested_2);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("nested layer 2"), 100, 750, 0);
cb.endLayer();

The nested structure is defined by using the addChild() method. It’s not neces-
sary to nest the beginLayer and endLayer sequences; it isn’t forbidden, either.
You’ll use this functionality to add interactive layers to the map of Foobar; you’ll
add optional information locating information booths, hotels, parking space,
and so on, and you’ll group all the layers under different titles. If the top level
of such a group doesn’t have to be clickable, you can create the parent structure
like this:

/* chapter12/OptionalContentExample.java */
PdfLayer group = PdfLayer.createTitle("Grouped layers", writer);
PdfLayer layer1 = new PdfLayer("Group: layer 1", writer);
PdfLayer layer2 = new PdfLayer("Group: layer 2", writer);
group.addChild(layer1);
group.addChild(layer2);

The parent of this group can’t be used as a parameter for the beginLayer()
method. The PdfLayer object returned by createTitle is a structural element; it’s
not an optional content layer.

 Still thinking about your map of Foobar, imagine a structural element titled
Streets / Rues / Straten as a parent of the layers with the street names in English,
French, and Dutch. You don’t want to see the names of the streets in different lan-
guages at the same time, and you don’t want the street names to overlap. You
should define these layers as elements of a radio group:

/* chapter12/OptionalContentExample.java */
PdfLayer radiogroup = PdfLayer.createTitle("Radio Group", writer);
PdfLayer radio1 = new PdfLayer("Radiogroup: layer 1", writer);
radio1.setOn(true);
PdfLayer radio2 = new PdfLayer("Radiogroup: layer 2", writer);
radio2.setOn(false);
PdfLayer radio3 = new PdfLayer("Radiogroup: layer 3", writer);
radio3.setOn(false);
radiogroup.addChild(radio1);
radiogroup.addChild(radio2);
radiogroup.addChild(radio3);
ArrayList options = new ArrayList();
options.add(radio1);
options.add(radio2);
options.add(radio3);
writer.addOCGRadioGroup(options);

Add content to
second child

Create structure
for parent

Create
children

Add children
to parent

Add children
to ArrayList

Add radio group to PdfWriter
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

378 CHAPTER 12
Drawing to Java Graphics2D
If you open the PDF shown in figure 12.11 in Adobe Reader, clicking another
option in the radio group makes “option 1” disappear. Depending on the layer
you chose, “option 2” or “option 3” becomes visible.

NOTE The method setOn() isn’t limited to radio groups. You can use it to set
the initial status of the PdfLayer. The default value is on (true), so the
line radio1.setOn(true) is superfluous.

The PDF shown in the screenshot also contains two sequences of optional content
we haven’t discussed yet: a line mentioning the zoom factor and another one ask-
ing you to print the page. These layers are visible or invisible depending on the
usage of the PDF file. This demands extra explanation.

12.3.3 Using a PdfLayer

Looking at the Layers tab in figure 12.11, you may assume that there are only
eight layers (and two title structures) in this PDF file. In reality, two extra layers
are added:

/* chapter12/OptionalContentExample.java */
PdfLayer not_printed = new PdfLayer("not printed", writer);
not_printed.setOnPanel(false);
not_printed.setPrint("Print", false);
cb.beginLayer(not_printed);
ColumnText.showTextAligned(cb, Element.ALIGN_CENTER,
 new Phrase("PRINT THIS PAGE"), 300, 700, 90);
cb.endLayer();
PdfLayer zoom = new PdfLayer("Zoom 0.75-1.25", writer);
zoom.setOnPanel(false);
zoom.setZoom(0.75f, 1.25f);
cb.beginLayer(zoom);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("Only visible if the zoomfactor is between 75 and 125%"),
 30, 530, 90);
cb.endLayer();

The optional content groups “not printed” and “Zoom 0.75-1.25” don’t appear
in the Layers tab, because you set the onPanel value to false. We’re especially
interested in the methods setPrint() and setZoom(). These methods change the
usage dictionary of the optional content.

 Table 12.1 lists the methods in PdfLayer that change this dictionary.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s optional content 379
This example declares that the sentence “PRINT THIS PAGE” shouldn’t be
printed. You see this sentence on the screen, but the text isn’t visible if you print
the page on paper. This can be handy if you have online forms that must be
printed and filled in manually. If you’re printing on paper with a preprinted

Table 12.1 Overview of PdfLayer methods that change the usage dictionary

Method Parameters Description

setCreatorType() creator, subtype Stores application-specific data associated with
this content group. Creator is a text string
specifying the application that created the group.
Subtype is a name defining the type of content
controlled by the group (for instance, Artwork or
Technical).

setExport() export By passing a boolean, you can indicate the
recommended state for content in this group
when the document is saved by a viewer appli-
cation to a format that doesn’t support optional
content (an earlier version of PDF or a raster
image format).

setLanguage() language,
preferred

Specifies the language of the content controlled
by this optional content group. The language
string specifies a language and possibly a
locale (for example “fr-CA” represents Canadian
French). If you’ve specified a language, the layer
that matches the system language is on, unless
you set the preferred status of a language layer
to true.

setPrint() subtype,
printstate

Specifies the state if the content in this group
is to be printed. Possible values for subtype
include “Print”, “Trapped”, “PrinterMarks”, and
“Watermark”. The value for printstate can be
true or false.

setView() view By passing a boolean, you can indicate that the
group should be set to that state when the docu-
ment is opened in a viewer application.

setZoom() min, max Specifies a range of magnifications at which the
content in this optional content group is best
viewed. Min is the minimum recommended mag-
nification factor; max the maximum recom-
mended magnification. Using a negative value for
min sets the default to 0; for max, a negative
value corresponds with the largest possible mag-
nification supported by the viewer.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

380 CHAPTER 12
Drawing to Java Graphics2D
header, you can show the header on screen, but you don’t want to print it over the
existing header on the preprinted sheet.

 The sentence “Only visible if the zoom factor is between 75 and 125%”
explains exactly what happens if you zoom in or zoom out: The text will disap-
pear if the zoom factor is below 75 percent or reaches 125 percent. You’ll use this
in your enhanced map of Foobar: You’ll show gridlines when the zoom factor is
between 20 percent and 100 percent.

 Another criterion that can be used to decide whether a layer should be visi-
ble is the state of a series of other layers that are grouped in an optional con-
tent membership.

12.3.4 Optional content membership

In the previous examples, you always added content to a single optional content
group. This content is visible if the status of the group is on and invisible when it’s
off. You can think of more complex visibility possibilities, with content not belong-
ing directly to a specific layer but depending on the state of different layers. An
example will explain; see figure 12.12.

 The word dog belongs to layer 1, the word tiger to layer 2, and the word lion
to layer 3. The word cat belongs to a PdfLayerMembership. It’s visible if either
layer 2 or layer 3 is on, or both. If you make the words tiger and lion invisible,
the word cat disappears.

 This example defines another PdfLayerMembership that appears only if layer 2
and layer 3 both are turned off. See figure 12.13: The word cat has disappeared,
but the words no cat are now visible. The words no cat belong to the second mem-
bership layer that is visible only if the tiger and lion layers are made invisible.

Figure 12.12 Optional content membership policies
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s optional content 381
The following code snippet explains how to achieve this:

/* chapter12/LayerMembershipExample.java */
PdfLayer dog = new PdfLayer("layer 1", writer);
PdfLayer tiger = new PdfLayer("layer 2", writer);
PdfLayer lion = new PdfLayer("layer 3", writer);
PdfLayerMembership cat = new PdfLayerMembership(writer);
cat.addMember(tiger);
cat.addMember(lion);
PdfLayerMembership no_cat = new PdfLayerMembership(writer);
no_cat.addMember(tiger);
no_cat.addMember(lion);
no_cat.setVisibilityPolicy(PdfLayerMembership.ALLOFF);
cb.beginLayer(dog);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("dog"), 50, 775, 0);
cb.endLayer();
cb.beginLayer(tiger);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("tiger"), 50, 750, 0);
cb.endLayer();
cb.beginLayer(lion);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("lion"), 50, 725, 0);
cb.endLayer();
cb.beginLayer(cat);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("cat"), 50, 700, 0);
cb.endLayer();
cb.beginLayer(no_cat);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("no cat"), 50, 700, 0);
cb.endLayer();

Figure 12.13 Optional content membership policies

Create two
layers

Create first
PdfLayer-
Membership

Create second
PdfLayer-
Membership

Content linked to
first membership

Content linked to
second membership
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

382 CHAPTER 12
Drawing to Java Graphics2D
This example uses two out of four possible visibility policies:

■ ALLON—Visible only if all the entries are on
■ ANYON—Visible if any of the entries is on (this is the default)
■ ANYOFF—Visible if any of the entries is off
■ ALLOFF—Visible if the state of all the entries is off

This feature can be used, for instance, to inform end users that they can open
the Layers panel to switch on optional layers. As soon as the end user has found
this panel and has turned on at least one of the layers, you no longer need to
show the message.

 In the next example, you’ll see other ways to change the state of an optional
content layer.

12.3.5 Changing the state of a layer with an action

Do you remember how you wrote code to jump to an external location in chapter 4?
You used setAction() methods of class Chunk to add an action. You can also create
an action to turn the visibility of a layer on or off and add this action to a Chunk.

 Figure 12.14 shows a series of questions and answers. Each answer is added
to a different layer that can be turned on or off using the Layers panel to the
left. Additionally, a phrase has been added. This phrase contains three Chunks
that have been made interactive by adding actions: ON, OFF, and Toggle. Mind

Figure 12.14 Changing the visibility of an optional content group using actions
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF’s optional content 383
the use of uppercase letters; that’s how the states are defined in table 8.59 of the
PDF Reference.

 When you open the PDF shown in screenshot 12.14, the answers are invisible.
You can click the word on or toggle to make the answers appear. If you have a quiz
with lots of questions, it may be easier to have a clickable area next to each ques-
tion that lets the end user show each specific answer. This approach is more user-
friendly than making users find the correct layer in the panel to the left of the
document. Here’s the code:

/* chapter12/OptionalContentActionExample.java */
PdfLayer a1 = new PdfLayer("answer 1", writer);
PdfLayer a2 = new PdfLayer("answer 2", writer);
PdfLayer a3 = new PdfLayer("answer 3", writer);
a1.setOn(false);
a2.setOn(false);
a3.setOn(false);
ArrayList stateOn = new ArrayList();
stateOn.add("ON");
stateOn.add(a1);
stateOn.add(a2);
stateOn.add(a3);
PdfAction actionOn = PdfAction.setOCGstate(stateOn, true);
ArrayList stateOff = new ArrayList();
stateOff.add("OFF");
stateOff.add(a1);
stateOff.add(a2);
stateOff.add(a3);
PdfAction actionOff = PdfAction.setOCGstate(stateOff, true);
ArrayList stateToggle = new ArrayList();
stateToggle.add("Toggle");
stateToggle.add(a1);
stateToggle.add(a2);
stateToggle.add(a3);
PdfAction actionToggle = PdfAction.setOCGstate(stateToggle, true);
Phrase p = new Phrase("Change the state of the answers:");
Chunk on = new Chunk(" on ").setAction(actionOn);
p.add(on);
Chunk off = new Chunk("/ off ").setAction(actionOff);
p.add(off);
Chunk toggle = new Chunk("/ toggle").setAction(actionToggle);
p.add(toggle);
document.add(p);

The static method setOCGstate() returns a PdfAction object. As you can see, the
first parameter is an ArrayList. The first element in this list defines the action:
The layers that are added can be turned on, turned off, or toggled. The second
parameter makes sense only if you’ve defined radio groups. If it’s false, the fact

Create ArrayList
for ON state

Create action
object

Create action
Chunk
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

384 CHAPTER 12
Drawing to Java Graphics2D
that a layer belongs to a radio group is ignored. If it’s true, turning on a layer that
belongs to a radio group turns off the other layers in the radio group.

 Before you use all this interesting PDF functionality to enhance the map of
Foobar, you should be aware of some iText-specific methods.

12.3.6 Optional content in XObjects and annotations

Three types of iText objects are often drawn in an optional content layer: Images,
PdfTemplate objects, and annotations. For your convenience, these objects have a
method setLayer() that can be used to define the optional content layer to which
these objects belong.

 The PDF shown in figure 12.15 has an Image (the iText logo), a PdfTemplate
(the iText eye), and a widget annotation (a form field with text).

Note that we’ll discuss annotations and form fields in chapter 15. But you won’t
have any difficulties understanding the following code sample:

/* chapter12/OptionalXObjectExample.java */
PdfLayer logo = new PdfLayer("iText logo", writer);
PdfLayer eye = new PdfLayer("iText eye", writer);
PdfLayer field = new PdfLayer("form field", writer);
Image image =
 Image.getInstance("../../chapter10/resources/iTextLogo.gif");
image.setAbsolutePosition(36, 780);

Figure 12.15 Optional content in XObjects and annotations
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Enhancing the map of Foobar 385
image.setLayer(logo);
document.add(image);

PdfTemplate template = cb.createTemplate(150, 150);
template.setLineWidth(12f);
template.arc(40f - (float) Math.sqrt(12800),
 110f + (float) Math.sqrt(12800),
 200f - (float) Math.sqrt(12800),
 -50f + (float) Math.sqrt(12800), 281.25f, 33.75f);
template.arc(40f, 110f, 200f, -50f, 90f, 45f);
template.stroke();
template.setLineCap(PdfContentByte.LINE_JOIN_ROUND);
template.arc(80f, 30f, 160f, 110f, 90f, 180f);
template.arc(115f, 65f, 125f, 75f, 0f, 360f);
template.stroke();
template.setLayer(eye);
cb.addTemplate(template, 36, 630);

TextField ff = new TextField(writer,
 new Rectangle(36, 600, 150, 620), "field1");
ff.setBorderColor(Color.blue);
ff.setBorderStyle(PdfBorderDictionary.STYLE_SOLID);
ff.setBorderWidth(TextField.BORDER_WIDTH_THIN);
ff.setText("iText in Action");
PdfFormField form = ff.getTextField();
form.setLayer(field);
writer.addAnnotation(form);

With these three types of objects, you no longer have to work with the methods
beginLayer() and endLayer(). This will save you many lines of code when you
want to enhance the map of Foobar using different layers.

12.4 Enhancing the map of Foobar

Previous chapters discussed the nature of the data needed to draw the map of
the fictitious city of Foobar (section 10.5.1), as well as the names of the streets
(section 11.6). You’re now going to reuse the SVG files foobarcity.svg and streets.-
svg, and you’ll make extra SVG files with the names of the streets in French
(rues.svg) and Dutch (straten.svg). You’ll add the names of the streets in different
layers, so that the end-user can choose the language he or she prefers.

 Figure 12.16 shows the Dutch version of figure 11.15, with a few extra fea-
tures. In the Layers panel to the left, you can now change the street names to
another language by clicking one of the children of the radio group Streets /
Rues / Straten.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

386 CHAPTER 12
Drawing to Java Graphics2D
12.4.1 Defining the layers for the map and the street names

In section 12.3.2, you saw that it’s easy to create a radio group for the street
names. Now you’ll add extra layers, one with a raster image of the city of Foobar,
and one with grid lines:

/* chapter12/FoobarCityBatik.java */
PdfLayer imageLayer = new PdfLayer("Map of Foobar", writer);
imageLayer.setZoom(-1, 0.2f);
imageLayer.setOnPanel(false);
PdfLayer vectorLayer = new PdfLayer("Vector", writer);
vectorLayer.setZoom(0.2f, -1);
vectorLayer.setOnPanel(false);
PdfLayer gridLayer = new PdfLayer("Grid", writer);
gridLayer.setZoom(0.2f, 1);
gridLayer.setOnPanel(false);
PdfLayer streetlayer =
 PdfLayer.createTitle("Streets / Rues / Straten", writer);
PdfLayer streetlayer_en = new PdfLayer("English", writer);
streetlayer_en.setOn(true);
streetlayer_en.setLanguage("en", true);
PdfLayer streetlayer_fr = new PdfLayer("Français", writer);
streetlayer_fr.setOn(false);
streetlayer_fr.setLanguage("fr", false);
PdfLayer streetlayer_nl = new PdfLayer("Nederlands", writer);
streetlayer_nl.setOn(false);
streetlayer_nl.setLanguage("nl", false);

Figure 12.16 The map of Foobar with Dutch street names

Show Image if
zoom < 20%

Show map if
zoom 20%

Show grid if 20%
< zoom < 100%

Create parent
for street layers

Create
children
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Enhancing the map of Foobar 387
streetlayer.addChild(streetlayer_en);
streetlayer.addChild(streetlayer_fr);
streetlayer.addChild(streetlayer_nl);
ArrayList radio = new ArrayList();
radio.add(streetlayer_en);
radio.add(streetlayer_fr);
radio.add(streetlayer_nl);
writer.addOCGRadioGroup(radio);

When you open the resulting PDF, the zoom factor will probably be lower than 20
percent. That’s because you’re creating a large page size, and you’ve changed the
viewer preferences:

/* chapter12/FoobarCityBatik.java */
writer.setViewerPreferences(
 PdfWriter.PageModeUseOC | PdfWriter.FitWindow);

In chapter 13, you’ll see that this makes sure the document fits the window and
that the Layers panel is opened when the end user opens the file.

 When the zoom factor is less than 20 percent, the image layer shows a JPEG ver-
sion of the map (see figure 12.17). When you zoom in, the raster image disappears

Add children
to parent

Declare radio
group

Figure 12.17 The map of Foobar as a raster image
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

388 CHAPTER 12
Drawing to Java Graphics2D
as soon as you reach a zoom factor greater than or equal to 20 percent. That’s the
zoom factor that makes the vector data (map and grid lines) visible. Zoom in to a
factor higher than 100 percent, and the grid lines disappear.

 The previous snippet of code declares the structure of the optional content
layers in your document. Now comes the tricky part: using Apache Batik to parse
the SVG file and iText to visualize the data in the layers you just defined.

12.4.2 Combining iText and Apache Batik

You can find the Batik SVG Toolkit at xml.apache.org. Batik is described as “a
Java-technology-based toolkit for applications or applets that want to use images
in the Scalable Vector Graphics (SVG) format for various purposes, such as view-
ing, generation or manipulation.” That sounds good: You want to use Batik in
your application to view the SVG in the form of a PDF file.

 First, you need Batik-specific source code to create Batik objects such as SVG-
Document, GVTBuilder and BridgeContext:

/* chapter12/FoobarCityBatik.java */
String parser = XMLResourceDescriptor.getXMLParserClassName();
SAXSVGDocumentFactory factory = new SAXSVGDocumentFactory(parser);
SVGDocument city = factory.createSVGDocument(new File(
 "../../chapter10/resources/foobarcity.svg").toURL().toString());
SVGDocument streets = factory.createSVGDocument(new File(
 "../../chapter11/resources/streets.svg").toURL().toString());
SVGDocument rues = factory.createSVGDocument(new File(
 "../../chapter12/resources/rues.svg").toURL().toString());
SVGDocument straten = factory.createSVGDocument(new File(
 "../../chapter12/resources/straten.svg").toURL().toString());
UserAgent userAgent = new UserAgentAdapter();
DocumentLoader loader = new DocumentLoader(userAgent);
BridgeContext ctx = new BridgeContext(userAgent, loader);
GVTBuilder builder = new GVTBuilder();
ctx.setDynamicState(BridgeContext.DYNAMIC);

I won’t go into the details of the Batik code; this is a book about iText, not about
Batik. I’ll just show you how to use the objects builder, ctx, city, streets, rues,
and straten in your iText code:

/* chapter12/FoobarCityBatik.java */
PdfContentByte cb = writer.getDirectContent();
Graphics2D g2d;
PdfTemplate map = cb.createTemplate(6000, 6000);
g2d = map.createGraphics(6000, 6000,
 new DefaultFontMapper());
GraphicsNode mapGraphics = builder.build(ctx, city);
mapGraphics.paint(g2d);
g2d.dispose();

Grab direct content

Create
PdfTemplate/
Graphics2D

Create/paint Batik
GraphicsNode
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Enhancing the map of Foobar 389
cb.beginLayer(vectorLayer);
cb.addTemplate(map, 0, 0);
cb.endLayer();
PdfTemplate streets_en = cb.createTemplate(6000, 6000);
g2d = streets_en.createGraphics(6000, 6000,
 new DefaultFontMapper());
GraphicsNode streetGraphicsEn = builder.build(ctx, streets);
streetGraphicsEn.paint(g2d);
g2d.dispose();
streets_en.setLayer(streetlayer_en);
cb.addTemplate(streets_en, 0, 0);

Note that it’s possible to add the template inside a beginLayer()/endLayer()
sequence using three lines of code, or you can use the method discussed in sec-
tion 12.3.6.

 After you’ve added these layers, you also add the raster image as described in
section 12.3.5 and the grid as described in section 12.1.1:

/* chapter12/FoobarCityBatik.java */
Image image = Image.getInstance("../resources/map.jpg");
image.scalePercent(240);
image.setAbsolutePosition(450, 1400);
image.setLayer(imageLayer);
cb.addImage(image);
cb.saveState();
cb.beginLayer(gridLayer);
cb.setGrayStroke(0.7f);
cb.setLineWidth(2);
for (int i = 0; i < 8; i++) {
 cb.moveTo(1250, 1500 + i * 500);
 cb.lineTo(4750, 1500 + i * 500);
}
for (int i = 0; i < 8; i++) {
 cb.moveTo(1250 + i * 500, 1500);
 cb.lineTo(1250 + i * 500, 5000);
}
cb.stroke();
cb.endLayer();
cb.restoreState();

You already have a neat map with interesting interactive features, but now you
want to add extra information.

12.4.3 Adding tourist information to the map

Figure 12.18 shows icons added to the map; I used glyphs from the Webdings
TrueType font for the different information categories. The symbol A (some-
where near the corner of Kurt Meuleman and Patrick Debois Streets) marks the

Add template in
3 lines

Create
PdfTemplate/
Graphics2D

Create/paint
Batik
GraphicsNode

Add template
in 2 lines

Construct
image

Transform
image

Set layer

Add image to
document

Initialize grid layer

Construct vertical lines

Construct horizontal lines

Stroke lines
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

390 CHAPTER 12
Drawing to Java Graphics2D
location of an office where you can get tourist information about the city of
Foobar. The B symbol (between Kris Coolsaet Street and Movie Drive) means
you’ll find a monument at that location. If you click the eye next to Monuments
and Musea in the Layers panel, the icon disappears.

 Generating the structure of the layers is straightforward. These are some
code snippets:

/* chapter12/FoobarCityBatik.java */
PdfLayer cityInfoLayer = new PdfLayer("Foobar Info", writer);
cityInfoLayer.setOn(false);
PdfLayer hotelLayer = new PdfLayer("Hotel", writer);
hotelLayer.setOn(false);
cityInfoLayer.addChild(hotelLayer);
PdfLayer parkingLayer = new PdfLayer("Parking", writer);
parkingLayer.setOn(false);
cityInfoLayer.addChild(parkingLayer);
(...)
PdfLayer cultureLayer =
 PdfLayer.createTitle("Leisure and Culture", writer);
PdfLayer goingoutLayer = new PdfLayer("Going out", writer);
goingoutLayer.setOn(false);

Figure 12.18 The map of Foobar with extra information
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Enhancing the map of Foobar 391
cultureLayer.addChild(goingoutLayer);
PdfLayer restoLayer = new PdfLayer("Restaurants", writer);
restoLayer.setOn(false);
goingoutLayer.addChild(restoLayer);
PdfLayer theatreLayer = new PdfLayer("(Movie) Theatres", writer);
theatreLayer.setOn(false);
goingoutLayer.addChild(theatreLayer);
PdfLayer monumentLayer =
 new PdfLayer("Museums and Monuments", writer);
monumentLayer.setOn(false);
cultureLayer.addChild(monumentLayer);
(...)

You’ve grouped and nested different layers; now you have to add content to these
layers (otherwise they won’t show up in the Layers panel). This is a shortened ver-
sion of the code:

/* chapter12/FoobarCityBatik.java */
BaseFont font = BaseFont.createFont("c:/windows/fonts/webdings.ttf",
 BaseFont.WINANSI, BaseFont.EMBEDDED);
cb.saveState();
cb.beginText();
cb.setRGBColorFill(0x00, 0x00, 0xFF);
cb.setFontAndSize(font, 36);
cb.beginLayer(cityInfoLayer);
cb.showTextAligned(PdfContentByte.ALIGN_CENTER,
 String.valueOf((char)0x69), 2700, 3100, 0);
cb.beginLayer(hotelLayer);
cb.showTextAligned(PdfContentByte.ALIGN_CENTER,
 String.valueOf((char)0xe3), 2000, 1900, 0);
cb.endLayer(); // hotelLayer
cb.endLayer(); // cityInfoLayer
cb.beginLayer(goingoutLayer);
cb.beginLayer(restoLayer);
cb.setRGBColorFill(0xFF, 0x14, 0x93);
cb.showTextAligned(PdfContentByte.ALIGN_CENTER,
 String.valueOf((char)0xe4), 2650, 3500, 0);
cb.endLayer(); // restoLayer
cb.beginLayer(theatreLayer);
cb.setRGBColorFill(0xDC, 0x14, 0x3C);
cb.showTextAligned(PdfContentByte.ALIGN_CENTER,
 String.valueOf((char)0xae), 2850, 3300, 0);
cb.endLayer(); // theatreLayer
cb.endLayer(); // goingoutLayer
cb.beginLayer(monumentLayer);
cb.setRGBColorFill(0x00, 0x00, 0x00);
cb.showTextAligned(PdfContentByte.ALIGN_CENTER,
 String.valueOf((char)0x47), 3250, 2750, 0);
cb.endLayer(); // monumentLayer
cb.endText();
cb.restoreState();
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

392 CHAPTER 12
Drawing to Java Graphics2D
In this example, the beginLayer()/endLayer() sequences are nested. Compare
this code sample with the code in section 12.3.2: It’s a little different, but the end
result is the same.

 With this example, we have finished one of Laura’s most challenging assign-
ments. It demonstrates a rather atypical use of PDF, but that doesn’t mean it’s
less interesting.

12.5 Summary

After reading the last three chapters, you can make a decision when confronted
with a project that involves text and graphics. If you don’t like to work with PDF’s
graphics state operators and operands, you can consider chapters 10 and 11 to be
purely informational and decide to work with the methods described in the first
part of this chapter: the standard Java API and Sun’s tutorial on 2D graphics. This
choice is especially interesting if you need to work with a Graphics2D object in
your application, or if you work with Swing components that are able to print
themselves to a Graphics2D object.

 Personally, I prefer working with the methods described in chapters 10 and
11, but that’s because I generally write server-side applications. These applica-
tions don’t have a GUI, and they don’t have the benefits offered by Graphics2D.
It’s also the best choice for .NET programmers using iTextSharp or iText.NET. In
.NET, there aren’t any Swing components and there isn’t a Graphics2D object.

 The second part of this chapter ended this part of the book’s discussion of
PDF’s graphics state by explaining the concept of optional content. The Foobar
examples combined everything you’ve learned in this chapter. You even used a
feature that hasn’t been explained yet: setting viewer preferences so that the Lay-
ers panel is shown and the document fits the Adobe Reader window. That’s a
good topic to start with in the next chapter.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Part 4

Interactive PDF

Whereas part 3 discusses how to create a document’s content, this part
deals with meta content. How do you add bookmarks to a file, or headers,
or footers, or a watermark? How do you add comments or a file attach-
ment, or create and fill a form? And above all, how do you create a PDF file
in a web application?
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Browsing a
PDF document
This chapter covers
■ Setting viewer preferences
■ Adding Bookmarks
■ Introducing a first series of actions
395

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

396 CHAPTER 13
Browsing a PDF document
If you’ve compiled and executed the small code samples that illustrated the past
12 chapters, you should have created more than 200 PDF files by now. Most of
these examples involved step 4 in the creation process of a PDF document using
iText: adding the content to a PDF document.

 Now it’s time to discuss another kind of content: the structural and/or interac-
tive elements of a document. People reading an electronic soft copy of a docu-
ment not only expect it to have the same characteristics as the paper hard copy;
they also value interactive functionality. Studies and surveys indicate that readers
find a table of contents or an outline the most important element of an eBook.
Hyperlinks and illustrations are also considered important. Next in importance
are page numbers and headings.

 We’ll deal with these and other features in the next three chapters. We’ll dis-
cuss page numbers, headers, and watermarks in chapter 14, and annotations
and form fields in chapter 15. In this chapter, we’ll start by looking at the way a
document is presented to the reader by changing the viewer preferences of
Adobe Reader. You’ll create thumbnails and page labels as well as the outline
tree of a PDF. You’ll finish with a first series of actions that can be added to a
PDF document.

 By the end of this chapter, you’ll be able to make a new version of the course
catalog with some bookmarks, thumbnail images and page labels.

13.1 Changing viewer preferences

If you open a document in Adobe Reader, and no viewer preferences are speci-
fied inside the document, the Reader shows the document using default settings
for the zoom factor, the visibility of toolbars, and so on. The panes or panels to
the left (if available) are closed by default.

 For the map of Foobar, you made sure the Layers panel is open. You also don’t
want the end user to see an empty corner of the map or a detail of a specific street
upon opening the document. Instead, you want people to see the complete city
when they open the document for the first time.

 To achieve this, you’ve defined the viewer preferences of the document
like this:

/* chapter12/FoobarCityBatik.java */
writer.setViewerPreferences(
 PdfWriter.PageModeUseOC | PdfWriter.FitWindow);

If you’re reading this book along with the PDF specifications, you can consult
tables 3.25 and 8.1 of the PDF Reference. Not all the viewer preferences listed in
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Changing viewer preferences 397
these tables are supported in iText (yet), but I think we have the most important
ones. The following three sections discuss the page layout, the page mode, and
the viewing options.

13.1.1 Setting the page layout

With the following values, you can specify the page layout to be used when a docu-
ment is opened:

■ PdfWriter.PageLayoutSinglePage—Display one page at a time (this is
the default).

■ PdfWriter.PageLayoutOneColumn—Display the pages in one column.
■ PdfWriter.PageLayoutTwoColumnLeft—Display the pages in two columns,

with the odd-numbered pages on the left.
■ PdfWriter.PageLayoutTwoColumnRight—Display the pages in two columns,

with the odd-numbered pages on the right.
■ PdfWriter.PageLayoutTwoPageLeft—Display the pages two at a time, with

odd-numbered pages on the left.
■ PdfWriter.PageLayoutTwoPageRight—Display the pages two at a time, with

odd-numbered pages on the right.

At first sight, the difference between SinglePage and OneColumn, or TwoPage and
TwoColumn, may not be clear. The best way to understand the difference is to open
the files in Adobe Reader and scroll from one page to another. In figure 13.1, you
see a document that was opened with page layout TwoColumnLeft. I scrolled down
so that the three pages are partially visible.

 If you choose View > Page Layout from the menu bar, the option Continuous—
Facing is selected. Change this option to Facing, and see at what happens: Now
only two pages at a time appear. The flow of the pages is no longer continuous.

 Note that TwoPageLeft and TwoPageRight were introduced in PDF-1.5, so don’t
forget to change the PDF version as in the following code snippet:

/* chapter13/VPPageLayout.java */
PdfWriter writer6 = PdfWriter.getInstance(document, new

FileOutputStream("two_page_right.pdf"));
writer6.setPdfVersion(PdfWriter.VERSION_1_5);
writer6.setViewerPreferences(PdfWriter.PageLayoutTwoPageRight);

With page layout preferences, you define how the pages are organized in the docu-
ment window. With page mode preferences, you can define how the document
opens in Adobe Reader.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

398 CHAPTER 13
Browsing a PDF document
13.1.2 Choosing the page mode

The following list of the page mode preferences gives you an idea of the different
panels available in Adobe Reader:

■ PdfWriter.PageModeUseNone—None of the tabs on the left are selected (this
is the default).

■ PdfWriter.PageModeUseOutlines—The document outline (the bookmarks;
see figure 2.3) is visible.

■ PdfWriter.PageModeUseThumbs—Thumbnail images corresponding with
the pages are visible.

■ PdfWriter.PageModeFullScreen—Full-screen mode. No menu bar, window
controls, or any other windows are visible.

■ PdfWriter.PageModeUseOC—The optional content group panel is visible
(since PDF-1.5).

■ PdfWriter.PageModeUseAttachments—The attachments panel is visible
(since PDF-1.6).

Figure 13.1 Page layout example using TwoColumnLeft
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Changing viewer preferences 399
Typically, these page modes are set to stress the fact that the document has book-
marks, optional content, and so on.

 With page layout and page mode, you’re supposed to choose one option
from each list. It doesn’t make sense to choose two different page layout or page
mode values (for instance, PdfWriter.PageLayoutSinglePage | PdfWriter.Page-
LayoutTwoColumnLeft), but you can always combine a page mode with a page lay-
out option:

/* chapter13/VPPageModeAndLayout.java */
PdfWriter writer1 = PdfWriter.getInstance(document,
 new FileOutputStream("page_mode_and_layout.pdf"));
writer1.setViewerPreferences(PdfWriter.PageModeUseOutlines |
 PdfWriter.PageLayoutTwoColumnRight);

If you choose full-screen mode, you can add another option related to the panel
to the left. This preference specifies how to display the document on exiting full-
screen mode:

■ PdfWriter.NonFullScreenPageModeUseNone—None of the tabs at the left are
selected (this is the default).

■ PdfWriter.NonFullScreenPageModeUseOutlines—The document outline is
visible.

■ PdfWriter.NonFullScreenPageModeUseThumbs—Thumbnail images corre-
sponding with the pages are visible.

■ PdfWriter.NonFullScreenPageModeUseOC—The optional content group
panel is visible (since PDF 1.5).

The following code snippet opens the document in full-screen mode with a sepa-
rate window showing the outlines:

/* chapter13/VPPageModeAndLayout.java */
PdfWriter writer2 = PdfWriter.getInstance(document,
 new FileOutputStream("full_screen.pdf"));
writer2.setViewerPreferences(PdfWriter.PageModeFullScreen |
 PdfWriter.NonFullScreenPageModeUseOutlines);

Note that you can exit full-screen mode using the Escape key.
 A final set of viewer preferences that can be set in iText are related to the

viewer options.

13.1.3 Viewer options
In the View menu of Adobe Reader, you can select toolbar items that must be
shown or hidden. You can control the initial state of some of these options by set-
ting the viewer preference:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

400 CHAPTER 13
Browsing a PDF document
■ PdfWriter.HideToolbar—Hides the toolbar when the document is opened
■ PdfWriter.HideMenubar—Hides the menu bar when the document is opened
■ PdfWriter.HideWindowUI—Hides user-interface elements in the document’s

window (such as scroll bars and navigation controls), leaving only the doc-
ument’s contents displayed

■ PdfWriter.FitWindow—Resizes the document’s window to fit the size of the
first displayed page

■ PdfWriter.CenterWindow—Positions the document’s window in the center
of the screen

■ PdfWriter.DisplayDocTitle—Displays the title that was added to the
metadata in the top bar (otherwise, the filename is displayed)

The following code snippet combines some of the values discussed so far. Try the
example, change some of the preferences, and open the resulting PDF documents
to see what happens. For instance, the file generated by writer3 doesn’t show the
filename in the title bar; instead, it displays “Hello World in different languages,”
which is the title passed as PDF metadata. This may seem like a detail, but in my
experience, it’s these little details that make the difference for your customers:

/* chapter13/VPExamples.java */
PdfWriter writer1 = PdfWriter.getInstance(document,
 new FileOutputStream("hide_menu_center_window.pdf"));
writer1.setViewerPreferences(
 PdfWriter.HideMenubar | PdfWriter.CenterWindow);
PdfWriter writer2 = PdfWriter.getInstance(document,
 new FileOutputStream("no_ui_fit_window.pdf"));
writer2.setViewerPreferences(
 PdfWriter.HideWindowUI | PdfWriter.FitWindow);
PdfWriter writer3 = PdfWriter.getInstance(document,
 new FileOutputStream("display_title_two_page_left.pdf"));
writer3.setPdfVersion(PdfWriter.VERSION_1_5);
writer3.setViewerPreferences(
 PdfWriter.DisplayDocTitle | PdfWriter.PageLayoutTwoPageLeft);
document.addTitle("Hello World in different languages");
PdfWriter writer4 = PdfWriter.getInstance(document,
 new FileOutputStream("no_toolbar_use_thumbs.pdf"));
writer4.setViewerPreferences(
 PdfWriter.HideToolbar | PdfWriter.PageModeUseThumbs);

With the following preference values, you can determine the predominant order
of the pages (this preference also has an effect on the way pages are shown when
displayed side by side):

■ PdfWriter.DirectionL2R—Left to right (the default)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Visualizing thumbnails 401
■ PdfWriter.DirectionR2L—Right to left, including vertical writing systems,
such as Chinese, Japanese, and Korean

Finally, iText also supports the preference that turns off the FitToPage setting:

■ PdfWriter.PrintScalingNone—Indicates that the print dialog should reflect
no page scaling

This final preference is important if you want to print a PDF file on paper that is
preprinted. If the viewer scales the pages to fit the paper size, you can’t be sure
the content printed by Adobe Reader will match with the preprinted content. For
instance, you have to be careful not to print over a preprinted header and footer.

13.2 Visualizing thumbnails

In the previous example, you created a PDF document with the page mode
set to PdfWriter.PageModeUseThumbs. Figure 13.2 shows what the resulting PDF
looks like.

 The Pages panel shows a thumbnail of every page automatically. This is pure
Adobe Reader magic: Reader generates the thumbnail images. Note that iText
can’t convert PDF pages into images.

Figure 13.2
Using thumbnails
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

402 CHAPTER 13
Browsing a PDF document
In the following sections, you’ll learn how to change the label of these thumbnails
and how to replace the thumbnail with another image.

13.2.1 Changing the page labels

In figure 13.3, I’ve opened the Pages panel in a separate window by dragging and
dropping the tab. If you compare the Pages panel with the document panel, you
immediately understand that it can be used as a means to browse through the
document. A (red) rectangle in the Pages panel indicates the area of the docu-
ment that is shown in the document window.

 If you compare figure 13.2 with figure 13.3, you should notice another pecu-
liarity. In figure 13.2, you can see the default page labels attributed automatically
by Adobe Reader. In figure 13.3, I’ve changed the default way pages are num-
bered: The first page is now page i, the second is page ii, the third is page iii, and
the fourth is iv. The fifth page, however, is labeled page 1; and starting with the
eighth page, the numbers look like this: A-8, A-9, and so on.

Figure 13.3 Changing page labels
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Visualizing thumbnails 403
The following code snippet changes the page labels:

/* chapter13/PageLabels.java */
PdfPageLabels pageLabels = new PdfPageLabels();
pageLabels.addPageLabel(1, PdfPageLabels.LOWERCASE_ROMAN_NUMERALS);
pageLabels.addPageLabel(5, PdfPageLabels.DECIMAL_ARABIC_NUMERALS);
pageLabels.addPageLabel(8, PdfPageLabels.DECIMAL_ARABIC_NUMERALS,
 "A-", 8);
writer.setPageLabels(pageLabels);

Take a close look at the bottom bar in the screenshots of this section. In figure 13.2,
you read page 1 of 3. In figure 13.3, the numbering is different: 1 (5 of 17). The page
information in figure 13.4 reads fox dog 1 (2 of 10). This demands some extra expla-
nation from the PDF Reference:

Each page in a PDF-document is identified by an integer page index that
expresses the page’s relative position within the document. In addition, a docu-
ment may optionally define page labels to identify each page visually on the
screen or in print.

This example uses two of the six possible numbering types for the page labels:

■ PdfPageLabels.DECIMAL_ARABIC_NUMERALS—Decimal Arabic numerals
■ PdfPageLabels.UPPERCASE_ROMAN_NUMERALS—Uppercase Roman numerals
■ PdfPageLabels.LOWERCASE_ROMAN_NUMERALS—Lowercase Roman numerals
■ PdfPageLabels.UPPERCASE_LETTERS—Uppercase letters; A to Z for the first

26 pages, AA to ZZ for the next 26, and so on
■ PdfPageLabels.LOWERCASE_LETTERS—Lowercase letters; a to z for the first

26 pages, aa to zz for the next 26, and so on
■ PdfPageLabels.EMPTY—No page numbers

There are different addPageLabel() methods in class PdfPageLabels. They all take
a page number as the first parameter and a numbering style as the second
parameter. A method with three parameters can be used to add a String that
serves as prefix. This method can also be used in combination with the EMPTY
numbering style if you want to create text-only page labels.

 Note that changing the numbering style resets the page number to 1. The
method with four parameters lets you define the first logical page number. For
instance, when I started labeling pages with “A-,” I defined that the first page
labeled that way should be page 8.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

404 CHAPTER 13
Browsing a PDF document
TOOLBOX com.lowagie.tools.plugins.PhotoAlbum (Convert2Pdf) If you have a
directory containing images or photographs that you want to share with
other people, you can use one of the plug-ins in the toolbox to create a
PDF that can serve as photo album. Figure 13.4 shows an example. The
Pages panel with the thumbnails is used as an overview of all the photos
in the album. To show one of the photographs in the document window,
click one of the thumbnails in the Pages panel.

Figure 13.4 shows an example that uses PageLabels.EMPTY. The PhotoAlbum
plug-in uses the name of the image (minus the extension) as a page label.

If you have a document with a lot of text, the end user won’t always be helped by
the Pages panel. All the thumbnails will look more or less the same—unless you
replace the thumbnail with an image that catches the eye!

13.2.2 Changing the thumbnail image

It’s possible to replace the thumbnails generated by Adobe Reader with an Image
object. In figure 13.5, the second page is selected, but the thumbnail definitely
doesn’t correspond with the content in the document window.

Figure 13.4 Using the PhotoAlbum plug-in
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding page transitions 405
With the method setThumbnail(), you can change the thumbnail of the cur-
rent page.

/* chapter13/ThumbImage.java */
document.add(new Paragraph("5. to the Stars:"));
document.add(hello);
document.newPage();
writer.setThumbnail(
 Image.getInstance("../../chapter05/resources/foxdog.jpg"));
document.add(new Paragraph("6. To the People:"));
document.add(hello);

Page thumbnails and labels can help the end users of your document browse
through the content.

 In the next section, you’ll add functionality that turns pages automatically.

13.3 Adding page transitions

By adding a transition and a value for the duration, a document can be displayed
as a presentation (similar to a PowerPoint presentation). Let’s rewrite the example
that results in the PDF shown in figure 13.4:

/* chapter13/SlideShow.java */
writer.setPdfVersion(PdfWriter.VERSION_1_5);
writer.setViewerPreferences(PdfWriter.PageModeFullScreen);

Figure 13.5 Replacing a thumbnail with an Image

Add content of page 1
Go to page 2

Set thumbnail
image

Add content of
page 2

Set PDF
version to 1.5 Set viewer

preferences
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

406 CHAPTER 13
Browsing a PDF document
(...)
Image img2 =
 Image.getInstance("../../chapter13/resources/fox dog 2.gif");
img2.setAbsolutePosition(0, 0);
writer.setDuration(3);
writer.setTransition(new PdfTransition(PdfTransition.DGLITTER, 2));
document.add(img2);
document.newPage();

The method setDuration() is easy to understand: The parameter defines how
long the page is shown. If no duration is defined, user input is expected to go to
the next page. This is what happens with the first page if you open the document
generated in this example; you have to click to go to the second page. The other
pages open automatically after a specific number of seconds.

 The example demonstrates different possibilities of the PdfTransition
class. The main constructor takes two parameters: a transition type and a
value for the duration of the transition (don’t confuse this with the value for
the page duration).

 There are different groups of transition types:

■ Dissolve—The old page gradually dissolves to reveal a new one.
■ Glitter—Similar to resolve, except that the effect sweeps across the page

in a wide band moving from one side to another: diagonally (DGLITTER),
from top to bottom (TBGLITTER), or from left to right (LRGLITTER).

■ Box—A rectangular box sweeps inward from the edges (INBOX) or outward
from the center (OUTBOX).

■ Split—The lines sweep across the screen horizontally or vertically, inward
or outward, depending on the value that was passed: SPLITHIN, SPLITHOUT,
SPLITVIN, or SPLITTVOUT.

■ Blinds—Multiple lines, evenly spaced across the screen, sweep in the same
direction to reveal the new page horizontally (BLINDH) or vertically (BLINDV).

■ Wipe—A single line sweeps across the screen from one edge to the other:
from top to bottom (TBWIPE), from bottom to top (BTWIPE), from right to
left (RLWIPE), or from left to right (LRWIPE).

If you don’t specify a type, BLINDH is used. The default duration of a transition is 1
second. This is a nice feature, but it’s a little off topic—you were looking for a
means to browse the document. What about a good table of contents, with out-
lines shown in the bookmarks panel?

Set duration (3 sec)

Add transition (2 sec)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding bookmarks 407
13.4 Adding bookmarks

Before you can construct an outline tree, you need to learn how to use three
iText classes:

■ A PdfDestination object allows you to define a position on a page (X, Y,
zoom factor).

■ A PdfAction object defines an action—for instance, an action to open a
URL in a web browser (see section 4.2.3), an optional content state action
(see section 12.3.6), and so on.

■ A PdfOutline object is created using a PdfDestination and/or a PdfAction.

By the end of this section, you should be able to create an outline tree that is more
feature-rich than the table of contents you created in chapter 4 using the objects
Chapter and Section.

13.4.1 Creating destinations

With the class PdfDestination, you can create explicit destinations on a page, as
opposed to the named destinations you created in chapter 4 (for instance, when
you used setName() with an Anchor object, or setLocalDestination() with a
Chunk object).

 Table 8.2 in the PDF Reference explains the destination syntax. Let’s go over
the options by listing the constructors in the iText class.

public PdfDestination(int type)
You can use this constructor with two explicit destination types:

■ PdfDestination.FIT—If you use this destination, the current page is dis-
played with its contents magnified just enough to fit the document win-
dow, both horizontally and vertically.

■ PdfDestination.FITB—This option is almost identical to the previous one,
but the page is displayed with its contents magnified just enough to fit the
bounding box of the contents (without the margins).

Note that a page’s bounding box is the smallest rectangle enclosing all of
its contents.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

408 CHAPTER 13
Browsing a PDF document
public PdfDestination(int type, float parameter)
This constructor can be used with four explicit destination types:

■ PdfDestination.FITH—The zoom factor is changed so that the page fits
within the document window horizontally (the entire width of the docu-
ment is visible). The parameter specifies the vertical coordinate of the top
edge of the page.

■ PdfDestination.FITBH—This option is almost identical to the previous
one, but the width of the bounding box of the page is visible, not necessar-
ily the entire width of the page.

■ PdfDestination.FITV—The contents of the page are magnified just
enough to fit the entire height of the page within the document window.
The parameter is the horizontal coordinate of the left edge of the page.

■ PdfDestination.FITBV—This option is almost identical to the previous
one, but the contents are magnified just enough to fit the height of the
bounding box.

public PdfDestination(int type, float left, float top, float zoom)
This constructor can be used for one explicit destination type:

■ PdfDestination.XYZ—The parameter left defines an X coordinate, top
defines a Y coordinate, and zoom defines a zoom factor.

You can also use this constructor to change the zoom factor of the current page
without changing the X and/or Y position by passing negative values or zero for
left and/or top.

public PdfDestination(int type, float left, float bottom, float right, float top)
This constructor can be used for one explicit destination type:

■ PdfDestination.FITR—The parameters of this constructor define a rectan-
gle. The page is displayed with its contents magnified just enough to fit
this rectangle.

If the required zoom factors for the horizontal and the vertical magnification are
different, the smaller of the two is used. Let’s use some of these constructors to
create an outline tree in a one-page example.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding bookmarks 409
13.4.2 Constructing an outline tree

You can create an outline tree using the PdfOutline object. An outline object is
constructed by defining the following:

■ A parent for the outline item
■ A destination or an action
■ A title for the item: a String or a Paragraph (note that the style of the Para-

graph isn’t taken into account)
■ Optionally, a boolean to indicate if the outline has to be open (the default)

or closed

When you start building the tree, you don’t have a parent object yet. You can
get the root of the outline tree from the direct content with the method Pdf-
ContentByte.getRootOutline().

/* chapter13/ExplicitDestinations.java */
PdfDestination d1 = new PdfDestination(
 PdfDestination.XYZ, 300, 800, 0);
PdfDestination d2 = new PdfDestination(
 PdfDestination.FITH, 500);
PdfDestination d3 = new PdfDestination(
 PdfDestination.FITR, 200, 300, 400, 500);
PdfDestination d4 = new PdfDestination(
 PdfDestination.FITBV, 100);
PdfDestination d5 = new PdfDestination(
 PdfDestination.FIT);
PdfOutline root = cb.getRootOutline();
PdfOutline out1 = new PdfOutline(root, d1, "root", true);
PdfOutline out2 = new PdfOutline(out1, d2, "sub 1", false);
PdfOutline out3 = new PdfOutline(out1, d3, "sub 2");
new PdfOutline(out2, d4, "sub 2.1");
new PdfOutline(out2, d5, "sub 2.2");

The root bookmark targets the upper-right corner b, the sub 1 bookmark makes
the width fit the window C, sub 2 shows a specific rectangle D, and sub 2.1 makes
the height fit the window E. Sub 2.2 makes the complete page visible F. To build
this outline tree, you get the root object G. Then, you add an opened root outline
H, a closed child I, and an opened child with opened children J.

 If you try this example, you’ll see that plus signs are drawn on the page. By
clicking the destinations in the outline tree, you zoom in to (or zoom out from)
these signs.

 In addition to explicit destinations, you can also add actions to the out-
line tree.

 B

 C

 D

 E

 F

 G
 H

 I
 J
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

410 CHAPTER 13
Browsing a PDF document
13.4.3 Adding actions to an outline tree

You’ve already encountered PdfActions in previous chapters. You created an
action to open the URL of a Wikipedia page in chapter 4; and in chapter 12, you
changed the state of some optional content layers. In both examples, you used a
Chunk and the method setAction().

 In the next example, you’ll trigger these actions from the outline tree. In fig-
ure 13.6, you can see that it’s also possible to change the style and the color of the
items in the outline tree.

Reading the source code, you get an idea of a first series of actions supported
in iText.

/* chapter13/OutlineActions.java */
document.add(
 new Chunk("Questions and Answers").setLocalDestination("Title"));
PdfLayer answers = new PdfLayer("answers", writer);
(...)
PdfOutline root = cb.getRootOutline();
PdfOutline top = new PdfOutline(root,
 PdfAction.gotoLocalPage("Title", false),
 "Go to the top of the page");
ArrayList stateToggle = new ArrayList();
stateToggle.add("Toggle");
stateToggle.add(answers);
PdfAction actionToggle = PdfAction.setOCGstate(stateToggle, true);
PdfOutline toggle = new PdfOutline(root, actionToggle,
 "Toggle the state of the answers");
toggle.setColor(new Color(0x00, 0x80, 0x80));
toggle.setStyle(Font.BOLD);

Figure 13.6 An outline tree with different actions

 B

 C
 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding bookmarks 411
PdfOutline links =
 new PdfOutline(root, new PdfAction(), "Useful links");
links.setOpen(false);
new PdfOutline(links,
 new PdfAction("http://www.lowagie.com/iText"),
 "Bruno's iText site");
(...)
PdfAction chained =
 PdfAction.javaScript("app.alert('Bin-jip at IMDB');\r", writer);
chained.next(new PdfAction("http://www.imdb.com/title/tt0423866/"));
PdfOutline other = new PdfOutline(root, chained, "\ube48\uc9d1");
document.newPage();
document.add(new Paragraph("This was quite an easy quiz."));
PdfAction dest = PdfAction.gotoLocalPage(2,
 new PdfDestination(PdfDestination.FITB), writer);
PdfOutline what = new PdfOutline(root, dest, "What's on page 2?");
what.setStyle(Font.ITALIC);

This code first adds a named destination b to the document. You get the root of
the outline tree C and add a local GoTo action D. Next, you create a toggle action
E. When you use a Paragraph object for the title of the outline, the style and the
color of the font in the paragraph aren’t taken into account. If you want outline
items with a color or style that is different from the default, you need to use the
methods setColor() and setStyle() F.

 Next, you add a structural outline item G, a URL action H, and a JavaScript
action I. You now chain two actions J. Unicode is allowed in the outline titles

. Finally, you construct a local GoTo and change the style to italic .
 In chapter 2, you learned how to retrieve the bookmarks of an existing PDF

file in the form of an XML file using the class SimpleBookmark. We didn’t go into
the details, but now that you’ve seen different types of bookmarks, let’s take a
closer look at the tags and attributes in such an XML file. (Note that not all types
of bookmark entries are supported in this XML file.)

13.4.4 Retrieving bookmarks from an existing PDF file

In the two previous examples, the following code snippet was added to extract the
bookmarks from a PDF file and to produce an XML file containing the entries of
the outline tree:

/* chapter13/OutlineActions.java */
PdfReader reader = new PdfReader("outline_actions.pdf");
List list = SimpleBookmark.getBookmark(reader);
SimpleBookmark.exportToXML(list,
 new FileOutputStream("outline_actions1.xml"), "ISO8859-1", true);

 G

 H

 I

 J
 1)

 1!

 1@

1) 1! 1@
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

412 CHAPTER 13
Browsing a PDF document
If explicit destinations are used to create the outlines, you can expect an XML
file similar to the one that was extracted from the PDF file generated in sec-
tion 13.4.2:

<?xml version="1.0" encoding="ISO8859-1"?>
<Bookmark>
 <Title Action="GoTo" Page="1 XYZ 300 800 0" >root
 <Title Action="GoTo" Open="false" Page="1 FitH 500" >sub 1
 <Title Action="GoTo" Page="1 FitBV 100" >sub 2.1</Title>
 <Title Action="GoTo" Page="1 Fit" >sub 2.2</Title>
 </Title>
 <Title Action="GoTo" Page="1 FitR 200 300 400 500" >
 sub 2</Title>
 </Title>
</Bookmark>

Observe that the syntax of the Page attribute corresponds with the syntax dis-
cussed in section 13.3.1. You also see that, when using explicit destinations, a
GoTo action is used implicitly. The possible values for the Action attribute are
as follows:

■ GoTo—This action can be used in combination with the attribute Page
or Named.

■ GoToR—This action opens a remote file defined in the attribute File. The
destination inside this remote file can be defined in an attribute Page,
Named, or NamedN. There’s also the optional attribute NewWindow.

■ URI—The action opens a URL defined by the attribute URI.
■ Launch—The action launches an application defined in the_file_to_open_

or_execute.

You recognize these values in the XML retrieved from the PDF file generated in
section 13.4.3. There are also tags defining the color and the style:

<?xml version="1.0" encoding="ISO8859-1"?>
<Bookmark>
 <Title Action="GoTo" Named="Title" >
 Go to the top of the page</Title>
 <Title Color="0 0.50196 0.50196" Style="bold" >
 Toggle the state of the answers</Title>
 <Title Open="false" >Useful links
 <Title Action="URI" URI="http://www.lowagie.com/iText" >
 Bruno's iText site</Title>
 <Title Action="URI" URI="http://itextpdf.sourceforge.net/" >
 Paulo's iText site</Title>
 <Title Action="URI"
 URI="http://sourceforge.net/projects/itext/" >
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Adding bookmarks 413
 iText @ SourceForge</Title>
 </Title>
 <Title >빈집</Title>
 <Title Action="GoTo" Style="italic" Page="2 FitB" >
 What's on page 2?</Title>
</Bookmark>

Note that actions such as a JavaScript action or the action to toggle the answers
aren’t reflected in the XML. They aren’t supported by the SimpleBookmark class.

13.4.5 Manipulating bookmarks in existing PDF files

One way to update/add bookmarks to an existing PDF document is to update/
create an XML file. You can import the new XML file object with SimpleBook-
mark.importFromXML() and use the resulting java.util.List as a parameter for
the method PdfStamper.setOutlines().

 You don’t need to write any iText code; you can use the toolbox plug-ins to
retrieve/update the outline tree.

TOOLBOX com.lowagie.tools.plugins.Bookmarks2XML (Bookmarks) Extracts
the outline tree of an existing PDF document in the form of an XML file.

com.lowagie.tools.plugins.XML2Bookmarks (Bookmarks) Adds the
bookmarks listed in an XML file to an existing PDF document.

If you manipulate a single document with bookmarks using PdfStamper, the book-
marks are preserved. Even if you insert pages, you don’t need to worry about the
page references: They’re adjusted automatically. You can even add an extra out-
line item. The following example inserts a title page. You can add an extra book-
mark entry that points to the (new) first page like this:

/* chapter13/HelloWorldManipulateBookmarks.java */
List list = SimpleBookmark.getBookmark(reader);
HashMap map = new HashMap();
map.put("Title", "Title Page");
ArrayList kids = new ArrayList();
HashMap kid1 = new HashMap();
kid1.put("Title", "top");
kid1.put("Action", "GoTo");
kid1.put("Page", "1 FitH 806");
kids.add(kid1);
HashMap kid2 = new HashMap();
kid2.put("Title", "bottom");
kid2.put("Action", "GoTo");
kid2.put("Page", "1 FitH 36");
kids.add(kid2);

 B
 C

 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

414 CHAPTER 13
Browsing a PDF document
map.put("Kids", kids);
list.add(0, map);
stamper.setOutlines(list);

You get the List object with the existing bookmarks b. You add nested book-
marks: You create a parent entry C and a list that contains the child entries D
(one that points to the top of the first page E and another that points to the bot-
tom F). You add the kids to the parent G and the parent to the original book-
marks list so that it’s the first item H (index = 0).

 The syntax used to construct this nested outline entry is similar to the syntax
used in the XML files you saw in the previous subsection. The current code sam-
ple corresponds with this XML snippet:

<Title >Title Page
 <Title Action="GoTo" Page="1 FitH 806" >top</Title>
 <Title Action="GoTo" Page="1 FitH 36" >bottom</Title>
</Title>

The previous example works fine if you’re using PdfStamper to manipulate a sin-
gle document. If you’re using PdfCopy, don’t forget to set the outlines. You must
concatenate the bookmarks, particularly if you’re concatenating different PDF
documents that have bookmarks.

 The next example shows how it’s done:

/* chapter13/HelloWorldCopyBookmarks.java */
ArrayList bookmarks = new ArrayList();
PdfReader reader = new PdfReader("HelloWorld1.pdf");
Document document =
 new Document(reader.getPageSizeWithRotation(1));
PdfCopy copy =
 new PdfCopy(document,
 new FileOutputStream("HelloWorldCopyBookmarks.pdf"));
document.open();
copy.addPage(copy.getImportedPage(reader, 1));
bookmarks.addAll(SimpleBookmark.getBookmark(reader));
reader = new PdfReader("HelloWorld2.pdf");
copy.addPage(copy.getImportedPage(reader, 1));
List tmp = SimpleBookmark.getBookmark(reader);
SimpleBookmark.shiftPageNumbers(tmp, 1, null);
bookmarks.addAll(tmp);
reader = new PdfReader("HelloWorld3.pdf");
copy.addPage(copy.getImportedPage(reader, 1));
tmp = SimpleBookmark.getBookmark(reader);
SimpleBookmark.shiftPageNumbers(tmp, 2, null);
bookmarks.addAll(tmp);
copy.setOutlines(bookmarks);
document.close();

 G
 H
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing actions 415
In this case, the page numbers aren’t updated automatically. Once you’ve shifted
the page numbers so that they begin at the new starting position of the concate-
nated document, it’s sufficient to use the standard methods of the List interface
to manipulate the bookmarks.

 This example isn’t representative, because it takes only the first page of each
document. You can automate the concatenation process in a loop. If you need some
inspiration on how to achieve this, look at the source code of the Concat plug-in.

TOOLBOX com.lowagie.tools.plugins.Concat (Manipulate) This plug-in uses
PdfCopy to concatenate two PDF files. It also takes bookmarks into
account, but it can experience problems when the files you want to con-
catenate have AcroForms.

You’ve been adding different actions to the outline entries, but you haven’t had a
good overview of the types of actions yet. Let’s look at the first series of actions
available in PDF.

13.5 Introducing actions

There are two ways to create an action. In the previous chapter, you saw that you
can use static methods that return a PdfAction instance when you want to change
the state of one or more layers:

PdfAction.setOCGstate(ArrayList state, boolean preserveRB)

In chapter 4, you used one of the constructors of PdfAction to open a URL:

PdfAction(String url)

When you clicked the Chunk to which this action was added, the URL opened in a
web browser.

 In chapter 15, you’ll see how actions that are added to a Chunk are in reality
actions attached to an annotation. But first things first: Let’s look at a series of
constructors and static methods that are available in the PdfAction object. In
chapter 15, we’ll present form-specific actions—for instance, actions that submit
an AcroForm to a web server.

13.5.1 Actions to go to an internal destination
The following static methods create actions that can be used to jump to another
location in the current document:

gotoLocalPage(int page, PdfDestination dest, PdfWriter writer)
gotoLocalPage(String dest, boolean isName)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

416 CHAPTER 13
Browsing a PDF document
The first method can be used to create an explicit destination and the second to cre-
ate a named destination. There are two kinds of named destinations; you make the
distinction with the parameter isName. The boolean value true means you want to
go to a destination defined using a PDF name; false indicates a destination
defined with a PDF string. (We’ll discuss the difference between a PDF name and a
PDF string in chapter 18.) In iText, named destinations are generally defined
using a string.

 PDF viewers also support a list of named actions that can be created with
PdfAction(int named). You can use one of the following values for the parameter
of this constructor:

■ PdfAction.FIRSTPAGE—Jumps to the first page
■ PdfAction.PREVPAGE—Jumps to the previous page
■ PdfAction.NEXTPAGE—Jumps to the next page
■ PdfAction.LASTPAGE—Jumps to the last page
■ PdfAction.PRINTDIALOG—Opens a dialog box for printing

In a real-world example, you can add a header or footer to every page with a table
that contains clickable areas that let you jump to the first, previous, next, or last
page of the document:

/* chapter13/NamedActions.java */
PdfPTable table = new PdfPTable(4);
table.getDefaultCell().setHorizontalAlignment(Element.ALIGN_CENTER);
table.addCell(new Phrase(new Chunk("First Page")
 .setAction(new PdfAction(PdfAction.FIRSTPAGE))));
table.addCell(new Phrase(new Chunk("Prev Page")
 .setAction(new PdfAction(PdfAction.PREVPAGE))));
table.addCell(new Phrase(new Chunk("Next Page")
 .setAction(new PdfAction(PdfAction.NEXTPAGE))));
table.addCell(new Phrase(new Chunk("Last Page")
 .setAction(new PdfAction(PdfAction.LASTPAGE))));

Keep this example in mind; in the next chapter, you’ll learn how to add this table
to every page of your document automatically.

 Just as you retrieved bookmarks in section 13.4.3, you can also retrieve the
named destinations inside an existing PDF file. Two of the previous examples
included the following code snippet:

/* chapter13/GotoActions.java */
PdfReader reader = new PdfReader("remote.pdf");
HashMap map =
 SimpleNamedDestination.getNamedDestination(reader, false);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing actions 417
SimpleNamedDestination.exportToXML(map,
 new FileOutputStream("remote.xml"), "ISO8859-1", true);

The boolean passed with the static getNamedDestination() method allows you to
distinguish between named destinations that were added as a PDF string (false)
or as a PDF name (true). The XML file generated with this code snippet looks
like this:

<?xml version="1.0" encoding="ISO8859-1"?>
<Destination>
 <Name Page="2 XYZ 178.07 800 0">test</Name>
</Destination>

This XML file can be useful if you want to create an HTML index for the docu-
ment similar to the one you made in chapter 2, or if you want to retrieve the
named destinations that can be referred to by an external GoTo.

13.5.2 Actions to go to an external destination

Actions to jump to an external location (not necessarily a PDF document) are cre-
ated using one of the following constructors:

■ To an external URL—PdfAction(URL url) and PdfAction(String url)
■ To a named destination in a remote PDF file—PdfAction(String filename,

String name)
■ To a specific page in a remote PDF file—PdfAction(String filename,

int page)

You can also create an action to go to a remote file using a static method:

gotoRemotePage(String filename, String dest,
boolean isName, boolean newWindow)

Note that you can pass an extra boolean parameter newWindow with this method.
See figure 13.7 to understand what happens.

Figure 13.7 Local and external destinations in a PDF document
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

418 CHAPTER 13
Browsing a PDF document
To make this screenshot, I opened the file goto.pdf; then, I clicked the sentence
go to another document. If I had set newWindow to false, the window with the docu-
ment goto.pdf would have been replaced with the file remote.pdf. For this exam-
ple, I chose an action that opened a new window inside Acrobat Reader. If you’re
used to working with Firefox as your web browser, this is similar to what happens
if you open a page in another tab, as opposed to what happens when you open a
page in a new browser window.

 As you can see in figure 13.7, goto.pdf also has an internal link to go to page 1.
The following code sample demonstrates some of the actions just discussed:

/* chapter13/GotoActions.java */
PdfAction action = PdfAction.gotoLocalPage(2,
 new PdfDestination(PdfDestination.XYZ, -1, 10000, 0), writer);
writer.setOpenAction(action);
document.add(new Paragraph("Page 1"));
document.newPage();
document.add(new Paragraph("Page 2"));
document.add(new Chunk("go to page 1").setAction(
 PdfAction.gotoLocalPage(1,
 new PdfDestination(PdfDestination.FITH, 500), writer)));
document.add(Chunk.NEWLINE);
document.add(new Chunk("go to another document").setAction(
 PdfAction.gotoRemotePage("remote.pdf",
 "test", false, true)));
remote.add(new Paragraph("Some remote document"));
remote.newPage();
Paragraph p = new Paragraph("This paragraph contains a ");
p.add(new Chunk("local destination").setLocalDestination("test"));
remote.add(p);

Note that when you open the file goto.pdf, the viewer initially shows the second
page of the document. That’s because you use setOpenAction(), triggering an
action based on a user-driven event.

13.5.3 Triggering actions from events

The method setOpenAction() is specific; it’s triggered when a user opens the PDF
file. With the method setAdditionalAction(), you can couple an action to the fol-
lowing events:

■ PdfWriter.DOCUMENT_CLOSE—The action is triggered just before closing
the document.

■ PdfWriter.WILL_SAVE—The action is triggered just before saving the
document.

GoTo action
(explicit destination)

Add action to writer

GoTo action
(internal
destination)

GoTo action
(external
destination)

Create internal named destination
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing actions 419
■ PdfWriter.DID_SAVE—The action is triggered just after saving the
document.

■ PdfWriter.WILL_PRINT—The action is triggered just before printing (part
of) the document.

■ PdfWriter.DID_PRINT—The action is triggered just after printing.

There’s also the method setPageAction() to define what should happen for
the following:

■ PdfWriter.PAGE_OPEN—The action is triggered when you enter a cer-
tain page.

■ PdfWriter.PAGE_CLOSE—The action is triggered when you leave a cer-
tain page.

Not all PDF consumers support these events. For instance, the events triggered
when saving the document are meant for tools like Acrobat that can save forms
filled in by an end user; the action can contain a script that checks whether all the
fields are valid. Saving a filled-in form isn’t possible with the free Adobe Reader;
you can only perform a Save As, and this doesn’t trigger the event.

 The next code sample was tested with Adobe Reader 7.0. It opens an alert
before printing the document, thanks you for reading the document just before
closing the document, and warns you before entering and after leaving page 3:

/* chapter13/EventTriggeredActions.java */
PdfAction copyrightNotice = PdfAction.javaScript("app.alert(
 ➥ 'Warning: this document is protected by copyright.');\r",
 writer);
writer.setAdditionalAction(PdfWriter.WILL_PRINT,
 copyrightNotice);
writer.setAdditionalAction(
 PdfWriter.DOCUMENT_CLOSE, PdfAction.javaScript(
 "app.alert('Thank you for reading this document.');\r",
 writer));
document.newPage();
writer.setPageAction(PdfWriter.PAGE_OPEN,
 PdfAction.javaScript
 "app.alert('You have reached page 3');\r", writer));
writer.setPageAction(PdfWriter.PAGE_CLOSE,
 PdfAction.javaScript(
 "app.alert('You have left page 3');\r", writer));

You’ve been using simple JavaScript actions in this example. Let’s see how you
can add JavaScript to a PDF document using iText.

Create
JavaScript
action

Action before
printing

Action before
closing

Action when
page 3 opens

Action on
leaving page 3
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

420 CHAPTER 13
Browsing a PDF document
13.5.4 Adding JavaScript to a PDF document
JavaScript is discussed only briefly in the PDF Reference. You’re referred to
Netscape Communication’s Client-Side JavaScript Reference, Adobe’s Acrobat Java-
Script Scripting Reference, and Acrobat JavaScript Scripting Guide. The JavaScript
used in PDF files is almost the same JavaScript you can use in your HTML pages,
but extra PDF-specific objects make it more powerful.

 You can create a JavaScript action in iText by using one of the following
static methods:

javaScript(String code, PdfWriter writer, boolean unicode)
javaScript(String code, PdfWriter writer)

In chapter 15, you’ll use additional actions in combination with a PDF form.
You’ll use JavaScript to test whether the value entered by an end user is a
date, and you’ll do some math with a simple calculator application written in
PDF and JavaScript.

 To achieve this, you’ll write custom JavaScript functions and add them as
document-level JavaScript to the PdfWriter object. Let’s try a simple example:

/* chapter13/DocumentLevelJavaScript.java */
writer.addJavaScript(
 "function saySomething(s) {app.alert('JS says: ' + s)}", false);
writer.setAdditionalAction(PdfWriter.DOCUMENT_CLOSE,
 PdfAction.javaScript(
 "saySomething('Thank you for reading this document.');\r",
 writer));

Instead of calling the alert() method directly, you now call a custom method
that adds “JS says:” to your message. In chapter 15, you’ll make extensive use
of this functionality.

 Note that you also used the method next(PdfAction na) in a previous example
to chain two actions:

/* chapter13/OutlineActions.java */
PdfAction chained =
 PdfAction.javaScript("app.alert('Bin-jip at IMDB');\r", writer);
chained.next(new PdfAction("http://www.imdb.com/title/tt0423866/"));

Both actions are executed in a sequence. In this example, the JavaScript alert
informs the end user that a URL will be opened. Opening a URL is, in most cases,
harmless. The next action we’ll discuss can be more dangerous.

13.5.5 Launching an application
I don’t recommend it, but it’s possible to launch an application from a PDF file.
The PDF specification supports launching applications from Windows, Mac, and
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Enhancing the course catalog 421
UNIX, but passing platform-specific parameters was only defined for Windows at
the time the PDF Reference 1.6 was published.

 For the moment, iText only supports launch actions for Windows through
these methods:

■ PdfAction(String application,
String parameters, String operation, String defaultDir)

■ createLaunch(String application,
String parameters, String operation, String defaultDir)

Note that the application parameter can be used to pass an application or a docu-
ment. The other parameters can be null:

■ The parameters are passed to the application.
■ The possible operation values include “open” and “print.”
■ defaultDir is the default directory in standard DOS syntax.

The following code snippet creates a clickable Chunk to launch Windows Notepad.
It opens the file <your_dir>/examples/chapter13/resources/test.txt:

/* chapter13/LaunchAction.java */
Paragraph p = new Paragraph(
 new Chunk("Click to open test.txt in Notepad.")
 .setAction(new PdfAction("c:/windows/notepad.exe",
 "test.txt", "open", "../resources/")));

Adobe Reader gives you a warning before starting the application, and it’s impor-
tant to be careful: You click a huge number of buttons every day. When you see an
OK button, you click it almost automatically. To protect yourself from doing so,
you’ll learn how to remove launch actions from an existing PDF document in
chapter 18.

 We’ll continue discussing actions in chapter 15. Now it’s time to return to one
of Laura’s first assignments: creating the course catalog. With the functionality
you’ve learned in this chapter, you can enhance the course catalog and add book-
marks, page labels, and thumbnails.

13.6 Enhancing the course catalog

In chapter 7, you made a course catalog based on a series of XML files and
JPEG images. You parsed these XML files to create an object stack that was
added to a MultiColumnText object. This example adapts that code slightly so
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

422 CHAPTER 13
Browsing a PDF document
that the object stack is added to a Document object (without using columns). You
also add some code that lets you ask the XML handler for the title of the course
that was parsed. You’ll use this course title as an entry for the outlines in your
bookmarks pane.

 By adding outlines, you get a course catalog that is much easier to browse; see
figure 13.8.

 You now have all the titles of the courses in the left panel, which makes it easy
for students to find the course descriptions they need, but you can even make it
easier. JPEG images of the handbook are available for almost every course, and
you can use these images as thumbnails as shown in figure 13.9.

 As you can see, you don’t have an image for course number 8021 (I don’t think
there’s a book titled JDO in Action yet).

Figure 13.8 A course catalog with bookmarks
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Enhancing the course catalog 423
The following code snippet combines methods discussed in this chapter:

/* chapter13/CourseCatalogBookmarked.java */
Document document = new Document();
OutputStream outPDF = new FileOutputStream(
 "course_catalogue_bookmarks.pdf");
PdfWriter writer = PdfWriter.getInstance(document, outPDF);
writer.setViewerPreferences(PdfWriter.PageLayoutSinglePage
 | PdfWriter.PageModeUseOutlines);
document.open();
PdfOutline outline = writer.getRootOutline();
String[] courses = { "8001", "8002", "8003", "8010", "8011",
 "8020", "8021", "8022", "8030", "8031", "8032", "8033",
 "8040", "8041", "8042", "8043", "8051", "8052" };
CourseCatalogueBookmarked cc;
PdfPageLabels labels = new PdfPageLabels();
for (int i = 0; i < courses.length; i++) {

Figure 13.9 A course catalog with thumbnails and page labels
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

424 CHAPTER 13
Browsing a PDF document
 cc = new CourseCatalogueBookmarked(courses[i]);
 cc.flushToDocument(document);
 int pagenumber = writer.getPageNumber();
 new PdfOutline(outline,
 new PdfDestination(PdfDestination.FIT), cc.getTitle());
 try {
 labels.addPageLabel(pagenumber, PdfPageLabels.EMPTY,
 courses[i]);
 writer.setThumbnail(Image.getInstance(
 "../../chapter07/resources/" + courses[i] + ".jpg"));
 } catch (FileNotFoundException fnfe) {
 // left empty on purpose
 }
 document.newPage();
}
writer.setPageLabels(labels);
document.close();

If you need further practice, you can enhance the example of the map of Foobar
using the functionality offered by PdfDestination. You can make a list of all the
important sightseeing locations in the city and add this list to the outline tree. By
clicking the name of the location, focus on a specific location on the map. You can
even chain URL actions so that an informational web site opens just after the loca-
tion is shown on the map.

13.7 Summary

In this chapter, we have explored different aspects of the word browsing. You’ve
seen how you can define viewer preferences in a PDF document. We have dis-
cussed the contents of the Pages panel (thumbnails and page labels) and the
Bookmarks panel (outlines).

 You discovered that an outline tree can be more than just a table of contents,
and we discussed some events triggered by an end user. In the next chapter, we’ll
deal with events that are triggered on the server side. When creating a document,
iText keeps track of certain events: for instance, when a document is opened or
closed; when a new page is started or ends; or when a paragraph, chapter, or sec-
tion is added. This functionality will allow you to enhance the course catalog with
extra features such as page numbers and watermarks.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Automating
PDF creation
This chapter covers
■ The theory of pages
■ Page events in practice
■ XML ideas for iText
425

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

426 CHAPTER 14
Automating PDF creation
In the previous chapter, we talked about events triggered in Adobe Reader by the
end user. This chapter discusses events of a completely different nature: events
that occur on the server side while composing a document—when a document is
opened (step 3 in the PDF production process) or closed (step 5), when a new
page is started or ended (step 4), and so on. These events aren’t triggered by an
end user or a developer, but by iText.

 This functionality opens some interesting perspectives. When you add build-
ing blocks to a document, you don’t care about pages. You trust that iText will
send the content to the output stream each time a page is full and that a new page
will be opened automatically. But you could use more control over the process if
you want to add content to every page in your document—for instance, a recur-
ring watermark. You can get this control by implementing the PdfPageEvent
interface. This allows you to add custom functionality that is executed upon cer-
tain events. Note that you used this interface in chapter 4, when you added cus-
tom behavior to Chunks with the method onGenericTag().

 In this chapter, we’ll discuss the other methods in the interface; but before we
talk about page events, you should learn more about pages in general. You’ve
used the concept of a page in all the previous examples, but there’s more to a
page than meets the eye.

14.1 Creating a page

I don’t know why, but one of the frequently asked questions on the iText mail-
ing list is how to start a new page in iText. That’s easy to answer: You’ve used
document.newPage() in many examples. But there is one catch: Sometimes it
seems as though triggering newPage() doesn’t have any effect.

 In this section, you’ll discover that this isn’t a bug: It’s a feature. We’ll also talk
about page boundaries: how to define them and how to use them. Finally, you’ll
lean how to reorder pages after you’ve created a document.

14.1.1 Adding empty pages

Automatic processes create undesirable empty pages in some situations. For
instance, when you create a PDF based on data coming from a database, an XML
file, or another source, the newPage() method can be called multiple times even if
no data was added on the current page.

 In most cases, you don’t want this result; that’s why iText was designed to
ignore newPage() invocations if the current page is empty. Of course, sometimes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating a page 427
you want to insert an empty page on purpose. If that is the case, you tell the writer,
as in the following code sample:

/* chapter14/EmptyPages.java */
writer.setPageEmpty(ignore_empty);
document.newPage();
writer.setPageEmpty(ignore_empty);
document.newPage();
document.add(new Paragraph("Hello World"));
document.newPage();
writer.setPageEmpty(ignore_empty);
document.newPage();

If the parameter ignore_empty is true (the default), a document with only one
page is created because three out of four newPage() statements in this code sam-
ple are ignored. When setting the parameter to false, a document with four pages
is created: first, two empty pages, then a page saying Hello World, and then an
extra empty page.

 Another way to force empty pages to be inserted is to add extra content that is
outside the page. Content that is outside the rectangle you defined when you cre-
ated the document won’t be visible to the end user. That brings us to the next
topic: defining page boundaries.

14.1.2 Defining page boundaries

Until now, you have defined the size of a page using the helper class PageSize or
by constructing an instance of the Rectangle object. Internally, this rectangle is
called the media box. This page size is supposed to be equal to the size of the final
document when printed on paper. In short, you’ve been creating PDF documents
with pages that are ready for consumption.

 You can also create PDF documents that are part of a prepress process with
pages that have an intermediate format; in this case, the media box is larger than
the finished page. The intermediate format may include additional production-
related content that falls outside the boundaries of the final page.

 Inside the media box, different areas can be defined: the crop box, the bleed box,
the trim box and the art box. This is demonstrated in the following code snippet.
Figure 14.1 shows a PDF file in which these page boundaries are defined.

 Let’s first look at the code used to define the different areas and then compare
the code snippet with the screenshot:

/* chapter14/PageBoundaries.java */
Document document = new Document(new Rectangle(432, 792));
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("page_boundaries.pdf"));

Media box:
6x11 in

 b
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

428 CHAPTER 14
Automating PDF creation
writer.setCropBoxSize(new Rectangle(5, 5, 427, 787));
writer.setBoxSize("bleed",
 new Rectangle(30, 30, 402, 762));
writer.setBoxSize("trim",
 new Rectangle(36, 36, 396, 756));
writer.setBoxSize("art",
 new Rectangle(72, 72, 360, 684));

In line b you see that the media box should be 6.00 x 11.00 in. But if you
look at the Document Properties window, you see that the document was
clipped to 5.86 x 10.86 in. This is the size defined in line C with the method
setCropBoxSize().

Figure 14.1 Page boundaries

Crop box:
5.86x10.86 in

 C
Bleed box:
5.61x10.16 in

Trim box: 5x10 in

Art box: 4x8.5 in
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating a page 429
The dashed line corresponds with the bleed box. The full line just inside the
bleed box is the trim box, and the rectangle around the text is the art box. What
do all these terms signify? Let’s consult the PDF Reference:

■ The Media Box—defines the boundaries of the physical medium on which
the page is to be printed. It may include any extended area surrounding the
finished page for bleed, printing marks, or other such purposes. It may also
include areas close to the edges of the medium that cannot be marked
because of physical limitations of the output device. Content falling outside
this boundary can safely be discarded without affecting the meaning of the
PDF file.

■ The Crop Box—defines the region to which the contents of the page are to be
clipped (cropped) when displayed or printed. Unlike the other boxes, the
crop box has no defined meaning in terms of physical page geometry or
intended use; it merely imposes clipping on the page contents. The default
value is the page’s media box.

■ The Bleed Box—defines the region to which the contents of the page should
be clipped when output in a production environment. This may include any
extra bleed area needed to accommodate the physical limitations of cutting,
folding, and trimming equipment. The actual printed page may include
printing marks that fall outside the bleed box. The default value is the
page’s crop box.

■ The Trim Box—defines the intended dimensions of the finished page after
trimming. It may be smaller than the media box to allow for production-
related content, such as printing instructions, cut marks, or color bars. The
default value is the page’s crop box.

■ The Art Box—defines the extent of the page’s meaningful content (including
potential white space) as intended by the page’s creator. The default value is
the page’s crop box.

These values are important primarily for the PDF consumer. Setting the page
boundaries doesn’t have any effect on the way iText creates the document. Setting
the art box doesn’t replace setting the page margins.

 We add the text inside the art box using the ColumnText object:

/* chapter14/PageBoundaries.java */
while (ColumnText.hasMoreText(status)) {
 ct.setSimpleColumn(72, 72, 360, 684);
 status = ct.go();
 document.newPage();
}

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

430 CHAPTER 14
Automating PDF creation
We can also ask the writer to return its current page boundaries. The next code
snippet uses these boundaries to add lines and a title; the rectangles, the extra
marks, and the title are added in an onEndPage event:

public void onEndPage(PdfWriter writer, Document document) {
 PdfContentByte cb = writer.getDirectContent();
 cb.saveState();
 Rectangle pageSize = writer.getPageSize();
 Rectangle trim = writer.getBoxSize("trim");
 Rectangle art = writer.getBoxSize("art");
 Rectangle bleed = writer.getBoxSize("bleed");
 cb.rectangle(
 trim.left(), trim.bottom(), trim.width(), trim.height());
 cb.rectangle(
 art.left(), art.bottom(), art.width(), art.height());
 cb.stroke();
 cb.setLineWidth(3);
 cb.moveTo(pageSize.width() / 2, bleed.bottom());
 cb.lineTo(pageSize.width() / 2, 0);
 cb.moveTo(pageSize.width() / 2, bleed.top());
 cb.lineTo(pageSize.width() / 2, pageSize.height());
 cb.moveTo(0, pageSize.height() / 2);
 cb.lineTo(bleed.left(), pageSize.height() / 2);
 cb.moveTo(pageSize.width(), pageSize.height() / 2);
 cb.lineTo(bleed.right(), pageSize.height() / 2);
 cb.stroke();
 cb.setLineWidth(1);
 cb.setLineDash(6, 0);
 cb.rectangle(bleed.left(), bleed.bottom(),
 bleed.width(), bleed.height());
 cb.stroke();
 cb.restoreState();
 float x = trim.left() + trim.width() / 2;
 float y = art.top() + 16;
 cb.beginText();
 cb.setFontAndSize(bf, 36);
 cb.showTextAligned(Element.ALIGN_CENTER, "Fox and Dog News", x, y, 0);
 cb.endText();
}

This is a good example of how you’ll use page events. You always add the actual
content with document.add() or ColumnText.go(). The other content that is visible
to the end user (page numbers, watermarks, headers, footers) or invisible (cut
marks, color bars, and processing instructions) is added using page events.

 But we were talking about pages. Let’s find out how you can reorder pages,
before we move on to an in-depth discussion of page events.

Media box

Trim box
Art box

Bleed box
Draw
rectangles
with solid
lines

Add printer marks

Draw rectangle
with dashed lines

Add title inside
trim box
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating a page 431
14.1.3 Reordering pages

The pages in a PDF file are organized in a page tree. Section 3.6.2 of the PDF Ref-
erence says that the page tree defines the ordering of pages in the document. The
tree structure allows PDF consumer applications, using only limited memory, to
quickly open a document containing thousands of pages. You’ll learn more about
this page tree in chapter 18 when we look under the hood of iText.

 For now, it’s sufficient to understand that iText constructs a page tree with dif-
ferent branches. If you want to be able to reorder the pages after you’re done cre-
ating the document, you need to tell the writer to use the linear mode:

/* chapter14/ReorderPages.java */
writer.setLinearPageMode();

When you apply this line to the code, the page tree has no branches; every page is
a leaf added directly to the root of the page tree. This allows you to change the
order of the pages just before closing the document.

 Let’s return to the example with the index events from chapter 4 (section 4.6.3).
In that example, you added regular content to a document. Once you finished
adding content, you began writing an index on a new page. Suppose you want to
change the order of the pages so that the index precedes the content. You must
know the page number of the last page to which you have added real content:

/* chapter14/ReorderPages.java */
int beforeIndex = writer.getPageNumber()

You also need the total number of pages just after you have added the index:

/* chapter14/ReorderPages.java */
int totalPages = writer.getPageNumber();
int[] reorder = new int[totalPages];
for (int i = 0; i < totalPages; i++) {
 reorder[i] = i + beforeIndex + 1;
 if (reorder[i] > totalPages)
 reorder[i] -= totalPages;
 System.err.println("page " + reorder[i]
 + " changes to page " + (i + 1));
}
document.newPage();
writer.reorderPages(reorder);

If you open the document, you see that the index that was on page 6 when you exe-
cuted the example in chapter 4 is now on page 1. Try clicking the page numbers in
the index: They still point to the correct page, even after you change the order of
the pages. Calling newPage() before reordering the pages is important! This
method is responsible for initializing a new page, but it also does some finalization

Create array of int

Map new page
to old one

Finalize last page

Reorder pages
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

432 CHAPTER 14
Automating PDF creation
operations on the previous page. If you forget this line, you’ll get an exception say-
ing Page reordering requires an array with the same size as the number of pages. As
explained in section 14.1.1, newPage() won’t add an extra blank page.

 This example in chapter 4 demonstrated the use of the onGenericTag() event.
Let’s see more examples of how page events can solve common problems.

14.2 Common page event functionality

In this section, we’ll answer a series of frequently asked questions. Some of them
are easy to answer—for instance, how to add a header or footer. Others can be
answered in different ways depending on the desired result—for instance, how to
add page numbers that say This is page X of Y.

 The solutions presented in this section all use one or more of the following
page event methods.

14.2.1 Overview of the PdfPageEvent methods

The PdfPageEvent interface defines 11 methods that are called by internal iText
classes responsible for composing the PDF syntax. These methods are as follows:

■ onStartPage()—Triggered when a new page is started. Don’t add content in
this event, not even a header or footer. Use this event for initializing vari-
ables or setting parameters that are page specific, such as the transition or
duration parameters.

■ onEndPage()—Triggered just before starting a new page. This is the best
place to add a header, a footer, a watermark, and so on.

■ onOpenDocument()—Triggered when a document is opened, just before
onStartPage() is called for the first time. This is a good place to initialize
variables that will be needed for all the pages of the document.

■ onCloseDocument()—Triggered just before the document is closed. This is
the ideal place to release resources (if necessary) and to fill in the total
number of pages in a page X of Y footer.

■ onParagraph()—In chapter 7, “Constructing columns,” you used get-
VerticalPosition() to retrieve the current Y coordinate. With the
onParagraph() method, you get this value automatically every time a new
Paragraph is started.

■ onParagraphEnd()—Differs from onParagraph() in that the Y position where
the paragraph ends is provided, instead of the starting position.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Common page event functionality 433
■ onChapter()—Similar to onParagraph(), but also gives you the title of the
Chapter object (in the form of a Paragraph).

■ onChapterEnd()—Similar to onParagraphEnd(), but for the Chapter object.
■ onSection()—Similar to onChapter(), but for the Section object.
■ onSectionEnd()—Similar to onChapterEnd(), but for the Section object.
■ onGenericTag()—See section 4.6, “Generic Chunk functionality.”

An extra helper class, PdfPageEventHelper, implements these methods. The body
of all the methods in this helper class is empty. If you want to create a custom
page event class, you can extend this helper class and override only those meth-
ods you need. That’s what you’ll do in the following sections.

14.2.2 Adding a header and a footer
Do you remember the example with the named actions in the previous chapter?
I asked you to keep it in mind. You’ll use the table with the links to the first, pre-
vious, next, and last page as a footer (see figure 14.2).

Figure 14.2 Adding a header and a footer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

434 CHAPTER 14
Automating PDF creation
In the screenshot, you can see that a header has been added; it starts on the sec-
ond page. To achieve this, you override the onEndPage() method:

/* chapter14/HeaderFooterExample.java */
protected Phrase header;
protected PdfPTable footer;

public HeaderFooterExample() {
 header = new Phrase("This is the header of the document.");
 footer = new PdfPTable(4);
 footer.setTotalWidth(300);
 footer.getDefaultCell()
 .setHorizontalAlignment(Element.ALIGN_CENTER);
 footer.addCell(new Phrase(new Chunk("First Page")
 .setAction(new PdfAction(PdfAction.FIRSTPAGE))));
 footer.addCell(new Phrase(new Chunk("Prev Page")
 .setAction(new PdfAction(PdfAction.PREVPAGE))));
 footer.addCell(new Phrase(new Chunk("Next Page")
 .setAction(new PdfAction(PdfAction.NEXTPAGE))));
 footer.addCell(new Phrase(new Chunk("Last Page")
 .setAction(new PdfAction(PdfAction.LASTPAGE))));
}
public void onEndPage(PdfWriter writer, Document document) {
 PdfContentByte cb = writer.getDirectContent();
 if (document.getPageNumber() > 1) {
 ColumnText.showTextAligned(cb,
 Element.ALIGN_CENTER, header,
 (document.right() - document.left()) / 2
 + document.leftMargin(), document.top() + 10, 0);
 }

 footer.writeSelectedRows(0, -1,
 (document.right() - document.left() - 300) /2
 + document.leftMargin(), document.bottom() - 10, cb);
}

This code needs further explaining. Two parameters are passed to all the meth-
ods of the PdfPageEvent interface:

■ A PdfWriter object—The PdfWriter to which the event was added
■ A Document object—A PdfDocument object; not the Document instance you’re

using to add content in the form of high-level objects

You add the header phrase only if document.getPageNumber() is greater than 1.
Normally, if you ask the Document object for the page number, it always returns 0.
Why? And what’s the difference? The answer is simple: The Document object cre-
ated in step 1 is unaware of the writer object. It doesn’t know if you’re producing
PDF, HTML, or RTF. However, as soon as you instantiate a PdfWriter (step 2) an

Initialize header
phrase

Initialize footer
Table

Grab direct
content

Add header if
page number 1Add Phrase at

absolute position

Ask Document
for marginsAdd table at

absolute position
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Common page event functionality 435
instance of PdfDocument is created. This subclass of the Document class is passed as
a parameter to the event.

 Do not add content to this object; use this object for read-only purposes—for
example, to get the margins of the current page. If you want the current page
number, you can invoke getPageNumber() either on the PdfDocument object or on
the PdfWriter passed to the event. The next code snippet demonstrates how the
event was created and added to the writer:

/* chapter14/HeaderFooterExample.java */
Document document = new Document();
try {
 PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("header_footer.pdf"));
 writer.setViewerPreferences(PdfWriter.PageLayoutTwoColumnLeft);
 writer.setPageEvent(new HeaderFooterExample());
 document.setMargins(36, 36, 54, 72);
 document.open();
 for (int k = 1; k <= 300; ++k) {
 document.add(
 new Phrase("Quick brown fox jumps over the lazy dog. "));
 }
} catch (Exception e) {
 System.err.println(e.getMessage());
}
document.close();

In the previous example, you initialized the header Phrase and the footer Pdf-
PTable in the constructor of the PdfPageEvents implementation. Another option
is to initialize these member variables in the onStartDocument() event, as is done
in the following example.

14.2.3 Adding page X of Y

It’s easy to change the code of the previous example so that the header or footer
shows the page number: Just create a new phrase in the onEndPage() event, and
use the getPageNumber() method to retrieve the current page number. Let’s see
how to construct a header or footer that tells the end user this is Page X of Y. The
value for X is known; but how do you retrieve the value for Y? At the moment this
information is written, there’s no way of knowing the total number of pages.

 There are two ways to deal with this situation:

■ Create the document in memory without the Page X of Y information, and
then create a PdfReader object and use PdfStamper to stamp a header or
footer on each page. This is the most accurate method—the information is
added exactly on the location you expect.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

436 CHAPTER 14
Automating PDF creation
■ Add the information Page X of in a page event, and add the same (empty)
PdfTemplate over and over at the estimated location of the Y value of each
page. In the onCloseDocument() event, write the actual value of Y to this
single PdfTemplate that was added to each page.

To try the first solution, you can combine an example from chapter 2 with one of
the text state methods described in chapter 11. In this chapter, you’re interested
in the solution that uses page events. Figure 14.3 shows a document to which text
is added with Paragraph and Phrase objects. The current page number and the
total number of pages are added in a footer.

 This example overrides three page event methods: You perform some initial-
izations in the onStartDocument() event, add a footer—including a PdfTemplate—

Figure 14.3 Page X of Y example
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Common page event functionality 437
in the onEndPage() event, and add the total number of pages to the PdfTemplate in
the onCloseDocument() event:

/* chapter14/PageXofY.java */
protected PdfTemplate total;
protected BaseFont helv;

public void onOpenDocument(PdfWriter writer, Document document) {
 total = writer.getDirectContent().createTemplate(100, 100);
 total.setBoundingBox(new Rectangle(-20, -20, 100, 100));
 try {
 helv = BaseFont.createFont(BaseFont.HELVETICA,
 BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
 } catch (Exception e) {
 throw new ExceptionConverter(e);
 }
}
public void onEndPage(PdfWriter writer, Document document) {
 PdfContentByte cb = writer.getDirectContent();
 cb.saveState();
 String text = "Page " + writer.getPageNumber() + " of ";
 float textBase = document.bottom() - 20;
 float textSize = helv.getWidthPoint(text, 12);
 cb.beginText();
 cb.setFontAndSize(helv, 12);
 if ((writer.getPageNumber() % 2) == 1) {
 cb.setTextMatrix(document.left(), textBase);
 cb.showText(text);
 cb.endText();
 cb.addTemplate(total, document.left() + textSize, textBase);
 }
 else {
 float adjust = helv.getWidthPoint("0", 12);
 cb.setTextMatrix(
 document.right() - textSize - adjust, textBase);
 cb.showText(text);
 cb.endText();
 cb.addTemplate(total, document.right() - adjust, textBase);
 }
 cb.restoreState();
}

public void onCloseDocument(PdfWriter writer, Document document) {
 total.beginText();
 total.setFontAndSize(helv, 12);
 total.setTextMatrix(0, 0);
 total.showText(String.valueOf(writer.getPageNumber() - 1));
 total.endText();
}

Event’s member
variables

Initialize
template

Initialize
base font

Add “Page X of”
on odd pages

Add “Page X of”
on even pages

Add Y
value
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

438 CHAPTER 14
Automating PDF creation
As you can see in figure 14.3, this is a good solution for the Page X of Y problem,
but you have to keep a few things in mind.

 You’ve created a PdfTemplate that is 100 by 100 user units big. That’s
more than large enough to add a number. You’ve also set the bounding box of
the template. The bounding box is the rectangle that encloses the visible con-
tent of the form XObject. In chapter 10, you clipped images by adding them
to a PdfTemplate. In that example, the bounding box was equal to the size of
the PdfTemplate. In this example, you make sure the bounding box is slightly
larger than the size of the PdfTemplate because part of the glyphs of the dig-
its in the page number may be drawn outside the defined area—for instance,
because the descender of a character added to the PdfTemplate goes beyond
the baseline.

 This solution is OK for the odd pages, where you add the footer to the left. For
the even pages, you may have a problem. You don’t know the value of Y in
advance, so you also don’t know how many digits Y has. The code introduces a
parameter adjust that corresponds with the width of the glyph representing zero.
You use this parameter to align the Page X of Y string. Of course, this alignment
won’t always be correct, especially if you expect fewer than 10 pages and end up
with 10 pages or more. If you create the PDF in memory first and then use Pdf-
Stamper to add the footers, the positioning of the string Page X of Y can be done in
a more accurate way.

 In the next section, you’ll adapt the previous example and add watermarks to
each page.

14.2.4 Adding watermarks

Figure 14.4 resembles figure 14.3; the content is identical. The difference is that
watermarks have been added.

 Compare the methods onOpenDocument() and onEndPage() in the follow-
ing code sample with the previous one. This example also overrides the
onStartPage() method:

/* chapter14/WatermarkExample.java */
protected PdfTemplate total;
protected BaseFont helv;
protected PdfGState gstate;
protected Color color;
protected Image image;
public void onOpenDocument(PdfWriter writer, Document document) {
 total = writer.getDirectContent().createTemplate(100, 100);
 total.setBoundingBox(new Rectangle(-20, -20, 100, 100));
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Common page event functionality 439
 try {
 helv = BaseFont.createFont(BaseFont.HELVETICA,
 BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
 image =
 Image.getInstance("../../chapter10/resources/iTextLogo.gif");
 } catch (Exception e) {
 throw new ExceptionConverter(e);
 }
 gstate = new PdfGState();
 gstate.setFillOpacity(0.3f);
 gstate.setStrokeOpacity(0.3f);
}

public void onStartPage(PdfWriter writer, Document document) {
 if (writer.getPageNumber() % 2 == 1) {
 color = Color.blue;
 } else {
 color = Color.red;
 }
}

Figure 14.4 Watermarks added with page events
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

440 CHAPTER 14
Automating PDF creation
public void onEndPage(PdfWriter writer, Document document) {
 (...)
 try {
 PdfContentByte contentunder = writer.getDirectContentUnder();
 contentunder.saveState();
 contentunder.setGState(gstate);
 contentunder.addImage(image,
 image.width() * 4, 0, 0, image.height() * 4, 120, 650);
 contentunder.setColorFill(color);
 contentunder.beginText();
 contentunder.setFontAndSize(helv, 48);
 contentunder.showTextAligned(Element.ALIGN_CENTER,
 "My Watermark Under " + writer.getPageNumber(),
 document.getPageSize().width() / 2,
 document.getPageSize().height() / 2, 45);
 contentunder.endText();
 contentunder.restoreState();
 } catch (DocumentException e) {
 e.printStackTrace();
 }
}

Until now, you’ve always used onEndPage() to add content. It’s a common misun-
derstanding that you should add headers and watermarks in onStartPage() and
footers in onEndPage(). You can add content in the onStartPage() method, but I
usually don’t do this because it caused undesirable side-effects in earlier versions
of iText. I advise you to use the onStartPage() method only to initialize page-
specific parameters—for instance, the color of the text used for the watermark.

NOTE If you’re adding watermarks or headers/footers with images, be sure you
create the Image object only once—for instance, in the event’s construc-
tor or in the onOpenDocument() method. If you create the Image object
in onStartPage() or onEndPage(), it will cost you not only in perfor-
mance, but also in file size. You risk adding the same byte sequence (the
image) to the PDF over and over again.

In the next example, you’ll adapt the SlideShow example you made in the
previous chapter so that the transition and duration are set in the onStart-
Page() event.

14.2.5 Creating an automatic slide show

In section 13.3, you learned how to add page transitions and durations. You had
to define these values for every page. However, you can automate this process and
set these values in a page event:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Common page event functionality 441
/* chapter14/SlideShow.java */
protected PdfTransition transition;
protected int duration;

public SlideShow(PdfTransition transition, int duration) {
 this.transition = transition;
 this.duration = duration;
}
public void setTransition(PdfTransition transition) {
 this.transition = transition;
}
public void setDuration(int duration) {
 this.duration = duration;
}
public void onStartPage(PdfWriter writer, Document document) {
 writer.setTransition(transition);
 writer.setDuration(duration);
}

By defining the transition and the duration as member variables, you can change
their values while you’re generating the document.

/* chapter14/SlideShow.java */
SlideShow slideshow =
 new SlideShow(new PdfTransition(PdfTransition.OUTBOX), 1);
writer.setPageEvent(slideshow);
document.open();
Image img0 =
 Image.getInstance("../../chapter13/resources/fox dog 0.gif");
img0.setAbsolutePosition(0, 0);
document.add(img0);
document.newPage();
(...)
Image img4 =
 Image.getInstance("../../chapter13/resources/fox dog 4.gif");
img4.setAbsolutePosition(0, 0);
document.add(img4);
slideshow.setTransition(new PdfTransition(PdfTransition.INBOX, 1));

document.newPage();
(...)
Image img6 =
 Image.getInstance("../../chapter13/resources/fox dog 6.gif");
img6.setAbsolutePosition(0, 0);
writer.setTransition(new PdfTransition(PdfTransition.DISSOLVE, 1));
document.add(img6);
slideshow.setDuration(2);
document.newPage();

This example also demonstrates how you can change the behavior of the event
while you’re adding content.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

442 CHAPTER 14
Automating PDF creation
 This can be useful, for instance, if you want to change header text that is
added in a page event dynamically while adding the actual content. In sec-
tion 14.3.2, you’ll parse a play by Shakespeare and display the act in the
header. This means you’ll change the member variable with the header text
every time a new act is started, just the way you changed the duration and the
transition in the previous example.

 You’ve used onOpenDocument(), onStartPage(), onEndPage(), and onClose-
Document(). In chapter 4, you saw examples of onGenericTag(). The only meth-
ods in the PdfPageEvent interface you haven’t dealt with yet are those involving
Paragraph, Chapter, and Section objects.

14.2.6 Automatically creating bookmarks

Do you remember the Latin text used in chapter 7? One of the first examples in
that chapter used a text file with an extract of Caesar’s reports on the Gallic War;
each line was wrapped in a paragraph. With the use of the onParagraph() event,
you can create an outline entry for every paragraph that is added to the docu-
ment (see figure 14.5).

The code to read the text from the file and add it to the document is copied
almost literally from the example in chapter 7. The most important difference is
that you now add a page event to the document. You implement one method in
this event using the functionality discussed in the previous chapter:

/* chapter14/ParagraphOutlines.java */
private int n = 0;
public void onParagraph(

Figure 14.5
Automatic
bookmarks
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Common page event functionality 443
 PdfWriter writer, Document document, float position) {
 n++;
 PdfContentByte cb = writer.getDirectContent();
 PdfDestination destination =
 new PdfDestination(PdfDestination.FITH, position);
 PdfOutline outline =
 new PdfOutline(cb.getRootOutline(),
 destination, "paragraph " + n);
}

Although this example is rather theoretical, the next one answers a frequently
asked question: How can you create a table of contents along with the outlines in
the bookmark panel?

14.2.7 Automatically creating a table of contents

Figure 14.6 shows an example that was used in chapter 3, but with a table of con-
tents (TOC) added as the first page.

 This example creates three files:

■ chapter_events.pdf is almost identical to the file generated in chapter 3.
■ toc.pdf is created using an event.
■ toc_chapters.pdf is the concatenation of toc.pdf and chapter_events.pdf.

Figure 14.6 Automatic table of contents
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

444 CHAPTER 14
Automating PDF creation
You already know how to create the first file; the following code snippet creates
the second file:

/* chapter14/ChapterEvents.java */
protected Document toc;

public ChapterEvents() {
 toc = new Document();
 try {
 PdfWriter.getInstance(toc, new FileOutputStream("toc.pdf"));
 toc.open();
 }
 catch(Exception e) {
 throw new ExceptionConverter(e);
 }
}

public void onChapter(PdfWriter writer, Document document,
 float position, Paragraph title) {
 try {
 toc.add(new Paragraph(title.content() + " page "
 + document.getPageNumber()));
 } catch (DocumentException e) {
 e.printStackTrace();
 }
}
public void onChapterEnd(PdfWriter writer, Document document,
 float position) {
 try {
 toc.add(Chunk.NEWLINE);
 } catch (DocumentException e) {
 e.printStackTrace();
 }
}
public void onSection(PdfWriter writer, Document document,
 float position, int depth, Paragraph title) {
 try {
 switch(depth) {
 case 2:
 toc.add(new Paragraph(title.content(),
 new Font(Font.HELVETICA, 10)));
 break;
 default:
 toc.add(new Paragraph(title.content(),
 new Font(Font.HELVETICA, 8)));
 }
 } catch (DocumentException e) {
 e.printStackTrace();
 }
}

Add chapter title

Add newline

Add section title

Add section title
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 445
public void onCloseDocument(PdfWriter writer, Document document) {
 toc.close();
}

When the file chapter_events.pdf with the content is closed, so is the file toc.pdf
with the TOC entries. You can now concatenate both files. You can choose to add
the TOC before or after the content. In this case, you start with the TOC:

/* chapter14/ChapterEvents.java */
String[] arguments =
 {"toc.pdf", "chapter_events.pdf", "toc_chapters.pdf"};
Concat.main(arguments);

You now have one file, toc_chapters.pdf, which starts with the TOC and continues
with the document. We’ll continue with more page event examples in the next
section, but we’ll gradually shift the scope to XML. You won’t write your own han-
dler class as you did in the Foobar examples, but you’ll reuse some of the handlers
shipped with iText.

14.3 Alternative XML solutions

All the Foobar examples you’ve created have been based on an XML file parsed
using a SAX parser. In the real world, you’ll get the data from a database. For
instance, when you want to create a document with a table similar to the study
program example, you won’t use XML; you’ll create a PdfPTable based on a
ResultSet returned by a database query.

 But some situations will benefit from a hybrid solution involving parsing
XML in combination with database queries—for instance, if you have a letter
in XML with tags that need to be replaced depending on the addressee. That’s
the first example in this section; in the other examples, you’ll be introduced
to alternatives that can be used to parse XML and/or (X)HTML.

14.3.1 Writing a letter on company stationery
At Ghent University, we regularly have to write letters to the students (all
27,000!). These letters have the University header and footer, but the content dif-
fers depending on specific student-related parameters (undergraduate/graduate,
fulltime/halftime student, and so on). Each paragraph in the letter can take a dif-
ferent amount of lines. This means it’s difficult to define a template with fixed
fields, as we’ll do in the next two chapters, when we discuss PDF forms.

 I’ve worked on several small projects that generate letters like this. Sometimes
they’re generated as a separate PDF file per student that can be sent by e-mail; in
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

446 CHAPTER 14
Automating PDF creation
other cases, a PDF with 27,000 pages is delivered to the printing office where
every letter is printed, enveloped, and sent by snail mail.

 The next two examples show how it’s done. You start with an existing PDF file
that is used as a standard template for letters sent by your company. This is the
document to the left in figure 14.7. (Note that this is a fictional example: low-
agie.com isn’t a company, it’s my personal web site.)

 Suppose I searched Google using the keyword link:http://www.lowagie.com/iText
(meaning I want to see sites that link to my URL). Now I want to send a personal-
ized letter to all the webmasters of the sites that link to iText (see listing 14.1).

<letter left="36" right="36" top="144" bottom="36">
To: <mail /><newline />
Ref: your website<newline />
<newline />

Listing 14.1 XML version of a thank-you letter

Figure 14.7 Superimposing PDFs
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 447
Hello <givenname />,<newline />
<newline />
I visited your web site a while ago (<website />), and

➥ I saw you added a link to iText, my free JAVA-PDF library.

➥ So I thought to myself, hey, I'm going to send Mr./Ms. <name />

➥ a little mail to show my gratitude.

➥ If you want to, I can also add a link to your site on the iText

➥ links-page. Just let me know,<newline />
<newline />
kind regards,<newline />
Bruno Lowagie
</letter>

In this XML file, some tags are left empty: givenname, name, mail, and website.
These tags correspond with the fields in my database. Now I want to create a
separate PDF file for every webmaster in my database. I’ll use the company tem-
plate as a basis and add the content from the XML merged with the data from
my database.

Writing the page events
Let’s start with the stuff you know: the page event that adds the existing PDF file
as a template.

/* chapter14/SimpleLetter.java */
protected PdfImportedPage paper;
protected PdfLayer not_printed;

public void onOpenDocument(PdfWriter writer, Document document) {
 try {
 PdfReader reader = new PdfReader("simple_letter.pdf");
 paper = writer.getImportedPage(reader, 1);
 not_printed = new PdfLayer("template", writer);
 not_printed.setOnPanel(false);
 not_printed.setPrint("Print", false);
 } catch (IOException e) {
 e.printStackTrace();
 }
}

public void onStartPage(PdfWriter writer,
 Document document) {
 PdfContentByte cb = writer.getDirectContent();
 cb.beginLayer(not_printed);
 cb.addTemplate(paper, 0, 0);
 cb.endLayer();
}

Read template
page once

Template won’t
be printed
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

448 CHAPTER 14
Automating PDF creation
I added the standard paper page to a layer that won’t be printed. This may be
absurd if you plan to send these letters by e-mail, but it’s a good idea if you want
to print them on special company paper with a preprinted header and footer.

 Now let’s look at the code that parses the XML and adds the content to the page.

Writing the code that parses the XML
The simplest way to parse the XML is by creating a com.lowagie.text.xml.Xml-
Parser object with the document to which the content has to be added, the path
to the XML file, and a tag map:

/* chapter14/SimpleLetter.java */
document = new Document(PageSize.A4);
writer = PdfWriter.getInstance(document,
 new FileOutputStream("simple_letter2.pdf"));
writer.setPdfVersion(PdfWriter.VERSION_1_5);
writer.setViewerPreferences(PdfWriter.PrintScalingNone);
writer.setPageEvent(new SimpleLetter());
XmlParser.parse(document, "../resources/simple_letter.xml",
 getTagMap("Bruno", "Lowagie",
 "bruno@lowagie.com", "http://www.lowagie.com/"));

I set the viewer preferences to avoid scaling. If you want to print the content on
paper on which the company header is preprinted and that looks exactly like the
template you used, you don’t want the content to be scaled.

 Also note that I didn’t close the document; this is done by the parser object.
But the most intriguing part of this code snippet is that getTagMap() method:

/* chapter14/SimpleLetter.java */
public static HashMap getTagMap(
 String givenname, String name, String mail, String site) {
 HashMap tagmap = new HashMap();
 XmlPeer peer =
 new XmlPeer(ElementTags.ITEXT, "letter");
 tagmap.put(peer.getAlias(), peer);
 peer = new XmlPeer(ElementTags.CHUNK, "givenname");
 peer.setContent(givenname);
 tagmap.put(peer.getAlias(), peer);
 peer = new XmlPeer(ElementTags.CHUNK, "name");
 peer.setContent(name);
 tagmap.put(peer.getAlias(), peer);
 peer = new XmlPeer(ElementTags.CHUNK, "mail");
 peer.setContent(mail);
 tagmap.put(peer.getAlias(), peer);
 peer = new XmlPeer(ElementTags.ANCHOR, "website");
 peer.setContent(site);
 peer.addValue(ElementTags.REFERENCE, site);
 peer.addValue(ElementTags.COLOR, "#0000FF");

Set printer
preference to
no scaling

Set page event

Parse XML

Map root tag to
ElemtentTags.ITEXT

Map other
parameters
to Chunk

Map parameter site
to Anchor
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 449
 tagmap.put(peer.getAlias(), peer);
 return tagmap;
}

How does this work? Most of the text objects described in chapter 4 have a con-
structor that takes a Properties object as a parameter. You can create such an ele-
ment using a set of key-value pairs (the keys are constants in the ElementTags class).

 By creating an XmlPeer object, you can map a custom tag (for instance,
<site>) to a tag known by iText; such as <anchor> (see the ElementTags class
for more information):

■ With the method setContent(), you can add content to this text object.
■ With the method addValue(), you can add the value of an attribute.
■ With the method addAlias(), you can map an attribute in your XML to an

iText attribute.

The general idea of this functionality was to have an iText Document Type Defi-
nition (DTD) that defined all the possible iText objects. In this DTD, every tag
would correspond with a specific iText class and every attribute with a member
variable. Unfortunately, this work was never finished.

FAQ Where can I find the DTD for the iText XML? The current DTD on the
iText site is obsolete. This functionality is old, and it was never com-
pleted. It was written to serve a specific purpose, and once the XML pars-
ing functionality was sufficient for the project I was working on, further
development in this area was stopped. It’s one of the things that has
been on my TODO list for ages.

The biggest disadvantage of this functionality is that it uses a proprietary (and no
longer existing) schema. Other libraries have been inspired by this approach and
offer a more consistent DTD. The Useful Java Application Components project
(UJAC) offers such a solution (with iText as PDF engine).

Batch-processing the XML
The previous example makes two separate files. If you want to send these letters
by snail mail, you can open every individual file and print it. This isn’t practical if
many letters are to be sent (remember the real-world situation at Ghent Univer-
sity). You could use iText to concatenate the separate files, but that approach
wouldn’t be efficient. If your template PDF is 1KB, and you need to produce 100
letters and add 0.1KB of data on each page, the end result will be at least 100 x
(0.1 + 1) = 110 KB. We want the template to be added only once, so that the end
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

450 CHAPTER 14
Automating PDF creation
result is more in the range of (100 x 0.1) + 1 = 11 KB (note that there’s always
some overhead).

 The next example explains how to process all the files in one pass. The end
result is a file containing all the letters in a single PDF, as shown in figure 14.8.
The background of each page is a form XObject (see section 10.4.2) that is added
in the onEndPage() method (and reused over and over).

 In the SAXiTextHandler class, document.open() is triggered when the root tag is
opened, and document.close() is triggered when a closing tag is encountered.
There must be a way to avoid this. You’re going to parse the same XML multiple
times, once for each record in the database. It’s impossible to reopen a document
after it’s been closed. The program will stop after processing the first record.

 You can solve this problem by subclassing the SAXiTextHandler (the class used
internally by XmlParser). You override the startElement() and endElement()
methods. Note that the SAXiTextHandler class is similar to the handler classes
used in the Foobar examples:

/* chapter14/SimpleLetters.java */
Document document = new Document(PageSize.A4, 36, 36, 144, 36);
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("simple_letters.pdf"));
writer.setPageEvent(new SimpleLetter());
document.open();
SAXParser parser = SAXParserFactory.newInstance().newSAXParser();
SimpleLetters handler = new SimpleLetters(document);
handler.setTagMap(SimpleLetter.getTagMap("Bruno", "Lowagie",
 "bruno@lowagie.com", "http://www.lowagie.com/"));
parser.parse("../resources/simple_letter.xml", handler);
document.newPage();

Figure 14.8 Using an existing PDF as template
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 451
handler = new SimpleLetters(document);
handler.setTagMap(SimpleLetter.getTagMap(...));
parser.parse("../resources/simple_letter.xml", handler);
document.close();

This code snippet reuses the page events from the previous example. You take
control over the SAX handler so that it no longer opens or closes the document.
In step 4 you parse the XML file with a different tag map as many times as
needed. (In the real world, you loop over a ResultSet.)

 In the next example, we’ll elaborate on subclassing the SAX handler.

14.3.2 Parsing a play

The XML version of the work of William Shakespeare was placed in the public
domain by Moby Lexical Tools in 1992. Figure 14.9 shows a (famous) part of the
play Romeo and Juliet.

 I made minor changes to this XML file so that it can be parsed into a PDF docu-
ment by iText. Figure 14.10 shows part of the first scene in the first act.

 Instead of creating a HashMap object, I wrote a tag map XML file that makes the
mappings. Listing 14.2 shows the most important tags (I didn’t copy the com-
plete file).

Figure 14.9 XML with the play Romeo and Juliet
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

452 CHAPTER 14
Automating PDF creation
Compare the tags in the tag map with figures 14.9 and 14.10. The ACT tag corre-
sponds with an iText Chapter, the SCENE tag with a Section. No extra chapter or
section numbers are added (numberdepth = 0). SPEECH blocks are left aligned; the
stage directions (STAGEDIR) are right aligned and italic, and so on.

<tagmap>
 <tag name="itext" alias="PLAY" />
 <tag name="newpage" alias="NEWPAGE" />
 <tag name="newline" alias="NEWLINE" />
 <tag name="title" alias="TITLE">
 <attribute name="size" value="14" />
 <attribute name="align" value="Center" />
 </tag>
 <tag name="chapter" alias="ACT">
 <attribute name="numberdepth" value="0" />
 </tag>

Listing 14.2 Tag mappings in tagmap.xml

Figure 14.10 The play Romeo and Juliet in PDF
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 453
 <tag name="section" alias="SCENE">
 <attribute name="numberdepth" value="0" />
 </tag>
 <tag name="paragraph" alias="SPEECH">
 <attribute name="leading" value="14" />
 <attribute name="align" value="Left" />
 </tag>
 <tag name="paragraph" alias="LINE">
 <attribute name="leading" value="15" />
 <attribute name="size" value="11" />
 <attribute name="align" value="Left" />
 </tag>
 <tag name="paragraph" alias="STAGEDIR">
 <attribute name="leading" value="14" />
 <attribute name="size" value="10" />
 <attribute name="style" value="italic" />
 <attribute name="align" value="Right" />
 </tag>
</tagmap>

In figure 14.10, page numbers are added, as well as a header with the title of the
play for the odd page numbers and the current act for the even page numbers.
The PDF document starts with an unnumbered page. It lists all the characters in
the play and the number of SPEECH blocks per actor (see figure 14.11).

Figure 14.11 Counting the speech blocks of every actor
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

454 CHAPTER 14
Automating PDF creation
The page numbers, the variable header, and the list with speakers are generated
automatically using page events, as is demonstrated in the following code snippet
(MyPageEvents is an inner class of class RomeoJuliet).

/* chapter14/RomeoJuliet.java */
MyPageEvents extends PdfPageEventHelper
 TreeSet speakers = new TreeSet();
 PdfContentByte cb;
 PdfTemplate template;
 BaseFont bf = null;
 String act = "";

 public void onGenericTag(PdfWriter writer, Document document,
 Rectangle rect, String text) {
 speakers.add(new Speaker(text));
 }

 public void onOpenDocument(PdfWriter writer, Document document) {
 try {
 bf = BaseFont.createFont(BaseFont.HELVETICA, BaseFont.CP1252,
 BaseFont.NOT_EMBEDDED);
 cb = writer.getDirectContent();
 template = cb.createTemplate(50, 50);
 writer.setLinearPageMode();
 } catch (Exception e) { }
 }

 public void onChapter(PdfWriter writer, Document document,
 float paragraphPosition, Paragraph title) {
 act = title.content();
 }

 public void onEndPage(PdfWriter writer, Document document) {
 int pageN = writer.getPageNumber();
 String text = "Page " + pageN + " of ";
 float len = bf.getWidthPoint(text, 8);
 cb.beginText();
 cb.setFontAndSize(bf, 8);
 cb.setTextMatrix(280, 30);
 cb.showText(text);
 cb.endText();
 cb.addTemplate(template, 280 + len, 30);
 cb.beginText();
 cb.setFontAndSize(bf, 8);
 cb.setTextMatrix(280, 820);
 if (pageN % 2 == 1) {
 cb.showText("Romeo and Juliet");
 } else {
 cb.showText(act);
 }
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 455
 cb.endText();
 }
}

Just as in the previous example, SAXmyHandler is subclassed so that the document
isn’t closed when the final closing tag is encountered. When a SPEAKER closing tag
is encountered, you add a new line:

/* chapter14/RomeoJuliet.java */
public void endElement(String uri, String lname, String name) {
 if (myTags.containsKey(name)) {
 XmlPeer peer = (XmlPeer) myTags.get(name);
 if (isDocumentRoot(peer.getTag())) {
 return;
 }
 handleEndingTags(peer.getTag());
 if ("SPEAKER".equals(name)) {
 try {
 TextElementArray previous =
 (TextElementArray) stack.pop();
 previous.add(new Paragraph(16));
 stack.push(previous);
 }
 catch (EmptyStackException ese) {
 }
 }
 } else {
 handleEndingTags(name);
 }
}

In the previous example, you didn’t want the document to close because you
needed to parse the same XML file over and over again. Here you don’t parse the
XML more than once, but you add the speech-block count (figure 14.11) and
move it to the start of the document:

/* chapter14/RomeoJuliet.java */
RomeoJuliet rj = new RomeoJuliet();
Document document = new Document(PageSize.A4, 80, 50, 30, 65);
try {
 PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("romeo_juliet.pdf"));
 MyPageEvents events = rj.new MyPageEvents();
 writer.setPageEvent(events);
 SAXParser parser =
 SAXParserFactory.newInstance().newSAXParser();
 RomeoJulietMap tagmap =
 rj.new RomeoJulietMap("../resources/tagmap.xml");
 parser.parse("../resources/romeo_juliet.xml",
 rj.new MyHandler(document, tagmap));

Ignore closing
tag PLAY

Add extra newline
after SPEAKER

Create page events

Create SAXParser
and TagMap
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

456 CHAPTER 14
Automating PDF creation
 int end_play = writer.getPageNumber();
 events.template.beginText();
 events.template.setFontAndSize(events.bf, 8);
 events.template.showText(String.valueOf(end_play));
 events.template.endText();
 document.newPage();
 writer.setPageEvent(null);
 Speaker speaker;
 for (Iterator i =
 events.speakers.iterator(); i.hasNext();) {
 speaker = (Speaker) i.next();
 document.add(new Paragraph(speaker.getName() + ": "
 + speaker.getOccurrance() + " speech blocks"));
 }
 int end_doc = writer.getPageNumber();
 int[] reorder = new int[end_doc];
 for (int i = 0; i < reorder.length; i++) {
 reorder[i] = i + end_play + 1;
 if (reorder[i] > end_doc)
 reorder[i] -= end_doc;
 }
 document.newPage();
 writer.reorderPages(reorder);
} catch (Exception e) {
 e.printStackTrace();
}
document.close();

The functionality demonstrated in this example serves its purpose in some
projects, but for the moment nobody is working on this part of the iText library.
This is a pity, because there’s a lot of room for improvement. For instance, we
could improve the XHTML parsers that are shipped with iText.

14.3.3 Parsing (X)HTML

One of the frequently asked questions on the iText mailing list is, “Does iText pro-
vide HTML2PDF functionality?” The official answer is no; you’re advised to use
HtmlDoc or ICEbrowser.

 This answer may come as a surprise, because you’ve parsed the Foobar flyer
and the iText class com.lowagie.text.html.HtmlParser uses the functionality
described in the previous section. In this html package, a tag map contains a sub-
set of the available HTML tags. Figure 14.12 shows an example of an XHTML file
in a browser and a PDF generated based on this XHTML.

 What’s wrong with this example? Well, maybe this specific example is more
or less OK, but you risk being disappointed when you start parsing your own
HTML pages.

Update Y in
Page X of Y

Trigger newPage/
disable page events

Add speech-blocks
count

Reorder pages
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 457
First, there’s the nature of HTML. It wasn’t designed to define the exact design of
a document, and it’s impossible to store the layout of a page using HTML tags.
You can use CSS, but if you open the same HTML/CSS page in Internet Explorer,
Netscape, Firefox, Mozilla, Opera, and so on, there will always be differences in
the way the different browsers render the content of the file. It’s not a good idea
to use HTML as original format for your documents.

 Second, parsing HTML isn’t the core business of iText. When I develop some-
thing new, I try not to reinvent the wheel. If another product already offers some
functionality, it wouldn’t be smart to invest time writing my own implementation
(unless I can do it better or add value). I already mentioned ICEbrowser; this tool
parses HTML to a Graphics2D object and uses the PdfGraphics2D object in iText to
generate PDF. That’s a completely different approach.

 This being said, the code used to generate the HTML in figure 14.12 looks
like this:

Figure 14.12 Parsing HTML
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

458 CHAPTER 14
Automating PDF creation
/* chapter14/HtmlParseExample.java */
Document document = new Document();
try {
 PdfWriter.getInstance(document, new FileOutputStream("html1.pdf"));
 HtmlParser.parse(document, "../resources/example.html");
}
catch(Exception e) {
 e.printStackTrace();
}

In spite of all the warnings, there is even an alternative way to parse HTML
using iText.

14.3.4 Using HtmlWorker to parse HTML snippets
Compare figure 14.12 with figure 14.13. At first sight, the end result is worse: Style
seems to be lost when you use the alternative approach discussed in this section.

 The code to generate the PDF in figure 14.13 takes a few more lines:

Figure 14.13 Parsing HTML
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Alternative XML solutions 459
/* chapter14/ParsingHtml.java */
Document document = new Document();
StyleSheet st = new StyleSheet();
st.loadTagStyle("body", "leading", "16,0");
try {
 PdfWriter.getInstance(
 document, new FileOutputStream("html2.pdf"));
 document.open();
 ArrayList p = HTMLWorker.parseToList(
 new FileReader("../resources/example.html"), st);
 for (int k = 0; k < p.size(); ++k)
 document.add((Element)p.get(k));
}
catch(Exception e) {
 e.printStackTrace();
}
document.close();

If you give this example a closer look, you’ll discover this functionality has inter-
esting advantages:

■ You can define your own styles per tag/class.
■ You can parse HTML snippets.

You typically won’t use HtmlWorker to parse complete HTML files with an <html>,
<head>, and <body> tag, but rather to parse small snippets of HTML.

 I don’t say it’s good design, but I know some projects that store Strings with
HTML tags in a database. For instance, if you have a database of product names,
you can store iText like this—<i>i</i>Text—because the i in iText was originally
printed in italic. There are also examples of situations where people are allowed
to enter markup when they fill in a form. For instance, if you’re keeping a blog,
you can use a subset of HTML tags.

 HtmlWorker can deal with a limited set of HTML tags. Suppose you have an
HTML snippet that looks like this:

 When Harlie Was One (by David Gerrold)
 The World According to Garp (by John Irving)
 Decamerone (by Giovanni Boccaccio)

Figure 14.14 shows this HTML snippet rendered in a browser window. In the
Adobe Reader window, you see a PDF to which the HTML snippet was added three
times, each time using another style.

 The HTML snippet uses the tags ol, li, and span and the attribute class. The
first time you add the snippet to the PDF document, you only define the leading

Define custom
styles

Parse HTML into list
of iText objects

Add objects to
document
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

460 CHAPTER 14
Automating PDF creation
of the tag that encloses all the other content: ol. The second time, you change the
font of the li tags and the font size of the span tags. Finally, you change the color
and style of tags that are marked using the class attribute: science fiction books
are rendered in blue/bold; classics are rendered in red/italic. Here’s the code:

/* chapter14/ParsingHtmlSnippets.java */
StyleSheet styles = new StyleSheet();
styles.loadTagStyle("ol", "leading", "16,0");
PdfWriter.getInstance(document, new FileOutputStream("html3.pdf"));
document.open();
ArrayList objects;
objects = HTMLWorker.parseToList(
 new FileReader("../resources/list.html"), styles);
for (int k = 0; k < objects.size(); ++k)
 document.add((Element)objects.get(k));
FontFactory.register("c:\\windows\\fonts\\gara.ttf");
styles.loadTagStyle("li", "face", "garamond");
styles.loadTagStyle("span", "size", "8px");
objects = HTMLWorker.parseToList(
 new FileReader("../resources/list.html"), styles);
for (int k = 0; k < objects.size(); ++k)
 document.add((Element)objects.get(k));
styles.loadStyle("sf", "color", "blue");
styles.loadStyle("sf", "b", "");

Figure 14.14 Parsing HTML snippets
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Enhancing the course catalog (part 2) 461
styles.loadStyle("classic", "color", "red");
styles.loadStyle("classic", "i", "");
objects = HTMLWorker.parseToList(
 new FileReader("../resources/list.html"), styles);
for (int k = 0; k < objects.size(); ++k)
 document.add((Element)objects.get(k));

If you need to know more about this functionality, please consult the online docs.
 In the meantime, we’ve drifted away from the main topic of this chapter:

page events. Let’s finish with an example that will help Laura enhance the
course catalog.

14.4 Enhancing the course catalog (part 2)

To add a header, footer, and watermark to the course catalog, you can reuse the
code from section 13.6. The main difference is that you add page events to create
a PDF that looks like figure 14.15.

Figure 14.15 Course catalog with watermarks, headers, and page numbers
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

462 CHAPTER 14
Automating PDF creation
After reading this chapter, you shouldn’t have any trouble writing the code for the
custom page events:

/* chapter14/CourseCatalogEvents.java */
protected String header = "";
protected BaseFont helv;
protected Image image;
protected PdfGState gstate;

public void setHeader(String header) {
 this.header = header;
}

public void onOpenDocument(PdfWriter writer, Document document) {
 try {
 helv = BaseFont.createFont(BaseFont.HELVETICA,
 BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
 image = Image.getInstance(
 "../../chapter05/resources/shield_tuf.gif");
 } catch (Exception e) {
 throw new ExceptionConverter(e);
 }
 gstate = new PdfGState();
 gstate.setFillOpacity(0.1f);
 gstate.setStrokeOpacity(0.3f);
}

public void onEndPage(PdfWriter writer, Document document) {
 PdfContentByte directcontent = writer.getDirectContent();
 directcontent.saveState();
 String text = "Page " + writer.getPageNumber();
 float textBase = document.bottom() - 20;
 float textSize = helv.getWidthPoint(text, 12);
 directcontent.beginText();
 directcontent.setFontAndSize(helv, 11);
 directcontent.showTextAligned(Element.ALIGN_RIGHT,
 header, document.right(), 810, 0);
 directcontent.showTextAligned(Element.ALIGN_CENTER,
 text, (document.right() + document.left()) / 2, 28, 0);
 directcontent.endText();
 directcontent.restoreState();
 PdfContentByte contentunder = writer.getDirectContentUnder();
 contentunder.saveState();
 contentunder.setGState(gstate);
 try {
 contentunder.addImage(image,
 image.width(), 0, 0, image.height(), 100, 200);
 } catch (DocumentException e) {
 e.printStackTrace();
 }
 contentunder.restoreState();
}
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 463
This concludes Laura’s course catalog assignment. In chapter 17, you’ll reuse the
file you just generated to create a personalized course catalog on demand.

14.5 Summary

Page events offer a solution for some page-specific problems like adding water-
marks, page numbers, headers, footers, transitions, and durations. Note that
none of the page events uses document.add().

 In the examples, you used page events to gather meta-information based on
content: You created outlines and a table of contents. While explaining page
events, we took a tangent showing you that it’s possible to parse XML and even
HTML. The most important conclusion is that iText may not be the ideal product
to parse complete HTML files, but HTMLWorker is a useful class to parse snippets
of HTML.

 As explained in the chapter introduction, page events are triggered on the
server side during the document-creation process. In the next chapter, we’ll
return to the client side. We’ll discuss annotations, and you’ll learn that the fields
in a form use a special type of annotations called widget annotations.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating annotations
and fields
This chapter covers
■ Annotations: overview of the most common types
■ Fields: buttons, text fields, choice fields
■ Forms: a second series of actions
464

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing annotations 465
In chapter 2, you learned how to fill in form fields using PdfStamper. We didn’t
go into the details of form filling, nor did we discuss how a PDF containing an
interactive form (an AcroForm) can be created using iText objects. Most fields in
such a form use widget annotations to represent their appearance and to manage
user interactions.

 That’s why we’ll begin this chapter by explaining how to add annotations to a
PDF document. In the second part of this chapter, you’ll use widget annotations
to create three types of form fields: button, text, and choice fields. You’ll learn
about a fourth type, signature fields, in the next chapter.

 By adding form fields to a document, you implicitly create a PDF with an Acro-
Form. In chapter 2, you saw examples of how to use the fields of an AcroForm as
placeholders to add new data. We’ll look more closely at this functionality in
chapter 16. In this chapter, you’ll use these forms to retrieve information from an
end user.

15.1 Introducing annotations

Annotation is a generic name for all kinds of interactive content added to a PDF
document, including textual notes, multimedia content such as movies and
sounds, file attachments, and so on. Not all types of annotations available in PDF
are supported in iText, but you’ll learn that there’s a way to work around this
problem. Let’s start with the most elementary types of annotations.

15.1.1 Simple annotations

In the first example, some squares are drawn at absolute locations. They indi-
cate the clickable areas defined in a series of annotations. The file simple_
annotations2.pdf, shown in figure 15.1, displays such a square. A small MPEG
movie plays inside this square when you open the corresponding file in
Adobe Reader.

 The second PDF document shown in figure 15.1 displays a text annotation that
was added without specifying coordinates. It’s positioned at the current Y coordi-
nate in a sequence of paragraphs. The Paragraphs and Annotation were added
with document.add().

 Both files demonstrate all the annotation types supported in the class com.-
lowagie.text.Annotation. These annotations are also supported in com.lowagie.-
text.pdf.PdfAnnotation. The classes have only two differences:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

466 CHAPTER 15
Creating annotations and fields
■ An Annotation object is added to the Document object, whereas a Pdf-
Annotation is added to the PdfWriter instance.

■ PdfAnnotation supports more annotation types and possibilities. If a spe-
cific annotation type isn’t available in iText, PdfAnnotation offers you the
flexibility to compose your own annotation dictionary.

Let’s review the annotation types supported in the simple class.

Text annotations
A text annotation represents a sticky note attached to a point in the PDF document.
When closed, the annotation appears as an icon. Figure 15.2 shows the types of
icons that are available.

 When you move the mouse pointer over the icon, the title and the content of
the text annotation are visible as a tool tip. When you double-click on the icon, or
if open is defined as the default display value, a post-it like message appears (see
figure 15.1). Figure 15.2 also shows the Comments panel. If you open this panel,
you get a per-page overview of all the annotations.

Figure 15.1 Simple annotations
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing annotations 467
With class Annotation, you can only create a text annotation with a Note icon that
is closed by default:

/* chapter15/SimpleAnnotations.java */
Annotation a1 = new Annotation("authors",
 "Maybe it's because I wanted to be an author ...",
 250f, 700f, 350f, 800f);

The PDF in figure 15.2 was made using the PdfAnnotation class.

/* chapter15/TextAnnotations.java */
writer.addAnnotation(
 PdfAnnotation.createText(writer,
 new Rectangle(50, 780, 70, 800),
 "Comment", "...", false, "Comment"));
writer.addAnnotation(
 PdfAnnotation.createText(writer,
 new Rectangle(100, 780, 120, 800),
 "Help", "...", true, "Help"));
writer.addAnnotation(
 PdfAnnotation.createText(writer, new Rectangle(50, 700, 70, 720),
 "Insert", "...", false, "Insert"));

Figure 15.2 Text annotations
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

468 CHAPTER 15
Creating annotations and fields
writer.addAnnotation(
 PdfAnnotation.createText(writer,
 new Rectangle(100, 700, 120, 720),
 "Key", "...", true, "Key"));
writer.addAnnotation(
 PdfAnnotation.createText(writer, new Rectangle(50, 620, 70, 640),
 "NewParagraph", "...", false, "NewParagraph"));
writer.addAnnotation(
 PdfAnnotation.createText(writer,
 new Rectangle(100, 620, 120, 640),
 "Note", "...", true, "Note"));
writer.addAnnotation(
 PdfAnnotation.createText(writer, new Rectangle(50, 540, 70, 560),
 "Paragraph", "...", false, "Paragraph"));

The boolean value passed with the createText() method specifies whether the
text annotation should be open (true) or closed (false) by default. The last param-
eter specifies the type of icon: Comment, Help, Insert, Key, NewParagraph, Note,
or Paragraph. See figure 15.2 to see what these icons look like in Adobe Reader.

 Another type of annotation you’ve already encountered in previous chapters is
the link annotation.

Link annotations
A link annotation represents either a hypertext link to a destination elsewhere in
the document (see, for instance, section 13.4.1, “Creating destinations”) or an
action to be performed (for example, section 13.5, “Introducing actions”). You
created such annotations in chapter 4 when you added a link or an action to a
Chunk. Behind the scenes, an annotation was created:

/* chapter15/SimpleAnnotations.java */
Annotation a2 = new Annotation(250f, 550f, 350f, 650f,
 new URL("http://www.lowagie.com/iText/"));
Annotation a3 = new Annotation(250f, 400f, 350f, 500f,
 "http://www.lowagie.com/iText");
Annotation a4 = new Annotation(250f, 250f, 350f, 350f,
 PdfAction.LASTPAGE);
...
Annotation a6 = new Annotation(100f, 550f, 200f, 650f,
 "simple_annotations1.pdf", "mark");
Annotation a7 = new Annotation(100f, 400f, 200f, 500f,
 "simple_annotations1.pdf", 2);
Annotation a8 = new Annotation(100f, 250f, 200f, 350f,
 "C://windows/notepad.exe", null, null, null);

Again, the PdfAnnotation class offers more possibilities to create link annotations.
You can create an annotation using any action or destination, named or explicit
(see chapter 14):

URI action
(java.net.URL)

URI action (String)

Named action

Remote GoTo action
(named destination)
Remote GoTo action
(specific page)

Launch action
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing annotations 469
/* chapter15/Annotations.java */
writer.addAnnotation(
 PdfAnnotation.createLink(writer,
 new Rectangle(200f, 700f, 300f, 800f),
 PdfAnnotation.HIGHLIGHT_INVERT,
 PdfAction.javaScript("app.alert('Hello');\r", writer)));
writer.addAnnotation(
 PdfAnnotation.createLink(writer,
 new Rectangle(200f, 550f, 300f, 650f),
 PdfAnnotation.HIGHLIGHT_OUTLINE,
 "top"));
writer.addAnnotation(
 PdfAnnotation.createLink(writer,
 new Rectangle(200f, 400f, 300f, 500f),
 PdfAnnotation.HIGHLIGHT_PUSH, 1,
 new PdfDestination(PdfDestination.FIT)));

This functionality is used by iText when you define an Anchor with a reference to
an external or internal document. Actions are used to jump to an external docu-
ment; destinations to jump to another location in the current document.

 With PdfAnnotation, you can also define the highlighting mode:

■ PdfAnnotation.HIGHLIGHT_NONE—No highlighting (the default)
■ PdfAnnotation.HIGHLIGHT_INVERT—Inverts the content of the annotation

square when clicked
■ PdfAnnotation.HIGHLIGHT_OUTLINE—Inverts the annotation’s border when

clicked
■ PdfAnnotation.HIGHLIGHT_PUSH—Displays the annotation as if it was being

pushed below the surface of the page

There’s also a PdfAnnotation.HIGHLIGHT_TOGGLE, but this option can be used
only in widget annotations; it has the same meaning as HIGHLIGHT_PUSH (which
is preferred).

 A final annotation type is supported by the Annotation class; you can use it to
add a movie to your document.

Movie annotations
If you want to add an animated picture to a PDF file, you need a media clip. For
PDF versions 1.4 or earlier, only MOV, MPG, and AVI are supported; versions 1.5
and later support ASF, ASX, AVI, IVF, MLV, MP2, MPA, MPE, MPEG, MPG, MPV2,
SPL, SWF, WM, WMP, WMV, WMX, and WVX.

 I used the images of the animated GIF from chapter 5 to create an
MPEG file:

Annotation that
triggers action

Annotation that goes to
named destination

Annotation linking to
explicit destination
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

470 CHAPTER 15
Creating annotations and fields
/* chapter15/SimpleAnnotations.java */
Annotation a5 = new Annotation(100f, 700f, 200f, 800f,
 "../resources/foxdog.mpg", "video/mpeg", true);

The last parameter in the constructor specifies that the video should be played
immediately when the resulting PDF document is opened. Note that you may get
a Manage Trust for Multimedia Content alert. You can choose to play the video
just once, or you can add it to a list of trusted multimedia content.

 The MPEG isn’t embedded into the PDF document in this example. The next
example embeds the movie:

/* chapter15/Annotations.java */
PdfFileSpecification fs =
 PdfFileSpecification.fileEmbedded(writer,
 "../resources/foxdog.mpg", "foxdog.mpg", null);
writer.addAnnotation(PdfAnnotation.createScreen(writer,
 new Rectangle(200f, 700f, 300f, 800f), "Fox and Dog", fs,
 "video/mpeg", true));

If you don’t want to embed the file, you can replace the PdfFileSpecification
method fileEmbedded() with the method url() to refer to a URL, or file-
External() to refer to a file on the file system.

 This concludes the list of annotations supported in class Annotation.
Let’s continue our overview with more annotations that are supported in
class PdfAnnotation.

15.1.2 Other types of annotations

If you look at Table 8.16 in Adobe’s PDF Reference Manual, you’ll immediately
see that new types of annotations have been added with every new PDF version.
Not all of these types are supported directly in iText, but that doesn’t mean you
can’t use iText to create such annotations.

 In the following code sample, a text annotation is created by adding different
key-value pairs to a PdfAnnotation object:

/* chapter15/Annotations.java */
PdfAnnotation annotation =
 new PdfAnnotation(writer,
 new Rectangle(100, 750, 150, 800));
annotation.put(PdfName.SUBTYPE, PdfName.TEXT);
annotation.put(PdfName.OPEN,
 PdfBoolean.PDFTRUE);
annotation.put(PdfName.T, new PdfString("custom"));
annotation.put(PdfName.CONTENTS,
 new PdfString("This is a custom built text annotation."));
writer.addAnnotation(annotation);

Create undefined
annotation Define as TEXT

annotation

Annotation should
be open by default

Add title and
contents
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing annotations 471
Consult the PDF Reference to look up which keys you can add and what values are
valid for each key. As you can see, you also need iText objects such as PdfBoolean,
PdfString, and so on. These objects correspond with the PDF objects as they are
defined in the PDF Reference. In reality, a PdfAnnotation is a special type of Pdf-
Dictionary. You can find an overview of these basic PDF objects in chapter 18.

 Figure 15.3 shows a PDF to which the custom text annotation has been added.
 Just below the custom text annotation is a pin; it symbolizes a file attachment.

In the attachments pane, you see that two attachments are added to the file: one
on each page.

File attachments
The following code sample shows how to add a file called some.txt containing
“some text” to a PDF file. You also add a description that is used in the attach-
ments pane:

/* chapter15/Annotations.java */
writer.addAnnotation(
 PdfAnnotation.createFileAttachment(writer,
 new Rectangle(100f, 650f, 150f, 700f), "This is some text",
 "some text".getBytes(), null, "some.txt"));

The file some.txt is embedded into the PDF document. This functionality is often
used when creating reports based on a source in XML, CSV, or another format that
can be parsed. If you create a table in PDF, all structure is lost. You can’t extract

Figure 15.3 Annotations added using the PdfAnnotation class
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

472 CHAPTER 15
Creating annotations and fields
the data that was used to create the document from the PDF file, unless you add
the original data as an attachment!

TOOLBOX com.lowagie.tools.plugins.ExtractAttachment (Various) You can
use iText to extract all the attachments added to a PDF document. Note
that this plug-in doesn’t remove the attachments.

The attachments pane in figure 15.3 also lists a second attachment. This time,
you pass a path to the file instead of an array of bytes:

/* chapter15/Annotations.java */
PdfAnnotation attachment =
 PdfAnnotation.createFileAttachment(writer,
 new Rectangle(400f, 250f, 500f, 350f),
 "Image of the fox and the dog",
 null, "../../chapter05/resources/foxdog.jpg", "foxdog.jpg");
attachment.put(PdfName.NAME, new PdfString("Paperclip"));
writer.addAnnotation(attachment);

Another difference in the previous code snippet is that you add “Paperclip” as a
name. Other possible values are “PushPin” (the default), “Graph,” and “Tag.”
The paperclip is visible in figure 15.4, along with more annotation types.

Figure 15.4 Annotations added using class PdfAnnotation
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Introducing annotations 473
Let’s finish this first series of annotation types with the other annotation types
that are visible in the screenshot.

Free text annotations
A free text annotation differs from the text annotations discussed so far:

■ There is no open or closed state—the text is always visible.
■ You can add rich text strings or a text stream (PDF-1.5).
■ You can display the annotation as a callout (PDF-1.6).

This is how the free text annotation in the screenshot was created:

/* chapter15/Annotations.java */
PdfContentByte pcb = new PdfContentByte(writer);
pcb.setColorFill(new Color(0xFF, 0x00, 0x00));
writer.addAnnotation(
 PdfAnnotation.createFreeText(writer,
 new Rectangle(200f, 700f, 300f, 800f),
 "This is some free text, blah blah blah", pcb));

Note that iText only offers a convenience method for the simplest free text anno-
tations. If you need more complex functionality, consult the PDF Reference. Basi-
cally, you can create any type of free text annotation. In the next code snippet,
you’ll use the PdfDictionary method put() to create a circle and a line annotation
dictionary with extra entries.

Line, square, and circle annotations
A line annotation displays a single straight line. If you want to use the annotation
as an arrow, you can define different types of line endings. To use the annota-
tion as a dimension line, you can add leader lines.

 Square and circle annotations display (in spite of their name) a rectangle or an
ellipse on the page; iText also supports stamp, ink, pop-up, and other annota-
tions, but I won’t discuss all those types in this book. The PDF Reference also
defines polygon and polyline annotations, and so on, but these types don’t have
convenience methods in iText.

 Let’s look at the code that generates the circle and line annotations in
figure 15.4:

/* chapter15/Annotations.java */
PdfAnnotation shape1 = PdfAnnotation.createSquareCircle(writer,
 new Rectangle(200f, 400f, 300f, 500f),
 "This Comment annotation was made with 'createSquareCircle'",
 false);

Create
circle
annotation
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

474 CHAPTER 15
Creating annotations and fields
float[] red = { 1, 0, 0 };
shape1.put(new PdfName("IC"), new PdfArray(red));
writer.addAnnotation(shape1);
PdfAnnotation shape2 = PdfAnnotation.createLine(writer,
 new Rectangle(200f, 250f, 300f, 350f), "this is a line",
 200, 250, 300, 350);
shape2.put(PdfName.C, new PdfArray(red));
PdfArray lineEndingStyles = new PdfArray();
lineEndingStyles.add(new PdfName("Diamond"));
lineEndingStyles.add(new PdfName("OpenArrow"));
shape2.put(new PdfName("LE"), lineEndingStyles);
shape2.put(PdfName.BS, new PdfBorderDictionary(5,
 PdfBorderDictionary.STYLE_SOLID));
writer.addAnnotation(shape2);

As you can see, iText is a flexible library: By using the lowest level objects summed
up in chapter 18, you can create any object defined in the PDF Reference. In sec-
tion 15.2, we’ll focus on widget annotations that can be used as fields in an Acro-
Form; but let’s finish this section with examples of annotations that are added to
an image or a chunk.

15.1.3 Adding annotations to a chunk or image

The previous examples define the absolute position of the clickable area using
the coordinates of the lower-left and upper-right corners of a rectangle. You can
use table, cell, or page events to position them, but there are also two high-level
objects to which annotations can be added in order to make them clickable.

 You already have experience with Chunks and annotations:

/* chapter15/AnnotatedChunks.java */
PdfAnnotation text = PdfAnnotation.createText(
 writer, new Rectangle(200f, 250f, 300f, 350f),
 "Fox", "The fox is quick", true, "Comment");
PdfAnnotation attachment = PdfAnnotation.createFileAttachment(
 writer, new Rectangle(100f, 650f, 150f, 700f),
 "Image of the fox and the dog",
 getBytesFromFile(new File("../../chapter05/resources/foxdog.jpg")),
 null, "foxdog.jpg");
PdfAnnotation javascript =
 new PdfAnnotation(writer, 200f, 550f, 300f, 650f,
 PdfAction.javaScript("app.alert('Wake up dog!');\r", writer));
Chunk fox = new Chunk("quick brown fox").setAnnotation(text);
Chunk jumps = new Chunk(" jumps over ").setAnnotation(attachment);
Chunk dog = new Chunk("the lazy dog").setAnnotation(javascript);
document.add(fox); document.add(jumps); document.add(dog);

Define and set
interior color

Create line
annotation

Set color of line

Define and set
line endings

Define and set
border style
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating an AcroForm 475
Now you’re going to create clickable Images:

/* chapter15/AnnotatedImages.java */
Image gif =
 Image.getInstance("../../chapter10/resources/iTextLogo.gif");
gif.setAnnotation(
 new Annotation(0, 0, 0, 0, http://www.lowagie.com/iText"));
gif.setAbsolutePosition(30f, 750f);
document.add(gif);
Image jpeg =
 Image.getInstance("../../chapter05/resources/foxdog.jpg");
jpeg.setAnnotation(new Annotation("picture",
 "quick brown fox jumps over the lazy dog", 0, 0, 0, 0));
jpeg.setAbsolutePosition(120f, 550f);
document.add(jpeg);

When the first image (the iText logo) is clicked, the iText home page opens.
A file attachment containing the JPEG is added to the image displayed in
the document.

 If you delve into the PDF Reference, you’ll discover that you can set annotation
flags to make an annotation invisible, hidden, printable, and so on. You can also
define the appearance of an annotation; this is especially important for widget
annotations. This brings us to the subject of form fields.

15.2 Creating an AcroForm

Widget annotations are used to represent the fields in interactive forms called
AcroForms. The PDF Reference says that “a PDF document may contain any
number of fields appearing on any combination of pages, all of which make
up a single, global interactive form spanning the entire document.” Note that
if you compare a form in PDF with forms in an HTML document, you’ll dis-
cover some similarities but also huge differences. A PDF document can have
only one form! Each field in a PDF document is defined by a field dictionary.
Fields can be organized hierarchically, and the children of a field can contain
widget annotations.

 The PDF Reference states that “as a convenience, when a field has only a single
associated widget annotation, the contents of the field dictionary and the annota-
tion dictionary may be merged into a single dictionary containing entries that
pertain to both a field and an annotation.” It’s not necessary to understand all
this theoretical stuff immediately. We’ll look at examples, and you’ll learn what is
meant in these definitions by creating your first AcroForms.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

476 CHAPTER 15
Creating annotations and fields
 AcroForms support four types of fields:

■ Btn—Button fields
■ Tx—Text Fields
■ Ch—Choice Fields
■ Sig—Signature fields

Let’s see how to create the first three types of widget annotations (we’ll save sig-
nature fields for later).

15.2.1 Button fields
Let’s start with the PDF Reference definition:

A button field represents an interactive control on the screen that the user can
manipulate with the mouse. There are three types of button fields:

■ A pushbutton is a purely interactive control that responds immediately to
user input without retaining a permanent value.

■ A check box toggles between two states, on and off.
■ Radio button fields contain a set of related buttons that can each be on or

off. Typically, at most one radio button in a set may be on at any given time,
and selecting any one of the buttons automatically deselect all the others.

Figure 15.5 shows examples of each type of button field.

Figure 15.5 A PDF file with different button fields
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating an AcroForm 477
You recognize a set of radio buttons, a set of check boxes, and a grey rectangle
that is a pushbutton. When it’s clicked, a JavaScript method is invoked that shows
the state of the radio buttons and check boxes in an alert message. When you add
a button, radio button, or check box in HTML, every browser knows how to visu-
alize these button fields. This isn’t the case when you add a button to a PDF file.
You have to define the appearance of each form field.

Adding a pushbutton
The appearance of a (widget) annotation is created with the class PdfAppearance.
This is a subclass of PdfTemplate (see section 10.4.2), so it shouldn’t have many
secrets for you. Next, you define three appearances for the widget annotation
that displays the pushbutton field:

/* chapter15/Buttons.java */
PdfAppearance normal = cb.createAppearance(100, 50);
normal.setColorFill(Color.GRAY);
normal.rectangle(5, 5, 90, 40); normal.fill();
PdfAppearance rollover = cb.createAppearance(100, 50);
rollover.setColorFill(Color.RED);
rollover.rectangle(5, 5, 90, 40); rollover.fill();
PdfAppearance down = cb.createAppearance(100, 50);
down.setColorFill(Color.BLUE);
down.rectangle(5, 5, 90, 40); down.fill();

You don’t add any hierarchy to this pushbutton. The single pushbutton field cor-
responds with a single widget annotation. In other words, you don’t have to use
two separate dictionaries, one defining the field and another defining the wid-
get annotation. Both dictionaries can be merged into one, as explained in the
PDF Reference.

 This merger is done implicitly in iText: The class PdfFormField extends Pdf-
Annotation. The next code snippet adds dictionary entries that are specific for
form fields as well as entries that are specific for annotations:

/* chapter15/Buttons.java */
PdfFormField pushbutton = PdfFormField.createPushButton(writer);
pushbutton.setFieldName("PushAction");
pushbutton.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, normal);
pushbutton.setAppearance(
 PdfAnnotation.APPEARANCE_ROLLOVER, rollover);
pushbutton.setAppearance(
 PdfAnnotation.APPEARANCE_DOWN, down);
pushbutton.setWidget(new Rectangle(40, 650, 150, 680),
 PdfAnnotation.HIGHLIGHT_PUSH);

Normal
(gray rectangle)

Rollover
(red rectangle)

Down
(blue rectangle)

Create form field dictionary

Set field name (field dictionary)

Set appearances
(annotation dictionary)

Set other annotation
dictionary entries
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

478 CHAPTER 15
Creating annotations and fields
pushbutton.setAction(
 PdfAction.javaScript("this.showButtonState()", writer));
writer.addAnnotation(pushbutton);

This code sample defines different appearance streams for the annotation. This
applies for other annotation types, too. You can define three appearance streams:

■ APPEARANCE_NORMAL—The annotation’s normal appearance
■ APPEARANCE_ROLLOVER—The appearance when you move the mouse pointer

over the annotation
■ APPEARANCE_DOWN—The appearance of the annotation when you click the

mouse button

Except for certain link annotations and the movie annotation, you can also set
an action that must be performed when the annotation is clicked. In the but-
tons example, you call a JavaScript method that shows the state of the radio
buttons and check boxes.

Adding radio buttons
A radio button field is a set of related buttons. Typically, a radio button field cor-
responds with a set of widget annotations. If you want to add a radio button field,
you must create a field dictionary and add separate widget annotation dictionar-
ies. Such a widget annotation has different appearance streams depending on the
appearance state:

/* chapter15/Buttons.java */
PdfAppearance[] radiobuttonStates = new PdfAppearance[2];
radiobuttonStates[0] = cb.createAppearance(20, 20);
radiobuttonStates[0].circle(10, 10, 9);
radiobuttonStates[0].stroke();
radiobuttonStates[1] = cb.createAppearance(20, 20);
radiobuttonStates[1].circle(10, 10, 9);
radiobuttonStates[1].stroke();
radiobuttonStates[1].circle(10, 10, 3);
radiobuttonStates[1].fillStroke();

For these radio buttons, you only define the normal appearance. (You could
define a rollover and down appearance as well.) You need two appearance
streams for the normal appearance, because a radio button can have an On
state and an Off state.

 Let’s create the radio button field with field name language and English as the
default value (stored as a PdfName) and then loop over the languages array:

Add action to anno-
tation dictionary

Off (single circle)

On (two concentric
circles)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating an AcroForm 479
/* chapter15/Buttons.java */
String[] languages = { "English", "French", "Dutch" };
PdfFormField language =
 PdfFormField.createRadioButton(writer, true);
language.setFieldName("language");
language.setValueAsName(languages[0]);
for (int i = 0; i < languages.length; i++) {
 rect = new Rectangle(40, 806 - i * 40, 60, 788 - i * 40);
 addRadioButton(writer, rect,
 language, languages[i], radiobuttonStates, i == 0);
}

The method you used in the loop looks like this:

/* chapter15/Buttons.java */
private static void addRadioButton(PdfWriter writer,
 Rectangle rect, PdfFormField radio, String name,
 PdfAppearance[] onOff, boolean on) {
 PdfFormField field = PdfFormField.createEmpty(writer);
 field.setWidget(rect, PdfAnnotation.HIGHLIGHT_INVERT);
 if (on)
 field.setAppearanceState(name);
 else
 field.setAppearanceState("Off");
 field.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, "Off", onOff[0]);
 field.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, name, onOff[1]);
 radio.addKid(field);
}

The three radio buttons shown in figure 15.5 are three widget annotations
defined in three different dictionaries. They’re associated with one radio button
field dictionary.

 The end user can select only one option in a radio button field. When the Java-
Script code snippet this.getField('language').value is used, one of the custom
names for the On state is returned: English, French, or Dutch. Check boxes are
also a type of button field, but they differ from radio buttons: You can choose
more than one option.

Adding check boxes
Again, you must define the different states of the button:

/* chapter15/Buttons.java */
PdfAppearance[] checkboxStates = new PdfAppearance[2];
checkboxStates[0] = cb.createAppearance(20, 20);
checkboxStates[0].rectangle(1, 1, 18, 18);
checkboxStates[0].stroke();

Create empty
PdfFormField
object

Define widget
annotationSet default

appearance
state

Give On state
custom name

Add widget to parent

Off (rectangle)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

480 CHAPTER 15
Creating annotations and fields
checkboxStates[1] = cb.createAppearance(20, 20);
checkboxStates[1].setRGBColorFill(255, 128, 128);
checkboxStates[1].rectangle(1, 1, 18, 18);
checkboxStates[1].fillStroke();
checkboxStates[1].moveTo(1, 1);
checkboxStates[1].lineTo(19, 19);
checkboxStates[1].moveTo(1, 19);
checkboxStates[1].lineTo(19, 1);
checkboxStates[1].stroke();

You can give these buttons any appearance you want. You could reuse the appear-
ance of the radio button, but that might confuse the end user, who is used to a
radio button being circular and a check box being rectangular:

/* chapter15/Buttons.java */
private static void createCheckbox(PdfWriter writer, Rectangle rect,
 String name, PdfAppearance[] onOff) {
 PdfFormField field = PdfFormField.createCheckBox(writer);
 field.setWidget(rect, PdfAnnotation.HIGHLIGHT_INVERT);
 field.setFieldName(name);
 field.setValueAsName("Off");
 field.setAppearanceState("Off");
 field.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, "Off", onOff[0]);
 field.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, "On", onOff[1]);
 writer.addAnnotation(field);
}

This code sample creates the form field b and defines the widget annotation C.
You set the field name D, the field value E, and the default appearance state F.
Then, you add the normal appearances G.

 In the buttons example, you use PdfFormField to create pushbuttons, radio
buttons, and check boxes. You create PdfAppearance objects using the methods
discussed in chapters 10 and 11. But there’s an alternative way that you may find
easier to use.

 Let’s rewrite the example using convenience classes.

Convenience classes for button fields
Figure 15.6 shows a PDF file that contains button fields similar to those in fig-
ure 15.5; but these buttons were created using the convenience classes Push-
ButtonField and RadioCheckField.

 These classes offer a more user-friendly way to create button fields. Glyphs
from the ZapfDingbats font are used to visualize the On state. The pushbutton
contains an icon (the iText eye) and some text.

On (rectangle with X)

 b
 C

 D
 E

 F

 G
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating an AcroForm 481
The code to create the pushbutton is as follows:

/* chapter15/Buttons2.java */
PushbuttonField push = new PushbuttonField(writer,
 new Rectangle(40, 650, 150, 680), "pushAction");
push.setBackgroundColor(Color.YELLOW);
push.setBorderColor(Color.BLACK);
push.setText("Push");
push.setTextColor(Color.RED);
push.setTemplate(template);
push.setScaleIcon(PushbuttonField.SCALE_ICON_ALWAYS);
push.setLayout(PushbuttonField.LAYOUT_ICON_LEFT_LABEL_RIGHT);
PdfFormField pushbutton = push.getField();
pushbutton.setAction(
 PdfAction.javaScript("this.showButtonState()", writer));
writer.addAnnotation(pushbutton);

You first create the PushbuttonField b. Next, you set the background and border
colors C, and define the text, the icon, and their positions D. You get the form
field object E, and finally add an action F.

 You no longer have to draw the button yourself. You define a background and
border color. You add text and define the text color. You can add a PdfTemplate
(or an Image) that acts as an icon. In other words, you get numerous methods to
set the border width, the font and font size, and so on, that let you create a push-
button in a more intuitive way. When you’re done defining the attributes of your
PushbuttonField, you can get a PdfFormField object. If necessary, you can add
other dictionary entries, such as a JavaScript action.

 For the other two button types, you use another convenience class to rewrite
the addRadioButton() and createCheckbox() methods:

Figure 15.6
A PDF document with buttons

 B

 C

 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

482 CHAPTER 15
Creating annotations and fields
/* chapter15/Buttons2.java */
private static void addRadioButton(PdfWriter writer, Rectangle rect,
 PdfFormField radio, String name, boolean on)
 throws IOException, DocumentException {
 RadioCheckField check =
 new RadioCheckField(writer, rect, null, name);
 check.setCheckType(RadioCheckField.TYPE_STAR);
 check.setChecked(on);
 radio.addKid(check.getRadioField());
}
private static void createCheckbox(PdfWriter writer, Rectangle rect,
 String name) throws IOException, DocumentException {
 RadioCheckField check =
 new RadioCheckField(writer, rect, name, "On");
 check.setCheckType(RadioCheckField.TYPE_CROSS);
 writer.addAnnotation(check.getCheckField());
}

This code sample first creates a RadioCheckField b whose On appearance is a
star C. You set the default state D, and add the radio button as a PdfFormField
E. You can also create a RadioCheckField F whose appearance is an X G.
Finally you add the check box as a PdfFormField H.

 Using the code of the two button examples, you can ask end users for their
mother tongue (only one answer possible) and for their knowledge of other lan-
guages (preferably more than one). You could define an action that submits this
information to a site and add it to the pushbutton, but that will have to wait for
the next section.

 Let’s continue with the next type of form field: text fields.

15.2.2 Creating text fields

The definition given by the PDF Reference is easy to understand:

A text field is a box or space in which the user can enter text from the key-
board. The text may be restricted to a single line or may be permitted to span
multiple lines.

Figure 15.7 shows examples of such text boxes.
 Again there are two ways to create the PdfFormField: a difficult way that gives

you more control over what happens, and an easier way that uses the convenience
class TextField.

 By studying the code that creates a text field without the convenience class,
you get some insight into the way text fields are organized in a PDF file:

 B

 C
 D

 E

 F

 G
 H
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating an AcroForm 483
/* chapter15/TextFields.java */
BaseFont helv = BaseFont.createFont(
 BaseFont.COURIER, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
String text = "Some start text";
PdfFormField field =
 PdfFormField.createTextField(writer, false, false, 0);
field.setWidget(new Rectangle(40, 780, 360, 810),
 PdfAnnotation.HIGHLIGHT_INVERT);
field.setFlags(PdfAnnotation.FLAGS_PRINT);
field.setFieldName("some_text");
field.setValueAsString(text);
field.setDefaultValueAsString(text);
field.setMKBorderColor(Color.RED);
field.setMKBackgroundColor(Color.YELLOW);
field.setBorderStyle(
 new PdfBorderDictionary(2,
 PdfBorderDictionary.STYLE_SOLID));
field.setPage();
PdfAppearance tp = cb.createAppearance(320, 30);
PdfAppearance da = (PdfAppearance)tp.getDuplicate();
da.setFontAndSize(helv, 12);
field.setDefaultAppearanceString(da);
tp.saveState();
tp.setColorStroke(Color.RED);
tp.setLineWidth(2);
tp.setColorFill(Color.YELLOW);
tp.rectangle(1, 1, 318, 28);
tp.fillStroke();
tp.restoreState();
tp.beginVariableText();
tp.saveState();
tp.rectangle(2, 2, 318, 28);

Figure 15.7 Different types of text fields

Create field/widget
dictionary

Make annotation printable

Set field dictionary entries

Set widget-specific
appearance attributes

Set border style

Create normal
and default
appearance
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

484 CHAPTER 15
Creating annotations and fields
tp.clip();
tp.newPath();
tp.beginText();
tp.setFontAndSize(helv, 12);
tp.setTextMatrix(4, 11);
tp.showText(text);
tp.endText();
tp.restoreState();
tp.endVariableText();
field.setAppearance(PdfAnnotation.APPEARANCE_NORMAL, tp);
writer.addAnnotation(field);

As you can see, it’s a lot of work to define all the parts that make a text field. It
isn’t sufficient to set the default text (with setValueAsString()); you also have to
compose an appearance stream and use this to set the normal appearance of the
annotation and the default appearance of the field. It pays off to use the Text-
Field convenience class.

 The following code snippet creates a similar text field using fewer lines of
code. I even added some extra options—the border style is beveled, the text is
centered, and you indicate that the field is required:

/* chapter15/TextFields.java */
TextField tf1 =
 new TextField(writer, new Rectangle(40, 720, 360, 750), "fox");
tf1.setBackgroundColor(Color.YELLOW);
tf1.setBorderColor(Color.RED);
tf1.setBorderWidth(2);
tf1.setBorderStyle(PdfBorderDictionary.STYLE_BEVELED);
tf1.setText("Quick brown fox jumps over the lazy dog");
tf1.setAlignment(Element.ALIGN_CENTER);
tf1.setOptions(TextField.REQUIRED);
writer.addAnnotation(tf1.getTextField());

When you use the TextField class, a lot of work is done for you. By default, an
annotation isn’t printed. If you leave out the line that sets the FLAGS_PRINT option
in the first code sample, the text field isn’t printed. Unless you change the visibil-
ity (with the method setVisibility()), the FLAGS_PRINT option is set by default in
a TextField.

 TextField also creates an appearance stream based on the text and the styles
you define. Note that this appearance is an approximation of the way Adobe
Reader renders the content of a text field. As soon as you click the text field and
enter another String, you see differences in the offset of the text, depending on
the version of Adobe Reader you’re using.

 The next code snippet creates a multiline text field rotated 90 degrees:

Create normal
and default
appearance
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating an AcroForm 485
/* chapter15/TextFields.java */
TextField tf2 =
 new TextField(writer, new Rectangle(400, 720, 520, 810), "dog");
tf2.setBackgroundColor(Color.YELLOW);
tf2.setBorderColor(Color.RED);
tf2.setBorderWidth(2);
tf2.setBorderStyle(PdfBorderDictionary.STYLE_DASHED);
tf2.setText("Quick brown fox jumps over the lazy dog");
tf2.setAlignment(Element.ALIGN_RIGHT);
tf2.setOptions(TextField.MULTILINE | TextField.REQUIRED);
tf2.setRotation(90);
writer.addAnnotation(tf2.getTextField());

By changing the options, you can create different types of text fields. The follow-
ing code creates a password field:

/* chapter15/TextFields.java */
TextField tf3 =
 new TextField(writer, new Rectangle(40, 690, 120, 710), "secret");
tf3.setBackgroundColor(Color.RED);
tf3.setBorderColor(Color.BLUE);
tf3.setBorderWidth(1);
tf3.setBorderStyle(PdfBorderDictionary.STYLE_INSET);
tf3.setText("secret");
tf3.setOptions(TextField.PASSWORD);
writer.addAnnotation(tf3.getTextField());

Some forms display their text fields as a set of boxes, one per character that has to
be entered. Sometimes a scanned paper document is used as background for the
AcroForm, and the boxes are already present. You must make sure every character
that is entered by the end user fits into the preprinted boxes. You can do this by
setting the TextField.COMB option:

/* chapter15/TextFields.java */
TextField tf4 =
 new TextField(writer, new Rectangle(140, 690, 200, 710), "comb");
tf4.setMaxCharacterLength(4);
tf4.setOptions(TextField.COMB);
tf4.setText("COMB");
writer.addAnnotation(tf4.getTextField());

You can find other methods (setFont(), setFontSize(), and so on) and other
options (READ_ONLY, FILE_SELECTION, and so on) in the Javadoc information and
the PDF Reference. The TextField class can also be used as a convenience class to
create the two types of choice fields that are described in the PDF Reference.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

486 CHAPTER 15
Creating annotations and fields
15.2.3 Creating choice fields

The PDF Reference says the following:

A choice field contains several text items, one or more of which may be
selected as the field value. The items may be presented to the user in either of
two forms:

■ A scrollable list box
■ A combo box consisting of a drop down-list optionally accompanied by an

editable text box in which the user can type a value other than the pre-
defined choices.

Figure 15.8 demonstrates the different types of choice fields; the first two were
created with class PdfFormField only; the last two were created with the conve-
nience class TextField.

The first two examples let the end user choose one out of four languages. Unfor-
tunately, you see the options in the list (the empty rectangle in the screenshot)
only after you click the rectangle. Let’s look at the code and find out why:

/* chapter15/ChoiceFields.java */
String options[] = {"English", "French", "Dutch", "German"};
PdfFormField combo =
 PdfFormField.createCombo(writer, true, options, 0);
combo.setWidget(new Rectangle(40, 780, 120, 800),
 PdfAnnotation.HIGHLIGHT_INVERT);
combo.setFieldName("languageCombo");
combo.setValueAsString("English");
writer.addAnnotation(combo);
PdfFormField field = PdfFormField.createList(writer, options, 0);
PdfAppearance app = cb.createAppearance(80, 60);
app.rectangle(1, 1, 78, 58);
app.stroke();

Figure 15.8 Different types of choice fields
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating an AcroForm 487
field.setAppearance(PdfAnnotation.APPEARANCE_NORMAL, app);
field.setWidget(new Rectangle(140, 740, 220, 800),
 PdfAnnotation.HIGHLIGHT_OUTLINE);
field.setFieldName("languageList");
field.setValueAsString("English");
writer.addAnnotation(field);

You pass the array with the different options to the createCombo() and create-
List() methods and, as a result, get a PdfFormField as in the previous examples.
You don’t do much work to create the appearance streams, and that shows when
you open the PDF document. Or rather, it doesn’t show. Instead of the second
choice field in the screenshot, you see a black rectangle. If you did more work on
your appearance stream, you could avoid this result. But that would mean lots of
extra work.

 Fortunately, you can also use the TextField class, as in the following code snip-
pets. Note that you change the visibility of the combo box; if you print the page
shown in figure 15.8, only the fourth choice field is visible:

/* chapter15/ChoiceFields.java */
TextField tf1 = new TextField(
 writer, new Rectangle(240, 740, 290, 800), "comboLanguage");
tf1.setBackgroundColor(Color.YELLOW);
tf1.setBorderColor(Color.BLUE);
tf1.setBorderWidth(2);
tf1.setFontSize(10);
tf1.setBorderStyle(PdfBorderDictionary.STYLE_INSET);
tf1.setVisibility(TextField.VISIBLE_BUT_DOES_NOT_PRINT);
tf1.setChoices(new String[]{"English", "French"});
tf1.setChoiceExports(new String[]{"EN", "FR"});
tf1.setRotation(90);
writer.addAnnotation(tf1.getComboField());
TextField tf2 = new TextField(
 writer, new Rectangle(300, 740, 400, 800), "listLanguage");
tf2.setBackgroundColor(Color.YELLOW);
tf2.setBorderColor(Color.RED);
tf2.setBorderWidth(2);
tf2.setBorderStyle(PdfBorderDictionary.STYLE_DASHED);
tf2.setFontSize(10);
tf2.setChoices(
 new String[]{"a", "b", "c", "d", "e", "f", "g", "h"});
tf2.setChoiceSelection(4);
writer.addAnnotation(tf2.getListField());

Note that you define the default selection of the list box: You select the element
with index 4 (the fifth element in the list). You also make a distinction between the
choices shown in the combo box and the export value of each of these options;
this value will be sent to the server once you add a submit button.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

488 CHAPTER 15
Creating annotations and fields
 As I mentioned in section 1.2.2, an AcroForm can be submitted in different
ways. Let’s find out how to create a PDF with an AcroForm that can be submitted
to a server.

15.3 Submitting a form

In the previous section, you created forms with all kinds of fields; but you couldn’t
submit the data entered in these fields, because you didn’t add a button with a
submit action.

FAQ Can an end user save a (partially) filled in AcroForm? If end users view the
form in the free Adobe Reader, they can print the form, but there’s no
way to save it (unless the PDF was rights-enabled using Acrobat Profes-
sional). Users can only save a blank copy of the form. They need the full
Acrobat or other third-party software (for instance, JPedal) to save the
data entered in the form.

Figure 15.9 shows a form with text fields and buttons, opened in a browser.
 If you look closely at the extra bar that appears when the form opens, you see

the confirmation of what I told you about saving and printing the form. I also
selected two check boxes on the right side of the toolbar: fields than can be filled
in get a blue background; fields that are required get a thick red border.

 Before we talk about the buttons labeled POST, FDF, XFDF, RESET, HIDE, and
SHOW, let’s look at how the form was created—specifically, at the names given to
the fields.

15.3.1 Choosing field names
In the previous examples, you created fields that had no (or almost no) hierarchy.
The partial name of the field was equal to the fully qualified name. The fully quali-
fied field name is constructed from the partial field names of the field and all of
its ancestors. The names are separated by a period.

 In figure 15.9, you have a table with fields of information about a sender and
similar fields about a receiver. Instead of defining a flat structure with fields
named sender_name, sender_address, receiver_name, receiver_address, and so
on, you create two parent fields: sender and receiver. You use the same partial
field names for name, address, postal_code and email.

 The fully qualified names of those fields are sender.name, sender.address,
receiver.name, receiver.address, and so on. This hierarchy will prove to be useful
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Submitting a form 489
later. Note that you can have two different (representations of) fields with the
same fully qualified name, provided that they have the same parent, have no chil-
dren of their own, and differ only in properties that specify their visual appear-
ance. The PDF Reference says, “Fields with the same fully qualified name must
have the same field type, value and default value.”

 Just as you created an empty form field for the radio button field, you create a
field that acts as the parent of the data fields containing the information about
the sender and the receiver:

/* chapter15/SenderReceiver.java */
document.add(new Paragraph("Sender"));
PdfFormField sender = PdfFormField.createEmpty(writer);
sender.setFieldName("sender");
document.add(createTable(writer, sender));
writer.addAnnotation(sender);
document.add(new Paragraph("Receiver"));
PdfFormField receiver = PdfFormField.createEmpty(writer);
receiver.setFieldName("receiver");
document.add(createTable(writer, receiver));
writer.addAnnotation(receiver);

Figure 15.9 A form with submit buttons in a browser
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

490 CHAPTER 15
Creating annotations and fields
This example uses an empty field; you can use any other field instead. Note that
the method createEmpty() returns a field that can also be used to create a hidden
form field if you define a field name and a field value.

 In a separate method, you create the table that contains the text fields.
You let a cell event take care of creating the fields and adding them to the
parent field:

/* chapter15/SenderReceiver.java */
private static PdfPTable createTable(
 PdfWriter writer, PdfFormField parent) {
 PdfPTable table = new PdfPTable(2);
 PdfPCell cell;
 table.getDefaultCell().setPadding(5f);
 table.addCell("Your name:");
 cell = new PdfPCell();
 cell.setCellEvent(
 new SenderReceiver(writer, parent, "name", true));
 table.addCell(cell);
 ...
 table.addCell("Your email address:");
 cell = new PdfPCell();
 cell.setCellEvent(
 new SenderReceiver(writer, parent, "email", false));
 table.addCell(cell);
 return table;
}
public void cellLayout(
 PdfPCell cell, Rectangle rect, PdfContentByte[] cb) {
 TextField tf = new TextField(writer,
 new Rectangle(rect.left(2), rect.bottom(2),
 rect.right(2), rect.top(2)),
 partialFieldName);
 if (required) tf.setOptions(TextField.REQUIRED);
 tf.setFontSize(12);
 try {
 parent.addKid(tf.getTextField());
 } catch (Exception e) {
 throw new ExceptionConverter(e);
 }
}

You have now created text fields that correspond with the borders of the cell in
the second column (minus a padding of two points).

 Note that you pass a boolean as a last parameter to construct the cell event. You
set this parameter to true for the name fields, and as a result, the flag FF_REQUIRED
is set. That explains why these fields get a red rectangle in figure 15.9; using the
setFieldFlags() method in PdfFormField would have the same result. Other
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Submitting a form 491
options include FF_READ_ONLY, which makes the field read-only, and FF_NO_EXPORT,
meaning end users can fill out the field but its value isn’t exported when they click
the submit button. Submitting a form is a form action; let’s find out how to add
such an action.

15.3.2 Adding actions to the pushbuttons

Figure 15.9 shows two rows of buttons. The most important are the three first but-
tons in the first row. You create them by adding a submit action to a pushbutton:

/* chapter15/SenderReceiver.java */
PushbuttonField button1 = new PushbuttonField(writer,
 new Rectangle(150, 560, 200, 590), "submitPOST");
button1.setBackgroundColor(Color.BLUE);
button1.setText("POST");
button1.setOptions(PushbuttonField.VISIBLE_BUT_DOES_NOT_PRINT);
PdfFormField submit1 = button1.getField();
submit1.setAction(
 PdfAction.createSubmitForm("http://your.domain.com/", null,
 PdfAction.SUBMIT_HTML_FORMAT | PdfAction.SUBMIT_COORDINATES));
writer.addAnnotation(submit1);

You create a button using the convenience class PushbuttonField. You want this
button to be visible on the screen, but not if somebody prints the form (for
instance, to fill it in manually).

 The key method in this code snippet is PdfAction.createSubmitForm(). By
adding this action to the pushbutton form field, you create a button that submits
the form to the URL passed as the first parameter. The second parameter is null
because you want to submit all the fields (except those flagged with the
FF_NO_EXPORT flag). If you want to specify by name the fields that must be
exported, you should pass an array with these names instead. The third parame-
ter defines the submit method; extra options can be defined.

 Basically, you can submit an AcroForm four ways: as an HTML query string, as
a Forms Data Format (FDF) form, as an XFDF form, and as PDF if you’re using the
full Acrobat. The buttons labeled POST, FDF, and XFDF in figure 15.9 demon-
strate the three first possibilities that are available in Adobe Reader. Before we
discuss the extra options that were added, let’s look at a small JSP file that writes
the InputStream of the request to the OutputStream of the response. That way,
you’ll see what happens:

<%@ page import="java.io.*" %><%
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(request.getInputStream()));
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

492 CHAPTER 15
Creating annotations and fields
 BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(response.getOutputStream()));
 response.setContentType("text/plain");
 String line;
 while ((line = reader.readLine()) != null) {
 writer.write(line);
 writer.write("\n");
 }
 reader.close();
 writer.close();
%>

This code shows what is sent to the server in plain text if you submit the form
from a web browser. If you submit it from Adobe Reader, you get an error because
Adobe Reader doesn’t accept plain text. You can adapt the example to return con-
tent of type “application/pdf,” “application/vnd.fdf,” or “application/vnd.
adobe.xfdf.” But for now, let’s look at what happens when you click the POST but-
ton on the form.

Submitting as HTML
Because you define the submit action as a SUBMIT_HTML_FORMAT, the data in your
form is submitted to the server as an HTML POST. You can retrieve the parame-
ters from the request object; the JSP file shows you this query string:

receiver.address=&receiver.email=&receiver.name=Paulo+Soares

➥ &receiver.postal_code=&sender.address=Baeyensstraat+121

➥ &sender.email=&sender.name=Bruno+Lowagie&sender.postal_code=9040

➥ &submitPOST.x=31&submitPOST.y=12

The first eight fields are the fields in the form. The option SUBMIT_COORDINATES
was added to the or-sequence defining the submit action, so you also get two
extra fields: submitPOST.x and submitPOST.y. The submit button is 50 x 30 user
units. When I clicked the button, the mouse was pointing at the pixel x=31 and
y=12 inside this button. This isn’t important information in this example, but it
can be useful if you want a pushbutton that acts as a clickable map.

 Note that you can change this in an HTML GET action by adding the option
SUBMIT_HTML_GET to the or-sequence. Don’t do this if your form contains text
fields that have the FILE_SELECTION flag set. If a form has a file-select control, the
submission uses the MIME content type multipart/form-data.

Submitting as FDF
The default submit option is “submit as FDF.” That’s why the action of the second
button is created with 0 as a parameter for the options:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Submitting a form 493
/* chapter15/SenderReceiver.java */
submit2.setAction(PdfAction.createSubmitForm("...", null, 0));

The output of the JSP page now looks quite different. Note that I added extra
indentation to make the file readable:

%FDF-1.2
%âãÏÓ
1 0 obj
<</FDF
 <</Fields
 [<</T(receiver)/Kids
 [<</T(address)>>
 <</T(email)>>
 <</T(name)/V(Paulo Soares)>>
 <</T(postal_code)>>]
 >>
 <</T(sender)/Kids
 [<</T(address)/V(Baeyensstraat 121)>>
 <</T(email)>>
 <</T(name)/V(Bruno Lowagie)>>
 <</T(postal_code)/V(9040)>>]
 >>
 <</T(submitFDF)>>]
 /ID[<02309484A35CD6A7A648BB1431F7DCE1>
 <9B6324F7920A629294C0F1EB4611783C>]
 /F(http://blowagie.users.mcs2.netarray.com/sender_receiver.pdf)>>
>>
endobj
trailer
<</Root 1 0 R>>
%%EOF

This looks almost like a small PDF file. After reading chapter 18, you’ll be able to
distinguish a trailer, an object with nested dictionaries, and so on. This is a file in
FDF. With com.lowagie.text.pdf.FdfReader, you can parse this file to retrieve the
field names and corresponding values.

 Instead of creating the submit button with value 0 (submit as FDF), you
can use the options SUBMIT_EXCL_F_KEY and SUBMIT_EMBED_FORM. The first
option excludes the F key (with the URI of the original form), and the sec-
ond option embeds the original form as a content stream in the F entry of
the FDF file. iText also provides the options SUBMIT_CANONICAL_FORMAT, SUBMIT_
INCLUDE_APPEND_SAVES, SUBMIT_INCLUDE_ANNOTATIONS, and SUBMIT_EXCL_NON_USER_
ANNOTS, as defined in the PDF Reference.

 If you download or store this file on your file system, you can open it in Adobe
Reader. Adobe Reader searches for the original form specified in the F entry (if
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

494 CHAPTER 15
Creating annotations and fields
available) and shows this form filled with the data in the FDF file. This is a com-
pact way to save the form data. In the next chapter, you’ll learn how to create an
FDF file using iText and how to merge an FDF file with a PDF file that has a cor-
responding AcroForm.

 Since PDF-1.4, an XML version of FDF has been introduced: XFDF.

Submitting as XFDF
XFDF is less compact than FDF (I repeat: I added white space to the output to
make it readable), but it has the advantage that you don’t need a class like
FdfReader to understand what’s inside. You can use any XML parser:

<?xml version="1.0" encoding="UTF-8"?>
<xfdf xmlns="http://ns.adobe.com/xfdf/" xml:space="preserve">
<fields>
 <field name="receiver">
 <field name="address"/>
 <field name="email"/>
 <field name="name"><value>Paulo Soares</value></field>
 <field name="postal_code"/>
 </field>
 <field name="sender">
 <field name="address"><value>Baeyensstraat 121</value></field>
 <field name="email"/>
 <field name="name"><value>Bruno Lowagie</value></field>
 <field name="postal_code"><value>9040</value></field>
 </field>
 <field name="submitXFDF"/>
</fields>
<ids original="02309484A35CD6A7A648BB1431F7DCE1"
 modified="9B6324F7920A629294C0F1EB4611783C"/>
 <f href="http://blowagie.users.mcs2.netarray.com/sender_receiver.pdf"/>
</xfdf>

Looking at the FDF and at the XFDF file, you now understand the benefits of add-
ing some hierarchy to your field names. The information on the sender is kept
nicely between a field tag with attribute name="receiver". The same goes for the
sender. This makes it easier to parse the file (or to transform it with an XSLT).

 The action added to the XFDF button is constructed like this:

/* chapter15/SenderReceiver.java */
PdfAction.createSubmitForm("...", null, PdfAction.SUBMIT_XFDF);

Note that you have fewer options with XFDF: It won’t work with file-selection
fields, and you can’t combine it with the options listed in the previous subsection
on FDF (except for SUBMIT_CANONICAL_FORMAT).

 Beginning with PDF-1.4, you can also submit the document as PDF.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Submitting a form 495
Submitting as PDF
On the server side, you receive a copy of the PDF file with the fields filled in. If the
option SUBMIT_PDF is set, all other options are ignored except SUBMIT_HTML_GET.
This can be important to know if you accept the PDF in the doGet() or doPost()
method of your servlet.

Reset, hide, and show fields
We’ve dealt with three of the six buttons shown in figure 15.9. If you click the
HIDE button, these buttons disappear, leaving RESET, HIDE, and SHOW (see fig-
ure 15.10). Note that I also deselected the check boxes in the form toolbar. This
way, the form looks exactly as intended, without the blue background and the
red border.

 The three remaining buttons are created similarly to the POST, FDF, and XFDF
buttons. The main difference lies in the line that sets the action.

 The code sample that creates these buttons doesn’t need much explanation:
Reset does more or less the same as the reset button in an HTML form, but you
can pass an array of names to reset only part of the fields. With the flag, you spec-
ify whether the fields in the array should be included (0) or excluded (1). The

Figure 15.10 A form with (hidden) submit buttons
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

496 CHAPTER 15
Creating annotations and fields
HIDE and SHOW buttons can be used to hide (true) or show (false) the objects
listed in the buttons array. The createHide() action isn’t limited to pushbuttons;
you can use it to hide or show other fields as well:

/* chapter15/SenderReceiver.java */
reset.setAction(PdfAction.createResetForm(null, 0));
String[] buttons = { "submitPOST", "submitFDF", "submitXFDF" };
hide.setAction(PdfAction.createHide(buttons, true));
show.setAction(PdfAction.createHide(buttons, false));

If you know a little JavaScript, you can add all kinds of other actions—for
instance, to validate a field or to change its value.

15.3.3 Adding actions

In section 13.5.4 you triggered actions from events such as “will print,” “page
open,” and “document close.” You can now add another series of events trig-
gered by annotations and fields. A first series can be triggered by annotations
in general.

 The calculator shown in figure 15.11 is a good example of how to use JavaScript
in a PDF file. The figure shows a series of pushbuttons labelled with digits from 0
to 9, four operators, and the equal sign, as well as C and CE to clear the screen.

 When you enter the active area of the widget annotation of a pushbutton,
the value of the read-only text field (above the equal sign) changes. In the

Figure 15.11
A simple calculator in PDF
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Submitting a form 497
screenshot, the mouse pointer has just entered the button labelled with the
digit 5. When you exit the active area of a button, the read-only text field is
blanked out. When you click a button, a mouse down event and a mouse up
event occur. You listen to the mouse up events to change the value of the other
read-only text field (the one showing the number 100670 in the screenshot).

 Depending on the button that is clicked, you call another JavaScript method:

/* chapter15/Calculator.java */
private static void addPushButton(
 PdfWriter writer, Rectangle rect, String btn, String script) {
 float w = rect.width();
 float h = rect.height();
 PdfFormField pushbutton = PdfFormField.createPushButton(writer);
 pushbutton.setFieldName("btn_" + btn);
 pushbutton.setAdditionalActions(PdfName.U,
 PdfAction.javaScript(script, writer));
 pushbutton.setAdditionalActions(PdfName.E,
 PdfAction.javaScript("this.showMove('" + btn + "');", writer));
 pushbutton.setAdditionalActions(PdfName.X,
 PdfAction.javaScript("this.showMove(' ');", writer));
 PdfContentByte cb = writer.getDirectContent();
 pushbutton.setAppearance(PdfAnnotation.APPEARANCE_NORMAL,
 createAppearance(cb, btn, Color.GRAY, w, h));
 pushbutton.setAppearance(PdfAnnotation.APPEARANCE_ROLLOVER,
 createAppearance(cb, btn, Color.RED, w, h));
 pushbutton.setAppearance(PdfAnnotation.APPEARANCE_DOWN,
 createAppearance(cb, btn, Color.BLUE, w, h));
 pushbutton.setWidget(rect, PdfAnnotation.HIGHLIGHT_PUSH);
 writer.addAnnotation(pushbutton);
}

Other possible values for actions for annotations can be found in table 8.40 in the
PDF Reference. In the next example, you’ll use Fo (get FOcus) and Bl (lost focus or
BLur) for the upper text field in figure 15.12.

Mouse up event

Mouse
enters

Mouse exits

Figure 15.12 A keystroke event that validates a date
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

498 CHAPTER 15
Creating annotations and fields
The upper text field is called comb, and the code to create it is more or less the
same as the code to create the comb field in figure 15.7. The only difference is
that you add actions:

/* chapter15/FieldActions.java */
PdfFormField field = textfield.getTextField();
field.setAdditionalActions(new PdfName("Fo"),
 PdfAction.javaScript("app.alert('COMB got the focus');",
 writer));
field.setAdditionalActions(new PdfName("Bl"),
 PdfAction.javaScript("app.alert('COMB lost the focus');",
 writer));
field.setAdditionalActions(new PdfName("K"),
 PdfAction.javaScript "event.change =
 event.change.toUpperCase();", writer));

The K (Keypress) event in the code snippet is a field-specific event (meaning it
won’t work for annotations). These events are listed in table 8.42 of the PDF Ref-
erence. The change property of the JavaScript object event contains the value of
the key that was just stroked. In this case, you change the character to uppercase.
With this simple line of code, you can force the input text to be in uppercase only.

 The alert box shown in the screenshot is triggered by the other field: an edit-
able combo box with dates. I deliberately entered an invalid date, causing an alert
box to open:

/* chapter15/FieldActions.java */
field = date.getComboField();
field.setAdditionalActions(PdfName.K, PdfAction.javaScript(
 "AFDate_KeystrokeEx('dd-mm-yyyy')", writer));

You don’t have to write the method that validates the date. Adobe Reader comes
with precanned functions that let you validate and format dates, times, curren-
cies, and so on. Unfortunately, this is beyond the scope of this book.

 We started section 15.2 by saying you would find similarities as well as differ-
ences if you compared AcroForms with HTML forms. Let’s make the comparison.

15.4 Comparing HTML and PDF forms

Now that you know about all the field types available in PDF (except for signa-
ture fields), let’s review the similarities between AcroForms and HTML forms.
Table 15.1 maps all the possible tags making up an HTML form to their coun-
terparts in PDF.

Get focus
annotation
event

Lost focus
annotation
event

Keystroke
field event
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Comparing HTML and PDF forms 499
HTML forms as well as PDF forms can be used in a transaction between an end
user and the form provider, but the approach between the two types of interactive
forms is quite different. If your form is short—for instance, a two-box login
form—you should prefer HTML over PDF.

 If your form gets really complex, you can opt to split an HTML form over dif-
ferent pages and store the partial results on the server side. You can also provide
a good PDF form (one or more pages) and let the user fill in the complete form
before submitting it to the server. If you have control over the working environ-
ment of the end users, you can provide a viewer that will save a partially filled-in
form locally on the client side. While creating the PDF form, make good use of the
field hierarchy so you have structured field names.

Table 15.1 Comparing HTML form elements with PDF fields

HTML form element PDF field

input type="Hidden" A PdfFormField with a name and a value, but without a widget
annotation (you can also use a hidden text box)

input type="Text" A single-line text field

input type="Password" A text field with the option PASSWORD on

input type="File" A text field with the option FILE_SELECTION on (be careful how
you submit a form with a file selection field)

input type="ReadOnly" A text field with the option READ_ONLY on

textarea A multiple-line text field

select A choice field (a list or a combo box); in HTML, you define the
number of lines that must be shown in a select box

input type="checkbox" A button of type check box

input type="radio" A button of type radio button; note that you add different widget
annotations to one form field in PDF

input type="submit" A pushbutton to which a submit action is added

input type="reset" A pushbutton to which a reset action is added

input type="image" A pushbutton to which a special submit action is added (with the
option SUBMIT_COORDINATES)

input type="button" A pushbutton (with or without an action)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

500 CHAPTER 15
Creating annotations and fields
 A PDF form is typically preferred when you want to keep the layout of an exist-
ing paper form: Some people fill in the form online, whereas other people print
it and fill it in manually. HTML forms don’t look nice when printed out.

 In general, you won’t use iText to create your form. Creating a good form
requires specific skills. You’ll probably ask somebody who knows how to work with
Acrobat to create it. They can add all the fields we’ve summed up here, and you’ll
use chapter 16 to fill in the form programmatically.

 If you have a form that previously existed on paper only, you can scan it and
add fields. After reading this chapter, you probably doubt that iText is the right
tool for this. You could take a ruler and measure all the locations of every field on
the paper form so you can use iText to add widgets on the right places, but you’re
right: That’s not the ideal way of achieving the result you want.

 Let’s put what you’ve learned in this chapter into perspective and find out if
there is a better way.

15.5 Summary

This chapter is important because you need to know about forms in order to
understand the next chapter about reading and filling an AcroForm in an exist-
ing PDF document. You can use iText to create such a PDF document, but it
requires intensive programming. In most cases, it’s a better idea to use a form
that was created with another program, such as Acrobat. Make sure the PDF is cre-
ated with the right type of form. For the time being, there is only limited support
for forms created with Adobe Designer (XFA forms).

 If you insist on creating AcroForms using iText, you can do so. You can
build your own GUI application to create a document with a form and use iText
as the engine that builds your PDF and AcroForm. If you don’t want to rein-
vent the wheel, use a product that already uses iText. With JPedal, you can view
a PDF file and combine this viewer with iText to add all the necessary widgets.
There’s a tutorial on how to achieve this on jpedal.org. JPedal can also be used
to save form data. A cool forms feature in this product is that the forms objects
are converted into Java Swing gadgets; you can add your own listeners and
build your own form server functionality. But that’s beyond the scope of this
book—this is iText in Action, not JPedal in Action.

 You haven’t helped Laura in this chapter. You know she needs forms that allow
the future students at Foobar to fill in a learning agreement; but that will have to
wait until chapter 17, where you’ll combine the functionality learned in this and
the next chapter to create, manage, and fill two types of forms.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Filling and signing
AcroForms
This chapter covers
■ Reading and updating form fields
■ Working with (X)FDF
■ Signing a PDF document
■ Verifying a signed PDF
501

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

502 CHAPTER 16
Filling and signing AcroForms
In chapter 15, you created a PDF file with an AcroForm using iText. At the end of
the chapter, you read that it isn’t important to use iText to do this. The main pur-
pose of the previous chapter was to get familiar with the types of form fields.

 In this chapter, you’ll use this newly acquired knowledge to retrieve data from
an existing form and from an (X)FDF file. You’re also going to fill in form fields
programmatically, and you’ll flatten the forms you’ve filled out. You already had
an introduction to these techniques in chapter 2, but now we’ll take a closer look.

 There’s also an important field type we haven’t dealt with yet: the signature
field. The third section of this chapter explains how to add a signature field with a
digital signature.

16.1 Filling in the fields of an AcroForm

The PDF file shown in figure 16.1 contains an AcroForm. Just by looking at it, you
see that it contains text fields, a list (listing programming languages), a combo
box (that allows you to select your mother tongue) and buttons. By clicking the
buttons, you discover that the Preferred Language options are a set of radio but-
tons and the Knowledge Of options are check boxes.

Figure 16.1 An existing AcroForm
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Filling in the fields of an AcroForm 503
I created the form myself using iText, so I know the names of all the fields, but
let’s pretend the PDF was given to you by a third party. The first thing you need to
do is retrieve the names and types of all the fields.

16.1.1 Retrieving information about the fields (part 1)
Here’s the code for this example:

/* chapter15/RegisterForm1.java */
PdfReader reader = new PdfReader("register_form1.pdf");
AcroFields form = reader.getAcroFields();
HashMap fields = form.getFields();
String key;
for (Iterator i = fields.keySet().iterator(); i.hasNext();) {
 key = (String) i.next();
 System.out.print(key + ": ");
 switch(form.getFieldType(key)) {
 case AcroFields.FIELD_TYPE_CHECKBOX:
 System.out.println("Checkbox");
 break;
 case AcroFields.FIELD_TYPE_COMBO:
 System.out.println("Combobox");
 break;
 case AcroFields.FIELD_TYPE_LIST:
 System.out.println("List");
 break;
 case AcroFields.FIELD_TYPE_NONE:
 System.out.println("None");
 break;
 case AcroFields.FIELD_TYPE_PUSHBUTTON:
 System.out.println("Pushbutton");
 break;
 case AcroFields.FIELD_TYPE_RADIOBUTTON:
 System.out.println("Radiobutton");
 break;
 case AcroFields.FIELD_TYPE_SIGNATURE:
 System.out.println("Signature");
 break;
 case AcroFields.FIELD_TYPE_TEXT:
 System.out.println("Text");
 break;
 default:
 System.out.println("?");
 }
}

The code retrieves an AcroFields object from a PdfReader instance b. In chapter 2,
you used an AcroFields object retrieved from a PdfStamper object to change the
value of one or more fields, but now you’ll first inspect the properties of every field.

 B
 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

504 CHAPTER 16
Filling and signing AcroForms
You get the fields as a HashMap c and you loop over every key in the map d to find
out the type of each field E.

 If you run this example, the following output is written to System.out:

 person.knowledge.French: Checkbox
 person.language: Combobox
 person.email: Text
 person.preferred: Radiobutton
 person.name: Text
 person.programming: List
 person.postal_code: Text
 person.address: Text
 person.knowledge.English: Checkbox
 person.knowledge.Dutch: Checkbox

You can now use this information to set the value of the text fields as demon-
strated in the example in chapter 2. If you want to set the value of the button and
choice fields, you need extra information:

/* chapter15/RegisterForm1.java */
System.out.println("Possible values for person.programming:");
String[] options = form.getListOptionExport("person.programming");
String[] values = form.getListOptionDisplay("person.programming");
for (int i = 0; i < options.length; i++)
 System.out.println(options[i] + ": " + values[i]);
System.out.println("Possible values for person.language:");
options = form.getListOptionExport("person.language");
values = form.getListOptionDisplay("person.language");
for (int i = 0; i < options.length; i++)
 System.out.println(options[i] + ": " + values[i]);
System.out.println("Possible values for person.preferred:");
String[] states = form.getAppearanceStates("person.preferred");
for (int i = 0; i < states.length; i++)
 System.out.println(states[i]);
System.out.println("Possible values for person.knowledge.English:");
states = form.getAppearanceStates("person.knowledge.English");
for (int i = 0; i < states.length; i++)
 System.out.println(states[i]);

This code sample retrieves the options available in the Programming Skills list
b, the Mother Tongue combo box c, and the Preferred Language radio button
field d. You also retrieve the possible values of the English button (one of the
Knowledge Of check boxes) E.

 This code snippet also writes information to System.out:

 Possible values for person.programming:
 JAVA: Java
 C: C/C++

 B

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Filling in the fields of an AcroForm 505
 CS: C#
 VB: VB
 Possible values for person.language:
 EN: English
 FR: French
 NL: Dutch
 Possible values for person.preferred:
 NL
 Off
 EN
 FR
 Possible values for person.knowledge.English:
 Off
 On

This output tells you that you can choose between EN, FR, or NL to fill in the field
person.language and that you should use the value On if you want to select the
field person.knowledge.English.

16.1.2 Filling fields

The form in figure 16.1 was filled in manually. Now let’s fill in the form using
iText. The next code snippet should look familiar: It looks almost exactly like the
HelloWorldForm example in chapter 2. The main difference is that you also fill
out check-box, radio-button, list, and combo-box fields:

/* chapter16/FillAcroForm1.java */
reader = new PdfReader("register_form1.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("registered1_1.pdf"));
AcroFields form = stamper.getAcroFields();
form.setField("person.name", "Laura Specimen");
form.setField("person.address", "Paulo Soares Way 1");
form.setField("person.postal_code", "F00b4R", "FOOBAR");
form.setField("person.email", "laura@lowagie.com");
form.setField("person.programming", "JAVA");
form.setField("person.language", "FR");
form.setField("person.preferred", "EN");
form.setField("person.knowledge.English", "On");
form.setField("person.knowledge.French", "On");
form.setField("person.knowledge.Dutch", "Off");
stamper.close();

If you look at the line that sets the postal code, you notice something odd: Apart
from the fact that Foobar City has a strange postal code, you use three parameters
in the setField() method.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

506 CHAPTER 16
Filling and signing AcroForms
■ The first parameter defines the field you want to change.
■ The second parameter defines the value of the field.
■ The optional third parameter sets the display value.

If you open the resulting PDF file, you won’t see F00b4R, but FOOBAR. Only
when you click the field or submit the form do you see that the actual value isn’t
FOOBAR, but F00b4R.

 Note that, although the list box allows multiple selects, selecting more than
one value programmatically isn’t supported (yet).

 In chapter 2, you learned that you can rename a field with the method
renameField(). The next code snippet demonstrates how to change the entries
in a choice field (a list or combo box). In this example, you’re limited if you
want to set the value of the mother tongue: You can only choose between
English, French, and Dutch. If you want to fill the form with data for the co-
developer of iText, Paulo Soares, you should be able to add Portuguese to the
combo box. No problem—you can redefine the entries in a choice field with
the method setListOption():

/* chapter16/FillAcroForm1.java */
String[] combo_options = { "EN", "FR", "NL", "PT" };
String[] combo_values =
 { "English", "French", "Dutch", "Portuguese" };
form.setListOption("person.language", combo_options, combo_values);
form.setField("person.language", "PT");

Note that you haven’t flattened the forms in this first series of examples. When
the form is opened, the end user can change the values that were filled in pro-
grammatically. This can be useful if the form is part of a document workflow and
you want to serve the end user a form with some fields that are prefilled—for
instance, based on information that’s already in your database.

 Maybe you want the end user to change some of the fields, but not all of them.
Some fields should be made read-only. There are different ways to do this. You
could use partial form flattening, like this:

/* chapter16/FillAcroForm1.java */
reader = new PdfReader("registered1_2.pdf");
stamper = new PdfStamper(
 reader, new FileOutputStream("registered1_3.pdf"));
stamper.setFormFlattening(true);
stamper.partialFormFlattening("person.name");
stamper.close();
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Filling in the fields of an AcroForm 507
There’s one major disadvantage if you use this approach. The following code
snippet no longer works:

/* chapter16/FillAcroForm1.java */
reader = new PdfReader("registered1_3.pdf");
form = reader.getAcroFields();
System.out.println(form.getField("person.name"));

The method getField() returns null because the field person.name is no longer
there. There’s only a String painted on a canvas.

 A better solution is to change the flags of the field containing the name so that
the field is read-only:

/* chapter16/FillAcroForm1.java */
reader = new PdfReader("registered1_2.pdf");
stamper = new PdfStamper(
 reader, new FileOutputStream("registered1_4.pdf"));
form = stamper.getAcroFields();
form.setFieldProperty("person.name",
 "setfflags", PdfFormField.FF_READ_ONLY, null);
form.setFieldProperty("person.programming",
 "clrfflags", PdfFormField.FF_MULTISELECT, null);
form.setFieldProperty(
 "person.language", "bgcolor", Color.RED, null);
stamper.close();

When you compare both PDF files, you won’t see much difference between the
field that no longer exists in registered1_3.pdf and the read-only field in
registered1_4.pdf. Neither can be changed by the end user, but when you use
form.getField("person.name") on registered1_4.pdf, the name that was entered
originally in the read-only field is returned correctly.

 The previous code sample uses two variations of the setFieldProperty()
method. The first can be used to change the annotation and/or the field flags.
Valid values for the second parameter are as follows:

■ “flags,” “setflags,” or “clrflags”—Replaces, adds, or removes the flags of
the widget annotation, respectively. The possible values for these flags can
be found in the class PdfAnnotation.

■ “fflags,” “setfflags,” or “clrfflags”—Replaces, adds, or removes the field
flags, respectively. The possible values can be found in the class PdfForm-
Field (the constants starting with FF_).

The second variation of the setFieldProperty() method can be used to change
one of the following properties:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

508 CHAPTER 16
Filling and signing AcroForms
■ “textfont”—Changes the text font. The third parameter for this entry
should be of type BaseFont.

■ “textcolor”—Changes the color of the text. The value for this entry is of
type java.awt.Color.

■ “textsize”—Sets the text size. You can pass a Float as the third parameter.
■ “bgcolor”—Sets the background color. The value for this entry is a

java.awt.Color. If it’s null, the background is removed.
■ “bordercolor”—Sets the border color. The value for this entry is a

java.awt.Color. If it’s null, the border is removed.

The previous code sample didn’t specify the fourth parameter of these two meth-
ods; you just passed null. The method expects an array of int values. If a field is
represented by more than one widget, you can sum up the indexes of the widgets
of which you want to change the property. Passing null means you want to process
all the widgets.

 In section16.1.1, you retrieved the name, type, and possible values of each
field in the AcroForm. Now let’s look at how you can retrieve information about
the widgets.

16.1.3 Retrieving information from a field (part 2)
The AcroFields class has an inner class called Item that contains different
ArrayList objects. The next code snippet lists the contents of two of these mem-
ber variables:

/* chapter16/FillAcroForm1.java */
AcroFields.Item item = form.getFieldItem("person.preferred");
PdfDictionary dict;
PdfName name;
System.out.println("pages: " + item.page);
for (Iterator i = item.merged.iterator(); i.hasNext();) {
 dict = (PdfDictionary)i.next();
 for (Iterator it = dict.getKeys().iterator(); it.hasNext();) {
 name = (PdfName)it.next();
 System.out.println(name.toString() + ": " + dict.get(name));
 }
 System.out.println("------------------------------------");
}

You take the AcroFields.Item object for the radio button field person.preferred
b. The “page” list contains these values: [1, 1, 1] c. This field is represented
by three widget annotations that all appear on page 1. The lists “values,” “wid-
gets,” and “merged” contain a PDF dictionary for each widget. The dictionaries

 B

 C

 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Filling in the fields of an AcroForm 509
in “values” contain field-specific entries. Those in “widgets” contain annotation-
specific entries. These dictionaries are merged in the “merged” list d. To
understand the meaning of each entry, you’ll need to study the PDF Reference
(section 8.4.1, “Annotation dictionaries”; and section 8.6.2, “Field Dictionaries”).

 Although it’s interesting to know that you can retrieve this valuable informa-
tion, you don’t have to go through all this trouble for the most important data:
the page number and the coordinates. Call the method getFieldPositions(),
and it gives you an array containing the page number(s) and the coordinates of
every widget. The number of values in the array is always a multiple of five:

/* chapter16/FillAcroForm1.java */
float[] positions = form.getFieldPositions("person.preferred");
for (int i = 0; i < positions.length;) {
 System.out.print("Page: " + positions[i++]);
 System.out.print(" [" + positions[i++]);
 System.out.print(", " + positions[i++]);
 System.out.print(", " + positions[i++]);
 System.out.print(", " + positions[i++]);
 System.out.println("]");
}

In the case of the person.preferred radio button field, the following values
are returned:

 Page: 1.0 [297.5, 630.0, 316.52, 646.0]
 Page: 1.0 [297.5, 614.0, 316.52, 630.0]
 Page: 1.0 [297.5, 598.0, 316.52, 614.0]

This information will be useful if you’re using the fields as placeholders. You can
retrieve the location of fields that mark an area, remove the fields, and add extra
data using PdfStamper.getOverContent() or PdfStamper.getUnderContent().

 Fields can be removed using one of these methods:

■ removeFieldsFromPage(int page)—Removes all the fields from a page
■ removeField(String name, int page)—Removes the fields with name name

from page page
■ removeField(String name)—Removes a field from a document

You saw examples that performed this flattening process automatically in chap-
ter 2; now you’ll add more complexity.

Page number

Lower-left X
Lower-left Y
Upper-right X

Upper-right Y
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

510 CHAPTER 16
Filling and signing AcroForms
16.1.4 Flattening a PDF file

The next example uses a form that’s a little different from the one in the previous
examples (see figure 16.2). It contains the same four text fields but adds a button
on the left side.

You won’t use the button for any action or user input; it’s there as a placeholder.
Figure 16.3 shows the same form, but now Laura’s personal data is filled in and
her photograph appears at the location indicated by the button field. (Don’t you
think Laura is a beauty? As a matter of fact, she looks just like my wife.)

Let’s look at a code sample to see how it’s done:

/* chapter16/FillAcroForm2.java */
reader = new PdfReader("register_form2.pdf");
stamper = new PdfStamper(
 reader, new FileOutputStream("registered2.pdf"));

Figure 16.2 A simple form that will be filled and flattened

Figure 16.3 The form after it’s been filled in and flattened
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Filling in the fields of an AcroForm 511
AcroFields form = stamper.getAcroFields();
form.setField("person.name", "Laura Specimen");
form.setField("person.address", "Paulo Soares Way 1");
form.setField("person.postal_code", "F00b4r");
form.setField("person.email", "laura@lowagie.com");
float[] photograph =
 form.getFieldPositions("person.photograph");
Rectangle rect = new Rectangle(
 photograph[1], photograph[2], photograph[3], photograph[4]);
Image laura = Image.getInstance("../resources/Laura.jpg");
laura.scaleToFit(rect.width(), rect.height());
laura.setAbsolutePosition(
 photograph[1] + (rect.width() - laura.scaledWidth()) / 2,
 photograph[2] + (rect.height() - laura.scaledHeight()) / 2);
PdfContentByte cb = stamper.getOverContent((int)photograph[0]);
cb.addImage(laura);
stamper.setFormFlattening(true);
stamper.close();

As you see, you don’t need any new functionality to create this PDF, but you
should know a few extra things if you want to optimize the process.

16.1.5 Optimizing the flattening process

In chapter 14, you learned how to combine XML and page events to generate a
large number of letters in a batch. This is a good solution when you need contin-
uous text, but often you can use standard forms with only a limited set of fields at
fixed coordinates. In this case, it’s better to use a PDF file with an AcroForm.

 If you want one big resulting file containing all the letters, you can choose
between two options. The most economic way to create your large PDF file is to do
the following:

1 Retrieve the field positions from the AcroForm in the original PDF file.

2 Create a flattened version of the original PDF document.

3 Create a page event that reads the flattened form in onOpenDocument()
and adds it in onEndPage().

4 Loop over all the records in your database, and add the fields at the cor-
responding positions.

The other solution is to create separate files for each record and to concatenate
them afterward. Note that your final PDF file will be larger. When you use page
events, the form is added only once; if you concatenate separate files that all con-
tain the original form, you have a lot of redundancy. It can pay to choose the first
option. But it’s up to you to choose the solution that offers the best answer for

Fill in text fields

Get
placeholder
data

Get/scale
photo

Position
photo

Add
photo

Set flattening to true
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

512 CHAPTER 16
Filling and signing AcroForms
your requirements. If it’s important for you to generate separate files (for
instance, because you intend to send them by e-mail), you can optimize the flat-
tening process. Look at the following code snippet:

/* chapter16/FillAcroForm2.java */
HashMap fieldCache = new HashMap();
for (int i = 0; i < db.length; i++) {
 reader = new PdfReader("register_form2.pdf");
 stamper = new PdfStamper(reader,
 new FileOutputStream("registered_" + (i + 1) + ".pdf"));
 form = stamper.getAcroFields();
 form.setFieldCache(fieldCache);
 form.setExtraMargin(12, -3);
 form.setField("person.name", db[i][0]);
 form.setField("person.address", db[i][1]);
 form.setField("person.postal_code", db[i][2]);
 form.setField("person.email", db[i][3]);
 stamper.setFormFlattening(true);
 stamper.close();
}

This example uses two new methods:

■ setFieldCache()—Sets a cache for field appearances. Parsing the existing
PDF to create a new TextField is expensive in terms of time. For those tasks
that repeatedly fill the same PDF with different field values, using set-
FieldCache() offers a dramatic speed advantage. There’s one downside: If
you have choice fields, you sometimes get odd results, because you can’t
reuse the appearance of a list or a combo box.

■ setExtraMargin()—Sets extra margins in text fields to better mimic the
Acrobat layout. I already mentioned that the appearance of a field created
by iText doesn’t always correspond exactly with the appearance when the
field is rendered in Adobe Acrobat or Reader. Depending on the version of
Acrobat used to create the form, you can have small unwanted offsets. You
can correct these offsets by specifying extra margins that are applied to
every field in the form.

I’ve slightly exaggerated the extra margins so you can see a clear difference if
you compare figure 16.4 with figure 16.3. The content of the fields in figure 16.4
is shifted 12 points to the right and 3 points to the top (or rather, –3 points to
the bottom).

 Another common problem when filling fields is that you have to fill in
forms in batches with data that fits the field for 99 percent of the records.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Filling in the fields of an AcroForm 513
Unfortunately, there are always a few records with strings that don’t fit into the
rectangle defined in your form; this problem is demonstrated in the upper
PDF file in figure 16.5.

 In the upper PDF file, the content of the field is truncated. Because the form is
flattened, an end user can’t scroll to the right to see what’s missing. There are dif-
ferent ways to solve this problem. You can set the options of the field so that the mul-
tiline flag is on. This way, the content can be split over several lines. Unfortunately,
this won’t help if the height of the field isn’t sufficient to display multiple lines.

 Another solution is to retrieve the coordinates of the field as you did before,
with the photograph placeholder. You can then adapt the font size so that the

Figure 16.4 This form was filled in using a small offset

Figure 16.5 A form with data that doesn’t fit into a field
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

514 CHAPTER 16
Filling and signing AcroForms
content fits the rectangle, or you can add the string to the direct content so that it
extends outside the widget rectangle (but maybe that’s not your intention).

 The simplest solution is to set the font size to 0. According to the PDF Refer-
ence, Acrobat auto-sizes the text in an AcroForm’s text field to best fill the area.
When flattening a text field with font size 0, iText does the same thing. The bot-
tom PDF file in figure 16.5 has two long field values that are drawn using different
font sizes so they fit the widget rectangle:

/* chapter16/FillAcroForm2.java */
reader = new PdfReader("register_form2.pdf");
stamper = new PdfStamper(
 reader, new FileOutputStream("registered2_Y.pdf"));
form = stamper.getAcroFields();
form.setFieldProperty(
 "person.name", "textsize", new Float(0), null);
form.setField(
 "person.name", "Somebody with a very, very long name.");
form.setFieldProperty(
 "person.address", "textsize", new Float(0), null);
form.setField(
 "person.address", "and a very, very long address too");
stamper.setFormFlattening(true);
stamper.close();

Using the setField() method is one way to fill in form data. In the previous
chapter, you learned about the Forms Data Format (FDF). Let’s find out if you can
merge a PDF file with an FDF or XFDF file.

16.2 Working with FDF and XFDF files

In chapter 15, you used FDF and XFDF as an interesting way to receive (and store)
data submitted to a server. You saw that such a file can be opened in Adobe
Reader to show the PDF referred to in the (X)FDF file with all the fields filled in.
In this chapter, you’ll use an (X)FDF file to merge (and flatten) the data with the
original PDF file.

 Let’s create sample FDF files first.

16.2.1 Reading and writing FDF files

For this series of examples, you’ll work with a form that is a reduced version of the
form shown in figure 16.2. It has the same text fields, but not the button. You’ll
construct an FdfWriter object and add the values for four fields; you’ll also add
the file that contains an AcroForm with these fields:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Working with FDF and XFDF files 515
/* chapter16/FillAcroForm3.java */
FdfWriter fdf = new FdfWriter();
fdf.setFieldAsString("person.name", "Bruno Lowagie");
fdf.setFieldAsString(
 "person.address", "Baeyensstraat 121, Sint-Amandsberg");
fdf.setFieldAsString("person.postal_code", "BE-9040");
fdf.setFieldAsString("person.email", "bruno@lowagie.com");
fdf.setFile("register_form3.pdf");
fdf.writeTo(new FileOutputStream("register_form3.fdf"));

The result is an FDF file that looks like this:

%FDF-1.2
%âãÏÓ
1 0 obj
<</FDF
 <</F(register_form3.pdf)
 /Fields[
 <</T(person)
 /Kids[
 <</T(address)/V(Baeyensstraat 121, Sint-Amandsberg)>>
 <</T(postal_code)/V(BE-9040)>>
 <</T(email)/V(bruno@lowagie.com)>>
 <</T(name)/V(Bruno Lowagie)>>]
 >>]
 >>
>>
endobj
trailer
<</Root 1 0 R>>
%%EOF

Note that I added indentation to make the FDF readable. You can now use this
FDF file to fill in the form fields:

/* chapter16/FillAcroForm3.java */
PdfReader pdfreader = new PdfReader("register_form3.pdf");
PdfStamper stamp =
 new PdfStamper(
 pdfreader, new FileOutputStream("registered3.pdf"));
FdfReader fdfreader = new FdfReader("register_form3.fdf");
AcroFields form = stamp.getAcroFields();
form.setFields(fdfreader);
stamp.close();

Normally you won’t perform these two steps after each other.
 You can use FdfWriter to create FDF files for direct use. If you open the FDF

generated in the first code sample in Adobe Reader, it looks exactly the same as
the PDF produced in the second sample.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

516 CHAPTER 16
Filling and signing AcroForms
 Or, you may have a repository of FDF files that was gathered, for instance, by
storing all the FDF files submitted to your web server. Now you want to merge all
these FDF files with the original PDF file programmatically and maybe flatten
them and concatenate all the files into one large file.

 You may also receive an FDF file submitted to the server and use FdfReader to
retrieve the values of the fields. The next example explains the last option. First,
you generate an FDF file based on one of the previously generated PDF files con-
taining an AcroForm (the PDF in figure 16.1):

/* chapter16/FillAcroForm3.java */
reader = new PdfReader("registered1_1.pdf");
form = reader.getAcroFields();
FdfWriter fdf = new FdfWriter();
form.exportAsFdf(fdf);
fdf.setFile("register_form1.pdf");
fdf.writeTo(new FileOutputStream("registered1.fdf"));

This code sample exports an AcroFields object from an existing PDF file to an
FDF file. The check boxes in the original PDF file are translated to FDF like this:

<</T(knowledge)
 /Kids[
 <</T(English)/V/On>>
 <</T(French)/V/On>>
 <</T(Dutch)/V/Off>>
]
>>

The values in text fields such as person.name are between angle brackets; they’re
stored as PDF strings. The values of the check boxes are stored in a different way:
for instance, /On or /Off. These are PDF names. To create an FDF containing this
snippet, you have to use the method FdfWriter.setFieldAsName() instead of set-
FieldAsString().

 Now that you have this more complex FDF file, you can read it with FdfReader:

/* chapter16/FillAcroForm3.java */
fdfreader = new FdfReader("registered1.fdf");
System.err.println(fdfreader.getFileSpec());
HashMap fields = fdfreader.getFields();
String key;
for (Iterator i = fields.keySet().iterator(); i.hasNext();) {
 key = (String) i.next();
 System.err.println(key + ": " + fdfreader.getFieldValue(key));
}

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Working with FDF and XFDF files 517
This is typically what you’ll do if you want to interpret the data sent as FDF to a
server instead of just storing the FDF file. The output of the code sample looks
like this:

 register_form1.pdf
 person.knowledge.French: On
 person.language: FR
 person.preferred: EN
 person.email: laura@lowagie.com
 person.name: Laura Specimen
 person.postal_code: F00b4R
 person.knowledge.English: On
 person.programming: JAVA
 person.address: Paulo Soares Way 1
 person.knowledge.Dutch: Off

In chapter 18, we’ll return to this functionality and demonstrate how to retrieve
the actual PDF object such as a PDF name or a PDF dictionary.

 In the previous chapter, you also learned about XFDF; iText can read
these files.

16.2.2 Reading XFDF files
For the moment, there’s no XFDF writer in iText. The structure of an XFDF file is
simple. I made an example manually:

<?xml version="1.0" encoding="UTF-8"?>
<xfdf xmlns="http://ns.adobe.com/xfdf/" xml:space="preserve">
<fields>
 <field name="person">
 <field name="name"><value>Bruno Lowagie</value></field>
 <field name="address">
 <value>Baeyensstraat 121, Sint-Amandsberg</value>
 </field>
 <field name="postal_code"><value>BE-9040</value></field>
 <field name="email"><value>bruno@lowagie.com</value></field>
 </field>
</fields>
<f href="../results/register_form3.pdf"/>
</xfdf>

The code to read the fields in this XFDF and to merge the XFDF with an AcroForm
in an existing PDF is similar to the code in the previous section on FDF. Add an X
here and there, and you’re done:

/* chapter16/FillAcroForm3.java */
XfdfReader xfdfreader =
 new XfdfReader("../resources/formfields.xfdf");
System.err.println(xfdfreader.getFileSpec());
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

518 CHAPTER 16
Filling and signing AcroForms
fields = xfdfreader.getFields();
for (Iterator i = fields.keySet().iterator(); i.hasNext();) {
 key = (String) i.next();
 System.err.println(key + ": " + xfdfreader.getFieldValue(key));
}
reader = new PdfReader(xfdfreader.getFileSpec());
stamper = new PdfStamper(
 reader, new FileOutputStream("registered3X.pdf"));
form = stamper.getAcroFields();
form.setFields(xfdfreader);
stamper.close();

Note that the hints given in section 16.1.5 are also valid when you fill (multiple)
forms using an FDF or an XFDF form as the data source: You can flatten the form,
set an extra margin, and set a cache for the appearances using the same methods
as described earlier.

 At the end of chapter 15, we compared PDF forms with forms in HTML. Now
that you’ve seen how to fill in a PDF form, we can add one major advantage
offered by PDF forms: An AcroForm is an ideal way to define a template that can
be used in an automated batch process.

 But there’s more: The AcroForm technology also allows you to add a digital
signature to a file.

16.3 Signing a PDF file

In the previous chapter, we talked about annotations and form fields in an Acro-
Form. We discussed three types of form fields: buttons, text fields, and choice
fields. We mentioned that an AcroForm can also contain a fourth type of form
field: signature fields. Let’s start with a simple example that adds an empty signa-
ture field to a PDF.

16.3.1 Adding a signature field to a PDF file

Figure 16.6 shows a PDF file with a personal message from Laura, your friend at
Foobar. The PDF has a signature field, but as you can read in the Signatures pane,
the signature field isn’t signed (yet).

 Creating such a PDF is easy; you only need to add these two lines:

/* chapter16/UnsignedSignatureField.java */
PdfAcroForm acroForm = writer.getAcroForm();
acroForm.addSignature("foobarsig", 73, 705, 149, 759);

Of course, when Laura sends me a personal message, I want to be sure it’s sent by
Laura and not by anyone else. Anyone can create a PDF document with an empty
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Signing a PDF file 519
signature field. You need a signature field with a real digital signature, as shown
in figure 16.7.

 To create this PDF file, you use PdfReader to read the document with the sig-
nature field, and you add the signature like this:

/* chapter16/SignedSignatureField.java */
KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
ks.load(
 new FileInputStream("../resources/.keystore"),
 f00b4r".toCharArray());
PrivateKey key =
 (PrivateKey) ks.getKey("foobar", "r4b00f".toCharArray());

Figure 16.6 A PDF with an unsigned signature field

Figure 16.7 A PDF with a signed signature field

A java.
security.Key-
Store object

A java.security.
PrivateKey object
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

520 CHAPTER 16
Filling and signing AcroForms
Certificate[] chain = ks.getCertificateChain("foobar");
reader = new PdfReader("unsigned_signature_field.pdf");
FileOutputStream os =
 new FileOutputStream("signed_signature_field.pdf");
PdfStamper stamper = PdfStamper.createSignature(reader, os, '\0');
PdfSignatureAppearance appearance
 = stamper.getSignatureAppearance();
appearance.setCrypto(key, chain, null,
 PdfSignatureAppearance.SELF_SIGNED);
appearance.setReason("It's personal.");
appearance.setLocation("Foobar");
appearance.setVisibleSignature("foobarsig");
stamper.close();

This code needs further explanation. iText supports visible and invisible signing
using the following modes:

■ Self signed (Adobe.PPKLite)
■ VeriSign plug-in (VeriSign.PPKVS)
■ Windows Certificate Security (Adobe.PPKMS)

No matter what mode you’re using, signing is always done the same way in iText.
The next section explains the self-signed mode so that you can try it without hav-
ing to acquire a key from a Certificate Authority (CA). If you do have a key signed
by a CA, you’ll have to make small changes to the code.

 The following sections form a quick guide explaining the concept of digital
signatures. They don’t replace the know-how you or your company’s security
expert should have on cryptography.

16.3.2 Using public and private keys

Do you remember the exchange students at the University of Foobar? Most of these
students are enrolled in a program at a university in their own country (the sending
institution). They take some courses at the university in Foobar (the receiving insti-
tution). After taking exams for these courses, the students want to go home with a
document listing the grades they’ve obtained for each course. This document can
act as a transcript of records so that the sending institution can take the grades into
account when calculating an end result for the complete program.

 Because TUF is a technological university, it can’t afford to use the old-fashioned
paper solution with stamps and hand-written signatures. The university has a repu-
tation to defend, and it wants to use an electronic document. Of course, you don’t
want the students to be able to change their grades before the document reaches
its destination. That’s why you’ll add a digital signature.

A java.security.
cert.Certificate
object
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Signing a PDF file 521
 This signature contains a digest of the data inside the document. You encrypt
the digest using your private key. This key is part of a pair; you also have a public
key. As the names indicate, you should keep the private key private, whereas the
public key should be open to the public.

 Both keys are related, but they can’t be derived from each other. Due to the
nature of this key pair, the digest you encrypt with your private key can only be
decrypted using your public key. This is a public key (aka asymmetric key) cryptog-
raphy system, where one key is for encoding and the other for decoding.

 Somewhere between the receiving institution (receiving the student, but
sending the document) and the sending institution (receiving the transcript of
records), malicious students could try to change their grades. Unfortunately for
them, when the digest is decrypted using the public key of the institution that
issued the document, the digest won’t correspond with the altered content, and
the fraud will be exposed.

 But maybe students are smarter than you think. They don’t have your private
key, so they can’t create a valid signature. However, they can create a new private
and public key and pretend this is an official key pair. That way, students can try
to fool their university.

 To solve this problem, you call in a third party that is beyond suspicion: a Cer-
tificate Authority. The CA checks whether the public key of the University of Foobar
really originated from the University of Foobar and wasn’t made up by a student.
The CA generates a certificate by signing the public key of the University of Foobar
with its own private key. Whoever receives a message that can be decrypted with
this certificate knows for sure that the University of Foobar was the sender.

 That’s a short version of the theory. The main question is: How can you gen-
erate a private/public key pair and obtain a certificate?

16.3.3 Generating keys and certificates

Many tools allow you to create a private/public key pair, but because you’re devel-
oping in Java, you’ll use the keytool that comes with the JDK:

$ keytool -genkey -alias foobar -keyalg RSA -keystore .keystore
Enter keystore password: f00b4r
What is your first and last name?
 [Unknown]: Laura Specimen
What is the name of your organizational unit?
 [Unknown]: FCSE
What is the name of your organization?
 [Unknown]: TUF
What is the name of your City or Locality?
 [Unknown]: Foobar
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

522 CHAPTER 16
Filling and signing AcroForms
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]: BE
Is CN=Laura Specimen, OU=FCSE, O=TUF, L=Foobar,
 ST=Unknown, C=BE correct?
 [no]: yes

Enter key password for <foobar>
 (RETURN if same as keystore password): r4b00f

The resulting file .keystore contains your private key, so keep it private. If you’re
going to sign your document using self-signed mode, you can generate a certifi-
cate that can be used to decrypt messages encrypted with your private key like this:

keytool -export -alias foobar -file foobar.cer -keystore .keystore
Enter keystore password: f00b4r
Certificate stored in file <foobar.cer>

The resulting file foobar.cer can now be used to validate a PDF file that was signed
using the private key in the .keystore file. I repeat my warning: Everyone can gen-
erate such a key pair. Answer the questions asked by keytool with Laura’s data,
and if you can persuade the people at the receiving end that it’s not a bogus cer-
tificate—you can pretend to be her.

 To avoid this problem, Laura should generate a Certificate Signing Request
(CSR) that can be sent to a CA. It’s done like this.

keytool -certreq -keystore .keystore -alias foobar -file foobar.csr
Enter keystore password: f00b4r
Enter key password for <foobar>r4b00f

A file foobar.csr is generated. You send this file to your CA, and you receive a Pri-
vacy Enhanced Mail (PEM) file. This file contains your public key signed by the CA
using the CA’s private key. This public key can be decrypted with the CA’s public
key, which comes in the form of a Distinguished Encoding Rules (DER) file.

 Import these files into your keystore, and you’ll be able to export a PFX file
that can be used to sign your documents.

NOTE The Acrobat VeriSign plug-in only works with VeriSign certified keys. To
sign documents with VeriSign, you need a key that is certified by Veri-
Sign. You can acquire a 60-day trial key or buy a permanent key at veri-
sign.com.

The Microsoft Windows Certificate works with any trusted certificate.
In addition to the VeriSign certificate, you can also use a free Thawte
certificate, available at Thawte.com.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Signing a PDF file 523
Normally, you don’t have to deal with this stuff as a Java developer. You should
get all the needed files from your company’s security expert. In the next sections,
you’ll learn how to use these files to add a digital signature to a PDF document.

16.3.4 Signing a document
Let’s start with a document that doesn’t have any fields—just a personal message
from Laura (see figure 16.8). You want to add a signature to this document, just as
you did in section 16.3.1, but now you’ll do it step by step.

KeyStore, PrivateKey and Certificate[]
First you’ll need to create a Keystore object. The Javadocs from Sun say
the following:

This class represents an in-memory collection of keys and certificates. It man-
ages two types of entries:

■ Key Entry—this type of keystore entry holds very sensitive cryptographic key
information, which is stored in a protected format to prevent unauthorized
access. Typically, a key stored in this type of entry is a secret key, or a private
key accompanied by the certificate chain for the corresponding public key.

■ Trusted Certificate Entry—this type of entry contains a single public key certif-
icate belonging to another party. It’s called a trusted certificate because the
keystore owner trusts that the public key in the certificate indeed belongs to
the identity identified by the subject (owner) of the certificate.

Each entry in a keystore is identified by an “alias” string. In the case of private
keys and their associated certificate chains, these strings distinguish among the
different ways in which the entity may authenticate itself.

In the previous section, you generated a keystore called .keystore with pass-
word f00b4r, containing an alias “foobar” corresponding with a private key

Figure 16.8 A plain message with no fields
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

524 CHAPTER 16
Filling and signing AcroForms
with password r4b00f. Let’s load this keystore in the application and see if you
can get access to the key entry and the trusted certificate entry:

/* chapter16/SignedPdf.java */
KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
ks.load(new FileInputStream("../resources/.keystore"),
 "f00b4r".toCharArray());
PrivateKey key = (PrivateKey) ks.getKey("foobar",
 "r4b00f".toCharArray());
Certificate[] chain = ks.getCertificateChain("foobar");

This code snippet can be used if you’re signing a PDF in self-signed mode. The
next one, which is similar, can be used for the other modes:

KeyStore ks = KeyStore.getInstance("pkcs12");
ks.load(new FileInputStream("my_private_key.pfx"),
 "my_password".toCharArray());
String alias = (String)ks.aliases().nextElement();
PrivateKey key = (PrivateKey)ks.getKey(alias,
 "my_password".toCharArray());
Certificate[] chain = ks.getCertificateChain(alias);

The file my_private_key.pfx is the PFX file mentioned in the previous section—
you need a CA to generate this file.

Creating the signature
Now that you have a PrivateKey object and a Certificate array, you can sign
the file:

/* chapter16/SignedPdf.java */
reader = new PdfReader("unsigned_message.pdf");
FileOutputStream os = new FileOutputStream("signed_message.pdf");
PdfStamper stamper = PdfStamper.createSignature(reader, os, '\0');
PdfSignatureAppearance appearance =
 stamper.getSignatureAppearance();
appearance.setCrypto(key, chain, null,
 PdfSignatureAppearance.SELF_SIGNED);
appearance.setReason("It's personal.");
appearance.setLocation("Foobar");
appearance.setVisibleSignature(
 new Rectangle(30, 750, 500, 565), 1, null);
stamper.close();

The code to get the PdfStamper object b is different from what you did before
when you wanted to add plain content to an existing PDF file. To understand why,
you need some background information about digital signatures in PDF.

 The PDF Reference says:

 B
 C

 D

 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Signing a PDF file 525
Signatures are created by computing a digest of the data (or part of the data) in
a document, and storing the digest in the document. To verify the signature,
the digest is recomputed and compared with the one stored in the document.
Differences in the digest values indicate that modifications have been made
since the document was signed.

In iText, you create a signature using one of the createSignature() methods. The
binary null that is used in line b means you don’t want to change the PDF version
of the original PDF; you can replace it with one of the VERSION_X_Y constants in
PdfWriter if necessary.

 Next, you create a PdfSignatureAppearance object c and set the crypto infor-
mation d: The first three parameters are the PrivateKey, the Certificate array,
and (optionally) a Certificate Revocation List (java.security.cert.CRL). The
fourth parameter defines the mode. Possible values are as follows:

■ PdfSignatureAppearance.SELF_SIGNED—Adobe.PPKLite
■ PdfSignatureAppearance.WINCER_SIGNED—Adobe.PPKMS

■ PdfSignatureAppearance.VERISIGN_SIGNED—VeriSign.PPKVS

There are five different layers in a signature’s appearance. These layers are
XObjects that can be drawn on top of each other:

■ n0—Background layer.
■ n1—Validity layer, used for the unknown and valid state; contains, for

instance, a yellow question mark.
■ n2—Signature appearance, containing information about the signature.

This can be text or an XObject that represents the handwritten signature.
■ n3—Validity layer, containing a graphic that represents the validity of the

signature when the signature is invalid.
■ n4—Text layer, for a text presentation of the state of the signature.

In iText, you can retrieve these layers as a PdfTemplate object using the method
getLayer(). The example only uses the methods setReason() and setLocation()
E. These methods define the text that is added in the n2 layer. Consult the Jav-
adocs if you need to know more about the other methods available in Pdf-
SignatureAppearance.

 With the method setVisibleSignature(), you define the location of the signa-
ture on a certain page F. The name of the signature is generated automatically
because you pass a null value.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

526 CHAPTER 16
Filling and signing AcroForms
Validating the PDF in Adobe Reader
To get a better understanding of what all these layers mean, let’s look at some
images. Figure 16.9 shows a PDF signed in self-signed mode.

The validity is unknown because Laura’s certificate hasn’t been added to your list
of trusted identities; you didn’t use a key from a CA to sign the document. If you
click the signature, you get a dialog box that offers you different possibilities for
trusting Laura. For instance, you can send her an e-mail asking her to send you
her certificate. Once her certificate is added to the trusted identities, you can val-
idate the signature. Figure 16.10 shows the result of these actions.

Figure 16.9 A signed PDF document with an unknown state

Figure 16.10 A signed PDF document with a valid signature
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Signing a PDF file 527
Suppose you tamper with the signed document; for instance, you use PdfCopy to
create a new PDF document that looks exactly like the original. When you open
this new PDF file, you’ll immediately notice that something happened to it (see
figure 16.11).

 You added visible digital signatures in the previous examples. If you omit the
setVisibleSignature() method in line E, an invisible signature is added, as
demonstrated in figure 16.12.

 The examples in this book generate ordinary or recipient signatures. If you want
to add a certifying or author signature, you need to add one more line to the code:

PdfSignatureAppearance.setCertified(true);

One of the main differences is that with recipient signatures, you can revise the
document and add more than one recipient digital signature. The changes are
reflected in the document revision number. On the other hand, you can add only
one author signature to a document with iText.

Figure 16.11 A signed PDF document with an invalid signature

Figure 16.12 A signed PDF document with a valid invisible signature
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

528 CHAPTER 16
Filling and signing AcroForms
Figure 16.13 shows a PDF file based on the document shown in figures 16.10, to
which an extra signature has been added. In the Signatures panel, you see that
one signature belongs to revision 1 and the other to revision 2. A yellow triangle
with an exclamation point appears next to the checkmark of the original signa-
ture; this triangle warns you that the signature doesn’t cover the latest revision of
the document. Here’s the code:

/* chapter16/SignedPdf.java */
reader = new PdfReader("signed_message.pdf");
FileOutputStream os =
 new FileOutputStream("double_signed_message.pdf");
PdfStamper stamper =
 PdfStamper.createSignature(reader, os, '\0', null, true);
PdfSignatureAppearance appearance =
 stamper.getSignatureAppearance();
appearance.setCrypto(key, chain, null,
 PdfSignatureAppearance.SELF_SIGNED);
appearance.setReason("Double signed.");
appearance.setLocation("Foobar");
appearance.setVisibleSignature(
 new Rectangle(300, 750, 500, 800), 1, "secondsig");
stamper.close();

Note the difference in the createSignature() method. The parameter true indi-
cates that you want to update the document while keeping the original (signed)
revision intact. For more information about the different methods to create a sig-
nature, consult the Javadoc information.

Figure 16.13 A signed PDF document with a two valid signatures

Read signed PDF

Create second
signature
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Verifying a PDF file 529
 In the previous examples, you’ve learned the basics of signing a PDF docu-
ment; iText has taken care of creating the hash and the signature. It’s also possi-
ble to sign a document using an external hash and/or an external signature. More
examples are provided on the iText site.

Using a smart card for signing
Until now, you’ve assumed that the keystore or the PFX file was read from a safe
place on your system. If you want to sign a document using a smart card, you must
consult the card’s API for a method that extracts the certificate from the card.

FAQ How do I extract a private key that is on my smart card? If you could extract
a private key from a smart card, there would be a serious security prob-
lem. Your private key is secret, and the smart card should be designed to
keep this secret safe. You don’t want an external application to use your
private key; instead, you send a hash to the card, and the card returns a
signature or a PKCS#7 message. PKCS refers to a group of Public Key
Cryptography Standards. PKCS#7 defines the Cryptographic Message
Syntax Standard.

If you’re working with a smart card, you can’t create a PrivateKey object. You have
to send the hash to your smart card reader, and the card returns a signature or a
PKCS#7. Appendix D provides an example of how to sign a PDF using an elec-
tronic identity card. You’ll have to adapt this example according to the type of
smart card you’re using.

 In figures 16.10 and 16.12, the signed PDF file is validated in Adobe Reader.
But if you receive hundreds of PDF files, you’d have to hire somebody to open
every PDF file in Adobe Reader to check if the signatures were valid. A better solu-
tion is to check the validity programmatically.

16.4 Verifying a PDF file

If you return to figure 16.9, you see a file whose status is unknown. When open-
ing a PDF document with signatures added in WINCER or VERISIGN mode, you
only have to click the signature to verify it. You don’t need the certificate of the
person who sent you the mail, just the CA’s root certificate. Normally, this certifi-
cate is already present in Adobe Reader, and you must select the setting Trust All
Root Certificates.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

530 CHAPTER 16
Filling and signing AcroForms
 When verifying the signatures in a PDF file programmatically, the CA’s root
certificate should be present in a cacerts file installed along with your Java Run-
time Environment (JRE). This cacerts file is a keystore that can be loaded using
this single code line:

KeyStore ks = PdfPKCS7.loadCacertsKeyStore();

The next code sample shows how you can get the names of all the signature fields
in the AcroForm of a PDF file. You loop over these signatures and inspect them:

/* chapter16/SignedPdf.java */
reader = new PdfReader("double_signed_message.pdf");
AcroFields af = reader.getAcroFields();
ArrayList names = af.getSignatureNames();
String name;
for (Iterator it = names.iterator(); it.hasNext();) {
 name = (String) it.next();
 System.out.println("Signature name: " + name);
 System.out.println("Signature covers whole document: "
 + af.signatureCoversWholeDocument(name));
 System.out.println("Document revision: "
 + af.getRevision(name)
 + " of " + af.getTotalRevisions());
 FileOutputStream os = new FileOutputStream("revision_"
 + af.getRevision(name) + ".pdf");
 byte bb[] = new byte[8192];
 InputStream ip = af.extractRevision(name);
 int n = 0;
 while ((n = ip.read(bb)) > 0)
 os.write(bb, 0, n);
 os.close();
 ip.close();
 PdfPKCS7 pk = af.verifySignature(name);
 Calendar cal = pk.getSignDate();
 Certificate pkc[] = pk.getCertificates();
 System.out.println("Subject: "
 + PdfPKCS7.getSubjectFields(pk.getSigningCertificate()));
 System.out.println("Document modified: " + !pk.verify());
 Object fails[] =
 PdfPKCS7.verifyCertificates(pkc, ks, null, cal);
 if (fails == null)
 System.out.println(
 "Certificates verified against the KeyStore");
 Else
 System.out.println("Certificate failed: " + fails[1]);
}

If you look closely at this code sample, you see that it does more than just verify
the signatures. It checks whether the signature covers the whole document. You

Show signature name

Entire document
covered?

Signature belongs to
which revision?

Restore revision

Document
modified?

Verify
document
against
keystore
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Verifying a PDF file 531
extract revision information and restore the original revision. This example uses
the double-signed document. You restore the original revision; this results in a
file that is identical to the original signed_message.pdf.

 Of course, the verification against the cacerts keystore fails unless you’ve
imported Laura’s certificate into cacerts. If you choose not to do this, you must
create a KeyStore in memory and use a CertificateFactory to load the foobar.cer
file created in section 16.3.3:

/* chapter16/SignedPdf.java */
CertificateFactory cf = CertificateFactory.getInstance("X509");
Collection col = cf.generateCertificates(
 new FileInputStream("../resources/foobar.cer"));
KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());
ks.load(null, null);
for (Iterator it = col.iterator(); it.hasNext();) {
 X509Certificate cert = (X509Certificate) it.next();
 System.err.println(cert.getIssuerDN().getName());
 ks.setCertificateEntry(
 cert.getSerialNumber().toString(Character.MAX_RADIX), cert);
}

If you loop over the signatures using this KeyStore, the signatures prove to be
valid. There are two signature fields in the file double_signed_message.pdf, so
the following is written to System.out:

Signature name: Signature1
Signature covers whole document: false
Document revision: 1 of 2
Subject:
 {O=[TUF], CN=[Laura Specimen], OU=[FCSE], C=[BE],
 L=[Foobar], ST=[Unknown]}
Document modified: false
Certificates verified against the KeyStore
Signature name: secondsig
Signature covers whole document: true
Document revision: 2 of 2
Subject:
 {O=[TUF], CN=[Laura Specimen], OU=[FCSE], C=[BE],
 L=[Foobar], ST=[Unknown]}
Document modified: false
Certificates verified against the KeyStore

The first signature is named Signature1, and it doesn’t cover the whole docu-
ment. That’s correct: The double-signature example adds an extra signature on
top of a file that already had a signature. In other words, Signature1 belongs to
revision 1 of 2 of the document. The signature belongs to Laura Specimen, and
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

532 CHAPTER 16
Filling and signing AcroForms
the content covered by the signature wasn’t changed. Note that this doesn’t mean
the complete document wasn’t changed!

 The second signature is named secondsig, and it does cover the complete docu-
ment. It also belongs to Laura, and the contents weren’t changed. And that’s that.
You now know how to add a digital signature to a PDF file and how to verify sig-
natures in an existing PDF file.

16.5 Summary

This chapter was the logical continuation of chapter 15. In the previous chapter,
we discussed annotations with the goal of learning more about the way the fields
of an AcroForm appear in a PDF file. We didn’t go into the details of form cre-
ation, but you’ve learned enough to know what to do when confronted with a PDF
file containing an AcroForm.

 You’ve learned how to use such a PDF document as a template. You’ve added
data in many ways: using the setField() method of an AcroFields object, using
an (X)FDF file, and even using the absolute coordinates retrieved from the fields’
widget annotations. That turned out to be quite easy.

 The final part of this chapter dealt with a special type of field: signature fields.
We discussed the basic mechanisms of signing that should get you started.

 In the past 16 chapters, we’ve covered a lot of functionality in literally hun-
dreds of small standalone examples. It’s high time that we looked at web applica-
tions and how to adapt these examples so that you can create a PDF document on
the fly and serve it to a web browser.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

iText in web
applications
This chapter covers
■ How to use iText in a web application
■ How to avoid the most common pitfalls
■ How to use PDF in a web application
533

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

534 CHAPTER 17
iText in web applications
One of the main requirements of the project that led to the development of iText
was that my colleagues and I at Ghent University had to be able to serve PDF docu-
ments on the fly using Java servlets. This book has included an abundance of stan-
dalone examples. You didn’t need to install an application server to compile and
execute them.

 In this chapter, you’ll integrate some of these code samples into a web appli-
cation. You’ll create a personalized version of the course catalog, and you’ll
retrieve data from a Forms Data Format (FDF) file submitted using a static PDF
document with an AcroForm. But first, let me list some common pitfalls that can
stand in the way of creating PDF documents on the fly.

17.1 Writing PDF to the ServletOutputStream: pitfalls

Fifteen chapters ago, you made a simple “Hello World” example. In the example,
you created a PDF file in five steps (see also listing 2.1):

1 Create a document.

2 Create a PdfWriter using Document and OutputStream.

3 Open the document.

4 Add content to the document.

5 Close the document.

When we discussed step 2 (see section 2.1.2), I told you that you can write the
PDF file to any java.io.OutputStream, including a javax.servlet.Servlet-
OutputStream, returned by the getOutputStream() method of a (Http)Servlet-
Response object.

 Let’s do the test! The following code sample extends the HttpServlet class and
overrides the doGet() method:

/* chapter17/HelloWorldServlet.java */
public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 String presentationtype =
 request.getParameter("presentationtype");
 Document document = new Document();
 try {
 if ("pdf".equals(presentationtype)) {
 response.setContentType("application/pdf");
 PdfWriter.getInstance(document, response.getOutputStream());
 }

Get presentationtype
parameter

Step 1

Step 2
for PDF
file
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 535
 else if ("html".equals(presentationtype)) {
 response.setContentType("text/html");
 HtmlWriter.getInstance(document,
 response.getOutputStream());
 }
 else if ("rtf".equals(presentationtype)) {
 response.setContentType("text/rtf");
 RtfWriter2.getInstance(document,
 response.getOutputStream());
 }
 else {
 response.sendRedirect(
 "http://itextdocs.lowagie.com/tutorial/");
 return;
 }
 document.open();
 document.add(new Paragraph("Hello World"));
 document.add(new Paragraph(new Date().toString()));
 }
 catch(DocumentException de) {
 de.printStackTrace();
 System.err.println("document: " + de.getMessage());
 }
 document.close();
}

Figure 17.1 shows two browser windows:

Step 2 for HTML file

Step 2 for RTF file

On error, send
redirect

Step 3

Step 4

Step 5

Figure 17.1 iText in action in a web application
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

536 CHAPTER 17
iText in web applications
■ A FireFox window showing an HTML page produced by this servlet
■ A Microsoft Internet Explorer (IE) window showing a PDF page produced by

the same servlet, but with another value for the presentationtype parameter

It works like a charm! At least, it works like a charm for me; it may or may not
work for you or your customers. In spite of Murphy’s Law, this functionality
almost always works in the demo version; but once you go into production you’ll
probably get reports from users saying they see only gibberish, or white pages, or
annoying error pages.

 Trust me; I have experience with this stuff. In most cases, these problems
aren’t a result of bad PDF or bad iText code. They’re caused by one or more
known browser issues, or by a wrong browser configuration at the client side.

 The following section helps you work around the most common client-
side problems.

17.1.1 Solving problems related to content type-related problems
The previous example could produce PDF, HTML, and RTF. This book focuses on
PDF. The content type of a PDF file is “application/pdf.” On the server side, you
need to add this content type to the content header. This can be done with the
method setContentType():

/* chapter17/HelloWorldServlet.java */
response.setContentType("application/pdf");

The end user needs an application that can render PDF on the client side. If a
PDF viewer is installed on the end user’s machine, the browser must know that
files of type “application/pdf ” should be interpreted by the PDF viewer or a PDF
plug-in. Note that if you’re producing FDF or XFDF files, you should use the con-
tent type “application/vnd.fdf” or “application/vnd.adobe.xfdf.”

 When you use Adobe Reader, the browser is configured automatically.
When you install a browser, it should detect Adobe Reader if present. If you do
it the other way around and install Adobe Reader after installing the browser,
the Adobe Reader installer installs the web plug-in automatically.

 If the association between the content type and the PDF viewer isn’t made cor-
rectly, the end user will probably see gibberish starting with %PDF-1.4 %âãÏÓ and
so on (the same problem will occur if you forget to set the content type on the
server side).

 Some browsers ignore the content type defined in the header. IE is known to
look at the file extension, rather than the content type. PDFs ending with .pdf are
rendered fine in IE (providing the plug-in was installed correctly). But as soon as
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 537
you serve a PDF from a servlet, you may get complaints from your end users. Add-
ing a dummy parameter ending in .pdf (for instance, http://myserver.com/servlet/
MyServlet?dummy=dummy.pdf) is one way to deal with this problem, but it’s not
the most elegant.

 You could use the Content-Disposition header like this:

response.setHeader("Content-Disposition",
 " inline; filename=my.pdf");

Or, if you want the PDF to be saved, rather than to be viewed in the browser, you
can force the browser to open a Save As dialog box like this:

response.setHeader("Content-Disposition",
 " attachment; filename=\"my.pdf\"");

Note that not every version of every browser deals with this header correctly.
 If you’re familiar with servlets, you know another way to solve the filename

problem: You can define a servlet-mapping in your web.xml file that maps URLs
ending in *.pdf to a facade servlet that handles all your PDF documents. The fol-
lowing XML snippet is an example hosted on itext.ugent.be, the support site for
this book hosted by Ghent University:

<servlet-mapping>
 <servlet-name>OutSimplePdf</servlet-name>
 <url-pattern>/simple.pdf</url-pattern>
</servlet-mapping>

The next section looks at a code snippet of the servlet OutSimplePdf. This servlet
also works around another known problem: the blank-page phenomenon.

17.1.2 Troubleshooting the blank-page problem
It’s been a while since this question turned up on the iText mailing list (especially
since I wrote a tutorial chapter about it), but in the past we got many questions
about the blank-page problem. This problem can have different causes: server-
related and/or browser-related; never iText-related.

 Let’s start with some rules of thumb:

■ Always begin writing code that runs as a standalone example. If the exam-
ple doesn’t work in its standalone version, it won’t work in a web applica-
tion either, but at least you can rule out all problems related to the server
or the browser.

■ Start with simple code based on the examples in this book. If it works, grad-
ually add complexity until something goes wrong. Don’t post complete
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

538 CHAPTER 17
iText in web applications
servlet examples on the mailing list. We only look at standalone examples
that can reproduce the problem. If you do post a servlet-related problem,
don’t forget to mention what application server you’re using, and always
post the exception that was thrown.

■ Always test your application on different machines, using different brows-
ers, even if there isn’t any problem. Some web applications won’t ever show
problems when tested on one type of browser, but they will fail when using
another browser.

■ Before posting a question to the mailing list, add an extra PdfWriter
instance to your application so that two PDF files are generated simulta-
neously (see the examples in section 2.1.2). One PDF file should be sent to
the client side through the HttpResponse object; another should be saved
to a file on the server side (remember the note in section 7.2.1: be careful
when using columns).

When you’ve followed all these rules, you should be able to determine the
nature of the problem—more specifically, is it a server-side problem or a client-
side problem?

Server-related problems
If you’ve followed the final rule of thumb, start by opening the file generated on
the server side. If it isn’t a valid PDF file, there are three possibilities:

■ An iText class is missing. Check whether you added the iText.jar file to the
CLASSPATH. Check whether you have more than one version in your CLASS-
PATH (different versions can lead to conflicts). Check whether the jar is
compiled with the correct compiler: If the jar is compiled with JDK 1.4 and
your server runs on a 1.3 JRE, you’ll get exceptions saying some classes
aren’t found, even if they’re in the iText.jar.

■ There’s a resource missing. Normally, the exception should give you a fair
idea about what’s wrong. The most common problem is that font files
aren’t found because the path you used can’t be reached by the application
server, or because the application server runs as a user that doesn’t have
the permission to read the file.

■ On a UNIX-based server, you need to install an X server. In section 2.1.4, a
FAQ callout tells you how to solve X-related problems that typically occur
when you’re using Graphics2D or the Color class.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 539
If the file generated on the server side is OK, look at the file generated on the cli-
ent side. If it doesn’t open correctly in Adobe Reader, try opening it in a plain text
editor, but make sure it’s a text editor that preserves binary characters.

 If you see lots of question marks in the page streams, the problem is server-
related; your server probably flattens all bytes with a value higher than 127. The
pages are shown in Adobe Reader because the page structure is OK but the con-
tent of the pages is corrupted—hence the blank pages. Consult your web (or
application) server manual to find out how to solve this problem.

 If you see HTML, change the extension from .pdf to .html and look at it in a
browser; you’ll probably see an error page in HTML generated by your server.
Exceptions happen; deal with them. If necessary, send an error page to the cli-
ent, but don’t forget to set the content type to “text/html”; otherwise, Adobe
Reader will open with an error message saying the file doesn’t begin with %PDF.
If you check the page for HTML, don’t forget to look at the end of the file. Once,
people spent days searching for a bug I was able to fix in a minute just by look-
ing at the PDF file in a text editor: They had sent the PDF to the browser, fol-
lowed by a stream of plain HTML. Adobe Reader said the file was damaged and
couldn’t be repaired.

 If the file generated on the client side is OK or if none of the problems men-
tioned so far match your situation, chances are the problem is browser-related.
Don’t despair! Just because a problem is browser-related doesn’t mean it’s impos-
sible to solve by changing settings on the server side.

Browser-related problems
When no content length is specified in the header of your dynamically generated
file, the browser reads blocks of bytes sent by the web server. Firefox, Mozilla, and
Netscape detect when the stream is finished and use the correct size of the
dynamically generated file. Some versions of IE are known to have problems
truncating the stream to the right size: The real size of the PDF file is smaller than
the size assumed by IE. The surplus of bytes can contain gibberish, and this leads
to problems.

 The only way you can work around this issue is to specify the content length
in the response header. Setting this header has to be done before any content is
sent. Unfortunately, you only know the length of the file after you’ve created it.
This means you can’t send the PDF to the ServletOutputStream obtained with
response.getOutputStream() right away. Instead, you must create the PDF on
your file system or in memory first, so that you can retrieve the length, add the
length to the response header, and then send the PDF. That’s a pity, because if
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

540 CHAPTER 17
iText in web applications
you’re generating large PDF files, you risk a timeout in the browser-server com-
munication. We’ll deal with this problem in section 17.1.5. First, let’s find out
how to create a PDF file in memory:

/* chapter17/OutSimplePdf.java */
Document document = new Document();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PdfWriter.getInstance(document, baos);
document.open();
document.add(new Paragraph(msg));
document.close();

You’ve now generated a PDF in memory using a ByteArrayOutputStream. Next,
you retrieve the size of the byte array and then send the bytes to the servlet’s out-
put stream:

/* chapter17/OutSimplePdf.java */
response.setContentType("application/pdf");
response.setContentLength(baos.size());
ServletOutputStream out = response.getOutputStream();
baos.writeTo(out);
out.flush();

This code sample sets the content type B, sets the content length C, gets the
ServletOutputStream D, writes the PDF to the OutputStream E, and then flushes
the stream F.

 Remember that you can also set the content disposition header. Mailing-list
subscribers have shared their experiences with the community and told us that
it’s also safe to set the following response header values:

/* chapter17/OutSimplePdf.java */
response.setHeader("Expires", "0");
response.setHeader("Cache-Control",
 "must-revalidate, post-check=0, pre-check=0");
response.setHeader("Pragma", "public");

Note that response headers have to be set before the content is sent to the output
stream. You can’t prevent the PDF file from being cached on the client side. The
PDF viewer needs to read the file from the file system. This isn’t an iText-specific
issue: It’s true for all PDF files served on the Web. In the file permissions overview
listed in section 3.3.3, you saw that it’s impossible to disable the Save As button.
Even if you could, doing so would be of no use: The PDF file is always cached.

 Figure 17.2 shows a simple form with a text area. Depending on the parameter
passed to the JSP, the submit method of the form is GET or POST. You can enter any
text you want and then click the submit button; a PDF file containing your mes-
sage is generated (see figure 17.3).

 b
 C

 D
 E

 F
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 541
The PDF in the screenshot was generated with the servlet we just discussed: Out-
SimplePdf. You can test it by using one of these URLs:

■ http://itext.ugent.be:8080/itext-in-action/index.jsp?method=GET

■ http://itext.ugent.be:8080/itext-in-action/index.jsp?method=POST

The code of the JSP that generates the form in HTML is simple:

<html>
 <head>
 <title>A form for OutSimplePdf: GET or POST</title>
 </head>
 <body>
<%
 String method = request.getParameter("method");
 if (method == null) method = "GET";
%>
 The action of this form is <%= method %>
 <form action="simple.pdf" method="<%= method%>">
 <textarea name="msg" cols="50" rows="20">

Figure 17.2 A simple JSP file with a text area in an HTML form

Figure 17.3 The resulting PDF after posting a message
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

542 CHAPTER 17
iText in web applications
 Write some text you want to see in PDF.
 </textarea>

 Click to see PDF: <input type="Submit" value="GeneratePDF">
 </form>
 </body>
</html>

If you’re familiar with JSP, you should know that it’s a bad idea to use JSP to gen-
erate binary content. JSP and all the JSP-related technology are good for building
HTML web sites. A JSP file can be also used as a forwarder to a servlet, but it isn’t
recommended to generate a PDF file from a JSP page.

 In the next section, you’ll find out why.

17.1.3 Problems with PDF generated from JSP

I can’t repeat it enough: It’s a bad idea to use JSP to generate binary content. I
don’t say it isn’t possible to integrate iText in a JSP page. Surf to http://itext.ugent.-
be:8080/itext-in-action/helloworld.jsp: The link works for me and gives me a PDF
file saying “Hello World,” but it won’t necessarily work for you.

 First I’ll give you the code that works for me, and then I’ll tell you what can go
wrong if you try to adapt the sample and deploy the JSP on your system:

<%@
page import="java.io.*,com.lowagie.text.*,com.lowagie.text.pdf.*"
%><%
response.setContentType("application/pdf");
Document document = new Document();
ByteArrayOutputStream buffer = new ByteArrayOutputStream();
PdfWriter.getInstance(document, buffer);
document.open();
document.add(new Paragraph("Hello World"));
document.close();
DataOutput output =
 new DataOutputStream(response.getOutputStream());
byte[] bytes = buffer.toByteArray();
response.setContentLength(bytes.length);
for(int i = 0; i < bytes.length; i++) {
 output.writeByte(bytes[i]);
}
%>

You can try to copy this code, but I strongly advise against it. Up to the present, I
haven’t heard one sensible argument why you should prefer writing a JSP page
instead of a servlet to generate a PDF document, but I know several arguments
against doing so:
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 543
■ Some servers assume that JSP output isn’t binary, so you get the question-
mark problem mentioned earlier. PDF files written to the file system of the
server open without problems. When served to a client, the PDF opens, but
you only see blank pages.

■ JSP pages are compiled to servlets internally. Granted, to serve HTML, it’s
easier to write a JSP page (or code using a similar technology) than to write
a servlet; but I know from experience that it’s the other way round for PDF.
Most of the workarounds listed in this section are hard to implement in a
JSP file. Integrating iText in a servlet is less error prone than integrating
iText in a JSP page.

■ If you copy the JSP example and start working from there, you’ll probably
add indentation, newlines, spaces, carriage returns, and so on. If you’re
used to writing JSPs, it should be second nature to do this. Although this is
good for most of the code you’re writing, it’s forbidden if you want to gen-
erate binary content!

The third reason is the most common problem. Adding formatting characters
such as newlines and spaces has no impact on HTML pages, but now you’re gen-
erating PDF. These characters are invisible to the human eye, but they’re com-
piled into the servlet and they can cause problems:

■ You can get the exception getOutputStream() has already been called for this
response. This happens because the JSP has newlines or spaces that cause the
output writer to be opened before you call response.getOutputStream().

■ Your PDF risks being corrupt. You can’t add characters at arbitrary places
in a binary file, but that’s exactly what the servlet does with your newlines
and spaces. The cross-reference of the PDF file generated with the JSP
won’t point to the correct byte positions.

We can’t help you with these kinds of problems. Our answer will always be to use
servlets instead of JSP. I can only repeat: It’s a bad idea to use JSPs to generate
binary data.

 But writing JSP isn’t always a bad idea; as a matter of fact, you can solve the
next problem with a simple JSP file.

17.1.4 Avoiding multiple hits per PDF

In web analytics, a hit is when an end user requests a page from your web server
and this page is sent to the user’s browser directly. When you enter the URL
http://itext.ugent.be:8080/itext-in-action/simple.pdf in the location bar of your
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

544 CHAPTER 17
iText in web applications
browser, one PDF file opens in your browser window using a PDF viewer plug-in,
and you probably assume that one hit is registered in the logs on the server side.

 This is true if you’re using Firefox, Mozilla, or Netscape, but again there’s a
problem with IE. IE hits the server multiple times with the same request for every
dynamically generated binary file. You can’t predict how many hits one single
request will generate; it could be two or three hits, or occasionally just one. This
behavior can be a real pain, for instance if you’re updating a database or keeping
statistics for every PDF that is served. Setting the cache parameters like this

response.setHeader(
 "Cache-Control", "must-revalidate, post-check=0, pre-check=0");

can help, but there’s no guarantee it will work for all browsers. The only foolproof
solution I know of is using the embed tag in an HTML file:

<html>
<body leftMargin="0" topMargin="0" scroll="no">
 <embed src="http://myserver/pdfCreationServlet"
 width="100%" height="100%"
 type="application/pdf" fullscreen="yes" />
</body>
</html>

Because this problem is IE specific, you can use JSP to check the user agent before
sending the PDF file:

<%
 String user = request.getHeader("User-Agent");
 if(user.indexOf("MSIE") != -1 && user.indexOf("Windows") != -1) {
 out.print(
 "<body leftMargin=\"0\" topMargin=\"0\" scroll=\"no\">");
 out.print("<EMBED src=\"simple.pdf?msg="
 + user
 + "\" width=\"100%\" height=\"100%\" fullscreen=\"yes\" "
 + "type=\"application/pdf\">");
 }
 else{
 response.sendRedirect("simple.pdf?msg=" + user);
 }
%>

Granted, this also triggers two hits, one for the JSP file and one for the servlet
generating the PDF, but that isn’t the issue. The problem is that with IE, you can
never predict how many times the server will execute the servlet code; using this
small JSP sample, you’re sure the code will execute only once per request.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 545
17.1.5 Workaround for the timeout problem

As I mentioned before, it's a pity you have to buffer the PDF in a ByteArrayOut-
putStream just because some browsers need to know the length of the generated
PDF file in advance. At Ghent University, we had to generate reports with grades
for several thousand students in one document.

 This document could become large, but that wasn’t our main problem. Our
Achilles heel was database access. The database system that was used initially was
old, and database access was slow, especially when the server load was high. Peo-
ple sometimes failed to retrieve the PDF because the browser-server connection
timed out.

 If I had been able to serve little bits of PDF at a time to the client side (for
instance, by writing binary code directly to the ServletOutputStream each time a
page was finished), this timeout wouldn’t have occurred, but I had to support IE
clients too.

 Eventually, I solved the problem by serving HTML feedback as long as the PDF
wasn’t finished. The HTML showed the total number of students and the number
of students added to the PDF so far. I also made a progress bar by stretching a
pixel in an image with a width of 0 to 100:

<img src="pixel.gif"
 height="10" width="<%= myPdf.getPercentage() %>">

This HTML page was refreshed every 3 seconds until the PDF was finished.
 The example that follows simplifies this solution. The PDF is generated in a

Java Thread. Figure 17.4 shows a text message that says what percentage of the
PDF is finished and after how many seconds the page will be refreshed.

 The PDF is being created in the background; when this process is finished, you
see a simple PDF form with a button to get the PDF (see figure 17.5).

Figure 17.4 A message while waiting for a PDF file to be created
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

546 CHAPTER 17
iText in web applications
The PDF is attached to the personal session of the current user. If this user clicks
the button, the PDF is fetched from this session object. The resulting PDF is shown
in figure 17.6.

If you want to implement this solution, you first have to make a class that extends
class Thread or that implements the Runnable interface. The following code sam-
ple uses the inner class MyPdf. This class is responsible for creating the PDF docu-
ment in a background process:

/* chapter17/ProgressServlet.java */
public class MyPdf implements Runnable {

 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 int p = 0;

Figure 17.5 A message that the PDF has been created successfully

Figure 17.6 A PDF generated in a background process

 b
 C
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 547
 public void run() {
 Document doc = new Document();
 try {
 PdfWriter.getInstance(doc, baos);
 doc.open();
 while (p < 99) {
 doc.add(new Paragraph(new Date().toString()));
 Thread.sleep(500);
 p++;
 }
 } catch (DocumentException e) {
 p = -1;
 e.printStackTrace();
 } catch (InterruptedException e) {
 p = -1;
 e.printStackTrace();
 }
 doc.close();
 p = 100;
 }

 public ByteArrayOutputStream getPdf() throws DocumentException {
 if (p < 100) {
 throw new DocumentException(
 "The document isn't finished yet!");
 }
 return baos;
 }

 public int getPercentage() {
 return p;
 }
}

This code first constructs the ByteArrayOutputStream b. You keep track of the
percentage that is finished C and continue if the percentage is less than 99 D.
Thread.sleep(500) deliberately slows down the process E; otherwise, you’d
probably get the PDF file immediately, and you wouldn’t see the mechanism in
action. If all goes well, the percentage is increased F; on error, the percentage is
invalidated G. When finished, the percentage is set to 100 H, and you can get
the PDF ByteArrayOutputStream I. The code throws an exception if the process
isn’t finished J.

 In this example, the doGet() method serves the HTML. It returns useful infor-
mation as long as the PDF isn’t finished using extra helper methods:

/* chapter17/ProgressServlet.java */
public void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 D

 E
 F

 G

 H

 I

 J
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

548 CHAPTER 17
iText in web applications
 HttpSession session = request.getSession(true);
 Object o = session.getAttribute("myPdf");
 MyPdf pdf;
 if (o == null) {
 pdf = new MyPdf();
 session.setAttribute("myPdf", pdf);
 Thread t = new Thread(pdf);
 t.start();
 }
 else {
 pdf = (MyPdf)o;
 }
 response.setContentType("text/html");
 switch (pdf.getPercentage()) {
 case -1:
 isError(response.getOutputStream());
 return;
 case 100:
 isFinished(response.getOutputStream());
 return;
 default:
 isBusy(pdf, response.getOutputStream());
 return;
 }
}

private void isBusy(MyPdf pdf, ServletOutputStream stream)
 throws IOException {
 stream.print("<html>\n\t<head>\n\t\t"
 + "<title>Please wait...</title>\n\t\t"
 + "<meta http-equiv=\"Refresh\" content=\"5\">"
 + "\n\t</head>\n\t<body>");
 stream.print(String.valueOf(pdf.getPercentage()));
 stream.print("% of the document is done.
\n"
 + "Please Wait while this page refreshes automatically "
 + "(every 5 seconds)\n\t</body>\n</html>");
}

private void isFinished(ServletOutputStream stream)
 throws IOException {
 stream.print("<html>\n\t<head>\n\t\t<title>Finished!</title>"
 + "\n\t</head>\n\t<body>");
 stream.print("The document is finished:<form method=\"POST\">"
 + "<input type=\"Submit\" value=\"Get PDF\">"
 + "</form>\n\t</body>\n</html>");
}

private void isError(ServletOutputStream stream)
 throws IOException {
 stream.print("<html>\n\t<head>\n\t\t<title>Error</title>"
 + "\n\t</head>\n\t<body>");
 stream.print("An error occured.\n\t</body>\n</html>");
}

Get user’s session

Retrieve MyPdf object

Create one, if none

Get it, if there is one

Content type HTML!

Choose message to return

Create
server-busy
message

Create
finished
message

Create error
message
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Writing PDF to the ServletOutputStream: pitfalls 549
This is what happens: The first time you hit the server, a new MyPdf is added to
your personal user session and a Thread generating the PDF is started. As long as
the PDF isn’t generated completely (that is, as long as percentage < 100), a Please
Wait message is sent to the browser showing the percentage done. Once the PDF
is finished, the end user gets a form with a button to fetch the PDF from the
doPost() method:

/* chapter17/ProgressServlet.java */
public void doPost (
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 HttpSession session = request.getSession(false);
 try {
 MyPdf pdf = (MyPdf) session.getAttribute("myPdf");
 session.removeAttribute("myPdf");
 ByteArrayOutputStream baos = pdf.getPdf();
 response.setHeader("Expires", "0");
 response.setHeader("Cache-Control",
 "must-revalidate, post-check=0, pre-check=0");
 response.setHeader("Pragma", "public");
 response.setContentType("application/pdf");
 response.setContentLength(baos.size());
 ServletOutputStream out = response.getOutputStream();
 baos.writeTo(out);
 out.flush();
 }
 catch(Exception e) {
 isError(response.getOutputStream());
 }
}

This is a simplified example of a solution I’ve been using for more than seven
years. It’s not only a technical solution, it also works on a psychological level. Peo-
ple tend to be impatient. They don’t like to wait for that Internet page to come,
not knowing if the connection got lost, if they should hit the reload button, if the
server went down… Give them feedback, and time seems to go a lot faster!

 With all these troubleshooting suggestions in mind, you should be able to
adapt the standalone examples from this book and rewrite them as servlets in a
web application. This isn’t limited to the PDF-creation examples.

 In the next section, you’ll put the theory into practice and make some Foobar
web applications.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

550 CHAPTER 17
iText in web applications
17.2 Putting the theory into practice

In your first Foobar web application, you’ll reuse the course catalog and write a
servlet that retrieves its outlines. You’ll use the bookmarks to create an HTML
form so that students can select a set of courses and create a personalized course
catalog containing only the pages that are of interest to them.

17.2.1 A personalized course catalog

Suppose you have a large catalog. In order to save bandwidth, you don’t want to
serve the complete catalog to every individual customer: You want to provide a
means so that the customer can select parts of the catalog.

 If you apply this example to the course catalog you created in section 14.4, you
can make an HTML form based on the bookmarks added to the file (see also sec-
tion 13.6). A simple HTML file with such a form is shown in figure 17.7.

Figure 17.7 A list of courses extracted from the bookmarks of the course catalog
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Putting the theory into practice 551
This HTML page is generated in the doGet() method of a servlet:

/* chapter17/FoobarCourses.java */
PdfReader reader = new PdfReader(resource);
List list = SimpleBookmark.getBookmark(reader);
Map bookmark;
stream.print("<html>\n\t<head>\n\t\t<title>Print your

➥ own Course Catalog</title>\n\t</head>\n\t<body>");
stream.print(msg);
stream.print("<form method=\"POST\"><table>");
int p = 0;
for (Iterator i = list.iterator(); i.hasNext();) {
 bookmark = (Map) i.next();
 stream.print("<tr><td>");
 stream.print((String)bookmark.get("Title"));
 stream.print(
 "</td><td><input type=\"Checkbox\" name=\"page\" value=\""
 + (++p));
 stream.print("\"></td>");
}
stream.print(
 "</table><input type=\"Submit\" value=\"Get PDF\"></form>
 ➥ \n\t</body>\n</html>");

The code is straightforward and assumes that every bookmark entry corresponds
with one page. When you click the button, the servlet’s POST action is triggered.
Three courses are selected in figure 17.7. The result is shown in figure 17.8: a
PDF document with only three pages—the pages with the description of the
selected courses.

 The servlet’s doPost() method contains code from chapter 2:

/* chapter13/FoobarCourses.java */
String[] pages = request.getParameterValues("page");
StringBuffer selection = new StringBuffer();
if (pages.length == 0) {
 response.setContentType("text/html");
 makeHtml(response.getOutputStream(),
 "You must at least choose one!");
 return;
}
selection.append(pages[0]);
for (int i = 1; i < pages.length; i++) {
 selection.append(",");
 selection.append(pages[i]);
}
PdfReader reader = new PdfReader(resource);
reader.selectPages(selection.toString());
int p = reader.getNumberOfPages();
Document document = new Document();

Get parameters
entered by student

Select at least
one course

Compose select
string

Repeat code
from chapter 2
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

552 CHAPTER 17
iText in web applications
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PdfCopy copy = new PdfCopy(document, baos);
document.open();
for (int i = 0; i < p;) {
 i++;
 copy.addPage(copy.getImportedPage(reader, i));
}
copy.setViewerPreferences(PdfWriter.PageModeUseThumbs);
document.close();
response.setHeader("Expires", "0");
response.setHeader(
 "Cache-Control", "must-revalidate, post-check=0, pre-check=0");
response.setHeader("Pragma", "public");
response.setContentType("application/pdf");
response.setContentLength(baos.size());
ServletOutputStream out = response.getOutputStream();
baos.writeTo(out);
out.flush();

Figure 17.8 A PDF file with a selection of pages

Repeat code
from chapter 2

Send
PDF to
browser
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Putting the theory into practice 553
A useful exercise would be to adapt the example so that it uses PdfCopy instead of
PdfStamper. Or you could take any other standalone example from this book and
integrate it into a servlet.

 Now that students can create their own personalized course catalog, you want
to give them the means to subscribe. For the following example, I was inspired by
the European Credit Transfer System (ECTS). This is a system that allows students
who are enrolled in one university to take courses from another educational insti-
tution, provided there’s a learning agreement. In the next section, you’ll create a
learning agreement form in a standalone example. You’ll put this form online
and write a JSP file that accepts an FDF file and retrieves the fields that were filled
in by the student.

17.2.2 Creating a learning agreement form

Note that the form you’ll create in the next example isn’t the official ECTS docu-
ment. I removed some of the fields that have to be filled in by the institutions, and
I added an extra field that lets you add a letter of recommendation. See figure 17.9.

Figure 17.9 An example of a learning agreement form
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

554 CHAPTER 17
iText in web applications
In chapter 15, I told you that creating such a form is typically done in the full
Acrobat application, but I used iText to create it because I want to illustrate inter-
esting functionality that wasn’t discussed in the chapters on forms:

■ Using a special event class to add fields
■ Using JavaScript to fill in fields automatically
■ Using a text field with the option FILE_SELECTION

Once we’ve dealt with these extra features, you’ll see what happens if you submit
the filled-in form to the server.

Using FieldPositioningEvents
Figure 17.9 includes a line saying

 ACADEMIC YEAR 2006-2007 – FIELD OF STUDY: ICT

There are two text fields in this line:

■ academic_year—Contains 2006-2007
■ field_of_study—Contains the letters ICT

These fields are part of a paragraph, and a special generic tag event was used to
add them at the correct position. The following code snippet attaches a generic
tag with name academic_year to a Chunk:

/* chapter17/FoobarLearningAgreement.java */
PdfWriter writer =
 PdfWriter.getInstance(document,
 new FileOutputStream("learning_agreement.pdf"));
FieldPositioningEvents fpe = new FieldPositioningEvents();
writer.setPageEvent(fpe);
...
Chunk academic_year = new Chunk(" ");
academic_year.setGenericTag("academic_year");
Paragraph p = new Paragraph(30, "ACADEMIC YEAR ", font);
p.add(academic_year);

When iText renders the Chunk with the generic tag, the FieldPositioningEvents
object adds a text field at the corresponding position.

 You can also use this functionality for other types of fields:

/* chapter17/FoobarLearningAgreement.java */
PdfFormField pushbutton = PdfFormField.createPushButton(writer);
pushbutton.setFieldName("PushMe");
pushbutton.setWidget(
 new Rectangle(0, 0), PdfAnnotation.HIGHLIGHT_PUSH);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Putting the theory into practice 555
pushbutton.setAction(PdfAction.createSubmitForm(
 "learning_agreement.jsp", null, 0));
fpe.addField("pushMe", pushbutton);;
...
Chunk submit = new Chunk(" Click to submit ");
submit.setGenericTag("pushMe");
p = new Paragraph(submit);
p.setAlignment(Element.ALIGN_CENTER);
document.add(p);

But in this case you first have to register the field to the event. If you scroll to the
bottom of the page, you see a pushbutton field with the text Click to submit.

 Note that if you hadn’t registered a field named pushMe, a text field would
be added. Now the pushbutton with the name PushMe and the URL learning_
agreement.jsp is added because the name of the generic tag corresponds with
the name of a field that was registered to the field-positioning object.

 This field-positioning class also implements the PdfPCellEvent interface. This
is even more interesting because you can use it to create a field that fits exactly
inside a table cell. This means you don’t have to write your own cellLayout()
method. The following code snippet adds a text field named student_name; the
widget rectangle corresponds exactly with the border of the cell:

/* chapter17/FoobarLearningAgreement.java */
cell.setCellEvent(
 new FieldPositioningEvents(writer, "student_name"));

The code to add the table where the student can fill in the courses that are part of
the learning agreement adds a bit more complexity:

/* chapter17/FoobarLearningAgreement.java */
table = new PdfPTable(3);
table.setTableEvent(new FoobarLearningAgreement());
table.getDefaultCell().setBorder(PdfPCell.RIGHT);
table.addCell("Course code");
table.addCell("Course unit title");
table.getDefaultCell().setBorder(PdfPCell.NO_BORDER);
table.addCell("Number of ECTS credits");
PdfFormField[] lines = new PdfFormField[16];
FieldPositioningEvents kid;
TextField combo;
PdfFormField comboField;
for (i = 0; i < 16; i++) {
 lines[i] = PdfFormField.createEmpty(writer);
 lines[i].setFieldName("course_" + i);
 cell = new PdfPCell();
 cell.setFixedHeight(22);
 cell.setBorder(PdfPCell.RIGHT);

Create 16
parent fields
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

556 CHAPTER 17
iText in web applications
 combo = new TextField(writer, new Rectangle(0, 0), "code");
 combo.setChoices(new String[]{});
 comboField = combo.getComboField();
 comboField.setAdditionalActions(PdfName.K,
 PdfAction.javaScript("updateCourse(event);", writer));
 kid = new FieldPositioningEvents(lines[i], comboField);
 kid.setPadding(0.5f);
 cell.setCellEvent(kid);
 table.addCell(cell);
 cell = new PdfPCell();
 cell.setFixedHeight(22);
 cell.setBorder(PdfPCell.RIGHT);
 kid = new FieldPositioningEvents(writer, lines[i], "name");
 kid.setPadding(0.5f);
 cell.setCellEvent(kid);
 table.addCell(cell);
 cell = new PdfPCell();
 cell.setFixedHeight(22);
 cell.setBorder(PdfPCell.NO_BORDER);
 kid = new FieldPositioningEvents(writer, lines[i], "credits");
 kid.setPadding(0.5f);
 cell.setCellEvent(kid);
 table.addCell(cell);
}
document.add(table);
for (i = 0; i < 16; i++) {
 writer.addAnnotation(lines[i]);
}

The previous code snippet creates 16 parent fields: course_0 to course_15. Three
children are added to each of these fields in the for loop:

■ “code” is a combo box without any options. If an option is changed, a Java-
Script method is called. The field is added with a field-positioning event
that is created with the parent field and a child field. When the event is
triggered, the child is added to the parent.

■ “name” is added to the parent in an event. The event creates the text field.
■ “credits” is added to the parent in an event. The event creates the

text field.

The fact that you add a combo box without options is odd. If you look at fig-
ure 17.9, you see that at least the combo boxes course_0.code to course_3.code
contain different course numbers. These values aren’t added when you create
the combo box, but are added by JavaScript code that is executed when the
document is opened.

Create
combo box
as child

Create field-
positioning
event

Padding for
field positionAdd event

to cell

Add child
named
name

Add child
named
credits
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Putting the theory into practice 557
Using JavaScript to manipulate fields
In this example, I’ve added a big chunk of JavaScript code. The first part of this
code sample reads the data for the course fields from the CSV file courses.csv. Arrays
are created with all the course codes, names, and credits. The items object contains
a comma-separated list with all the possible codes, starting with an empty string.

 You loop over the 16 fields in the form. You set the items for all the combo
boxes, change some properties of the name fields, and set default values:

/* chapter17/FoobarLearningAgreement.java */
StringBuffer js = new StringBuffer(
 "var code = new Array();\nvar name = new Array();\n"
 + "var credits = new Array();\n");
StringBuffer items = new StringBuffer("''");
BufferedReader reader =
 new BufferedReader(new FileReader("../resources/courses.csv"));
String line;
float pos;
int i = 0;
while ((line = reader.readLine()) != null) {
 StringTokenizer js_courses = new StringTokenizer(line, ";");
 line = js_courses.nextToken();
 items.append(", '").append(line).append("'");
 js.append("code[").append(i).append("] = '");
 js.append(line).append("';\n");
 js.append("name[").append(i).append("] = '");
 js.append(js_courses.nextToken()).append("';\n");
 js.append("credits[").append(i).append("] = '");
 js.append(js_courses.nextToken()).append("';\n");
 i++;
}
reader.close();
js.append("for (i = 0; i < 16; i++) {\n");
js.append(" f = this.getField('course_' + i + '.code');\n");
js.append(" f.setItems([").append(items.toString());
js.append("]);\n");
js.append(" f = this.getField('course_' + i + '.name');\n");
js.append(" f.textSize = 0;\n");
js.append(" f.multiline = true;\n");
js.append("};\n");
js.append("this.getField('academic_year').value = '2006-2007';");
js.append("this.getField('field_of_study').value = 'ICT';");
js.append("this.getField('student_name').setFocus();");
js.append("function updateCourse(event) {\n");
js.append(" target = event.target.name;\n");
js.append(" parent = target.substring(0, target.length - 5);\n");
js.append(" for (c = 0; c < code.length; c++) {\n");
js.append(" if (event.value == code[c]) {\n");
js.append(
 " this.getField(parent + '.name').value = name[c];");
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

558 CHAPTER 17
iText in web applications
js.append(
 " this.getField(parent + '.credits').value = credits[c];");
js.append(" }\n");
js.append(" }\n");
js.append(" this.getField(parent + '.name').setFocus();");
js.append("}\n");
writer.addJavaScript(js.toString());

The previous code snippet includes the JavaScript function updateCourse(). It’s
triggered when the value of the combo box is changed. It automatically fills in the
name of the course and the number of credits.

 In other words, when students select a course code, they don’t have to fill in
the course title and number of credits; this is done automatically in the JavaScript
function updateCourse(). As an exercise, you could add an extra row to the table
with a field that calculates the total number of credits.

 One more special feature shown in figure 17.9 needs further explanation.
Next to the words Letter of Introduction is the path to a local file on my machine.
Isn’t this odd? What happens if you send this form to a server? Isn’t the informa-
tion about a file useless when you send it to a remote computer? It would be if the
field containing the path wasn’t a text field with the file-selection flag on.

Using file selection fields
If you enroll as an exchange student in a foreign university, you need a letter writ-
ten by your promoter at your own university. By adding a file-selection field to the
learning agreement, students can attach a digital copy of this letter to their learn-
ing agreement.

 If you set the option FILE_SELECTION for a text field, the text that is entered
should be the pathname of a file whose contents are to be submitted as the value
of the field. Because it’s not user-friendly to have the end user type in this path
manually, I added a bit of extra JavaScript as an additional action triggered by a
mouse-up event:

/* chapter17/FoobarLearningAgreement.java */
TextField letter =
 new TextField(writer, new Rectangle(0, 0), "letter");
letter.setOptions(TextField.FILE_SELECTION);
PdfFormField introduction = letter.getTextField();
introduction.setAdditionalActions(PdfName.U,
 PdfAction.javaScript(
 "this.getField('letter').browseForFileToSubmit();"
 + "this.getField('receiving_institution').setFocus();",
 writer));
cell.setCellEvent(new FieldPositioningEvents(writer, introduction));
table.addCell(cell);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Putting the theory into practice 559
Now, when the student clicks the text field, a file-selection dialog box opens. The
Acrobat JavaScript Scripting Guide says that “the path entered through the dia-
log is automatically assigned as the value of the text field.”

 It’s also important to read what the PDF Reference has to say about file selec-
tion fields:

■ For fields submitted in HTML Form Format, the submission uses the MIME
content type multipart/form-data.

■ For Forms Format Data Format (FDF) submission, the value of the V entry in
the FDF field dictionary is a file specification identifying the selected file.

■ XML format is not supported for file-select controls; therefore, no value is
submitted in this case.

This is a chapter on using iText in web applications, so you’ll submit the form as
an FDF file and learn how to retrieve the string values of the fields in a JSP file.

17.2.3 Reading an FDF file in a JSP page

When a student submits the learning agreement form, you could save the com-
plete FDF file on the server side for later use. Another option would be to save the
data in a database. But you mustn’t forget that the University of Foobar is a fic-
tional institution, so you’re just going to read the FDF file and display the data
that was entered, as in figure 17.10.

Figure 17.10 The JSP file showing part of the data entered in the PDF form
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

560 CHAPTER 17
iText in web applications
Let’s look at the JSP code that produces this HTML file:

<%@ page import="java.io.*,java.util.HashMap,com.lowagie.text.pdf.*" %>
<% FdfReader reader = new FdfReader(request.getInputStream()); %>
<html>
 <head><title>Learning Agreement</title></head>
 <body>
 <h2>Learning Agreement</h2>
 <table>
 <tr>
 <td>Academic year</td>
 <td><%= reader.getFieldValue("academic_year") %></td>
 </tr>
 <tr>
 <td>Student name</td>
 <td><%= reader.getFieldValue("student_name") %></td>
 </tr>
 <tr>
 <td>Sending Institution</td>
 <td><%= reader.getFieldValue("sending_institution") %>
 (<%= reader.getFieldValue("sending_country") %>)</td>
 </tr>
 <tr>
 <td>Receiving Institution</td>
 <td><%= reader.getFieldValue("receiving_institution") %>
 (<%= reader.getFieldValue("receiving_country") %>)</td>
 </tr>
 <tr>
 <td valign="Top">Courses:</td>
 <td>
 <table>
<%
String parent;
for (int i = 0; i < 16; i++) {
 parent = "course_" + i + ".";
 if (reader.getFieldValue(parent + "code") != null) {
%>
 <tr>
 <td><%= reader.getFieldValue(parent + "code") %></td>
 <td><%= reader.getFieldValue(parent + "name") %></td>
 <td><%= reader.getFieldValue(parent + "credits") %></td>
 </tr>
<%
 }
}
%>
 </table>
 </td>
 </tr>
 </table>
 </body>
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Summary 561
</html>
<%
 reader.close();
%>

Only one thing is missing in this code: It doesn’t extract the letter of introduction.
If you use reader.getFieldValue("letter"), a null value is returned. This doesn’t
mean the value of the field is missing in the FDF file. If you store the FDF file and
inspect it, you see that a field with /T equal to “letter” actually has a value /V. But
the value isn’t a PDF string or a PDF name object: It’s either a PDF dictionary with
the file specification or an indirect reference to such a dictionary.

 If you want to extract the file that was submitted using the learning agreement
form, you need to look under the hood. By coincidence, this is the title of the next
chapter, so let’s deal with this problem then.

17.3 Summary

In previous chapters, you learned almost all about iText and its capacity to create
and/or manipulate PDF files. Although this was interesting, one serious obstacle
remained: What if you want to use your iText know-how in a web application?

 It shouldn’t be difficult to copy and paste the code of the book examples into
a servlet and to change new FileOutputStream("myPdf.pdf") into response.get-
OutputStream(), but experience has taught me otherwise. This chapter has
included lots of tips and tricks to avoid most of the common pitfalls.

 In the second part of this chapter, you wrote more Foobar examples: one
that creates a personalized course catalog on the fly, and another that creates a
form that can be used to submit data in the Forms Data Format. With these
examples, you’ve completed almost all of Laura’s assignments. There is one
problem left: How do you extract a file from an FDF file? To answer this ques-
tion, you need to know more about PDF objects and about the way iText imple-
ments the PDF specification.

 In other words, you have to look under the hood.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Under the hood
This chapter covers
■ Under the hood of PDF: the syntax
■ Under the hood of iText: design decisions
■ How to access and change PDF syntax using iText
562

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Inside iText and PDF 563
Writing a book on iText is like writing a never-ending story. Every new iText
release brings new functionality. Every time Adobe publishes a new PDF specifica-
tion, there’s room for new features. By the time this book is published, I’ll proba-
bly have to write more chapters describing new classes and new methods. That’s a
good sign; it proves the library is very much alive.

 This book has given you a comprehensive overview of the functionality that is
present in iText 1.4. The Foobar examples demonstrate pseudo real-life applica-
tions, illustrating the classes and methods dealt with in the different chapters.
The most important functionality has been discussed in depth, but I’ve also
tried to pay attention to some of the more specialized features. When it wasn’t
possible to go into detail, I’ve referred you to other sources (the Javadocs, the
PDF Reference, online information, and so forth).

 In this final chapter, I’ll give you a glimpse of what’s under the hood of iText.

18.1 Inside iText and PDF

On different occasions, I’ve talked about the strengths of iText:

■ In chapter 2, I talked about the architecture of the library—how it com-
bines ease of use with speed.

■ In chapter 6, I discussed the most important building blocks: the table
classes.

■ In chapter 12, I explained how you can use iText in your Swing applica-
tions using PdfGraphics2D.

■ In chapter 16, you learned how to use forms as a template.
■ In chapter 17, you saw that iText is an ideal library if you want to create

PDF documents for the Web.

 In the future, you’ll probably see new functionality appear. Support for XML Forms
Architecture (XFA) has just been added; maybe better PDF/A support is next. This
is just one of the many opportunities that lie ahead for the developers of iText.

18.1.1 Factors of success

Different factors make iText a successful library. First, consider the many work-
ing hours Paulo Soares has spent writing new functionality for iText. I’m the ini-
tial developer of iText, but Paulo is the developer who turned iText the library
into iText the product, a piece of highly commercial Free/Open Source Soft-
ware. Note that I don’t see any contradiction in the previous sentence: You can
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

564 CHAPTER 18
Under the hood
use iText for free, and that makes it a commercially interesting product for you.
iText is integrated into many other commercial products and applications
(Eclipse/BIRT, JasperReports, ICEbrowser, and so on).

 Although Paulo has become iText’s main developer, I took up the task of writ-
ing the documentation. I think this is a second factor for success that is often
underestimated by developers: A good product deserves good documentation.
That’s what iText users keep telling me, and I won’t contradict them.

 But there’s a third factor. It’s rather technical and low-level, but this book
wouldn’t be complete without it. One of the basic strengths of iText is that it’s
highly extensible. Once you know how iText works internally, it’s relatively easy to
implement new functionality that is introduced in the PDF Reference. In this
chapter, I’ll give you a concise overview of what makes iText work internally, tech-
nically, at the lowest level. I’ll talk about the file structure of a PDF document and
about the PDF objects that compose a PDF document.

18.1.2 The file structure of a PDF document

In chapter 2, you wrote a simple PDF file saying “Hello World” to the System.-
out. We had a short discussion about the content stream of a page, based on list-
ing 2.2. This was a small fragment of a PDF file. If you take a closer look at the
complete file, you can distinguish four parts:

■ The header—Discussed in section 2.1.3. It specifies the PDF version and
contains a comment section that ensures that the file’s content is treated as
binary content.

■ The body—Contains the PDF objects that make up the document: pages,
outlines, annotations, and so on. We’ll discuss the basic types of PDF objects
in the next section.

■ The cross-reference table—Contains information that allows random access to
the indirect objects in the body.

■ The trailer—Gives the location of the cross-reference table and of certain
special objects in the body of the file.

A PDF consumer such as Adobe Reader starts reading the file at the end. List-
ing 2.2 was only a small snippet of the uncompressed “Hello World” example.
Listing 18.1 shows the complete file. Note that I changed the indentation to
make the file more readable. Don’t do this with a real PDF file; you’ll soon learn
that doing so corrupts the file.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Inside iText and PDF 565
%PDF-1.1
%âãÏÓ
2 0 obj <</Length 55>>stream
q
BT
36 806 Td
0 -18 Td
/F1 12 Tf
(Hello World)Tj
ET
Q
endstream
endobj
4 0 obj
<< /Type/Page /Contents 2 0 R /Parent 3 0 R /Resources <<
 /ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
 /Font<</F1 1 0 R>>
 >> /MediaBox[0 0 595 842]
>>
endobj
1 0 obj
<< /Type/Font /BaseFont/Helvetica /Subtype/Type1
 /Encoding/WinAnsiEncoding
>>
endobj
3 0 obj
<< /Count 1 /Type/Pages /Kids[4 0 R] >>
endobj
5 0 obj
<< /Type/Catalog /Pages 3 0 R >>
endobj
6 0 obj
<<
 /CreationDate(D:20060210143110+01'00')
 /Producer(iText 1.4 \(by lowagie.com\))
 /ModDate(D:20060210143110+01'00')
>>
endobj
xref
0 7
0000000000 65535 f
0000000273 00000 n
0000000015 00000 n
0000000360 00000 n
0000000117 00000 n
0000000410 00000 n
0000000454 00000 n

Listing 18.1 A complete PDF file

File header

File body

Cross-reference
table
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

566 CHAPTER 18
Under the hood
trailer
<<
 /ID
 [<64003e8594bfd3db6dd3d28867eac68b>
 <d24e67314073f6c8ef1700036dd6f22e>]
 /Root 5 0 R
 /Size 7
 /Info 6 0 R
>>
startxref
635
%%EOF

Now, let’s pretend you’re a PDF consumer: Let’s start reading this file at the end.

The file trailer
The last line of each PDF file (including the one shown in listing 18.1) should con-
tain the end-of-file marker %EOF. The two preceding lines contain the keyword
startxref and the byte offset of the cross-reference table—that is, the position of
the word xref counted from the start of the file.

 The trailer begins with the keyword trailer, followed by the trailer dictio-
nary. In the “Hello World” example, the first entry of this dictionary is a file
identifier. The /Size entry shows the total number of entries in the file’s cross-
reference table. There are two references to special dictionaries in the body:
The /Root entry refers to the catalog dictionary and the /Info entry to the infor-
mation dictionary. We discussed this dictionary in section 2.1.3; it contains PDF-
specific metadata.

 Other possible entries in the trailer dictionary are the /Encrypt key, which is
required if the document is encrypted, and the /Prev key, which is present only if
the file has more than one cross-reference section. If you want to see an example
of a PDF file with two cross-reference tables, run the following code:

/* chapter18/HelloWorld.java */
PdfReader reader = new PdfReader("HelloWorld.pdf");
PdfStamper stamper = new PdfStamper(reader,
 new FileOutputStream("updated.pdf"), '\0', true);
PdfContentByte cb = stamper.getOverContent(1);
cb.beginText();
cb.setFontAndSize(BaseFont.createFont(
 BaseFont.HELVETICA, BaseFont.WINANSI, BaseFont.EMBEDDED), 12);
cb.showTextAligned(Element.ALIGN_LEFT, "Hello People", 36, 770, 0);
cb.endText();
stamper.close();

File trailer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Inside iText and PDF 567
At first sight, this looks like a typical PdfStamper example from chapter 2. The
only difference is that you use extra parameters to create the stamper object.
The binary null ('\0') ensures that the PDF version of the original PDF file
won’t be changed. The boolean value indicates whether the original file should
be appended (true) or updated (false). This example tells iText to preserve the
original file; the extra content is added at the end of the file after the original
end-of-file marker.

 When you open the file created with this code snippet in a text editor, you see
that the first part of the file is an exact copy of listing 18.1. Instead of replacing
the original objects, an extra part is added (see listing 18.2).

...
7 0 obj
<</Type/Font/BaseFont/Helvetica/Subtype/Type1
 /Encoding/WinAnsiEncoding>>
endobj
8 0 obj <</Length 2>>stream
q
endstream
endobj
9 0 obj <</Length 59>>stream
Q
q
BT
/Xi0 12 Tf
1 0 0 1 36 770 Tm
(Hello People)Tj
ET
Q
endstream
endobj
4 0 obj<< Type/Page /Contents[8 0 R 2 0 R 9 0 R]
 /Parent 3 0 R /Resources <<
 /ProcSet [/PDF/Text/ImageB/ImageC/ImageI]
 /Font<</F1 1 0 R/Xi0 7 0 R>>
 >> /MediaBox[0 0 595 842]
>>
endobj
6 0 obj<<
 /CreationDate(D:20060210153542+01'00')
 /Producer(iText 1.4 \(by lowagie.com\)
 /ModDate(D:20060210153542+01'00')>>
endobj
xref
0 1

Listing 18.2 The part that is appended to listing 18.1 by PdfStamper

Paste listing 18.1 here

Appended body

Appended cross-
reference table
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

568 CHAPTER 18
Under the hood
0000000000 65535 f
4 1
0000001162 00000 n
6 4
0000001341 00000 n
0000000921 00000 n
0000001008 00000 n
0000001056 00000 n
trailer
<</Prev 635/Root 5 0 R/Size 10/Info 6 0 R>>
startxref
1522
%%EOF

The structure of the original file is kept intact, but an extra body part, cross-
reference table, and trailer are appended. The value of the /Prev entry points
at the original startxref.

NOTE There’s usually no reason why you’d need to be able to restore the orig-
inal file. That’s why PdfStamper sets the append mode to false by
default. You’re obliged to use the append mode only when your original
document contains a digital signature (see section 16.3.4). If you use
PdfStamper to update the original revision of the document, the signa-
ture is made invalid (see figure 16.11).

Looking at the file body in both listings, you see that the objects aren’t ordered by
number. In listing 18.1, the object order is 2, 4, 1, 3, 5, 6. In listing 18.2, the order
is 7, 8, 9, 4, 6. To a PDF consumer, the object order doesn’t make any difference.
What matters is the cross-reference table.

The cross-reference table
The cross-reference table stores the information to locate every indirect object in
the body. For reasons of performance, a PDF consumer doesn’t read the entire
file. Imagine a document with 10,000+ pages. If you ask to see the last page, the
consumer doesn’t have to know what’s inside the 9,999 previous pages. It can use
the cross-reference table to find the requested page in no time.

 The cross-reference table contains two types of lines:

■ Lines with two numbers—For instance, 0 7 means the next line is about object
0 in a series of 7 consecutive objects. In listing 18.2, 6 4 means the next 4
lines represent objects 6, 7, 8, and 9.

Appended cross-
reference table

Appended trailer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Inside iText and PDF 569
■ Lines with exactly 20 bytes—A 10-digit number represents the byte offset; a
5-digit number is used for the generation number of the object. If these
numbers are followed by the keyword n, the object is in use. Otherwise, the
keyword f is present, meaning the object is free. These three parts are sep-
arated by a space character and end with a 2-byte end-of-line sequence.

The first entry in the table is always free and has a generation number of 65,535.
Except for this 0 object, all objects in the cross-reference table initially have gen-
eration number 0. You won’t see objects with another generation number when
using iText.

 The objects referred to in the cross-reference table are called indirect. They can
be referred to by other objects using their label: the object number and its gener-
ation number. If you look at the trailer dictionary, you see that the catalog dictio-
nary is referred to with the indirect reference 5 0 R. An indirect reference doesn’t
always point to a dictionary; there are other types of objects.

18.1.3 Basic PDF objects
All PDF objects in iText are derived from the abstract class PdfObject. The Pdf-
IndirectObject and PdfIndirectReference classes are special; they can only be
created internally by iText.

 All the other objects can be boiled down to one of the eight types listed in
Table 18.1; see also appendix A.9. This table shows the mapping between the
eight basic PDF objects (see the PDF Reference sections 3.2.1–3.2.8) and the cor-
responding subclass of PdfObject in iText.

Table 18.1 Overview of the basic PDF objects

PDF object iText object Description

Boolean PdfBoolean This type is similar to the boolean type in programming languages
and can be true or false.

Numeric
object

PdfNumber There are two types of numeric objects: integer and real. You’ve used
them frequently to define coordinates, font sizes, and so on.

String PdfString String objects can be written two ways:
(1) As a sequence of literal characters enclosed in parentheses ().
(2) As hexadecimal data enclosed in angle brackets < >.

Name PdfName A name object is an atomic symbol uniquely defined by a sequence
of characters. You’ve been using names as keys for dictionaries, to
define a destination on a PDF page, and so on.

continued on next page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

570 CHAPTER 18
Under the hood
You used these objects frequently in the previous chapters:

■ PdfAction, PdfOutline, and PdfLayer are only a few of the many subclasses
of the PdfDictionary object.

■ PdfDate extends PdfString because a date is a special type of string.
■ PdfRectangle is a special type of PdfArray because it’s an array of four val-

ues: [llx,lly,urx,ury].

When new PDF objects are introduced in the PDF Reference, a new subclass of one
of these basic objects can be created in iText. In section 15.1.2, you saw that a Pdf-
Annotation is a special type of dictionary. You learned that if you want to use a
specific annotation type that is in the PDF Reference but not yet supported in
iText, you can create your own annotation using the methods inherited from the
PdfDictionary object. This makes iText a highly extensible library.

 The basic types of PDF objects are useful when you create a new PDF file,
but in the next sections you’ll see why they’re also important when reading an
existing PDF.

18.1.4 Climbing up the object tree

By reading the trailer and retrieving the position of every object in the body from
the cross-reference table, you can climb up the object tree and see what’s inside
the PDF.

Array PdfArray An array is a one-dimensional collection of objects, arranged
sequentially: for instance, the coordinates of a rectangle:
[llx lly urx ury].

Dictionary PdfDic-
tionary

A dictionary is an associative table containing pairs of
objects, known as dictionary entries. We’ll discuss them in more
detail later.

Stream PdfStream Like a string object, a stream is a sequence of bytes. The main differ-
ence is that a PDF consumer reads a string entirely, whereas a
stream can be read incrementally. Strings are
generally used for small parts of data and streams for large amounts
of data.

Null object PdfNull This type is similar to the null object in programming languages. Set-
ting the value of a dictionary entry to null is equivalent to omitting the
entry.

Table 18.1 Overview of the basic PDF objects (continued)

PDF object iText object Description
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Inside iText and PDF 571
 In chapter 2, you used the method PdfReader.getInfo() to get a HashMap with
keys and values. This was a convenience method. In the next example, you’ll
learn how to get the information dictionary as a PdfDictionary object. You use
the PdfLister class to list the contents of the different objects. This class displays
PDF objects in a more or less human-readable way:

/* chapter18/ClimbTheTree.java */
PrintStream list = new PrintStream(new FileOutputStream("objects.txt"));
PdfLister lister = new PdfLister(new PrintStream(list));
PdfDictionary trailer = reader.getTrailer();
lister.listDict(trailer);
PdfIndirectReference info =
 (PdfIndirectReference)trailer.get(PdfName.INFO);
lister.listAnyObject(info);
lister.listAnyObject(reader.getPdfObject(info.getNumber()));

This sample retrieves the indirect reference of the information dictionary with the
method get(PdfName.INFO). An object of type PRIndirectReference is returned.
This is a subclass of PdfIndirectReference that is used by PdfReader.

 The PdfLister prints its value as 28 0 R. You use the reader to get the object
with number 28:

<<
/CreationDate (D:20060215100658+01'00')
/Producer (iText 1.4 (by lowagie.com))
/ModDate (D:20060215100658+01'00')
>>

This is an alternative (more technical) way to get the metadata from a PDF file.
Observe that PdfLister unescapes all PDF strings to make them human-readable.

 Note that iText uses the inner classes PdfWriter.PdfTrailer, PdfDocument.-
PdfInfo, and PdfDocument.PdfCatalog in the creation process of a PDF file. When
iText is reading a PDF, these objects are returned as plain PdfDictionary objects.

The catalog dictionary
You can retrieve the catalog dictionary in a similar way using the method
get(PdfName.ROOT), or you can use the getCatalog() method:

/* chapter18/ClimbTheTree.java */
PdfDictionary root = reader.getCatalog();
lister.listDict(root);

The catalog dictionary can contain references to the viewer preferences, page
labels, the AcroForm, XMP metadata, and so on. You can retrieve all these extra
entries with iText, but none of them are present in this example. When you look

Get and list trailer

Get indirect reference
to information

Show information dictionary
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

572 CHAPTER 18
Under the hood
at the output of the lister, you see only three entries: the dictionary’s type, a ref-
erence to the outline tree, and a reference to the pages tree:

<<
/Type /Catalog
/Outlines 9 0 R
/Pages 4 0 R
>>

In the following code snippets, we’ll examine the outline and the pages dictio-
nary. Consult the PDF Reference if you want to know more about the syntax used
for other entries.

Retrieving the bookmarks
The outline tree is a dictionary that keeps a count of the bookmarks. It also refers to
the first and last objects in the bookmark list. You can retrieve the outline dictionary
through /Outlines in the catalog dictionary. Its value is an indirect reference (9 0 R):

/* chapter18/ClimbTheTree.java */
PdfDictionary outlines = (PdfDictionary)reader.getPdfObject(
 ((PdfIndirectReference)root.get(PdfName.OUTLINES)).getNumber());
lister.listDict(outlines);
PdfObject first = reader.getPdfObject(
 ((PdfIndirectReference)outlines.get(PdfName.FIRST)).getNumber());
lister.listAnyObject(first);

The outline tree looks like this:

<<
/Count 17
/Type /Outlines
/Last 21 0 R
/First 10 0 R
>>

This example lists only the first element:

<<
/Count 4
/Parent 9 0 R
/Dest [
1 0 R
/FitH
806
]
/Last 14 0 R
/Title (1. To the Universe:)
/First 11 0 R
/Next 15 0 R
>>
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Inside iText and PDF 573
The title of this bookmark is “1. To the Universe.” The destination is the page
described in object 1 (1 0 R). Keep this number in mind! The zoom factor is set to
fit horizontally at the Y position 806.

 The parent of this outline entry is the object with number 9; that’s the number
that was referred to from the catalog dictionary. This first outline entry has four
children; the dictionary contains a reference to the first and the last children. You
can also fetch the next outline entry.

 You now have all the information needed to reconstruct the complete list of
bookmarks. In section 13.4.4, you used class SimpleBookmark to do this. It’s obvious
why this class was called “simple”: It hides the complexity of outline dictionaries by
offering HashMap objects or an XML file. It also goes over the pages dictionary to
retrieve the logical page number of the page referred to in the /Dest entry. Loop-
ing over the pages dictionary is what you’ll do manually in the next code snippet.

The pages/page dictionary
The page tree is also defined in a dictionary. You get it the same way you retrieved
the outline tree:

/* chapter18/ClimbTheTree.java */
PdfDictionary pages = (PdfDictionary)reader.getPdfObject(
 ((PdfIndirectReference)root.get(PdfName.PAGES)).getNumber());
lister.listDict(pages);
PdfArray kids = (PdfArray)pages.get(PdfName.KIDS);
PdfIndirectReference kid_ref;
PdfDictionary kid = null;
for (Iterator i = kids.getArrayList().iterator(); i.hasNext();) {
 kid_ref = (PdfIndirectReference)i.next();
 kid = (PdfDictionary)reader.getPdfObject(kid_ref.getNumber());
 lister.listDict(kid);
}

The pages tree contains the page count and the references to all the children:

<<
/Count 3
/Type /Pages
/Kids [
1 0 R
5 0 R
7 0 R
]
>>

The elements in the child array can refer to another pages dictionary; this is the
case when the pages tree has branches (see also section 14.1.3). Or they can refer
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

574 CHAPTER 18
Under the hood
to a page dictionary; this is the case in this example—each element in the child
array refers to a single page. You recognize the reference to the first page (1 0 R).
It’s the first element in the array, so now you know that the /Dest entry of your
first outline refers to the first page.

 In this example, the page dictionary for page 3 looks like this:

<<
/Type /Page
/Contents 8 0 R
/Parent 4 0 R
/Resources <<
 /ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
 /Font <</F1 2 0 R>>
>>
/MediaBox [0 0 595 842]
/Rotate 90
>>

You recognize the page size and the rotation; this is a page in landscape. The
most important entry in the resources dictionary is the reference to the font.
The contents of the page are stored in a stream object with object number 8.

 In the next section, you’ll extract and edit the text inside this stream.

18.2 Extracting and editing text

Now comes the hard part: How do you retrieve the content? A stream object is a
combination of a dictionary object followed by 0 or more bytes bracketed by the
keywords stream and endstream.

18.2.1 Reading a page’s content stream

The value of the /Contents entry can refer to different content streams, listed in a
PDF array. This is typically the case if you use PdfStamper; iText doesn’t change
the content stream but adds an extra content stream before (under) and/or after
(above) the existing content stream.

 I must stress that this is a simple example. The /Contents entry is an indirect
reference to a single stream object. Let’s fetch the content stream of page 3. The
object returned is of type PRStream. This is a special subclass of PdfStream that is
used by PdfReader.

 You can get the first part of the stream (the stream dictionary) by listing this
object as a dictionary; remember that PdfStream is derived from PdfDictionary.
The actual bytes of the stream can be retrieved with PdfReader.getStreamBytes-
Raw() or PdfReader.getStreamBytes(). If your PDF document was generated
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Extracting and editing text 575
using iText, the first method gives you the compressed content stream; the latter
gives you the uncompressed stream:

/* chapter18/ClimbTheTree.java */
PdfIndirectReference content_ref =
 (PdfIndirectReference) kid.get(PdfName.CONTENTS);
PRStream content =
 (PRStream)reader.getPdfObject(content_ref.getNumber());
lister.listDict(content);
byte[] contentstream = PdfReader.getStreamBytes(content);
list.println(new String(contentstream));
PRTokeniser tokenizer = new PRTokeniser(contentstream);
while (tokenizer.nextToken()) {
 if (tokenizer.getTokenType() == PRTokeniser.TK_STRING) {
 list.println(tokenizer.getStringValue());
 }
}

The stream dictionary of page 3 contains two entries: << /Filter /FlateDecode
/Length 460 >>.

 As you can see, the stream was compressed (filter /Flatedecode) to 460 bytes.
The actual uncompressed stream looks like this:

0 1 -1 0 595 0 cm
q
BT
36 559 Td
0 -18 Td
/F1 12 Tf
(3.)Tj
(To the Animals:)Tj
0 -18 Td
0 -18 Td
(3.1.)Tj
(to cats and dogs:)Tj
0 -18 Td
(\(English:\) hello, \(Esperanto:\) he, alo, saluton,

➥ \(Latin:\) heu, ave, \(French:\) allô, \(Italian:\) ciao,

➥ \(German:\) hallo, he, heda, holla, \(Portuguese:\) alô,)Tj
0 -18 Td
...
ET
Q

With PRTokeniser (mind the British s, instead of the American z), you can split a
PDF content stream into its most elementary parts. For this example, we’re only
interested in PDF strings. You filter them out, and the contents of the PDF file are
written to PrintStream:

Get PdfStream
object

Show stream dictionary
Retrieve/show
stream

Loop over
content stream

Show all PDF
Strings
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

576 CHAPTER 18
Under the hood
3.
To the Animals:
3.1.
to cats and dogs:
(English:) hello, (Esperanto:) he, alo, saluton, (Latin:) heu, ave,
(French:) allô, (Italian:) ciao, (German:) hallo, he, heda, holla,
(Portuguese:) alô, olá, hei, psiu, bom día, (Dutch:) hallo, dag,
(Spanish:) ola, eh, (Catalan:) au, bah, eh, ep,
(Swedish:) hej, hejsan (Danish:) hallo, dav, davs, goddag, hej,
(Norwegian:) hei; morn, (Papiamento:) halo; hallo; kí tal,
(Faeroese:) halló, hoyr, (Turkish:) alo, merhaba, (Albanian:) tungjatjeta
...

What you have here is a poor man’s text extractor. It works well for this example,
but it won’t work with most PDF files that can be found in the wild. Many aspects
should be taken into account if you want to use iText as a text-extraction library.

18.2.2 Why iText doesn’t do text extraction

In the previous example, all the text was in one contiguous block. In reality, the
different letters of the text can be drawn in any random order. Consider the two
following examples. Both result in a file that looks like figure 18.1.

The first example uses the code you know from chapter 4:

/* chapter18/HelloWorldStream.java */
PdfWriter.getInstance(document, new FileOutputStream(filename));
document.open();
document.add(new Paragraph("Hello World"));
document.add(new Paragraph("Hello People"));

This example gives you a PDF page that can easily be parsed using PRTokeniser. It
returns two lines: “Hello World” and “Hello People.” But PDF documents aren’t
always created that way. For reasons that are far beyond the scope of this book, the
order in which the strings appear in the content stream can be totally different.
Let’s look at the second example:

Figure 18.1 A simple “Hello World” document
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Extracting and editing text 577
/* chapter18/HelloWorldReverse.java */
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("HelloWorldReverse.pdf"));
document.open();
PdfContentByte cb = writer.getDirectContent();
BaseFont bf = BaseFont.createFont(
 BaseFont.HELVETICA, BaseFont.CP1252, BaseFont.NOT_EMBEDDED);
cb.beginText();
cb.setFontAndSize(bf, 12);
cb.moveText(88.66f, 367);
cb.showText("ld");
cb.moveText(-22f, 0);
cb.showText("Wor");
cb.moveText(-15.33f, 0);
cb.showText("llo");
cb.moveText(-15.33f, 0);
cb.showText("He");
cb.endText();
PdfTemplate tmp = cb.createTemplate(250, 25);
tmp.beginText();
tmp.setFontAndSize(bf, 12);
tmp.moveText(0, 7);
tmp.showText("Hello People");
tmp.endText();
cb.addTemplate(tmp, 36, 743);

Now, when you pass the content stream to PRTokeniser, four strings are returned,
in this order: “ld,” “Wor,” “llo,” and “He.” The string “Hello People” is added in
a PdfTemplate, meaning it’s in the PDF file as a separate form XObject. You have
to run the PRTokeniser on the content of this XObject too if you want the com-
plete content.

 Even if all the characters are in the right order, there may be kerning informa-
tion between letters, adjusting the space between the letters so they look better
(for instance, between the lls of the word Hello). That’s one aspect that should be
considered and that makes it difficult to extract text from a content stream.

 Another aspect is the encoding. It’s possible for a PDF to have a font contain-
ing characters marked a, b, c, and so on, but for the shapes drawn in the PDF file
for each character not to correspond with the glyphs a, b, and c (remember the
Shavian example in chapter 8). An application can create a different encoding for
each specific PDF document—for instance, in an attempt to obfuscate. More
likely, the PDF-generating software does this deliberately, such as when a large
font is used but all the text can be shown using only 256 different glyphs. In this
case, the software picks character names at random according to the glyphs that
are used.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

578 CHAPTER 18
Under the hood
 Another possibility is that the text in the content stream consists of raw glyph
indexes: the nth character of this font. You then have to write code that goes
through the character mapping and is able to find the right letter.

 Note that you’ll also encounter PDF files that were created from scanned
images. The content stream of each of the pages in such a document contains a
reference to an Image XObject. You won’t find a PDF string in the stream. In chap-
ter 12, you created PDF documents with glyphs drawn by a Graphics2D object;
again, you won’t find any PDF strings. In these cases, Optical Character Recogni-
tion (OCR) is your only recourse.

 If you refine the code sample, you can take some of the hurdles I just
explained and extract the text from PDFs, but certainly not from every PDF file
imaginable. Moreover, it’s not our intention to reinvent the wheel. If you want to
extract data from an existing PDF file, other tools offer this functionality—for
instance, PDFBox (see pdfbox.org).

 Other tools claim they can be used to edit a traditional PDF document.

18.2.3 Why you shouldn’t use PDF as a format for editing

A recurring remark about PdfWriter, PdfCopy, and PdfStamper, is that the API
isn’t intuitive. Why can’t you just take reader objects, select pages, and then
concatenate all of them using a writer? Or even better: Why can’t you take the
content stream of a page, look up some words, and replace them or insert
extra content at that specific position?

 In chapter 2, I stressed the fact that iText can be used for manipulating a PDF
file, not for editing a PDF document. Let’s find out the difference using an exam-
ple that adds an extra string to the content stream. This example comes with a
firm warning: do not try this at home!

/* chapter18/HelloWorldStream.java */
StringBuffer buf = new StringBuffer();
int pos = contentStream.indexOf("Hello World") + 11;
buf.append(contentStream.substring(0, pos));
buf.append(", Hello Sun, Hello Moon, Hello Stars, Hello Universe");
buf.append(contentStream.substring(pos));
String hackedContentStream = buf.toString();
Document document = new Document(PageSize.A6);
PdfWriter writer
 = PdfWriter.getInstance(document, new

FileOutputStream("HelloWorldStreamHacked.pdf"));
document.open();
PdfContentByte cb = writer.getDirectContent();
cb.setLiteral(hackedContentStream);
document.close();

Alter existing
content stream

Add new content stream literally
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Extracting and editing text 579
This example demonstrates what goes wrong if you take the content stream of
one page and copy it to a new PDF file. When you open the resulting file, you get
at least the error shown in figure 18.2.

 When you copy the content stream, you also copy references to objects that
aren’t in the stream. In this case, you copy a reference to a font (/F1), but there is
no font with this name in the new PDF file.

 It gets even worse if you try to copy a page that has XObjects or annotations;
you have to make sure you copy all the objects the page needs. Note that iText
does all this work behind the scenes—for instance, when you ask the PdfCopy for a
PdfImportedPage object.

 The previous code sample is a dirty hack. For argument’s sake, let’s hack the
hack and see what happens if you use PdfStamper to change the content stream:

/* chapter18/HelloWorldStreamHack.java */
PdfReader reader = new PdfReader("HelloWorldStream.pdf");
byte[] streamBytes = reader.getPageContent(1);
StringBuffer buf = new StringBuffer();
int pos = contentStream.indexOf("Hello World") + 11;
buf.append(contentStream.substring(0, pos));
buf.append(", Hello Sun, Hello Moon, Hello Stars, Hello Universe");
buf.append(contentStream.substring(pos));
String hackedContentStream = buf.toString();
PdfStamper stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldStreamHack.pdf"));
reader.setPageContent(1, hackedContentStream.getBytes());
stamper.close();

I used a shortcut to get the content stream: PdfReader.getPageContent(). I used
the corresponding setter method to replace the stream: PdfReader.setPageCon-
tent(). In between, I made some changes to the content. You already used these
methods in section 3.3.2 to decompress a PDF file.

Figure 18.2 Copying a page the wrong way

Get content stream

Change content
stream

Set page content
with PdfStamper
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

580 CHAPTER 18
Under the hood
After you execute this code sample, the new PDF file has the original text “Hello
World” and “Hello People,” but you expect the first line to be extended with “,
Hello Sun, Hello Moon, Hello Stars, Hello Universe.” Look at figure 18.3 to see if
you succeed.

 This time, no alert was triggered, the PDF syntax is correct, and the file is
valid; but the document doesn’t look the way you expect. The words Hello Uni-
verse are in the file, in the content stream of the page, but they aren’t visible
because they’re drawn outside the page boundaries.

 This is normal; PDF isn’t Word, RTF, or HTML. Word, RTF, and HTML docu-
ments are interpreted by an application that defines the layout. If you change a
sentence in an HTML file and it doesn’t fit on one line, the text wraps, causing the
layout to change.

 This isn’t possible in traditional PDF; the PDF syntax defines the layout. I listed
the advantages of this approach (speed, reliability, and so on) in part 1, but you
should consider traditional PDF to be a read-only format. This code sample does
something you never should do: It changes the content of a traditional PDF file
more or less manually. It’s a serious misconception to think you can open a PDF
file in Notepad, change some text, save the file, and expect it to be OK. This
example shows that you may be able to preserve the binary streams. You may suc-
ceed in updating the cross-reference stream. But you can’t expect the layout to be
OK if you add text or replace one word with another.

 The conclusion of this section is that you shouldn’t use iText to extract or edit
text. At the same time, it also aims to give you a better understanding of the Por-
table Document Format. There are tools that claim you can edit traditional PDF
documents, and some of them work—but make sure you’re aware of the limits
inherent in the nature of PDF. If you need a tool to edit a traditional PDF file, you
should probably reconsider your design.

 This being said, you can use everything you’ve learned in this chapter to
manipulate a PDF file. In section 18.4, you’ll use the iText toolbox to make a tree

Figure 18.3 A PDF document that was altered by using a hack
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Rendering PDF 581
view of a PDF file and to remove launch actions. You’ll also write code to change
the URL of a form and to retrieve a file from an FDF file. But first, let’s say a word
about rendering PDF.

18.3 Rendering PDF

We started the previous section with an example that uses the class PRTokeniser.
This class returns tokens of different types: PDF strings, PDF names, start and end
sequences of PDF arrays and PDF dictionaries, and so on. If you ever plan to write
a PDF viewer, you’ll have to write code that interprets all this information, trans-
lating the PDF syntax into drawing operations.

 This is beyond the scope of iText. A simple search on the Internet will tell you
a plethora of other tools (free as well as propriety software) can be used to view a
PDF. It wasn’t the intention of the iText developers to reinvent the wheel.

 In general, these tools can also be used to print a PDF file.

18.3.1 How to print a PDF file programmatically

If you post the question “How can I print a PDF file programmatically?” on the
mailing list, you can expect two kinds of answers.

■ An easy answer—iText doesn’t render PDF. The question is off-topic.
■ A difficult answer—In some cases, you can use a workaround; in other cases,

you need another tool.

Why is the second answer difficult? Java (cl)aims to be platform independent; but
printing is a platform-dependent process. A printer is a device in the context of
an operation system. You need a printer driver to convert the data to be printed
in a form that is specific for your printer.

Sending PDF to the printer
If your printer understands PDF, you can send the PDF stream generated by iText
to the printer directly. In a code snippet submitted to the mailing list by I. Canel-
los, a method generatePdf() creates a PDF document that is written to the output
stream passed as a parameter. This output stream is a PipedOutputStream con-
nected to the input stream that feeds the printer:

PipedInputStream pdf_in = new PipedInputStream();
PipedOutputStream pdf_out = new PipedOutputStream();
DocFlavor myFlavor = DocFlavor.INPUT_STREAM.AUTOSENSE;
pdf_in.connect(pdf_out);
Doc d = new SimpleDoc(pdf_in, myFlavor, new HashDocAttributeSet());
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

582 CHAPTER 18
Under the hood
generatePdf(pdf_out);
PrintService[] ps =
 PrintServiceLookup.lookupPrintServices(myFlavor, null);
PrintService service =
 ServiceUI.printDialog(null, 100, 100, ps, ps[0], myFlavor, null);
DocPrintJob dpj = service.createPrintJob();
dpj.print(d, pas);

You can try this solution, but it works only if you send the stream to a printer that
can take PDF natively. In most cases, printer drivers expect PostScript (PS) or
Printer Command Language (PCL), not PDF. You need a program that can trans-
late PDF to PS or PCL.

 Another solution that was posted on the mailing list involves the Line Printer
Remote (LPR) protocol. This is a set of programs that provides printer spooling
and network print-server functionality for UNIX-like systems. There is an LPR cli-
ent plug-in in the iText toolbox, and you’ll find an LPR class in the package
com.lowagie.tools. Of course, this won’t work on all systems.

 You can also print a PDF file using a PDF viewer.

Using a viewer application to print a PDF
If you’ve installed Adobe Reader on a Windows machine, you can open the PDF
viewer from the command line using the acrord32 command. Appendix C dis-
cusses the /A option that lets you open a document and specify viewer prefer-
ences. In the following code snippet, the /p option prints the file and the /h
option suppresses the printer dialog:

String osName = System.getProperty("os.name");
//FOR WINDOWS 95 AND 98 USE COMMAND.COM
if(osName.equals("Windows 95") || osName.equals("Windows 98")){
 Runtime.getRuntime().exec(
 "command.com /C start acrord32 /p /h" + claim.pdf);
}
//FOR WINDOWS NT/XP/2000 USE CMD.EXE
else {
 Runtime.getRuntime().exec(
 "cmd.exe start /C acrord32 /p /h" + claim.pdf);
}

This code snippet is integrated and slightly adapted for Mac users in the Execut-
able class in the package com.lowagie.tools. Note that the /A option is docu-
mented by Adobe, but the /p and /h options are undocumented and probably
unsupported by Adobe. It’s also known that the Reader process keeps running
after the file is printed.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Rendering PDF 583
 Maybe it’s a better idea to use Adobe Reader by addressing it with a tool like
pdfp (hosted on noliturbari.com); I quote: “pdfp is a command-line batch printer
that uses Adobe Reader or Acrobat via the DDE interface to print multiple PDFs to
the default or (optionally) specified printer.”

 In the past, Adobe developed a JavaBean that could be used to view and
print a PDF file, but the development of this bean was discontinued before it
was fully functional.

 If you’re looking for an active Free/Open Source library that lets you print
PDF files, you’re better off with PDFBox or JPedal. Note that JPedal is a Java PDF
library with GPL and proprietary versions. The GPLed software is a subset of the
complete library. Other proprietary libraries and products include IceSoft’s
ICEPDF and Crionics’ jPDF Printer. These are just products that come to mind;
the list is far from complete.

 A good free alternative is offered by GhostScript. GhostScript is a set of C
programs that can interpret PS as well as PDF. It can convert PS to PDF and vice
versa. If you don’t mind writing C code, you can address GhostScript to print a
PDF file programmatically.

 One of the major downsides all these solutions have in common is that you
need to run a program on a client machine. You don’t know what printer drivers
are installed on the client side. You don’t know if the end user has Adobe Reader.
You don’t know if you can execute a program on their machine.

 But people keep asking: “How can you print a PDF document on the client
side of a web application?”

18.3.2 Printing a PDF file in a web application

If you’re sure the end user is viewing the file using Internet Explorer, you can try
to find an ActiveX component that can print PDF. Note that using such a compo-
nent raises security as well as licensing issues. It may be safer to ask the end user
to install the Adobe Reader plug-in.

 In section 13.5.4, you learned how to add document-level JavaScript. You can
add the following snippet of document-level JavaScript to every PDF created by
your web application:

/* chapter18/SilentPrinting.java */
writer.addJavaScript("this.print(false);", false);
document.add(new Paragraph("Testing Silent Printing with iText"));

This code causes the PDF to be printed on the end user’s default printer as soon
as the user opens it. According to the Acrobat JavaScript Scripting Reference, the
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

584 CHAPTER 18
Under the hood
first parameter of the print() method is a boolean. If false, it suppresses the print
dialog box: The document can be printed without any extra user interaction.

 That’s one of the reasons some people disable the JavaScript interpreter in
their PDF viewer. People generally don’t like it when their printer starts spitting
out pages unexpectedly. In other words, this isn’t exactly a good solution.

FAQ Is it possible to allow printing, but not saving? From time to time, people
ask if it’s possible to set the permissions of a PDF file so that the file can
be printed on the client machine, but not viewed or saved. This is
impossible for many reasons. You can’t expect a PDF document to be
rendered on a client machine without sending information about how to
render it. In section 3.3.3, I explained that disabling the save button is
useless. Another common question is whether you can set a permission
so that a PDF can be printed only once. If you need that kind of protec-
tion for your document, you need a Digital Rights Management solu-
tion. To summarize, when people ask me if it’s possible to print a file
programmatically, I prefer giving the simple answer: This is beyond the
scope of iText.

 We’ve spent two sections telling you what iText can’t do:

■ You shouldn’t extract text from a PDF using iText.
■ You shouldn’t use iText to edit a PDF file.
■ You can’t use iText to view a PDF file.
■ You can’t use iText to convert PDF to an image (or generate thumbnails).
■ You can’t use iText to print a PDF file.

In the next section, we’ll return to the low-level functionality discussed in the first
section of this chapter. You can achieve interesting document manipulations
using low-level iText functionality.

18.4 Manipulating PDF files

In the first section, you climbed the object tree, but I didn’t provide an image
showing this tree structure. That was on purpose; I can give you something much
better than an image. Open the iText toolbox, and you’ll find a plug-in called
TreeViewPDF that allows you to browse the object tree. Carsten Hammer is still
working on this tool, but already it is beyond price for a developer manipulating
low-level PDF objects.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating PDF files 585
18.4.1 Toolbox tools

Look at figure 18.4. You immediately recognize the file you read in the Climb-
TheTree example in section 18.1.3. I opened the page tree and the outline tree
nodes. The Pagesnode shows an array with three elements. The node of this last
page is open, showing the entries in the page dictionary of the third page. The
Content entry is selected; you can inspect the content stream in the lower pane
of the plug-in.

 This plug-in is useful if you want to learn more about the structure of a PDF
file. Other plug-ins allow you to change the value of specific PDF objects.

 For instance, there’s a plug-in that lets you replace all the launch actions in a
PDF file with harmless JavaScript alerts. (Remember that launch actions can
launch an application on the end user’s operating system.)

 The original code for this plug-in was written to remove all these potentially
dangerous actions from PDF files submitted to a repository by the visitors of a

Figure 18.4 Tree view of a PDF file
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

586 CHAPTER 18
Under the hood
company web site. Granted, the end user gets a warning when such an action is
triggered, but you know how easy it is to click an OK button without reading the
warnings listed in the dialog box. It’s better to be safe than sorry. Here’s the code:

PdfReader reader = new PdfReader(src.getAbsolutePath());
PdfObject o;
PdfDictionary d;
PdfDictionary l;
PdfName n;
for (int i = 1; i < reader.getXrefSize(); i++) {
 o = reader.getPdfObject(i);
 if (o instanceof PdfDictionary) {
 d = (PdfDictionary)o;
 o = d.get(PdfName.A);
 if (o == null) continue;
 if (o instanceof PdfDictionary) {
 l = (PdfDictionary)o;
 }
 else {
 PRIndirectReference r =(PRIndirectReference)o;
 l = (PdfDictionary)reader.getPdfObject(r.getNumber());
 }
 n = (PdfName)l.get(PdfName.S);
 if (PdfName.LAUNCH.equals(n)) {
 if (l.get(PdfName.F) != null) {
 System.out.println("Removed: " + l.get(PdfName.F));
 l.remove(PdfName.F);
 }
 if (l.get(PdfName.WIN) != null) {
 System.out.println("Removed: " + l.get(PdfName.WIN));
 l.remove(PdfName.WIN);
 }
 l.put(PdfName.S, PdfName.JAVASCRIPT);
 l.put(PdfName.JS, new PdfString(
 "app.alert(
 'Launch Application Action removed by iText');\r"));
 }
 }
}
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
stamper.close();

If you check the (growing) list of tools in the toolbox, you’ll find plenty of other
plug-ins (for instance, a plug-in that extracts attachments). Most of these plug-ins
were based on code samples contributed on the mailing list by iText users.

 More examples are always welcome, but you have to take into account that not
all code samples can be turned into plug-ins. In the next section, you’ll write code
to complete the Foobar example you started in the previous chapter.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating PDF files 587
18.4.2 The learning agreement (revisited)

In section 17.2.2, you made an online form that foreign students can use to fill in
a learning agreement. Clicking a pushbutton field submits the form to the server
as an FDF form. Suppose other universities ask Laura if they can use this form,
too. It wouldn’t make sense to let them use a form that submits the data to the
Technological University of Foobar. They should be able to change the URL to
which the form is submitted.

Changing the submit URL
This question arises on the mailing list now and then. Let’s read the
learning_agreement.pdf file you created in the previous chapter with PdfReader
and get the reference of the PushMe button. A PdfDictionary object is returned
(you created this button as a PdfFormField, which is a subclass of PdfDictionary).

 Now it’s up to you to get the action and change the URL:

/* chapter18/ChangeURL.java */
PdfReader reader =
 new PdfReader("../resources/learning_agreement.pdf");
PdfStamper stamper = new PdfStamper(reader, new

FileOutputStream("learningagreement.pdf"));
AcroFields form = stamper.getAcroFields();
HashMap fields = form.getFields();
AcroFields.Item field = (AcroFields.Item)fields.get("PushMe");
PRIndirectReference ref =
 (PRIndirectReference)field.widget_refs.iterator().next();
PdfDictionary object =
 (PdfDictionary)reader.getPdfObject(ref.getNumber());
PdfDictionary action = (PdfDictionary)object.get(PdfName.A);
PdfDictionary file = (PdfDictionary)action.get(PdfName.F);
file.put(PdfName.F, new PdfString("[...]/agreementform.jsp"));
stamper.close();

To understand this example, you need to know that the name of a field action is A,
and that the URL is a PDF string in the F entry of an F dictionary; that’s the kind of
information you’ll find in the PDF Reference. With the PDF Reference next to you
and iText as a low-level PDF tool, you can implement almost any feature you need.

 Figure 18.5 shows the form with the altered URL.
 To see the difference from the form created in the previous chapter, click the

submit button; another URL is used.
 The JSP file to which you submit the data is similar to the JSP file you

used before, but now it’s able to extract the file letter.txt that was uploaded
to the server.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

588 CHAPTER 18
Under the hood
Extracting a file from an FDF
When you click the submit button, you see the data that’s been entered, including
the contents of the plain-text file that was submitted (see figure 18.6).

 The following code sample is simple; it assumes you’re sending a file that is
plain text. You should adapt it if, for instance, you want the students to upload
a photograph:

<%
HashMap fields = reader.getFields();
PdfDictionary field = (PdfDictionary)fields.get("letter");
if (field != null) {
 PdfIndirectReference ir =
 (PRIndirectReference)field.get(PdfName.V);
 PdfDictionary filespec =
 (PdfDictionary)reader.getPdfObject(ir.getNumber());
 PdfDictionary ef = (PdfDictionary)filespec.get(PdfName.EF);
 ir = (PRIndirectReference) ef.get(PdfName.F);
 PRStream stream = (PRStream)reader.getPdfObject(ir.getNumber());
 String letter = new String(reader.getStreamBytes(stream));
%>
</tr>

Figure 18.5 A learning agreement form
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Manipulating PDF files 589
<tr><td valign="Top">Letter of Introduction</td>
<td><pre>
<%= letter %>
</pre></td></tr>
<% } %>

Parsing an FDF file is done the same way as parsing a PDF file. You can adapt the
JSP code to extract the bytes of a file that is attached to a PDF file, or you can use
the plug-in I mentioned earlier.

TOOLBOX com.lowagie.tools.plugins.ExtractAttachments (Various) You can
use this toolbox plug-in to extract file attachments. As an exercise, you
can extract the attachments from the file annotations.pdf (see figure
15.3). The result is a JPG showing a fox and a dog, and a simple text file.

The plug-in has a public static method unpackFile(). Given a PdfReader instance
and a PdfDictionary with the file specification, you can use this method to extract

Figure 18.6 A JSP file showing the contents of an FDF submitted to the server
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

590 CHAPTER 18
Under the hood
an attached file to an output path of your choice without having to open the tool-
box manually.

 Once you have a good understanding of PDF, you’ll be able to solve lots of
similar problems by writing your own iText code. Of course, it’s not easy to master
the Portable Document Format. The PDF Reference is about 1,200 pages long, so
take your time—it’s not a book you can read overnight. This chapter was meant to
give you a head start.

18.5 Summary

Looking under the hood of PDF and iText, you should recognize a lot of the func-
tionality discussed in previous chapters:

■ We focused on the “Hello World” examples from the introduction.
■ You saw how the content you added using the basic building blocks of

part 2 translates into the PDF syntax discussed in part 3.
■ You learned how PDF stores information about the outlines, pages, and

forms we dealt with in part 4.

In a way, this chapter is a summary of this book, seen from the point of view of the
PDF specialist. You’ve learned that some problems are fundamental and inherent
to PDF; for instance, it’s hard to edit a PDF file. But you’ve also seen that problems
can be solved by replacing the right entries in a PDF dictionary.

 Of course, we didn’t go into much detail. If you want to know more about the
PDF syntax, you should consider reading the PDF Reference. I repeat that it’s a
good companion for this book, and vice versa. This book helps you picture the
functionality explained in the PDF Reference. I hope it’s also convinced you that
PDF is an interesting document format with a rich history and a bright future.

 Finally, I hope you enjoy working with iText. The appendices that follow
address specific topics, such as barcodes, how to sign a PDF using a smart card,
and so on. In appendix G, you’ll find a list of books and URLs you may want to
investigate, and I started an incomplete list of projects using iText. I hope that
one day I can add your project to this list.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Class diagrams
591

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

592 APPENDIX A
Class diagrams
This appendix has been added for your convenience. It contains class diagrams
that explain the relationships between several of the most important iText
classes. It’s important to realize that these diagrams don’t provide the complete
model; many attributes and methods have been omitted in order to make the
diagrams presentable.

 Most classes are represented in a rectangle containing three parts:

■ The name of the class or interface. Sometimes the names of the super-
class or the interfaces that were implemented are added in the upper-
right corner.

■ A (partial!) list of attributes.
■ A (partial!) list of methods.

Every attribute or method name is preceded by a sign:

■ A plus-sign (+) means the attribute or method is public.
■ A minus-sign (-) means the attribute or method is private.
■ A number or cardinality-sign (#) means the attribute or method is pro-

tected.
■ A tilde (~) means the attribute or method is package protected.

A subclass is connected to its superclass by a solid line with a triangle shape on
the superclass end. The relationship between a class and the interface that is
implemented is represented by a dotted line with a triangle shape on the inter-
face end.

 Dependencies are illustrated using a solid line with an open arrow. The graph-
ical representation of an aggregation is a solid line with a clear diamond shape at
the end.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF/RTF/HTML creation classes 593
A.1 PDF/RTF/HTML creation classes

Figure A.1 Overview of the classes discussed in section 2.1
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

594 APPENDIX A
Class diagrams
A.2 PDF manipulation classes

Figure A.2 Overview of the classes discussed in section 2.2
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Text element classes 595
A.3 Text element classes

Figure A.3 Overview of the classes discussed in chapter 4
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

596 APPENDIX A
Class diagrams
A.4 Image classes

Figure A.4 Overview of the classes discussed in chapter 5
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Barcode classes 597
A.5 Barcode classes

Figure A.5 Overview of the barcode classes discussed in chapter 5 and appendix B
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

598 APPENDIX A
Class diagrams
A.6 Table classes

Figure A.6 Overview of the classes discussed in chapter 6
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Font classes 599
A.7 Font classes

Figure A.7 Overview of the classes discussed in chapter 8
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

600 APPENDIX A
Class diagrams
A.8 Color classes

Figure A.8 Overview of the Color classes discussed in chapter 10
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PdfObject classes 601
A.9 PdfObject classes

Figure A.9 Overview of the classes discussed in chapter 18
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Creating barcodes
602

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Barcodes to identify products 603
We briefly discussed the abstract class com.lowagie.text.pdf.Barcode in chap-
ter 5, and appendix A section A.5 gave you an overview of the Barcode sub-
classes. These classes provide a user-friendly way to create an Image instance
that represents a barcode.

 This could be a com.lowagie.text.Image or a java.awt.Image class. There’s
also a method to place the barcode on a PdfContentByte object and to create a
PdfTemplate containing the barcode.

 In this appendix, which is a specific extension of chapter 5, we’ll look at an
example of every barcode type supported in iText.

B.1 Barcodes to identify products

If you live in America or Canada and you go to your retail store, you’re probably
familiar with Universal Product Code (UPC) barcodes. These codes aren’t really as
universal as the name suggests. Most of the rest of the world uses European Arti-
cle Number (EAN) barcodes; Japan uses JAN (which is just another name for
EAN). These standards are different and similar at the same time. They’re differ-
ent in the sense that EAN and UPC codes represent a different number of digits;
but similar in the way the barcode to represent this code is generated.

 To ensure consistent terminology around the world, the Global Trade Item
Number (GTIN) was introduced. GTIN is a new term, not a new standard. It’s an
all-numeric system that uniquely identifies trade items (products and services)
that are sold, delivered, warehoused, and billed throughout retail and commer-
cial distribution channels. It embraces EAN/UCC-8, EAN/UCC-12 (UPC), EAN-
UCC-13, and EAN/UCC-14. The acronym UCC stands for the Uniform Code
Council. The numbers indicate the number of digits represented by the barcode:
8, 12, 13, or 14.

NOTE When you want to store GTIN barcode values in a database, it’s advised
that you store a 14-digit number for reasons of uniformity and forward
compatibility. Even if you’re using EAN-13, EAN-8, or UPC barcodes that
don’t have 14 digits, you should use right justifying and zero padding at
the left.

iText supports all these types of barcodes, albeit under different names. We’ll
look at the different types by summing up the iText classes used to produce
GTIN-compliant barcodes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

604 APPENDIX B
Creating barcodes
com.lowagie.text.pdf.BarcodeEAN
Although this classname refers to EAN, the class can be used to produce a
range of barcodes: EAN-13, UPC-A, EAN-8, UPC-E, supplemental 5, and sup-
plemental 2. The default type is EAN-13 (see figure B.1).

These barcodes were generated like this:

/* chapter05/Barcodes.java */
PdfContentByte cb = writer.getDirectContent();
BarcodeEAN codeEAN = new BarcodeEAN();
codeEAN.setCode("4512345678906");
Paragraph p = new Paragraph("default: ");
p.add(new Chunk(
 codeEAN.createImageWithBarcode(cb, null, null), 0, -5));
codeEAN.setGuardBars(false);
p.add(" without guard bars: ");
p.add(new Chunk(
 codeEAN.createImageWithBarcode(cb, null, null), 0, -5));
codeEAN.setBaseline(-1f);
codeEAN.setGuardBars(true);
p.add(" text above: ");
p.add(new Chunk(
 codeEAN.createImageWithBarcode(cb, null, null), 0, -5));
p.setLeading(codeEAN.getBarcodeSize().height());
document.add(p);

In the Barcodes.java example, you create barcodes as an
iText Image instance. The method that creates this instance
needs a PdfContentByte object obtained from the writer to
which the image object will be added. The other two param-
eters (which are null in this example) represent the colors of
the barcode and the text under or above the bars. In some
of the examples that follow, you’ll change this value. EAN
and UPC barcodes have a check digit, but you have to calcu-
late this checksum yourself before setting the code.

 UPC-A is similar to EAN-13, but it has only 12 digits; see figure B.2.
 The code is almost identical to the previous snippet. The only difference is

that you set the type:

Figure B.1 EAN-13 barcodes

Grab direct content

Set code (including check digit)

Create Image
object

No guard bars

Move text above bars

This line is ignored!

Figure B.2
UPC-A barcode
of the PDF
Reference
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Barcodes to identify products 605
/* chapter05/Barcodes.java */
BarcodeEAN codeEAN = new BarcodeEAN();
codeEAN.setCodeType(Barcode.UPCA);
codeEAN.setCode("785342304749");
document.add(codeEAN.createImageWithBarcode(cb, null, null));

Some retail items are small, and it’s difficult to put a
full-sized EAN-13 or UPC-A barcode on the package. If
this is the case, an EAN-8 or UPC-E barcode can be used
(see figure B.3).

 As you can see, these barcodes don’t take a lot of space;
moreover, I reduced the height of the bars:

/* chapter05/Barcodes.java */
BarcodeEAN codeEAN = new BarcodeEAN();
codeEAN.setCodeType(Barcode.EAN8);
codeEAN.setBarHeight(codeEAN.getSize() * 1.5f);
codeEAN.setCode("34569870");
document.add(codeEAN.createImageWithBarcode(cb, null, null));
codeEAN.setCodeType(Barcode.UPCE);
codeEAN.setCode("03456781");
document.add(codeEAN.createImageWithBarcode(cb, null, null));

BarcodeEAN can also generate supplemental-5 and supplemental-2 barcodes.
These are the codes you’ll use as second argument in the constructor of the fol-
lowing class.

com.lowagie.text.pdf.BarcodeEANSUPP
EAN-13, UPC-A, EAN-8, and UPC-E allow for a supplemental two- or five-digit
number to be appended to the main barcode. This was designed for use on pub-
lications and periodicals. For instance, the supplemental two-digit number can
indicate a month from January (01) to December (12).

 If you add a supplemental five-digit barcode to an EAN-13 barcode represent-
ing an International Standard Book Number (ISBN), you get a Bookland code. The
13 digits of the ISBN barcode are composed of five parts in the following order:

■ Start number: 978 or 979
■ Country or language code
■ Publisher number code
■ Item number code
■ Checksum character

Figure B.3 EAN-8 and
UPC-E barcodes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

606 APPENDIX B
Creating barcodes
The additional five-digit barcode contains a currency
and recommended retail price. Figure B.2 is the UPC-A
code of the PDF Reference (fifth edition), which could
be used in retail stores. Figure B.4 shows the Bookland
code of the PDF Reference. Both barcodes can be found
on the back of the book.

 Do you recognize the ISBN number in the barcode
number? The supplemental code tells you that the recommended retail price is
$54.99 (in most stores, the PDF Reference isn’t that expensive). I also made the
text blue for a change:

/* chapter05/Barcodes.java */
BarcodeEAN codeEAN = new BarcodeEAN();
codeEAN.setCodeType(Barcode.EAN13);
codeEAN.setCode("9780321304742");
BarcodeEAN codeSUPP = new BarcodeEAN();
codeSUPP.setCodeType(Barcode.SUPP5);
codeSUPP.setCode("55499");
codeSUPP.setBaseline(-2);
BarcodeEANSUPP eanSupp =
 new BarcodeEANSUPP(codeEAN, codeSUPP);
document.add(eanSupp.createImageWithBarcode(cb, null, Color.blue));

If you inspect this code and try it on your computer, you’ll see that some of the
properties of the barcode are changed. I won’t discuss all these properties right
now, but a table with all the properties per barcode type appears in section B.3
(table B.3).

 Let’s continue with another GTIN barcode.

com.lowagie.text.pdf.Barcode128
Code 128 provides much more detail than the single-product EAN barcodes. It’s
used to describe properties such as the number of products included, weight,
dates, and so on.

 Different specifications dictate how the Code 128 symbology is to be printed.
With iText, you can set the code type to Barcode.CODE128, which is the original, plain
Code 128, to Barcode.CODE128_RAW, where the code attribute has the codes from 0
to 105 followed by \uffff and the human-readable text, or to Barcode.CODE128_UCC,
with support for UCC/EAN-128 and application identifiers (see table B.1).

 Plain Code 128 can encode all 128 ASCII characters and 4 special function
codes (see table B.2). It’s capable of encoding two characters in the space of one
character width—this is called double density. It’s an interesting barcode to put a
maximum amount of information on a minimum amount of space.

Figure B.4 Bookland
code of the PDF
Reference

Create EAN-13 code

Create SUPP5 code

Combine both in
BarcodeEANSUPP code
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Barcodes to identify products 607
 This all sounds complex, so let’s look at some
examples to get the idea. The upper barcode in
figure B.5 is a plain barcode (the default; Bar-
code.CODE128); the lower returns 0123456789
when scanned, and the human-readable text says
My Raw Barcode (0-9). It was created by setting
the type to Barcode.CODE128_RAW.

 A concatenation of the machine-readable
code, the \uffff character, and the human-read-
able text is entered as parameter of the setCode() method:

/* chapter05/Barcodes.java */
document.add(new Paragraph("Barcode 128"));
Barcode128 code128 = new Barcode128();
code128.setCode("0123456789 hello");
document.add(code128.createImageWithBarcode(cb, null, null));
code128.setCode("0123456789\uffffMy Raw Barcode (0 - 9)");
code128.setCodeType(Barcode.CODE128_RAW);
document.add(code128.createImageWithBarcode(cb, null, null));

The Barcode128 class contains a Hashtable with a series of Application Identifiers
(AIs). An AI is a prefix that is used to identify the meaning and the format of the
data that follows it. AIs have been defined for many types of information: dates,
quantity, measurements, locations, and so on. Table B.1 shows some of the most
common examples (there are too many to list in this book).

Table B.1 Nonrestrictive list of Application Identifiers

AI Description

(00) Serial Shipping Container Code; identification of a logistic unit. Used to support tracking and
reception operations.

(01) Identification of a trade item; 14-digit GTIN.

(02) Indicates that the data field includes the GTIN of the contained trade items. The logistic unit
isn’t a trade item in itself.

(10) Identifies a batch or lot number. The data field following the AI is always a batch number not
exceeding 20 alphanumeric characters.

(11) Production date in the form YYMMDD.

(13) Packaging date.

(15) Minimum durability date (Quality).

continued on next page

Figure B.5 Code 128 (plain and raw)
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

608 APPENDIX B
Creating barcodes
I also mentioned that Code 128 allows the use of four function codes. Table B.2
explains what these codes are for.

Figure B.6 shows a shipping code, with a
Shipment Identification Number, informa-
tion mutually agreed on between the trad-
ing partners, and the postal code of the
addressee.

 This is also a plain Code 128, but it uses
AI terminology. Because the blocks with type
402 and 90 can have a variable length, FNC1 is used as a demarcation character.
This example also uses methods to change the way the barcode looks:

/* chapter05/Barcodes.java */
String code402 = "24132399420058289";

(17) Maximum durability date (Security).

(90) Information mutually agreed on between trading partners.

(402) Shipment Identification Number (Bill of Lading); a globally unique number that identifies a
logical grouping of physical units for the purpose of a transport shipment.

(420) Ship-to (deliver-to) postal code. This can facilitate shipment sorting, consolidation, and
general automated package handling; maximum of 20 alphanumeric characters.

(421) Postal code of the addressee (international format).

(3100) to
(3109)

Net weight in kilograms. The last digit in the AI is a decimal-point indicator.

Table B.2 Special function codes in Code 128

Function code in iText Description

Barcode128.FNC1 Reserved for EAN applications

Barcode128.FNC2 Used to instruct the barcode reader to concatenate the current message with
the next one

Barcode128.FNC3 Code to instruct the barcode reader to perform a reset

Barcode128.FNC4 For future use or closed system applications

Table B.1 Nonrestrictive list of Application Identifiers (continued)

AI Description

Figure B.6 Shipment barcode

Shipment Identification Code
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Barcodes to identify products 609
String code90 = "3700000050";
String code421 = "422356";
StringBuffer data = new StringBuffer(code402);
data.append(Barcode128.FNC1);
data.append(code90);
data.append(Barcode128.FNC1);
data.append(code421);
Barcode128 shipBarCode = new Barcode128();
shipBarCode.setX(0.75f);
shipBarCode.setN(1.5f);
shipBarCode.setSize(10f);
shipBarCode.setTextAlignment(Element.ALIGN_CENTER);
shipBarCode.setBaseline(10f);
shipBarCode.setBarHeight(50f);
shipBarCode.setCode(data.toString());
document.add(shipBarCode.createImageWithBarcode(cb,
Color.black, Color.blue));

The next examples demonstrate the UCC/EAN-128 barcode. It uses the same
code set as Code 128, but without the function codes FNC2, FNC3, and FNC4.
Only FNC1 is used, to enable barcode scanners and processing software to
autodiscriminate between UCC/EAN-128 and other barcode symbologies. FNC1
follows the start character of the bar. The AIs are added to the code (see fig-
ure B.7).

If you only work with content fields that have a fixed length, you can omit the
brackets that indicate the AI, as is done for the lower barcode in figure B.7. But
it’s always safer to use brackets, as in the upper barcode:

/* chapter05/Barcodes.java */
Barcode128 uccEan128 = new Barcode128();
uccEan128.setCodeType(Barcode.CODE128_UCC);
uccEan128.setCode("(01)00000090311314(10)ABC123(15)060916");
document.add(
 uccEan128.createImageWithBarcode(cb, Color.blue, Color.black));
uccEan128.setCode("0191234567890121310100035510ABC123");
document.add(uccEan128.createImageWithBarcode(cb,
Color.blue, Color.red));

Information agreed on between partners

Postal code of addressee

Concatenate
content

Change
defaults

Figure B.7
UCC/EAN-128 barcodes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

610 APPENDIX B
Creating barcodes
Remember that I talked about GTIN and how
iText supports, for instance, EAN/UCC-14, but
under other names? One way to represent an
EAN/UCC-14 code is by using Code 128 with AI
01 (see figure B.8).

 This is how the figure was generated:

/* chapter05/Barcodes.java */
Barcode128 uccEan128 = new Barcode128();
uccEan128.setCodeType(Barcode.CODE128_UCC);
uccEan128.setCode("(01)28880123456788");
document.add(
 uccEan128.createImageWithBarcode(cb, Color.blue, Color.black));

Whereas single products get an EAN code, and mass-
packaged products get a Code 128, a carton of prod-
ucts often gets an Interleaved 2 of 5 barcode.

com.lowagie.text.pdf.BarcodeInter25
This is a numerical barcode that encodes pairs of
digits; the first digit is encoded in the bars, and the
second digit is encoded in the spaces interleaved
with them. As you see in figure B.9 and the corre-
sponding code sample, I used non-numeric charac-
ters that are printed in the text, but these characters
don’t generate bars; iText ignores them.

 Here’s the code:

/* chapter05/Barcodes.java */
BarcodeInter25 code25 = new BarcodeInter25();
code25.setGenerateChecksum(true);
code25.setCode("41-1200076041-001");
document.add(code25.createImageWithBarcode(cb, null, null));
code25.setCode("411200076041001");
document.add(code25.createImageWithBarcode(cb, null, null));
code25.setCode("0611012345678");
code25.setChecksumText(true);
document.add(code25.createImageWithBarcode(cb, null, null));

The checksum in an Interleaved 2 of 5 barcode is optional, but you can let iText
add it with the method setGenerateChecksum(). The generated checksum isn’t
shown in the human-readable text by default; if you want to see it appear in the
text, you have to use the method setChecksumText().

 If you construct an Interleaved 2 of 5 barcode with 13 digits + checksum and
add guard bars, you get an ITF14 barcode. This type of code is also a valid GTIN

Figure B.8 Code 128 with AI 01 as
an EAN/UCC-14 barcode

Figure B.9 Interleaved 2 of 5
barcodes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Barcodes for postal services and other industries 611
barcode with 14 digits. I repeat: GTIN isn’t a new standard. It’s a new term for a
series of existing barcodes.

 You’ve seen all possible flavors of GTIN and EAN.UCC barcodes that are used
for identifying products, but barcodes can be used for many other purposes.

B.2 Barcodes for postal services and other industries

POSTNET, PLANET, Code39, and Codabar are other barcode types supported by
iText. Let’s see in what context these barcodes are used.

com.lowagie.text.pdf.BarcodePostnet
The United States Postal Service (USPS) uses a combination of the POSTal
Numeric Encoding Technique (POSTNET) sorting code and the PostaL Alpha
Numeric Encoding Technique (PLANET) code to direct and identify mail.

 Currently, three forms of POSTNET codes are in use: a 5-digit ZIP code, a 9-
digit ZIP+4, and an 11-digit delivery point code. The delivery point added to the
ZIP+4 code usually consists of the last two digits of the address or PO box. The
PLANET Code is an 11-digit code assigned by the USPS.

 Both types are encoded in a sequence of
half- and full-height bars. They start and
end with a full-height bar. The encoded
address information followed by a check
digit is between these two frame bars. You
don’t have to worry about this check digit.
It’s added by iText automatically. See fig-
ure B.10.

 If you compare the POSTNET code with
the PLANET code in the figure, you see that
the PLANET code symbology is the inverse
of the POSTNET symbology:

/* chapter05/Barcodes.java */
BarcodePostnet codePost = new BarcodePostnet();
codePost.setCode("01234");
document.add(codePost.createImageWithBarcode(cb, null, null));
codePost.setCode("012345678");
document.add(codePost.createImageWithBarcode(cb, null, null));
codePost.setCode("01234567890");
document.add(codePost.createImageWithBarcode(cb, null, null));
BarcodePostnet codePlanet = new BarcodePostnet();

Figure B.10 Barcodes for the United
States Postal Service

POSTNET code
for ZIP code

POSTNET code
for ZIP+4 code

POSTNET code
with delivery
point
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

612 APPENDIX B
Creating barcodes
codePlanet.setCode("01234567890");
codePlanet.setCodeType(Barcode.PLANET);
document.add(codePlanet.createImageWithBarcode(cb, null, null));

The next barcode we’ll discuss is widely used in the pharmaceutical industry. It’s
also the standard code for the US Department of Defense.

com.lowagie.text.pdf.Barcode39
The 3 of 9 code (Code39) can encode numbers, uppercase letters (A–Z), and sym-
bols (- . ‘ ’$ / + % *). Figure B.11 shows two variations: barcode 3 of 9 and barcode
3 of 9 extended.

A Code39 barcode has the following structure:

■ An asterisk as start character
■ Any number of (valid) characters
■ A checksum digit (optional; Code39 doesn’t require a check digit)
■ An asterisk as stop character

The asterisks before and after the content are added by iText automatically. Note
that the asterisk may only be used as a start and stop character; you can’t use it in
the content of the barcode. By default, iText doesn’t add a checksum digit. Again,
you can use the methods setGenerateChecksum() and setChecksumText() as you
did with the Interleaved 2 of 5 barcode.

 I didn’t add a checksum in the examples:

/* chapter05/Barcodes.java */
Barcode39 code39 = new Barcode39();
code39.setCode("ITEXT IN ACTION");
document.add(code39.createImageWithBarcode(cb, null, null));

Extended Code39 can encode all 128 ASCII characters. This is achieved by shift-
ing the characters using the $, /, %, and + symbols. For instance, $P equals 0, $Q
equals 1, $R equals 2, and so on:

PLANET
code

Figure B.11
Code39 barcodes
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Barcode properties 613
/* chapter05/Barcodes.java */
Barcode39 code39ext = new Barcode39();
code39ext.setCode("iText in Action");
code39ext.setStartStopText(false);
code39ext.setExtended(true);
document.add(code39ext.createImageWithBarcode(cb, null, null));

Remember that if your barcode reader doesn’t support full ASCII Code39, you’ll
get shifted characters as if they were plain Code39 characters.

 Finally, there’s the Codabar barcode.

com.lowagie.text.pdf.Codabar
Codabar is used to store numerical data only, but the letters A, B,
C, and D are used as start and stop characters (start and stop char-
acters have to match: A123A is OK; A123B isn’t). The Codabar bar-
code is used in blood banks, the shipping industry, libraries, and
other industries.

 Figure B.12 shows a simple example.
 The code to produce this barcode is straightforward:

/* chapter05/Barcodes.java */
BarcodeCodabar codabar = new BarcodeCodabar();
codabar.setCode("A123A");
codabar.setStartStopText(true);
document.add(codabar.createImageWithBarcode(cb, null, null));

Now that you’ve been introduced to all the types of (one-dimensional) barcodes,
let’s see how you can change some of their properties.

B.3 Barcode properties

The previous examples used createImageWithBarcode(PdfContentByte, Color,
Color). Instead of creating an iText Image instance, you can add the barcode
directly to a PdfContentByte object with placeBarcode(PdfContentByte, Color,
Color) or create a PdfTemplate with createTemplateWithBarcode(PdfContent-
Byte, Color, Color).

 In these methods, the Color parameters define the color of the barcode and
the text. If both parameters are null, the current fill color is used. If only the text
color is null, the bar color is used for the text.

 You can also create a java.awt.Image of the barcode (without text) using the
method createAwtImage(Color, Color). In this method, the second color param-
eter defines the background color of the barcode.

Figure B.12
Codabar
example
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

614 APPENDIX B
Creating barcodes
 Throughout the examples, we’ve played with other properties. Now it’s time
for an overview per barcode type.

Overview of barcode properties
The property x (adjustable with setX()) holds the minimum width of a bar.
Except for the POSTNET code, this value is set to 0.8 by default. You can set the
amount of ink spreading with setInkSpreading(). This value is subtracted from
the width of each bar. The actual value depends on the ink and the printing
medium; it’s 0 by default. The property n holds the multiplier for wide bars for
some types, the distance between two barcodes in EANSUPP, and the distance
between the bars in the USPS barcodes.

 The property font defines the font of the text (if any). If you want to produce a
barcode without text, you have to set the barcode font to null with setFont(). You
can change the size of the font with setSize(), and with setBaseline() you can
change the distance between text and barcode. Negative values put the text above
the bar.

 Changing the bar height can be done with setBarHeight(). For USPS codes,
you can also change the height of the short bar with setSize(). USPS codes don’t
have text.

 Finally, there are methods to generate a checksum and to make the calculated
value visible in the human-readable text (or not). You can also set the start/stop
sequence visible for those barcodes that use these sequences.

 If you don’t use any of the methods to change the properties, a default is used.
Table B.3 shows the default values for each of the properties per class that
extends the abstract Barcode class.

Table B.3 Default properties of the different barcode classes

Code: EAN EANSUPP 128 Inter25 39 Codabar POSTNET

Type EAN13 - CODE128 - - CODABAR POSTNET

x 0.8f 0.02f * 72f;

n - 8 - 2 72f / 22f

Font BaseFont.createFont(BaseFont.HELVETICA,
BaseFont.WINANSI, BaseFont.NOT_EMBEDDED)

-

Size 8 0.05f * 72f

continued on next page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Two-dimensional barcodes 615
The class diagram in section B.5 shows that one barcode class doesn’t extend the
class com.lowagie.text.pdf.Barcode: the class that produces a PDF417 barcode.

B.4 Two-dimensional barcodes

The title of this subsection is somewhat a contradictio in terminis; two-dimensional
barcodes are no longer codes with bars. That’s why they’re sometimes referred to
as matrix codes, which is a more accurate term. The important difference from plain
barcodes is that they don’t consist of bars and spaces, but are made using dots,
squares, and even hexagons organized in a matrix. They’re read in two dimen-
sions, and they can represent a lot more data than one-dimensional barcodes.

 For the moment, iText only supports PDF417.

com.lowagie.text.pdf.BarcodePDF417
The PDF acronym of this matrix code doesn’t refer to the Portable Document
Format; it stands for Portable Data File. A PDF417 barcode can store up to
2,170 characters, and the symbology is capable of encoding the entire ASCII
set (255 characters).

 The text you add to the barcode is converted to bytes using the encoding
cp437. BarcodePDF417 isn’t a subclass of Barcode, but it has getImage() and
createAwtImage() methods. There is no method to get a PdfTemplate, because

Baseline Size -

Bar height Size * 3 0.125f * 72f

Text
alignment

- - Element.ALIGN_CENTER -

Guardbars True - - - - - -

Generate
checksum

User User - False False False -

Text
checksum

- - - False False False -

start/stop
text

- - - - True False -

Table B.3 Default properties of the different barcode classes (continued)

Code: EAN EANSUPP 128 Inter25 39 Codabar POSTNET
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

616 APPENDIX B
Creating barcodes
the matrix code is constructed in a completely different way. A CCITT G4 image is
constructed internally; if needed, you can get the raw image bits with getOut-
Bits(); you can get the dimensions with getBitColumns() and getCodeRows().

 Figure B.13 was generated with the default options: yHeight of 3 (this is the
height of the Y pixel relative to X) and an aspect ratio of 0.5 (the proportion of rows
versus columns).

 The code is as follows:

/* chapter05/Barcodes.java */
BarcodePDF417 pdf417 = new BarcodePDF417();
String text = "It was the best of times... (...)";
pdf417.setText(text);
Image img = pdf417.getImage();
img.scalePercent(50, 50 * pdf417.getYHeight());
document.add(img);

Use the methods setCodeColumns(), setCodeRows(), setAspectRatio(), and/or
setYHeight() to define the number of columns, the number of rows, the aspect
ratio, and the yHeight value; iText can change these values to keep the barcode
valid, based on the options you set with the method setOptions(). The options
are listed in table B.4.

Table B.4 PDF417 option values

Option value Description

PDF417_USE_ASPECT_RATIO The autosize is based on aspectRatio and yHeight (this is
the default).

PDF417_FIXED_RECTANGLE The size of the barcode is at least codeColumns*codeRows.

PDF417_FIXED_COLUMNS The size is at least codeColumns, with a variable number of
codeRows.

continued on next page

Figure B.13
PDF417 matrix code
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Two-dimensional barcodes 617
Other examples of matrix codes are Data Matrix, MaxiCode, and Semacode, but
these aren’t supported in iText (yet).

 New types of barcodes are added to iText from time to time. For more infor-
mation, please consult the web site or the mailing list.

PDF417_FIXED_ROWS The size is at least codeRows, with a variable number of code-
Columns.

PDF417_USE_ERROR_LEVEL The error level correction is set by the user. It can be 0 to 8; if
this option isn’t set, the error level correction is set automatically
according to ISO 15438 recommendations.

PDF417_USE_RAW_CODEWORDS No text interpretation is done, and the content of codewords is
used directly.

PDF417_INVERT_BITMAP This inverts the output bits of the raw bitmap that is normally bit
one for black. It affects only the raw bitmap.

PDF417_USE_MACRO You can split the PDF417 barcode into several segments to rep-
resent even more data. This is called Macro PDF417. You need
the methods setMacroSegmentId(), setMacroSegment-
Count(), and setMacroFileId() to create these segments.

Table B.4 PDF417 option values (continued)

Option value Description
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Open parameters
618

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Open parameters 619
In chapter 13, we discussed viewer preferences. By adding these preferences to
the document, you define the initial state of the document when it’s opened by an
end user. In chapter 18, you used Adobe Reader from the command line with the
/p option to print a PDF document.

 This appendix discusses the parameters that can be passed to Adobe Reader
along with the /A option. The same syntax can be used in the URL of a (static or
dynamic) PDF file served on a web site.

 The following line called from a DOS box opens the PDF Reference on
page 573:

AcroRd32.exe /A "page=573" d:/pdf/PDFReference16.pdf

The following URL opens the PDF Reference hosted at adobe.com on page 573
with zoom factor 100 percent:

http://partners.adobe.com/public/developer/en/pdf/
 ➥ PDFReference16.pdf#page=573&zoom=100

Table 13.1 lists the most important parameters that can be passed with the /A
option with command line, or using a # sign after the URL in the location bar
of a browser.

Table C.1 Syntax of the open parameters

Parameter and value Description

nameddest=name Specifies a named destination in the PDF.

page=pagenum Jumps to a specific page. Pagenum indicates the actual
page, not the label you may have given to the page.

zoom=scale
zoom=scale,left,top

Sets the zoom and scroll factors. A scale value of 100 gives
100 percent zoom.
Left and top are in a coordinate system where 0,0 is the
top left of the visible page, regardless of document rotation.

view=fit
view=fit,parameter

The value for fit can be Fit, FitH, FitV, FitB, FitBH, or FitBV.
The parameter has the same meaning as described in sec-
tion 13.3.1. Note that this isn’t supported from the com-
mand line.

viewrect=left,top,width,height Opens the file so that the rectangle specified with the
parameters is visible. Note that this isn’t supported from
the command line.

pagemode=mode The mode can be none, bookmarks, or thumbs.

continued on next page
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Open parameters 620
You should recognize most of the terminology from chapter 13. The functionality
described in this appendix isn’t iText specific, but it can be useful when you’re
building a web application involving PDF documents—particularly when you
want to refer to different locations in one and the same document (without any
built-in viewer preferences).

 Note that you used this functionality in chapter 2 when you used the toolbox
plug-in HtmlBookmarks to create an HTML index based on the outline tree of a
PDF document.

scrollbar=1|0 Enables/disables the scrollbars.

toolbar=1|0 Shows/hides the toolbar.

statusbar=1|0 Shows/hides the status bar.

navpanes=1|0 Shows/hides the navigation panes and tabs.

search=wordlist Opens the Search UI and searches for the words
specified in the wordlist. The words must be
enclosed in quotes and separated by spaces;
for instance: #search="iText PDF".

Table C.1 Syntax of the open parameters (continued)

Parameter and value Description
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Signing a PDF
with a smart card
621

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

622 APPENDIX D
Signing a PDF with a smart card
In chapter 16, you learned how to add a digital signature to a PDF document
using a (self-signed) certificate and a private key that is present somewhere on the
file system. I also mentioned that this certificate and key are sometimes stored on
a smart card.

 Figure D.1 shows an example of such a smart card. It’s a copy of my iden-
tity card.

Belgium is one of the first countries in the world to issue an electronic identity
card (eID) as official proof of identity for its citizens. This identity card looks like a
regular bankcard, with basic identity information in visual format, such as per-
sonal details and a photograph. It also contains a chip with the same information
printed legibly on the card, the address of the card holder, and the identity and
signature keys and certificates.

 The next example (written by Philippe Frankinet) uses this special card to add
a digital signature to a PDF document. This example requires middleware that is
specific for the type of smart card and smart card reader you’re using. It’s impos-
sible to write a universal example that will work for every device and every type of
card. The example is provided for your interest only; you’ll have to adapt it
according to the requirements of your project:

Certificate[] certs = new Certificate[1];
BelpicCard scd = new BelpicCard("");
certs[0] = scd.getNonRepudiationCertificate();
PdfReader reader = new PdfReader("unsigned.pdf");

Figure D.1 A smart card containing my personal information

 B
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Signing a PDF with a smart card 623
FileOutputStream fout = new FileOutputStream("signed.pdf");
PdfStamper stamper = PdfStamper.createSignature(reader, fout, '\0');
PdfSignatureAppearance sap = stamper.getSignatureAppearance();
sap.setCrypto(
 null, certs, null, PdfSignatureAppearance.SELF_SIGNED);
sap.setReason("How to use iText a Belgian eID");
sap.setLocation("Belgium");
sap.setVisibleSignature(new Rectangle(100, 100, 200, 200), 1, null);
sap.setExternalDigest(new byte[128], new byte[20], "RSA");
sap.preClose();
PdfPKCS7 sig = sap.getSigStandard().getSigner();
byte[] content = streamToByteArray(sap.getRangeStream());
byte[] hash = MessageDigest.getInstance("SHA-1").digest(content);
byte[] signatureBytes = scd.generateNonRepudiationSignature(hash);
sig.setExternalDigest(signatureBytes, null, "RSA");
PdfDictionary dic = new PdfDictionary();
dic.put(PdfName.CONTENTS,
 new PdfString(sig.getEncodedPKCS1()).setHexWriting(true));
sap.close(dic);

This example is quite different from the examples you’ve seen elsewhere. In
chapter 16, you learned how to retrieve the certificate and the private key from a
keystore. Now you have to fetch the certificate from the smart card b. After you
create a reader and a stamper object, you create a signature appearance.

 You don’t pass the private key with the method setCrypto() C. The private key
is on the smart card, and there would be a serious security problem if you could
read this private key. You have to sign the hash externally on the smart card reader
D. To achieve this, you create a PdfPKCS7 instance E. PdfPKCS7 is a class that does
all the processing related to signing. You create a hash of the document’s contents
F and use middleware to sign it G. The signature appearance is stored as a PDF
dictionary; sap.close() adds the CONTENTS entry to the signature H.

 This example uses the GoDot library. This library was written by Danny De
Cock, and it can only be used with the Belgian eID. The object be.godot.sc.-
engine.BelpicCard retrieves the certificate b and signs the hash G. You’ll have
to replace these lines with code that addresses software that is specific for your
type of smart card and smart card reader.

 If you need to know more about external hashes and/or external signatures,
consult the online how-to examples written by Paulo Soares: http://itextpdf.-
sourceforge.net/howtosign.html.

 If you want to know more about the Belgian eID, read my presentation notes
for GovCamp Brussels: http://itext.ugent.be/articles/eid-pdf/.

 C

 D

 E
 F

 G

 H
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Dealing with exceptions
624

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

iText-specific exception classes 625
The examples in this book are for demonstration purposes only. They’re con-
ceived so that you can easily run them on your own computer, and I have tried to
keep them as short as possible. Most of the time, the iText-related code is inside a
try-catch sequence. In most cases, I print the stack trace to the System.out when
something goes wrong. That’s OK for simple standalone applications; but in your
own business applications, you should do something more intelligent in the catch
clauses. Let’s look at what can go wrong when you’re producing a PDF document.

E.1 iText-specific exception classes

There are four important exception classes in iText, but you’ll probably never
encounter two of them. PdfException and BadPdfFormatException in the package
com.lowagie.text.pdf are for internal use only. We’ll only discuss the most com-
mon exceptions.

E.1.1 com.lowagie.text.BadElementException

A BadElementException is thrown when you try to create a basic building block
using parameters that are valid for Java but that are wrong for iText. Here are
some examples:

■ You try to create a Table with zero or fewer columns. This doesn’t make
sense, so an exception is thrown. In newer versions of iText, exceptions
like this are gradually being replaced by a java.lang.IllegalArgument-
Exception—for instance, when you create a barcode object using data
that doesn’t conform to the type of barcode you chose.

■ You want to add one basic building block to another with addElement(),
but iText doesn’t allow nesting of those elements. In this case, you risk a
BadElementException. Because some of the text elements are derived from
java.util.ArrayList overriding the add() methods, which are methods
that obviously don’t know any iText-specific exceptions, you may get a
java.lang.ClassCastException instead.

BadElementException is a subclass of DocumentException.

E.1.2 com.lowagie.text.DocumentException

DocumentException is the most general exception in iText. If you try to add con-
tent before opening the Document, a DocumentException is thrown with the mes-
sage: The document isn’t open yet; you can only add meta information. When you try
adding metadata after opening the Document object, the result is the following
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

626 APPENDIX E
Dealing with exceptions
error message: The document is open; you can only add Elements with content. The
same happens for the other functionality that needs to be done before opening
the Document; for instance, encryption can only be added before opening the doc-
ument. After the Document is closed, a DocumentException can be thrown, saying
The document is closed. You can’t add any Elements.

 DocumentExceptions are also thrown while you’re manipulating a PDF docu-
ment—for instance, The original document was reused. Read it again from file or
Append mode requires a document without errors even if recovery was possible.

E.2 Standard Java exceptions

As you’re writing and reading to and from output and input streams, the most
important Java exceptions you’ll have to deal with are those in the package
java.io.

E.2.1 java.io.IOException

An IOException may be thrown by iText, but hardly ever because of iText. In most
cases, you have to look for the reason in your file system or J2EE environment. Do
you have access to the file you’re reading? Do you have sufficient permissions to
write in the directory of the file you’re creating?

 If you’re experimenting with the examples, you may experience the same
problem I encounter almost daily while writing and testing the examples: the
OutputStream to a HelloWorld.pdf file can’t be created because the file is already
open in Adobe Reader (the file is in use, locked by the operating system).

 The most obvious IOException occurs when you’re trying to use a resource that
can’t be found. Especially when using relative paths, you must make sure you start
from the correct directory. This can be confusing when you’re working with a
servlet container. You’ll have to check the documentation of your application
server to know how to change the JVM’s working directory.

 Another IOException you may encounter when closing the Document says The
document has no pages. Suppose you’re adding rows from a database to a Document
in a loop, iterating over a ResultSet. If the ResultSet retrieved from the data-
base is empty, and you aren’t adding any other objects to the Document, the file is
closed and doesn’t contain any pages. When a user opens the file, Adobe Reader
gives an error. Rather than send a bad PDF to the end user, iText prefers to
throw an exception.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Standard Java exceptions 627
E.2.2 java.lang.RuntimeException

A RuntimeException can be thrown because of bad parameters passed by the sys-
tem or the end user, but iText also needs to throw RuntimeExceptions that are
caused by programming errors. One of the things Java programmers have to get
used to when writing complex iText code is that iText often shifts error checking
from compile time to runtime, not by choice, but out of necessity.

 For instance, in chapter 10, you saved and restored the state. If you try to
restore the state without having saved it first, you get a RuntimeException. The
compiler isn’t able to check whether you use restoreState() after saveState()
and not before. Moreover, if an unbalanced save/restore happens at runtime, there
is no obvious way to cure this problem in a catch clause. Whatever you do, you can
get odd side effects in the resulting PDF. Again: You don’t want to send corrupt
PDF files to the end user.

 These are some RuntimeExceptions and their possible causes:

■ NullPointerException—This occurs, for instance, when you forget to set a
variable that is necessary to continue. In the text block of HelloWorldAbso-
lute.java (see chapter 2), you might forget to set the font and size before
adding the text. In that case, you’d get an exception with this message:
Font and size must be set before writing any text.

■ UnsupportedOperationException—When a class extends a superclass or
implements an interface, it isn’t always possible to override or implement
all the methods. For instance, a table cell is a Rectangle, but before it’s ren-
dered to a specific format—PDF, HTML, RTF—it doesn’t make sense to ask
for the dimensions of the table cell. Even after it’s added to the Document,
the value isn’t available, as you could be rendering the cell in different for-
mats at the same time.

What you have here are programming bugs; you shouldn’t work around them or,
even worse, ignore them by using an empty catch clause. You should fix the bugs.
That’s why iText often uses the ExceptionConverter class.

E.2.3 Converting checked exceptions

I don’t want to debate whether checked exceptions are a blessing or a mistake.
There are other places for such discussions. I know, I plead guilty, I swallow all
exceptions in the short examples that come with this book, but in your applica-
tions you should replace the comment section and handle the exceptions—even
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

628 APPENDIX E
Dealing with exceptions
if this means converting a checked exception into an unchecked exception with
this class: com.lowagie.text.ExceptionConverter.

 The iText developers found this class on a mailing list a long time ago. It was
probably posted by Heinz Kabutz. In his article “Does Java need checked Excep-
tions?” Bruce Eckel, author of the famous book Thinking in Java, renamed Excep-
tionConverter to ExceptionAdapter. This class is used in iText to change a
checked exception into an unchecked one (ExceptionConverter extends Runtime-
Exception) when unrecoverable damage is done to the PDF file while generating
it. You don’t want to send a corrupt PDF to end user without having the slightest
clue that something went wrong. In my experience, it’s always better to throw a
RuntimeException giving end users no PDF than to give them a bad PDF.

E.3 Virtual machine errors

I bet you don’t like the sound of the dreaded word error. I must confess, I had to
take a break before I could finish this appendix and tell you about two errors that
pop up now and then on the mailing list.

E.3.1 java.lang.OutOfMemoryError

In section 2.1.5, I told you that iText tries to free as much memory as possible, as
soon as possible. It’s important not to store too much content in one big object.
For instance, iText can’t flush the contents of a table object before you add it to
the Document. If you create a table that spans 1,000 pages, all the content of this
table object remains in memory. You should cut the table into small portions and
add them little by little, so that iText can flush the content gradually.

 Unfortunately, there are internal iText objects that can’t be flushed to the
OutputStream until the end, when the Document is closed: the reference table,
the page tree, and so on. If you’re generating documents that have a huge
number of pages containing lots of special objects that have to be kept in mem-
ory, you may need to throw extra memory at them. You can do this by starting
the JVM with the -Xmx option—for instance, -Xmx128m or -Xmx256m. Otherwise,
the default maximum memory will probably be only 64 MB, which may not be
enough for your document.

E.3.2 Class or method not found error

These are some weird errors. Many people have lost a lot of time because they
don’t know where to look for the class or method that is supposed to be miss-
ing. They open the iText.jar they just installed, and see the presence of a class
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Virtual machine errors 629
or a method; but when they try to use it, the JVM tells them it can’t find the
class or method.

 The most obvious reason for these errors is that the class or method is indeed
missing; but there are other possibilities you should take into account. You can
get this kind of error when you use a jar that is compiled with another version of
the JDK than your JVM. In that case, you should build the jar yourself, using your
own JDK.

 Another possibility is that you have two different versions of iText in your
CLASSPATH. You can have only one active iText version in your CLASSPATH. This is
especially tricky when you’re upgrading or when you’re using other products that
have an iText.jar in their distribution in the same environment.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Pdf/X, Pdf/A,
and tagged PDF
630

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF/X 631
This book focuses on traditional PDF and PDF documents with AcroForms. Those
are the most important and most widespread types of PDF. In chapter 3, we also
talked about specific subsets of the PDF specification that are defined in an ISO
standard. I told you that iText supports two versions of the PDF/X standard, and
that different aspects of the PDF/A specification are under development. The X
stands for eXchange; PDF/X is used in the prepress sector. The A stands for
Archiving; PDF/A has been advanced as the standard format for long-term pres-
ervation of documents.

 Let’s find out more about creating PDF/X- and PDF/A-compliant documents
with iText.

F.1 PDF/X

If you want to make sure the file you’re generating conforms to one of the
PDF/X specifications supported by iText, you have to add an extra line between
the second and third step in the PDF-creation process: PdfWriter.setPDFX-
Conformance(pdfxversion).

 The value of the parameter must be one of the following constants:

■ PdfWriter.PDFXNONE—The default. No conformance tests are done.
■ PdfWriter.PDFX1A2001—The files are PDF/X-1a:2001 compliant.
■ PdfWriter.PDFX32002—The files are PDF/X-3:2002 compliant.

Once the PDF/X version is set, iText throws a PdfXConformanceException as
soon as you try to do something that isn’t in accordance with the ISO stan-
dard. The message that comes with this exception (which extends java.lang.-
RuntimeException) explains what went wrong.

 The following example adapts the initial “Hello World” example (listing 2.1):

/* chapterF/HelloWorldPdfX.java */
writer.setPDFXConformance(PdfWriter.PDFX1A2001);
document.open();
Font font = FontFactory.getFont("c:/windows/fonts/arial.ttf",
 BaseFont.CP1252, BaseFont.EMBEDDED, Font.UNDEFINED,
 Font.UNDEFINED, new CMYKColor(255, 255, 0, 0));
document.add(new Paragraph("Hello World", font));

This code conforms to PDF/X-1a:2001 b. This means you have to embed the font
into the PDF file C. If you want to use color, you need to define it with the class
CMYKColor D.

 B

 C
 D
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

632 APPENDIX F
Pdf/X, Pdf/A, and tagged PDF
 If you want to see the exception in action, you can change the CMYK color to
new Color(0x00, 0x00, 0xFF); the java.awt.Color object is translated to an RGB
color, and this isn’t allowed in PDF/X-1a:2001.

 Or, you can try to replace BaseFont.EMBEDDED with BaseFont.NOT_EMBEDDED.
This also throws a PdfXConformanceException because all fonts must be embed-
ded according to the PDF/X standard. The size of the resulting HelloWorld-
PdfX.pdf file is a lot bigger than your original HelloWorld.pdf because the glyph
descriptions of all the characters in your “Hello World” string are embedded.

 Other functionality that breaks PDF/X conformance includes encryption,
layers, image masks, transparency, and blend modes. The same goes more or
less for PDF/A.

F.2 PDF/A

Just like PDF/X, the PDF/A specification lists a number of things that are inap-
propriate in a PDF file that is intended for long-term preservation. PDF/A con-
formity is similar to PDF/X-3 (fonts need to be embedded, audio and video is
forbidden, and so on), but for the moment iText doesn’t have a method set-
PdfAConformance().

 As mentioned in chapter 3, PDF/A isn’t only about restrictions. Self-documen-
tation is also important in a PDF/A file. In a PDF/A file, you should always find an
XMP metadata stream. The eXtensible Metadata Platform (XMP) is a standard for-
mat for the creation, processing, and interchange of metadata. XMP isn’t limited
to the PDF or PDF/A format. TIFF, JPEG, PNG, SVG, and so on can also contain
XMP data, but that is beyond the scope of this book.

 In chapter 2, you added PDF-specific metadata to the information dictionary.
This is fine for Adobe Reader, but applications that aren’t PDF-aware can’t read
this meta-information. By adding the metadata as an unencrypted XML content
stream following the XMP schema, you can work around this problem. The XML/
XMP inside the PDF document can be detected and parsed by any application
that is able to read a file. Note that this type of metadata isn’t reflected in the Doc-
ument Properties tab of Adobe Reader. In Acrobat 7, you can find the XMP meta-
data by choosing File > Document Properties > Additional Metadata.

 An XMP metadata stream can be added to any component for which it’s rele-
vant to have metadata. For instance, you can add an XMP stream to the PDF page
dictionary of every page in your document. PDF/A needs an XMP stream in the
document catalog.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

PDF/A 633
F.2.1 Creating an XMP metadata stream

In iText XMP streams are added to the document catalog:

/* chapterF/HelloWorldXmpMetadata.java */
ByteArrayOutputStream os = new ByteArrayOutputStream();
XmpWriter xmp = new XmpWriter(os);
XmpSchema dc = new DublinCoreSchema(XmpSchema.FULL);
XmpArray subject = new XmpArray(XmpArray.UNORDERED);
subject.add("Hello World");
subject.add("XMP");
subject.add("Metadata");
dc.setProperty(DublinCoreSchema.SUBJECT, subject.toString());
xmp.addRdfDescription(dc);
PdfSchema pdf = new PdfSchema(XmpSchema.SHORTHAND);
pdf.setProperty(PdfSchema.KEYWORDS, "Hello World, XMP, Metadata");
pdf.setProperty(PdfSchema.VERSION, "1.4");
xmp.addRdfDescription(pdf);
xmp.close();
writer.setXmpMetadata(os.toByteArray());

You can use XmpWriter b to create the XMP stream and setXmpMetadata() E to
add the bytes of this stream to the root object. As you can see in the source code,
you add different XMP schemas to the XmpWriter object: DublinCoreSchema C and
PdfSchema D. All the possible XMP schemas are described in the XMP specifica-
tion. Only the most common schemas are implemented in iText, but you can
extend the abstract class XmpSchema if you need support for the other ones.

 The PDF/A specification contains a table titled crosswalk between document infor-
mation dictionary and XMP properties. This table is implemented in iText so that you
can add XMP metadata without having to worry about the XMP specifications, Dub-
lin Core, and other schemas. You can use the methods discussed in section 2.1.3
and invoke createXmpMetadata() to generate the XMP stream automatically:

/* chapterF/HelloWorldXmpMetadata2.java */
document.addTitle("Hello World example");
document.addSubject("This example shows how to add metadata");
document.addKeywords("Metadata, iText, step 3");
document.addCreator("My program using iText");
document.addAuthor("Bruno Lowagie");
writer.createXmpMetadata();
document.open();

If you open the resulting PDF in a plain text editor, you’ll see an XML section that
looks like this:

<?xpacket begin='ï»¿' id='W5M0MpCehiHzreSzNTczkc9d' ?>
<x:xmpmeta xmlns:x='adobe:ns:meta/'>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
<rdf:Description rdf:about=''

 b

 C

 D

 E
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

634 APPENDIX F
Pdf/X, Pdf/A, and tagged PDF
 xmlns:dc='http://purl.org/dc/elements/1.1'>
 <dc:format>application/pdf</dc:format>
 <dc:subject>This example shows how to add metadata</dc:subject>
 <dc:title>Hello World example</dc:title>
 <dc:creator>
 <rdf:Seq><rdf:li>Bruno Lowagie</rdf:li></rdf:Seq>
 </dc:creator>
</rdf:Description>
<rdf:Description rdf:about=''
 xmlns:dc='http://ns.adobe.com/pdf/1.3/'
 pdf:Producer='iText1.3.3 by lowagie.com'
 pdf:Keywords='Metadata, iText, step 3' />
<rdf:Description rdf:about=''
 xmlns:dc='http://ns.adobe.com/xap/1.0'>
 <xmp:CreateDate>2005-09-01T11:42:49.000Z</xmp:CreateDate>
 <xmp:CreatorTool>My program using iText</xmp:CreatorTool>
 <xml:ModifyDate>2005-09-01T11:42:49.000Z</xml:ModifyDate>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
(padding recommended by the XMP Specification)
<?xpacket ends='w' ?>

Applications that don’t understand PDF syntax but are able to extract and read
XMP can now retrieve the metadata from the PDF you created.

F.2.2 Existing PDF files and XMP metadata
The XMP metadata stream from the document catalog of an existing PDF file can
be extracted with the method getMetadata():

/* chapterF/HelloWorldReadMetadata.java */
if (reader.getMetadata() == null) {
 System.out.println("No XML Metadata.");
}
else {
 System.out.println("XML Metadata: " +
 new String(reader.getMetadata()));
}

Suppose you have a repository of existing PDF documents with PDF-specific meta-
data but without an XMP metadata stream. You can retrieve the information Map
and use this Map as a parameter for XmpWriter. Use PdfStamper.setXmpMetadata()
to add this stream to the existing document:

/* chapterF/HelloWorldAddMetadata.java */
ByteArrayOutputStream baos = new ByteArrayOutputStream();
XmpWriter xmp = new XmpWriter(baos, info);
xmp.close();
stamper.setXmpMetadata(baos.toByteArray());
stamper.close();
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Tagged PDF 635
This XMP functionality was added to iText only recently. If setPdfAConformance()
were to be added to iText, you’d be able to produce a Level B-conforming PDF/A
file. Level B mainly ensures that the visual appearance of a file is preserved over
the long term.

 Level A conformance demands richer internal information, which is necessary
for the preservation of the document’s logical structure and content text stream
in natural reading order. Additionally, Level A conformance facilitates the acces-
sibility of conforming files for physically impaired users.

 That’s what tagged PDF is about.

F.3 Tagged PDF

Do you remember the different types of PDF discussed in chapter 3? We talked
about the fact that traditional PDF doesn’t know about the structure of text: As far
as traditional PDF is concerned, text is just shapes painted on a canvas. PDF/A
Level B conformance ensures that you’ll always be able to render such a docu-
ment correctly.

 In PDF version 1.4, a new type of PDF was introduced: tagged PDF. When
reading a tagged PDF file, applications can recognize text structure types such
as paragraphs, headings, tables, and so on. That’s what you need for PDF/A
Level A conformance.

F.3.1 Standard structure types

The purpose of tagged PDF is not only to prescribe how the PDF should be read,
but also to allow a tagged PDF consumer application to distinguish what part is
real content in a specific context and what part of the content can be disregarded.

 For instance, a text-to-speech engine probably shouldn’t read running heads
or page numbers out loud. Specific types of elements of page content can be dis-
regarded or replaced with alternate text (for instance, an image can be replaced
by a description of the image).

 Standard structure types are defined, divided into these four categories:

■ Grouping elements—Group other elements into sequences and hierarchies,
but have no direct effect on layout. For instance, Document, Part, Sect (sec-
tion), Div, TOC, and so on.

■ Block-level structure elements (BLSEs)—Describe the overall layout of content
on the page: paragraph-like elements (P, H, H1-H6), list elements (L, LI,
Lbl, LBody), and the table element (Table).
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

636 APPENDIX F
Pdf/X, Pdf/A, and tagged PDF
■ Inline-level structure elements (ILSEs)—Describe the layout of content within
a BLSE: Span, Quote, Note, Reference, and so on.

■ Illustration elements—Compact sequences of content that are considered to
be unitary objects with respect to page layout: Figure, Formula, and Form.

The content of such a structure is enclosed in a marked-content sequence.

F.3.2 Marked content

Marked-content operators were introduced in PDF-1.2. They identify a portion of
a PDF content stream as a marked-content element of interest to a particular
application (for instance, a tagged PDF consumer).

 With iText, you can define a PdfStructureElement and add marked content to
the direct content with the methods beginMarkedContentSequence() and end-
MarkedContentSequence(). The following example shows how you can generate a
tagged PDF file, writing text to the direct content:

/* chapterF/MarkedContent.java */
Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream("marked_content.pdf"));
writer.setTagged();
document.open();
PdfStructureTreeRoot root = writer.getStructureTreeRoot();
PdfStructureElement eTop =
 new PdfStructureElement(root, new PdfName("Everything"));
root.mapRole(new PdfName("Everything"), new PdfName("Sect"));
PdfStructureElement e1 = new PdfStructureElement(eTop, PdfName.P);
PdfStructureElement e2 = new PdfStructureElement(eTop, PdfName.P);
PdfStructureElement e3 = new PdfStructureElement(eTop, PdfName.P);
PdfContentByte cb = writer.getDirectContent();
BaseFont bf = BaseFont.createFont(BaseFont.HELVETICA,
 BaseFont.WINANSI, false);
cb.setLeading(16);
cb.setFontAndSize(bf, 12);
cb.beginMarkedContentSequence(e1);
cb.beginText();
cb.setTextMatrix(50, 804);
for (int k = 0; k < text1.length; ++k) {
 cb.newlineShowText(text1[k]);
}
cb.endText();
cb.endMarkedContentSequence();
cb.beginText();
cb.setTextMatrix(50, 700);
for (int k = 0; k < 2; ++k) {
 cb.beginMarkedContentSequence(e2);
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

To be continued 637
 cb.newlineShowText(text2[k]);
 cb.endMarkedContentSequence();
}
cb.endText();
cb.beginMarkedContentSequence(e3);
cb.beginText();
cb.setTextMatrix(50, 400);
cb.showText("It was the ");
PdfDictionary dic = new PdfDictionary();
dic.put(new PdfName("ActualText"), new PdfString("best"));
cb.beginMarkedContentSequence(new PdfName("Span"), dic, true);
cb.showText("worst");
cb.endMarkedContentSequence();
cb.showText(" of times.");
cb.endText();
cb.endMarkedContentSequence();

If you look at the Advanced section in the Document Properties > Description
tab of the resulting PDF, you’ll see the file is of type tagged PDF. If you decompress
the file, you’ll see sequences like this:

/P <</MCID 4>> BDC
BT
1 0 0 1 50 400 Tm
(It was the)Tj
/Span <</ActualText(best)>> BDC
(worst)Tj
EMC
(of times.)Tj
ET
EMC

The P means this is a paragraph; MCID 4 is the Marked Content ID. The marked
content operators are BDC and EMC. A nested marked content sequence is
tagged as type Span.

 In the resulting PDF, the word worst is shown on the screen; but if you try to
copy/paste this small paragraph, the actual text best is copied. You can also test
this by trying the Adobe Reader 7.0 feature View > Read Out Loud. On screen,
you see this is the worst of times, but Adobe Reader reads this is the best of times.

F.4 To be continued

This PDF/A and tagged PDF functionality is new in iText, so I can’t tell you much
more about it for now. For more information, consult the iText history file and
look for the words PDF/A and tagged PDF. Code contributions are always welcome.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Resources
638

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Font-related bibliography and sites 639
PDF in general

Adobe Systems Inc. http://www.adobe.com/.

———. PDF Reference Version 1.6. 5th ed. Adobe Press, 2004.

———. “What is PDF?” http://www.adobe.com/products/acrobat/adobepdf.html.

Steward, Sid. PDF Hacks. O’Reilly Media, Inc., 2004.

Warnock, John. “The Camelot Paper.” 1991.

Publications by Adobe Systems Incorporated

Acrobat 7.0 PDF Open Parameters. 2005.

Acrobat JavaScript Scripting Reference. 2005.

Acrobat JavaScript Scripting Guide. 2005.

Adobe Type 1 Font Format. Reading, MA: Addison-Wesley, 1990.

Font technical notes. http://partners.adobe.com/public/developer/font/index.html.

———.Technical Note #5004: Adobe Font Metrics File Format Specification v4.1. 1998.

———.Technical Note #5015: Type 1 Font Format Supplement. 1994.

———.Technical Note #5176: The Compact Font Format Specification v1.0. 2003.

OpenType User Guide for Adobe Fonts. 2005.

PostScript Language Reference. 3rd ed. Reading, MA: Addison-Wesley, 1999.

XMP Specification. http://www.adobe.com/products/xmp/pdfs/xmpspec.pdf.

Font-related bibliography and sites

American Mathematical Society. http://www.ams.org/. Links to Type 1 fonts: http://www.ams.
org/tex/type1-fonts.html.

David McCreedy’s Gallery of Unicode Fonts. http://www.travelphrases.info/fonts.html.

Devroye, Luc. http://jeff.cs.mcgill.ca/~luc/. (Contains many font-related links.)

Fondu (a set of programs to interconvert between Mac font formats and PFB, TTF, OTF,
and BDF files on UNIX). http://fondu.sourceforge.net/.

Languagegeek.com. http://www.languagegeek.com/font/fontdownload.html. (The free
aboriginal serif for the word peace in Cherokee was found here.)

Microsoft Typography. http://www.microsoft.com/typography/. Including the OpenType
Specification: http://www.microsoft.com/typography/otspec/.

OpenType Q&A. http://store.adobe.com/type/opentype/qna.html.

Repository of TrueType fonts. http://chanae.walon.org/pub/ttf/.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

640 APPENDIX G
Resources
Say PEACE in all languages! http://www.columbia.edu/~fdc/pace/. This page inspired the
SayPeace examples. See also: http://www.columbia.edu/~fdc/ (home page of Frank da Cruz).

Shavian alphabet. http://www.omniglot.com/writing/shavian.htm.

Shavian OpenType fonts. http://www.30below.com/~ethanl/fonts.html.

Unicode Consortium. http://www.unicode.org/. “Where’s my character” page: http://www.
unicode.org/standard/where/.

———. The Unicode Standard 4.0. Reading, MA: Addison Wesley, 2003.

Utopia font. ftp://ctan.tug.org/tex-archive/fonts/utopia/.

iText-related links

iText at Ghent University: http://itext.ugent.be/.

iText home page. http://www.lowagie.com/iText/.

iText documentation. http://itextdocs.lowagie.com/.

iText at SourceForge. http://sourceforge.net/projects/itext/.

Lesser GNU Public License. http://www.gnu.org/copyleft/lesser.html.

Mozilla Public License. http://www.mozilla.org/MPL/.

Soares, Paulo. iText site. http://itextpdf.sourceforge.net/.

Links to PDF tools mentioned in the book

Adobe Acrobat family. http://www.adobe.com/products/acrobat/main.html.

Apache FOP. http://xmlgraphics.apache.org/fop/.

C# port (iTextSharp). http://itextsharp.sourceforge.net/.

Cold Fusion. http://www.adobe.com/products/coldfusion/.

Crionics. http://www.crionics.com/.

Eclipse/BIRT. http://www.eclipse.org/birt/.

Folio. http://defoe.sourceforge.net/folio/.

ICESoft. http://www.icesoft.com/.

J# port (iText.NET). http://www.ujihara.jp/iTextdotNET/.

JasperReports. http://jasperreports.sourceforge.net/.

JFreeChart. http://www.jfree.org/jfreechart/. (See also the JFreeChart Developer Guide.)

JPedal. http://www.jpedal.org/.

PDFBox. http://www.pdfbox.org/.

Pdfp and other interesting tools. http://www.noliturbare.com/ChicksTools.html.

PdfTk. http://www.accesspdf.com/pdftk/.
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Limited list of other projects and products using iText 641
Limited list of other projects and
products using iText

Datavision OS reporting tool. http://datavision.sourceforge.net/.

Display Tag Library. http://displaytag.sourceforge.net/.

DocMan document manager. http://docman.sourceforge.net/.

Google Calendar. http://www.google.com/calendar/.

iReport visual report builder for JasperReports. http://ireport.sourceforge.net/.

NASA Panoply NETCDF Viewer. http://www.giss.nasa.gov/tools/panoply/thanks.html.

PDFDoclet: Javadoc API to PDF. http://pdfdoclet.sourceforge.net/.

Topaz (electronic signatures). http://www.topazsystems.com/software/download/java/index.
htm.

UJAC Useful Java Application Components. http://ujac.sourceforge.net/

Your project?
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

index
Symbols

%%EOF 48, 566
%PDF 38, 536, 539, 565

Numerics

128-bit encryption 85, 92–93
2D Graphics. See

java.awt.Graphics2D
40-bit encryption 92–93

A

Abstract Windowing
Toolkit 44–45, 357

access permissions 92–94
assembly 93
copy/extract text 93
filling forms 93
modifying 93
printing 93
save/copy PDF 94
verbose overview 94

accessibility 80, 635
Acrobat Capture 78
Acrobat. See Adobe Acrobat
AcroFields 55–56, 476–518

export to FDF 516
AcroForm 27, 83, 465,

475–518, 553–559
comparison with HTML

form 498–499
creation 475–488
fill 502–518

merge with FDF file 515
merge with XFDF 517
submit 488
submit as FDF 492, 587
submit as HTML 492
submit as PDF 495
submit as XFDF 494
See also form

action
GoTo page 412
GoToR 412
launch application 412
trigger from event 418

ActiveX 583
addCell 164, 167
adding cells to a table. See add-

Cell
adding content 42
adding headers/footers to a

PDF. See header, footer
additional action

form field 496
Adobe Acrobat 75, 77–78, 500
Adobe Acrobat Elements 77
Adobe Acrobat Professional 78,

84
Adobe Acrobat Standard 77
Adobe Creative Suite 75
Adobe Distiller 78
Adobe Font Metrics file 234
Adobe Illustrator 75, 81
Adobe imaging model 76
Adobe LiveCycle Designer 78,

84, 500
Adobe Reader

bookmarks panel 100

browser plug-in 536
center 400
comments panel 466
document properties 33, 40,

50
empty window. See blank page

problem
error message 88
event 419
fit window 400
open parameters 619
pages panel 401
panel 398
preferences 396
print a PDF 582
read out loud 637
save form data 488
signatures panel 518, 528
toolbar 620
trusted certificates 529

Adobe Standard encoding 232
Adobe Systems

Incorporated 75–79
affine transformation 315
AFM file. See Adobe Font Met-

rics file
AI. See Adobe Illustrator. See

Application Identifier
AIIM. See Association for Infor-

mation and Image Manage-
ment

alias
font 273
keystore 522–523

alignment
ColumnText 205
The names of all the code examples in the book have been set in bold font for easier identification.

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 643
alignment (continued)
paragraph 104
PdfPCell 168
PdfPCell vertical

alignment 170
PdfPTable 165

alphabet 19
Anchor 106, 123, 469, 595

definition 100
animated GIF 139–140
AnnotatedChunks 474
AnnotatedImages 475
annotation 465–475

appearance stream 478
file attachment 471
free text 473
highlighting mode 469
line, square and circle

annotation 473
link annotation 468
movie annotation 469
properties 507
text annotation 59, 385, 466
widget annotation 475–488

annotation dictionary 466,
 470

Annotations 469–473
ANT 11

targets 11–12
Apache Batik 22, 138, 371, 388
appearance streams

annotation 478
application identifier 606

overview 607–608
application/pdf 536

application/
vnd.adobe.xfdf 536

application/vnd.fdf 536
Arabic 20, 262, 264, 269
ArabicLigaturizer 270
arc 293
archiving. See PDF/A
Arial 225
art box 427, 429
ascender 171
Asian 20

See also Chinese Japanese
Korean

AsianFontMapper 364
Association for Information and

Image Management 82

Association for Suppliers of
Printing, Publishing and
Converting
Technologies 82

asymmetric key system 521
attachments panel 398
author signature. See certifying

signature
automatic font selection 276–

279
AWT. See Abstract Windowing

Toolkit
axial shading 333

B

backdrop 336, 338
background color

form field 508
page 34
PdfPCell 174, 298

BACKGROUNDCANVAS 298
BadElementException 625
BadPdfFormatException 625
bar chart 371
barcode 146, 597, 603–617

3 of 9 597, 612
Bookland 605
Codabar 613
code 128 606
European Article

Number 603
ink spreading 614
interleaved 2 of 5 610
PDF417 615
PLANET 611
POSTNET 611
property overview 614
United States Postal

Service 611
Universal Product Code

603
Barcodes 146, 604–613, 616
base font 225, 231–248

automatic selection 271
the BaseFont object 251, 266,

599
Base14 font. See standard

Type 1 font
BASECANVAS 298
BaseFont class diagram 599

basic building block 42, 100–
111

class diagram 595
color 334

basic multilingual plane 242,
249

basic PDF objects 569
batch generation of letters 445–

451
batch process 4
batch processing forms 511
Batik. See Apache Batik
beginLayer 377, 385, 389, 392
beginText 344, 353, 358
bevel join 308
Bézier curve 290–291

control point 291
bidirectional writing. See right-

to-left writing system
Bill of Materials 8
Binary Large Object 143
binary treatment of PDF

files 38
bitmap. See Windows bitmap
blank page problem 537–542
bleed box 427, 429
blend mode 337–338
blind exchange. See PDF/X
blinds page transition 406
BLOB. See Binary Large Object
BM. See blend mode
BMP. See basic multilingual

plane
BMP. See Windows Bitmap
Bookland 605
bookmark 49, 53, 407–415, 550

automatic creation 442
retrieving bookmarks 572
See also table of contents

bookmark panel 398
border form field 508
bounding box 438
box

page transition 406
See also page boundaries

browser timeout problem 545
browser-related issues 24, 37,

534–549
BT. See beginText
bug fixes 9
builder pattern 46
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

644 INDEX
build.xml 11
bulleted list. See unordered list
burst PDF files. See PDF, burst
butt cap 307
button field 476
Buttons 477–481
Buttons/Buttons2 477–482
ByteArrayOutputStream 36,

540, 545

C

C++ 10
CA. See Certificate Authority
cacerts 530
Cache-Control 540
Calculator 497
Camelot Paper 75
Cascading Style Sheets 5, 53,

457
catalog dictionary 566, 571
catalog, personalized 56
CCITT encoded images 145,

616
CCITT. See Comité Consultatif

International Télépho-
nique et Télégraphique

cell 598
borders 174
colspan 168
events 296–302
rotation 176
See also PdfPCell

cell event, position a form
field 555

Certificate Authority 520, 522,
524, 529

certificate chain 523
Certificate Revocation List 525
Certificate Signing Request 522
certificate, generate or

obtain 521–523
certifying signature 527
CFF. See Compact Font Format
ChangeURL 587
Chapter 109, 111, 595

definition 100
page event 433

ChapterEvents 444–445
character advance 266
character code 232

character identifier 249
character name 232, 240
character set 20, 225
character spacing 348

See also CharSpace ratio
character vs. glyph 225
characters 224
CharSpace ratio 348

Chunk 121
ColumnText 205
PdfPCell 168

chart 371
check box 476, 479–480, 502,

516
checked exception 627
Chinese Japanese Korean 85,

248, 250–252, 277, 364,
599

ChineseKoreanJapaneseFonts
251

choice field 486–488
add options 506
retrieve options 504
set value 506

ChoiceFields 486–487
Chunk 101, 111–129, 595

annotation 474
color 117
definition 100
generic functionality 125–

129
page event 433
rendering mode 117
scaling 111
setAction 382
setUnderline 112
wrapping an image 149

CID 226, 260
See also character identifier

CIDFont 226, 249
embedding 252

CIDTrueTypeOutlines 254
circle 293, 305
circle annotation 473
CJK. See Chinese Japanese

Korean
class diagram 592–601
ClassCastException 625
ClassNotFoundException 628
CLASSPATH 10, 12
clickable link See Anchor

clickable map 492
ClimbTheTree 571–573, 575
clipping path 340–344
ClippingPath 342
closed source software 9
closePath 285
closePathEoFillStroke 287
closePathFillStroke 287
closePathStroke 286
CMap 249–252

custom 252
predefined 250

cmap 232, 240–241
CMYK. See colorspace
CMYKColor 328, 631
Codabar 597, 613
code 128 597, 606
code 39. See barcode 3 of 9
code page 240, 246
code point 249–250
ColdFusion 7, 10
Color 34, 327
color 326–341

class diagram 600
form field 508
PdfOutline 411

colored tiling pattern 329
ColoredParagraphs 335
colorspace 34, 326–334

Cyan-Magenta-Yellow-
Black 35, 327, 600, 631

gray 326
Red-Green-Blue 34, 327, 361,

632
separation 328

colspan 302
PdfPCell 168

column
irregular columns 203
multiple columns on one

page 201
table columns 165

column layout 397
ColumnControl 200
ColumnElements 207
ColumnProperties 205
ColumnsIrregular 203
ColumnsRegular 202
ColumnText 194, 197–211,

261, 270
addElement 206, 209
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 645
ColumnText (continued)
adding different

columns 198
addText 197
irregular 203
PdfWriter caveat 198
setColumns 203
setSimpleColumn 198
setText 199, 201

ColumnWithAddElement 210
ColumnWithAddText 197
ColumnWithSetSimpleColumn

 199
ColumnWithSetText 199
comb field 485, 498
combine forms. See form
combo box 486, 502, 556

retrieve options 504
Comité Consultatif Interna-

tional Téléphonique et
Télégraphique 145

command-line tool 10, 12
comments panel 466
Compact Font Format 225, 243,

599, 639
CompactFontFormatExample

 244
composite font. See Type 0 font
composite fonts 248–255
composite mode

ColumnText 209–211
comparison with text

mode 205
MultiColumnText 213, 216
PdfPCell 168

compression 85, 88–90
default 89

concatenate forms. See form
concatenating PDF files 64

See also PDF, concatenate
ConstructingPaths1-4 288–

290, 292–294
content stream 43
content type 536
Content-Disposition 537
continuous page layout. See col-

umn layout
convert

HTML to PDF 130, 457–461
TIFF to PDF 139
txt to PDF 105

coordinate system 313–316
java.awt.Graphics2D 361
See also PDF coordinate sys-

tem
copy selected pages 65
Courier 227
CourseCatalogueBookmarked

423
CourseCatalogueEvents 462
createGraphics 45, 365
creation date 40
Creative Suite. See Adobe Cre-

ative Suite
Crionics 583, 640
CRL. See Certificate Revocation

List
crop box 427, 429
cross-reference table 48, 564,

568, 570
entry 568

cryptography 520
CSR. See Certificate Signing

Request
CSS. See Cascading Style Sheets
CTM. See Current Transforma-

tion Matrix
Current Transformation

Matrix 313–315
curveFromTo 285
curveTo 285, 289, 292
customized PDF 4

D

damaged PDF 88
reading 52

dash array 309
database publishing 4, 189
de Casteljaus algorithm. See

Bézier curve
decompress 407–408, 416–418

PDF content 579
PDF file 90

decrypting a PDF 95
DefaultFontMapper. See Font-

Mapper
DER. See Distinguished Encod-

ing Rules
descender 171
destination 106, 123

explicit 407–408

external 123, 417
internal 124, 415
named 416

Device Colorspace 328
DeviceCMYK 327
DeviceColor 326–327
DeviceGray 326
DeviceRGB 327
diacritics 258, 265, 366
Diacritics1-2 264–266
DickensHyphenated 121
Digital Rights Management 94
digital signature 4, 27, 75, 83,

85, 518–529
appearance 525
creation 524
ordinary vs. certifying

signature 527
smartcard 622

direct content 43, 57, 294–
321

direct content layers 295
DirectContent 296
dissolve page transition 406
Distinguished Encoding

Rules 522
DocListener 36, 593
document

archiving 74
closing 46–48
electronic 74
exchanging 74
large 47
metadata 40
properties 50
the Document object 32, 35,

101, 593
title display 400

Document Object Model 47
DocumentException 625
DocumentLevelJavaScript

420
DocWriter 35, 593
DOM. See Document Object

Model
drawString 358
DRM. See Digital Rights Man-

agement
Dublin Core schema 633
duration

page transition 406, 440
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

646 INDEX
E

EAN. See European Article
Number

EAN supplemental 605
eBook 396
Eclipse/BIRT 7, 564, 640
e-commerce 7
edit text 578–581
e-government 7
eID. See electronic identity

card
electronic document 74
electronic identity card 7,

622
Element 101
Element interface 595
ellipse 293
embed a PDF in a web

page 544
embed fonts 231
EmptyPages 427
Encapsulated PostScript 136,

138
encoding 19, 232, 240, 244,

246, 249
encoding vector 231
encrypt 68

PDF document 91
encrypt PDF files. See PDF,

encrypt
encryption 90–95, 566

strength 92
End of File. See %%EOF
end of line 118
endLayer 377, 385, 389, 392
endstream 43, 574
endText 344, 353, 358
eoFill 287
eoFillStroke 287
ET. See endText
European Article Number 597,

603
European Credit Transfer

System 553
even-odd rule 289, 291, 344
EventTriggeredActions 419
ExceptionConverter 628
exceptions 625–629
exchanging document 74
executable jar 11

explicit destination 407, 416,
468

ExplicitDestinations 409
ExtendedColor 35, 326,

334
eXtensible Markup

Language 29, 130, 189,
445–456

eXtensible Metadata
Platform 82–83, 632

add to existing file 634
external link 106, 123, 417

See also Anchor
external object. See XObject
external URL 417
extract text 574–578
EyeCoordinates 313, 315
EyeImages 318
EyeInlineImage 318
EyeLogo 312
EyeTemplate 320

F

facing page layout. See two page
layout

fax standards 145
FdfReader 493, 516
FdfWriter 514
field dictionary 475, 477

See also form field
FieldActions 498
file

attachment 85, 471
extract 589
identifier 566
selection field 558
structure 564

FileOutputStream 36
FileSizeComparison 247
fill 286
FillAcroForm1-3 505– 517
filling

a form 502–518
a path 287
forms. See form
paths 289

fillStroke 287
FireFox 536, 539, 544
first page action 416
fit window 400, 407

fixed width font. See monospace
font

flags, form fields and
annotations 507

flate compression. See compres-
sion

flatten a form 56, 69, 506, 510–
514

optimizations 511
flatten. See form
font

alias 273
automatic selection. See auto-

matic font selection
BaseFont object 231–248
bold 229
CID. See CIDFont
class diagram 599
cmap. See cmap
code page 240
color 229
Courier 227
default font 229
definition 224
display 235, 247
downloading font packs 251
embedding 231, 239, 632
embedding a subset 247
family 225
file size 247
form field 508
Helvetica 227
IOException 626

font not found 234
italic 229
java.awt.Font 362–368
java.awt.Graphics2D 362
kerning 350
language identifier 242
licensing restrictions 231
metrics 266
monospace 267
name 274
path to a font 11
platform ID 241
program 230
proportional width 267
register a directory 274
register a font 271
sans-serif 235
serif 235
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 647
font (continued)
simple font 226
simulating bold font 117
simulating italic font 116
single byte. See simple font
size 229
style 229
subset 231
substitution 231, 233, 236
Symbol 227, 277
the Font object 227–230, 271,

599
Times-Roman 227
TrueType 226
Type 0-3 225
underline. See underline
ZapfDingbats 227

Font Metrics File 639
FontFactory 271–276, 599
FontFactoryExample1-2 272,

274–276
FontMapper 362, 364–365
FontMetrics 230, 363
FontSelectionExample 278
FontSelector 277, 280
Foobar examples

charts 371–373
city map 21–23, 321–324,

353–355, 385–392
fancy flyer 16, 129–133, 158–

160
headers and footers 461–462
learning agreement 27, 553–

561, 587–590
personalized course

catalog 24, 550–553
say peace 19, 262–264, 279–

282
study quide 17, 189–192,

216–219
watermarks 461–463

FoobarCharts 372–373
FoobarCity 323
FoobarCityBatik 386–391, 396
FoobarCityStreets 354
FoobarCourseCatalog 218
FoobarCourses 551
FoobarFlyer 131–132, 158–160
FoobarLearningAgreement

554–555, 557–558
FoobarStudyProgram 190

FoobarSvgHandler 323
footer 432–433, 461

adding headers/footers to a
PDF file 24

form 55, 85
combine forms 70
concatenate forms 70
create a form 27
filling 27, 502–518
flattening 27, 56, 69, 506,

510–514
partial flattening 71, 506
submitting online 27
types 83–84

form field 475–488
additional action 496–498
button 476–482, 504
cache 512
choice 486–488, 504
extra margin 512
file selection 558
fill 505
fit text inside rectangle 513
naming conventions 488
not exported 491
option 485
overview PDF vs. HTML 498
placeholder 510
positioning event 554
properties 507
read-only 72, 491, 507
remove from form 509
rename field 71, 506
required 490
retrieve coordinates 509
retrieve from form 503–505,

508–509
retrieve page number 509
signature 518–520
text field 482–485, 504
validation 498

form XObject. See PdfTemplate
Forms Data Format 83, 491,

493, 514–518, 559
creating an FDF file 514
extract a file attachment 588
merge with AcroForm 515
merge XFDF with

AcroForm 517
processing an FDF file 559
read an XFDF file 517

submit as FDF 492, 587
submit as XFDF 494

FoxDogAnchor1/
FoxDogAnchor2 106

FoxDogAnimatedGif 140
FoxDogChapter1/

FoxDogChapter2 110
FoxDogChunk1/

FoxDogChunk2 101–102
FoxDogColor 117
FoxDogGeneric1-4 125–129
FoxDogGoto1-4 123–124
FoxDogImageAlignment 147
FoxDogImageChunk 149
FoxDogImageMask 158
FoxDogImageRectangle 150
FoxDogImageRotation 156
FoxDogImageScaling1-2 152–

154
FoxDogImageSequence 150
FoxDogImageTranslation

151
FoxDogImageTypes 137
FoxDogImageWrapping 148
FoxDogList1/

FoxDogList2 108–109
FoxDogMultipageTiff 139
FoxDogParagraph 104–105
FoxDogPhrase 103
FoxDogRawImage 143–144
FoxDogRender 117
FoxDogScale 111
FoxDogSkew 116
FoxDogSpaceCharRatio 122
FoxDogSplit 120
FoxDogSupSubscript 115
FoxDogUnderline 113
Foxit 77
free text annotation 473
full compression 89
full-screen mode 398

exiting 399

G

garbage collection 47
Geographical Information

Systems 14
getInfo 54
getPageSize 51
getPageSizeWithRotation 51
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

648 INDEX
GhostScript 583
Ghostview 77
GIF. See Graphic Interchange

Format
GIS. See Geographical Informa-

tion Systems
glitter page transition 406
Global Trade Item

Number 603–611
glyph 225, 229, 231, 253, 344

automatic selection 277
composite fonts 248
define your own glyph 238
shapes 365
space 33, 229, 346

GNU Lesser General Public
License 9

Google 8
GoTo action 124, 412
GotoActions 416, 418
GoToR action 123, 412
grapheme 225, 244, 249
Graphic Interchange

Format 138
Graphical User Interface 361
graphics state 21, 44, 284–316,

326–344
path painting operators and

operands 21
graphics state stack 303–305
Graphics2D. See

java.awt.Graphics2D
GraphicsStateStack 305
GrayColor 287, 327, 600
GTIN. See Global Trade Item

Number
GUI application. See

java.awt.Graphics2D
GUI. See Graphical User Inter-

face
GVTBuilder 388

H

hard mask 343
See image mask

HEAD section (HTML) 40
header 432, 461

adding headers/footers to a
PDF file 24

preprinted 448

header cells table 179
HeaderFooterExample 434–

435
Hebrew 20, 260–261
HelloWorld 11, 32, 100, 566
HelloWorldAbsolute 43
HelloWorldAddMetadata 54–

55, 634
HelloWorldBlue 34
HelloWorldBookmarks 53
HelloWorldBurst 14
HelloWorldCompression 90
HelloWorldCopy 64
HelloWorldCopyBookmarks

414
HelloWorldCopyFields 67
HelloWorldCopyForm 66
HelloWorldCopyStamp 70
HelloWorldEncryptDecrypt

91, 94–95
HelloWorldEncrypted 94
HelloWorldForm 56
HelloWorldFullyCompressed

89–90
HelloWorldGraphics2D 45
HelloWorldImportedPages 61,

147
HelloWorldLandscape/

HelloWorldLandscape2
 34

HelloWorldLetter 33
HelloWorldManipulate

Bookmarks 413
HelloWorldMargins 35
HelloWorldMaximum 86
HelloWorldMetadata 40
HelloWorldMirroredMargins

35
HelloWorldMultiple 36
HelloWorldNarrow 32
HelloWorldOpen 37
HelloWorldPartialReader 52
HelloWorldPdfX 631
HelloWorldReader 50–52
HelloWorldReadMetadata 54,

634
HelloWorldReverse 577
HelloWorldSelectPages 65–

66
HelloWorldServlet 534, 536
HelloWorldStampCopy 69

HelloWorldStampCopyStamp
71

HelloWorldStamper/
HelloWorldStamper2 57–
58

HelloWorldStamperAdvanced
59

HelloWorldStamperImported
Pages 60

HelloWorldStream 576, 578
HelloWorldStreamHack 579
HelloWorldSystemOut 37
HelloWorldUncompressed 89
HelloWorldVersion_1_6 39
HelloWorldWriter 63
HelloWorldXmpMetadata/

HelloWorldXmpMetadata2
 633

Helvetica 224, 227
high-level object. See building

block
highlighting mode 469
Hindi 367
HindiExample 367
history

iText 5–7
PDF 75–76

HitchcockAwt 142
HitchcockAwtImage 140
horizontal identity

mapping 252–253
horizontal writing mode 250

See also horizontal identity
mapping

HTML. See HyperText Markup
Language

HtmlDoc 456
HtmlParseExample 458
HtmlParser 456
HtmlWorker 458–461
HtmlWriter 35, 163, 593
HttpServletResponse 534
HyperText Markup

Language 35, 80, 129–133,
186, 456–461, 536, 545,
580, 593

image tag 158
link 106
query string 83

hyphen 119
Hyphenation 120
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 649
I

I18N. See internationalization
ICEbrowser 371, 456, 564
ICEPDF 583
ICESoft 371, 640
IDENTITY_H. See horizontal

identity mapping
IDENTITY_V. See vertical iden-

tity mapping
ideograph 20, 225
illegal operation inside/outside

text object 353
IllegalArgumentException

625
Illustrator. See Adobe Illustrator
Image

class diagram 596
java.awt.Image 140–143
properties 147–158

image
absolute position 151
alignment 147, 159
alternative text 159
annotation 474
barcode 603
border 149, 159
clipping 341
hard mask 342
inline 318
inside table 177
optional content group 384
resolution 153
reuse 150
rotation 155
scale to fit 154, 178, 511
scaling an image 152
sequence 150
soft mask 340
the Image object 136–160
thumbnail 404
width and height 152, 156,

160
wrapping 147

image mask 156, 158, 341
image XObject 317
importing a page 60
indentation

first line of a paragraph 170
paragraph 105
PdfPCell 170

index
making an index 127

IndexEvents 128
indirect reference 569
info dictionary 39, 48, 54–55
information dictionary 566
ink spreading 614
installation, setting up the

environment 10
intellectual property

iText 41
PDF. See PDF Specification

interactive form 465, 475–500
Interchange PostScript 76
interleaved 2 of 5 barcode 597,

610
internal link 106, 124, 415

See also Anchor
International Standard Book

Number 606
International Standards

Organization 34, 79, 81–83
International Telecommunica-

tion Union 145
internationalization 19, 261
invalid signature 527
invisible signature 527
invisible, making content

invisible 374
InvisibleRectangles 285
invoice 7
IOException 626
IPS. See Interchange PostScript
irregular column 203, 213
ISBN. See International Stan-

dard Book Number
ISO. See International Stan-

dards Organization
ISO standard 631

ISO 15930 81, 631
ISO 19005 82
ISO/IEC 10646 249
ISO-8859-1. See Latin-1

isolation. See transparency
group

iText
basic building blocks 23
creating a PDF file in five

steps 31, 48
history 7
version 41

iText toolbox 11–14
Bookmarks2XML 413
Burst 14
Concat 415
Decrypt 95
Encrypt 93
ExtractAttachment 472
ExtractAttachments 589
HtmlBookmarks 53
KnitTiff 139
NUp 63
PhotoAlbum 404
RemoveLaunchApplications

585
SelectedPages 65
Tiff2Pdf 139
TreeViewPDF 585
Txt2Pdf 105
XML2Bookmarks 413

itext-hyph-xml.jar 120
iText.NET 9, 640
iTextSharp 9, 640
ITU. See International Telecom-

munication Union

J

J2EE 9
JAN. See Japanese Article Num-

ber
Japanese 258

See Chinese Japanese
Korean

Japanese Article Number 603
JapaneseExample1-2 364, 366
JasperReports 7, 371, 564, 640
JasperSoft 371
Java Network Launching Proto-

col. See Java Web Start
Java Server Pages 540, 542–

544, 559
Java Web Start 13
java.awt.Graphics2D 22, 44,

152, 357–373, 457
colorspace 361
java.awt.Font 362–367

java.awt.Image 368
JavaScript 420, 479, 497, 584,

639
manipulate a form field 557

JFrame 368
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

650 INDEX
JFreeChart 371, 640
JNLP. See Java Web Start
Joint Photographic Experts

Group 136, 142, 596
jPDF 583
JPedal 583, 640
JPEG. See Joint Photographic

Experts Group
JSP. See Java Server Pages
JTable 368
JTextPane 370
JTextPaneToPdf 370
JWS. See Java Web Start

K

kerning 346, 350
key pair. See public/private key
keystore 523, 529–530
keytool 521
keywords, metadata 40
knockout. See transparency

group
Korean. See Chinese Japanese

Korean

L

landscape. See page orientation
language 19
large documents 47
last page action 416
Latin-1 232, 249
launch action 412, 420

remove from PDF 585
LaunchAction 421
LayerMembershipExample

 381
layers panel 374, 390
leading 103, 345, 348

PdfPCell 171
Lesser General Public License.

See Lesser GNU Public
License

Lesser GNU Public License 640
letter, batch processing 445
LGPL. See Lesser GNU Public

License
Library General Public License.

See Lesser GNU Public
License

ligatures 258, 268, 282, 366
Arabic 269

Ligatures1-2 268–270
line annotation 473
line characteristics 305–311

flatness 306
line cap style 115, 307
line dash pattern 309
line join style 307
line width 305
miter limit 308
overview 310
thickness 114–115

Line Printer Remote
protocol 582

linearized PDF 81
LINECANVAS 298
LineCharacteristics 306–310
lineTo 285, 288, 321
link annotation 468
link. See Anchor
List 107, 595

definition 100
Greek letters 109
Roman numbers 109
ZapfDingbats numbers 109

list symbol 108
ListItem 107, 595

definition 100
LiveCycle Designer. See Adobe

LiveCycle Designer
local Goto 124
logical writing order 263
long-term preservation. See

PDF/A
low-level PDF generation 43,

249–355
LPR. See Line Printer Remote

protocol

M

Mac Roman encoding 232
machine-readable image 146
manipulating existing PDF

files 48–67
manipulation classes 68, 594
margin 37

Paragraph margin 104
margin mirroring 35

See page margin

MarkedContent 636
matrix code 615
measurement 33, 86, 111

character width 266
dimensions of an image 152,

156
effective String width 350
font 229

media box 427, 429
memory use 47, 67, 111, 628

columns 219
large tables 180
PdfReader 52

menu bar, hide 400
merge database data with

PDF 54
META tag 40
metadata 32, 39–41, 50, 83, 571

changing 55
producer information. See

producer information
reading 54

MethodNotFound 628
metric system 33
Microsoft Internet

Explorer 536, 539, 544,
583

Microsoft Windows
Certificate 522

Microsoft Word 77, 80, 82
miter

join 308
limit 308

Model-View-Controller
pattern 32

Monospace 267
monospace font 267
moveText 345
moveTextWithLeading 345
moveTo 285, 288, 321
movie annotation 469
Moving Picture Experts

Group 469
Mozilla 539, 544
Mozilla Public License 9, 640
MPEG. See Moving Picture

Experts Group
MPL. See Mozilla Public License
MSIE. See Microsoft Internet

Explorer
MultiColumnIrregular 214
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 651
MultiColumnPoem 211
MultiColumnPoemCustom

213
MultiColumnPoemReverse

213
MultiColumnText 194, 211–

216, 261, 270
reverse order of columns 213

multimedia content 470
multipart/form-data 559
MyFirstPdfPTable 164
MyFirstTable 186
MyJTable 369

N

named action 416
named destination 416–417,

433, 468, 619
NamedActions 416
nested OCG layers 375
nested tables 176
.NET 9
Netscape 539, 544
newline character 104
newlineShowText 345
newlineText 345
newPage 426
newPath 287
next page action 416
NO_SPACE_CHAR_RATIO

122
NoClassDefFoundError 628
nonzero winding number

rule 289–290, 344
NPES. See Association for Sup-

pliers of Printing, Publish-
ing and Converting
Technologies

NullPointerException 627
number depth 110
numbered list. See ordered list
numeric object 569
N-up example 63

O

object number 569
object tree 584
OCG. See Optional Content

Group

OCR. See Optical Character
Recognition

onChapter 433
onChapterEnd 433
onCloseDocument 432, 436–

437
onEndPage 432, 434–435, 437–

438
onGenericTag 426, 433
onGenericTag event 125
onOpenDocument 432, 438
onParagraph 432
onParagraphEnd 432
onSection 433
onSectionEnd 433
onStartDocument 435–436
onStartPage 432, 438
opacity 336
Opaque Imaging Model 340
open action 418
open parameters 619
open password. See user pass-

word
open source software 9
opening the Document

object 37, 41
OpenType font 11, 242–248,

279, 639
with PostScript outlines 243
with TrueType outlines 245

Optical Character
Recognition 78, 366, 578

optional content group 22, 85,
87, 374–385

usage dictionary 378
optional content group

panel 398
optional content

membership 380
OptionalContentAction-

Example 383
OptionalContentExample

 376–378
OptionalXObjectExample 384
ordered list 107
ordinary signature 527

See also digital signature
orm

partial flattening 71, 506
orphan 194, 200
OTF. See OpenType Font

outline dictionary 572
outline panel 398

See also bookmark panel
outline tree 100, 109, 572, 585

constructing 409
See also bookmark

OutlineActions 410–411, 420
OutOfMemoryError 47, 181,

628
OutputStream 35, 37, 626, 628
OutSimplePdf 540
overprinting 339
owner password 91, 95

P

padding
PdfPCell 171

page
add an empty page 426
boundaries 427–430
color 34
content stream 574, 579, 636
dictionary 431, 573, 585
event 24, 125, 432–445

overview 432
header/footer 433
index 403
initializations 37
label 402–404
layout

predominant order 400
viewer preferences 397

margin 35
mode 619

viewer preferences 398
new page 426
number 57

form field 508
get the current page

number 434
open parameter 619
page label 402
page X of Y 435
roman numbers 403
total number of pages 436

orientation 34, 51
setRotateContents 57

panel 401
reordering 431
scaling 85
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

652 INDEX
page (continued)
size 33–34, 37, 51

minimum, maximum 33,
86

retrieving the size of a
page 51

transition 405–406, 440
tree 431, 573, 585
width and height 33

Page Definition Language 75
page X of Y 435, 438
PageBoundaries 427, 429
PageLabels 403
PageSize 34, 427
PageXofY 437
painting pattern 329, 334
Pantone 328
paper size 33
paperless office 74
Paragraph 104, 595

alignment 104
color 334
definition 100
indentation 105
keep together 195, 199
page event 432
spacing 105

ParagraphOutlines 442
ParagraphPositions 196
ParagraphText 194
ParsingHtml 459
ParsingHtmlSnippets 460
partial form flattening 71, 506
password field 485
password protected PDF 85
path construction

operators 284–286
path, filling or stroking 287
path-painting operators 286
pattern cell 329
PatternColor 331, 600
Patterns 330–331
PCL. See Printer Command

Language
PDF

body 564
burst 14
concatenate 12
coordinate system 44
creating in multiple

passes 68–72

decrypting 95
Doc Encoding 232
encryption 90–94
engine 7
file reading 49–54
file structure 564
files, concatenating 64
files, manipulating 48–67
header 38, 564
history of PDF 74–76
intellectual property. See PDF

Specification
on the fly 534
operators and operands

43
passwords 91
products 77–78
schema 633
split 12, 14
stream 43
syntax 43, 87, 100, 311, 564–

574
class diagram 601

traditional 48, 80
trailer 48
types 79–85
version 33, 38, 50, 85–95

default version 39
PDF Reference 22
PDF Specification

intellectual property 78–79
PDF/A 82, 231, 632
PDF/E 83
PDF/X 81, 231, 631
PDF417 barcode 597, 615
PdfAction 415–421

bookmark 407, 410
goto URL 417
named destination 417
OCGState 383, 415
remote PDF 417

PdfAnnotation
form field 477
See also annotation

PdfArray 570, 601
PdfBoolean 471, 569, 601
PDFBox 578, 583, 640
PdfContentByte 43, 284–321,

604
an alternative to 357
See also direct content

PdfCopy 64–66, 68, 553, 578,
594

combine bookmarks 414
PdfCopyFields 66–68, 594
PdfDestination 407, 424
PdfDictionary 471, 473, 570,

574, 587
class diagram 601

PdfDocument 593
PdfEncryptor 68, 91, 594
PdfException 625
PdfFileSpecification 470
PdfFormField 477
PdfGraphics2D 358–373

See also java.awt.Graphics2D
PdfGState 336, 339
PdfGState.setTextKnockout

347
PdfImportedPage 579

See also importing a page
PdfIndirectObject 569, 601
PdfIndirectReference 569, 571
PdfLayer 374
PdfLayerMembership 380
PdfLister 571
PdfName 471, 478, 569, 601
PdfNull 570, 601
PdfNumber 569, 601
PdfObject 569, 601
PdfOutline 407, 409

color 411
style 411

pdfp 583
PdfPageEvent 432

See also page event
PdfPageEvent interface. See

page event
PdfPatternPainter 329, 600
PdfPCell 167–178, 261, 280,

598
alignment 168
background color 174
border 167, 174
border color 174
composite mode 168
events 296–303
keep content together 179
padding 171
rotation 176
rounded border 296
split over multiple pages 179
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 653
PdfPCell (continued)
text mode 167
variable borders 175

PdfPrinterGraphics2D. See
PrinterGraphics

PdfPRow 164, 598
PdfPTable 163–186, 270, 280,

598
absolute width 186
events 296–303
repeating header/footer 180
split vertically 185

PdfPTableAbsoluteColumns
 166

PdfPTableAbsolutePositions
 183–184

PdfPTableAbsoluteWidth 165
PdfPTableAbsoluteWidths 166
PdfPTableAligned 164
PdfPTableCellAlignment 168–

170
PdfPTableCellEvents 297–

298, 303
PdfPTableCellHeights 173–

174
PdfPTableCellSpacing 171–

172
PdfPTableColors 174–175
PdfPTableColumnWidths 165

–166
PdfPTableCompare 183
PdfPTableEvents 299–301
PdfPTableFloatingBoxes 302
PdfPTableImages 178
PdfPTableMemoryFriendly

 182
PdfPTableNested 177
PdfPTableRepeatHeader 180
PdfPTableRepeatHeaderFooter

 180
PdfPTableSpacing 167
PdfPTableSplit 178
PdfPTableSplitVertically 185
PdfPTableVerticalCells 176
PdfPTableWithoutBorders

167
PdfReader 49–54, 68, 594

memory use 52
PdfShading 333, 600
PdfShadingPattern 334
PdfSpotColor 328, 600

PdfStamper 54–61, 68, 296,
435, 553, 594

add content 56
add header/footer 438
append 567–568
bookmarks 413
compress existing file 90
digital signature 524
encrypting a PDF file 91
fill a form 55
import pages 578
insert a new page 59

PdfStream 570, 574, 601
PdfString 471, 569, 601
PdfTable 186
PdfTemplate 319, 323, 332,

353, 577
bounding box 438
java.awt.Graphics2D 363
optional content group 384
page event 436
transparancy 338
wrapped in an image 147

pdftk 10, 640
PdfWriter 35, 61, 68, 101, 593–

594
image sequence 150
import pages 578
page event 434

PdfXConformanceException
 631

PDL. See Page Definition Lan-
guage

Peace 281
PeekABoo 375
PEM. See Privacy Enhanced

Mail
performance 47
permission. See access permis-

sion
permissions password. See

owner password
personalized catalog 49, 59,

64
PFB file. See PostScript Font

Binary file
PFM file. See Printer Font Met-

ric file
PGML. See Precision Graphics

Markup Language
PHP 10

phrase 103, 595
definition 100, 103

pie chart 371
PLANET. See PostaL Alpha

Numeric Encoding Tech-
nique

point. See typographic point
polyline 321
Portable Network

Graphics 136, 596
portrait. See page orientation
PostaL Alpha Numeric Encod-

ing Technique 597, 611
POSTal Numeric Encoding

Technique 597, 611
POSTNET. See POSTal Numeric

Encoding Technique
PostScript 75–76, 582, 639

convert to PDF 583
PostScript font 226, 241
PostScript Font Binary file 236
PostScript Type 42 font 226
PostScript XObject 319
Precision Graphics Markup

Language 321
prepress 81, 427
preprinted header 448
Preview 77
previous page action 416
PRIndirectReference 571
print dialog

open action 416
scaling 401
suppress dialog box 584

print page boundaries 429
print permission. See access per-

missions
print scaling 401
Printer Command

Language 582
Printer Font Metric file 237
PrinterGraphics 358
printing office 446
printing PDF 581–584
printstate 379
Privacy Enhanced Mail 522
private key 520–523

keystore 523
smart card 622

PrivateKey 523
processing FDF 559
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

654 INDEX
producer information 40
ProgressServlet 546–547, 549
projecting square cap 307
proof of concept 8, 29
proportional width font 267
PRStream 574
PRTokeniser 575–576
PS. See PostScript
public domain 82
public key 520–523

keystore 523
pushbutton 476–477, 480

submit form 491, 555
PushButtonField 480
Python 10

R

radial shading 333
radio button 476, 478, 480,

502, 508
retrieve options 504
state 478

RadioCheckField 480
raw image data 143–146, 157
read a PDF file 68
reading an existing PDF

file 49–54
reading order 80
read-only field. See form field
read-only form field 485
recipient signature. See ordinary

signature
rectangle 293

Adobe Reader 408
cell event 298
ColumnText 197
com.lowagie.text.pdf.Pdf

Rectangle 570
com.lowagie.text.Rectangle

32, 149
fit text inside form field 514
open parameter 619
page 427
path construction

operator 285
VerticalText 259

RegisterForm1 503–504
registering a font directory 274
regular columns 201, 211
remote Goto 123

remote PDF page 417
rename form field. See form

field
rendering mode 348

Chunk 117
rendering PDF 581–584
ReorderPages 431
report

database publishing 189
generation 18

repurpose a PDF file 80, 635
resolution, image 153
response header 540
restoreState 627

See also graphics state Stack
restriction. See access permis-

sion
RGB. See colorspace
Rich Text Format 35, 80, 186,

536, 580, 593
right-to-left writing

system 260–262, 279, 366,
401

RightToLeftExample 261
RomeoJuliet 454–455
root certificate 529
rotation 314–315

image 155
page 34
PdfPCell 176
PdfStamper 58
text 351–352
TextField 485

rounded join 308
row height 172, 184
row. See table row
rowspan 187

PdfPCell 176
RTF. See Rich Text Format
RtfWriter2 35, 163, 593
RTL. See right-to-left writing

system
Ruby 10
RuntimeException 164, 205,

627, 631

S

sans-serif 235
saveState 627

See also graphics state Stack

SAX. See Simple API for XML
SAXiTextHandler 450
SAXmyHandler 455
SayPeace 263
Scalable Vector Graphics 21,

138, 152, 321–324, 353,
385, 388

scaling 314–315
Chunk 111
scaling an image 152

scanned images 136, 578
scrollable list box 486
Section 109, 595

definition 100
number depth 110

section, page event 433
security handler 91
selectPages

syntax page selection 65
self signed signature 520, 526
SenderReceiver 489–491, 493–

494, 496
separation colorspace 328
SeparationColor 329
separationcolorspace 600
serif 235
servlet xx, 534–561
ServletOutputStream 36, 534,

539, 545
setBackground 117
setCharacterSpacing 347
setCMYKColorFill 328
setCMYKColorStroke 328
setColorFill 287, 326, 331
setColorStroke 287, 326, 331
setFill 324
setFontAndSize 347
setGrayFill 327
setGrayStroke 327
setHorizontalScaling 347
setLayer 384
setLeading 103, 347
setLineCap 311
setLineDash 311
setLineJoin 311
setLineWidth 311
setMiterLimit 311
setOCGState 383
setPatternFill 331
setRGBColorFill 327
setRGBColorStroke 327
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 655
setSkew 116
setStroke 324
setTextMatrix 345
setTextRenderingMode 347
setTextRenderMode 117
setTextRise 115, 347
setWordSpacing 347
shading pattern 332–334
ShadingColor 334, 600
ShadingPatterns 333–334
showText 345, 358
showTextAligned 351
showTextKerned 350
signature field. See digital signa-

ture
signature validation 526
signature verification 525, 529–

532
signatures panel 518, 528
SignedPdf 524, 528, 530–531
SignedSignatureField 519
signing a PDF document 518–

529
SilentPrinting 583
Simple API for XML 47, 130,

190, 281, 445, 450–451
simple font 226
SimpleAnnotations 467–468,

470
SimpleBookmark 411–415,

573
retrieving bookmarks 53

SimpleCell 598
SimpleLetter 447–448
SimpleLetters 450
SimpleTable 186, 188, 190, 598
single page layout 397
skew 314
SlideShow 405, 441
smart card 529, 622
soft mask 340

See also image mask
space between two lines. See

leading
spacing between paragraphs.

See paragraph
SpecificCells 187
split a table 178
split character 119
split PDF files. See PDF, split
split, page transition 406

spotcolor. See separation color-
space

square annotation 473
standalone applications,

why? 10
standard structure types 635
standard Type 1 font 226
StandardType1FontFromAFM

233
StandardType1Fonts 228
startxref 566, 568
stencil 158, 330
stream 43, 574
strike through 229

Chunk 112
stroke 286
stroking a path 287
structural content 396
subject metadata 40
submit a form 488

as FDF 492
as HTML 492
as PDF 495
as XFDF 494
change submit URL 587
See also form

submit button 491
subscript. See textrise
SunTutorialExample 359, 361
SunTutorialExampleWithText

363
superscript. See textrise
SVG. See Scalable Vector

Graphics
SVGDocument 388
Swing 368–371

See also java.awt.Graphics2D
Symbol 227, 277
SymbolSubstitution 277
System.out 37

T

table 162–192
absolute width 165
add at an absolute

position 182
class diagram 598
column width 165–167
events 296–303
footer 180

header 179
horizontal alignment 165
multiple pages 178
nested tables 176
row 174

extend to the bottom of the
page 174

height 172
nowrap 172
SimpleTable 188

spacing 187
spacing before and after 167

table of contents 100, 109, 424
automatic creation 443

Table, alternative for
PdfPTable 186–188

Tagged Image File Format 136,
139, 596

tagged PDF 80, 82, 85, 635
standard structure types 635

tagmap 448, 451–452, 456
tailor-made application 7
tashkeel 270
template 83
TemplateClip 341
text

annotation 59, 466–468
block 344, 353
field 482–485, 556
icon 466
matrix 344
mode

ColumnText 197–199,
207–209

comparison with compos-
ite mode 205

MultiColumnText 213
PdfPCell 167

positioning operators 345
showing operators 345
space 229, 344
state 44, 344–353, 436
state operators 347

TextAnnotations 467
TEXTCANVAS 298
TextElementArray

interface 105, 595
TextField 484, 486
TextFields 483–485
TextLayout 366
text-line matrix 344
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

656 INDEX
TextMethods 350–352
TextOperators 346–347, 349
text-rendering matrix 344
textrise 115
Thai 264
Thawte 522
thickness. See line
Thread 547
ThumbImage 405
thumbnail image 404, 422
thumbnail of an existing

page 61, 147
thumbnail panel 398

See also page panel
thumbnails 401–405
tiling pattern 329
Times-Roman 227
toolbar, hide 400
traditional PDF. See PDF
trailer 564, 566–568
trailer dictionary 566
translation 314–315
Transparence1-3 336, 338, 341
transparency 85, 145, 335–341
transparency group 336

isolation 338
knockout 339, 347

transparent imaging
model 335–341

trim box 427, 429
troubleshooting servlets 537–

549
TrueType collection 11, 254
TrueType font 11, 226, 239–

243, 249, 599, 639
TrueTypeCollections 254–255
TrueTypeFontEncoding 246
TrueTypeFontExample 240–

241
trusted certificate key 523
TTC. See TrueType Collection
TTF. See TrueType font
two page layout 397
two-dimensional barcode 615
Type 0 CIDFont 249
Type 0 font 225
Type 1 font 225, 233, 243, 249,

599, 639
Type 2 CIDFont 249, 252
Type 2 font 225
Type 3 font 225, 238, 599

type font 224
Type1FontFromAFM 235
Type1FontFromPFBwithAFM

237
Type1FontFromPFBwithPFM

237
Type3Characters 238
typeface 224
typographic point 33
typography 224, 258, 264, 270

U

UCS-2. See Universal Character
Set

UJAC 449, 641
unattended mode 4
uncolored tiling pattern 329
underline 229

Chunk 112
Unicode 248–250, 253, 279,

640
Unicode Transformation

Format 250
United States Postal

Service 611
Universal Character Set 250
Universal Product Code 597,

603
unordered list 107
UnsignedSignatureField 518
UnsupportedOperation

Exception 627
UPC. See Universal Product

Code
URI action 412
usage dictionary OCG 378
user password 91
user unit 33, 85–88
user-defined font 237
USPS. See United States Postal

Service
UTF. See Unicode Transforma-

tion Format

V

validate
form field 498
signature 526

Vector Markup Language 321

verify digital signature 525,
529–532

VeriSign 520, 522, 529
version number

iText. See iText version
PDF. See PDF version

vertical identity mapping 252–
253

vertical text 20
vertical writing mode. See verti-

cal identity mapping
vertical writing system 250, 258
VerticalText 258
VerticalTextExample 259–260
video, embed a movie 470
viewer options 399
viewer preferences 23, 396–401

open parameters 620
virtual machine error 628
visibility

Adobe Reader panels 396,
398

Adobe Reader toolbar 396
Adobe Reader user

interface 400
digital signature 525, 527
form field 484
hide form fields 496
option content membership

policies 382
optional content 374

VML. See Vector Markup Lan-
guage

VPExamples 400
VPPageLayout 397
VPPageModeAndLayout 399

W

W3C. See World Wide Web Con-
sortium

watermark 56, 432, 438, 461
WatermarkExample 438
web applications 37, 534–561
web.xml 537
Western European Latin 232
widget annotation 475–488

flags 507
widgets 509
widow 194, 200
width, Chunk 111
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

INDEX 657
Winansi 232
Windows bitmap 136, 596
Windows Certificate

Security 520
Windows Metafile Format 137
wipe, page transition 406
WMP. See Windows Metafile

Format
Word. See Microsoft Word
word spacing 348

See also CharSpace ratio
World Wide Web

Consortium 321
Write Once, Read

Anywhere 76
writeSelectedRows 182, 301
writing direction 20
writing system 20
WYSIWYG 42

X

X position, Adobe Reader
408

X problems 45
X Server problems 141, 538
X/Y ratio

image 153–154
PDF 417, 616

X11. See X problems
XDP. See XML Data Package
XFA. See XML Forms Architec-

ture
XML xxiii
XML Data Package 84
XML Forms Architecture 84
XML. See eXtensible Markup

Language
XmlPeer 449

XMP. See eXtensible Metadata
Platform

XmpWriter 633
XObject 316–321
xref 566

Y

Y position 194
ColumnText 198, 200, 209
MultiColumnText 212, 216,

219
paragraph 197
writeSelectedRows 184

Z

ZapfDingbats 227
zoom factor 380, 388, 407, 619
Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

Licensed to Pedro Rivera <pedro.rivera.651@gmail.com>

	preface
	acknowledgments
	about this book
	Part 1 – Introduction
	iText: when and why
	1.1 The history of iText
	1.1.1 How iText was born
	1.1.2 iText today
	1.1.3 Beyond Java

	1.2 iText: first contact
	1.2.1 Running the examples in the book
	1.2.2 Experimenting with the iText toolbox

	1.3 An almost-true story
	1.3.1 Some Foobar fiction
	1.3.2 A document daydream
	1.3.3 Welcoming the student
	1.3.4 Producing and processing interactive documents
	1.3.5 Making the dream come true

	1.4 Summary

	PDF engine jump-start
	2.1 Generating a PDF document in five steps
	2.1.1 Creating a new document object
	2.1.2 Getting a DocWriter instance
	2.1.3 Opening the document
	2.1.4 Adding content
	2.1.5 Closing the document

	2.2 Manipulating existing PDF files
	2.2.1 Reading an existing PDF file
	2.2.2 Using PdfStamper to change document properties
	2.2.3 Using PdfStamper to add content
	2.2.4 Introducing imported pages
	2.2.5 Using imported pages with PdfWriter
	2.2.6 Manipulating existing PDF files with PdfCopy
	2.2.7 Concatenating forms with PdfCopyFields
	2.2.8 Summary of the manipulation classes

	2.3 Creating PDF in multiple passes
	2.3.1 Stamp first, then copy
	2.3.2 Copy first, then stamp
	2.3.3 Stamp, copy, stamp

	2.4 Summary

	PDF: why and when
	3.1 A document history
	3.1.1 Adobe and documents
	3.1.2 The Acrobat family
	3.1.3 The intellectual property of the PDF specification

	3.2 Types of PDF
	3.2.1 Traditional PDF
	3.2.2 Tagged PDF
	3.2.3 Linearized PDF
	3.2.4 PDFs preserving native editing capabilities
	3.2.5 PDF types that became an ISO standard
	3.2.6 PDF forms, FDF, and XFDF
	3.2.7 XFA and XDP
	3.2.8 Rules of thumb

	3.3 PDF version history
	3.3.1 Changing the user unit
	3.3.2 PDF content and compression
	3.3.3 Encryption

	3.4 Summary

	Part 2 – Basic building blocks
	Composing text elements
	4.1 Wrapping Strings in text elements
	4.1.1 The atomic building block: com.lowagie.text.Chunk
	4.1.2 An ArrayList of Chunks: com.lowagie.text.Phrase
	4.1.3 A sequence of Phrases: com.lowagie.text.Paragraph

	4.2 Adding extra functionality to text elements
	4.2.1 External and internal links: com.lowagie.text.Anchor
	4.2.2 Lists and ListItems: com.lowagie.text.List/ListItem
	4.2.3 Automatic bookmarking: com.lowagie.text.Chapter/Section

	4.3 Chunk characteristics
	4.3.1 Measuring and scaling
	4.3.2 Lines: underlining and striking through text
	4.3.3 TextRise: sub- and superscript
	4.3.4 Simulating italic fonts: skewing text
	4.3.5 Changing font and background colors
	4.3.6 Simulating bold fonts: stroking vs. filling

	4.4 Chunks and space distribution
	4.4.1 The split character
	4.4.2 Hyphenation
	4.4.3 Changing the CharSpace ratio

	4.5 Anchors revisited
	4.5.1 Remote Goto
	4.5.2 Local Goto

	4.6 Generic Chunk functionality
	4.6.1 Drawing custom backgrounds and lines
	4.6.2 Implementing custom functionality
	4.6.3 Building an index

	4.7 Making a flyer (part 1)
	4.8 Summary

	Inserting images
	5.1 Standard image types
	5.1.1 BMP, EPS, GIF, JPEG, PNG, TIFF, and WMF
	5.1.2 TIFF with multiple pages
	5.1.3 Animated GIFs

	5.2 Working with java.awt.Image
	5.3 Byte arrays with image data
	5.3.1 Raw image data
	5.3.2 CCITT compressed images
	5.3.3 Creating barcodes
	5.3.4 Working with com.lowagie.text.pdf.PdfTemplate

	5.4 Setting image properties
	5.4.1 Adding images to the document
	5.4.2 Translating, scaling, and rotating images
	5.4.3 Image masks

	5.5 Making a flyer (part 2)
	5.5.1 Getting the Image instance
	5.5.2 Setting the border, the alignment, and the dimensions
	5.5.3 The resulting PDF

	5.6 Summary

	Constructing tables
	6.1 Tables in PDF: PdfPTable
	6.1.1 Your first PdfPTable
	6.1.2 Changing the width and alignment of a PdfPTable
	6.1.3 Adding PdfPCells to a PdfPTable
	6.1.4 Special PdfPCell constructors
	6.1.5 Working with large tables
	6.1.6 Adding a PdfPTable at an absolute position

	6.2 Alternatives to PdfPTable
	6.3 Composing a study guide (part 1)
	6.3.1 The data source
	6.3.2 Generating the PDF

	6.4 Summary

	Constructing columns
	7.1 Retrieving the current vertical position
	7.2 Adding text to ColumnText
	7.2.1 Different ways to add text to a column
	7.2.2 Keeping paragraphs together
	7.2.3 Adding more than one column to a page

	7.3 Composing ColumnText with other building blocks
	7.3.1 Combining text mode with images and tables
	7.3.2 ColumnText in composite mode

	7.4 Automatic columns with MultiColumnText
	7.4.1 Regular columns with MultiColumnText
	7.4.2 Irregular columns with MultiColumnText

	7.5 Composing a study guide (part 2)
	7.6 Summary

	Part 3 – PDF text and graphics
	Choosing the right font
	8.1 Defining a font
	8.1.1 Using the right terminology
	8.1.2 Standard Type 1 fonts

	8.2 Introducing base fonts
	8.2.1 Working with an encoding
	8.2.2 Class BaseFont and Type 1 fonts
	8.2.3 Embedding Type 3 fonts
	8.2.4 Working with TrueType fonts
	8.2.5 Working with OpenType fonts

	8.3 Composite fonts
	8.3.1 What is Unicode?
	8.3.2 Introducing Chinese, Japanese, Korean (CJK) fonts
	8.3.3 Embedding CIDFonts
	8.3.4 Using TrueType collections

	8.4 Summary

	Using fonts
	9.1 Other writing directions
	9.1.1 Vertical writing
	9.1.2 Writing from right to left

	9.2 Sending a message of peace (part 1)
	9.3 Advanced typography
	9.3.1 Handling diacritics
	9.3.2 Dealing with ligatures

	9.4 Automating font creation and selection
	9.4.1 Getting a Font object from the FontFactory
	9.4.2 Automatic font selection

	9.5 Sending a message of peace (part 2)
	9.6 Summary

	Constructing and painting paths
	10.1 Path construction and painting operators
	10.1.1 Seven path construction operators
	10.1.2 Path-painting operators

	10.2 Working with iText’s direct content
	10.2.1 Direct content layers
	10.2.2 PdfPTable and PdfPCell events

	10.3 Graphics state operators
	10.3.1 The graphics state stack
	10.3.2 Changing the characteristics of a line

	10.4 Changing the coordinate system
	10.4.1 The CTM
	10.4.2 Positioning external objects

	10.5 Drawing a map of a city (part 1)
	10.5.1 The XML/SVG source file
	10.5.2 Parsing the SVG file

	10.6 Summary

	Adding color and text
	11.1 Adding color to PDF files
	11.1.1 Device colorspaces
	11.1.2 Separation colorspaces
	11.1.3 Painting patterns
	11.1.4 Using color with basic building blocks

	11.2 The transparent imaging model
	11.2.1 Transparency groups
	11.2.2 Isolation and knockout
	11.2.3 Applying a soft mask to an image

	11.3 Clipping content
	11.4 PDF’s text state
	11.4.1 Text objects
	11.4.2 Convenience methods to position and show text

	11.5 The map of Foobar (part 2)
	11.6 Summary

	Drawing to Java Graphics2D
	12.1 Obtaining a Java.awt.Graphics2D instance
	12.1.1 A simple example from Sun’s tutorial
	12.1.2 Mapping AWT fonts to PDF fonts
	12.1.3 Drawing glyph shapes instead of using a PDF font

	12.2 Two-dimensional graphics in the real world
	12.2.1 Exporting Swing components to PDF
	12.2.2 Drawing charts with JFreeChart

	12.3 PDF’s optional content
	12.3.1 Making content visible or invisible
	12.3.2 Adding structure to layers
	12.3.3 Using a PdfLayer
	12.3.4 Optional content membership
	12.3.5 Changing the state of a layer with an action
	12.3.6 Optional content in XObjects and annotations

	12.4 Enhancing the map of Foobar
	12.4.1 Defining the layers for the map and the street names
	12.4.2 Combining iText and Apache Batik
	12.4.3 Adding tourist information to the map

	12.5 Summary

	Part 4 – Interactive PDF
	Browsing a PDF document
	13.1 Changing viewer preferences
	13.1.1 Setting the page layout
	13.1.2 Choosing the page mode
	13.1.3 Viewer options

	13.2 Visualizing thumbnails
	13.2.1 Changing the page labels
	13.2.2 Changing the thumbnail image

	13.3 Adding page transitions
	13.4 Adding bookmarks
	13.4.1 Creating destinations
	13.4.2 Constructing an outline tree
	13.4.3 Adding actions to an outline tree
	13.4.4 Retrieving bookmarks from an existing PDF file
	13.4.5 Manipulating bookmarks in existing PDF files

	13.5 Introducing actions
	13.5.1 Actions to go to an internal destination
	13.5.2 Actions to go to an external destination
	13.5.3 Triggering actions from events
	13.5.4 Adding JavaScript to a PDF document
	13.5.5 Launching an application

	13.6 Enhancing the course catalog
	13.7 Summary

	Automating PDF creation
	14.1 Creating a page
	14.1.1 Adding empty pages
	14.1.2 Defining page boundaries
	14.1.3 Reordering pages

	14.2 Common page event functionality
	14.2.1 Overview of the PdfPageEvent methods
	14.2.2 Adding a header and a footer
	14.2.3 Adding page X of Y
	14.2.4 Adding watermarks
	14.2.5 Creating an automatic slide show
	14.2.6 Automatically creating bookmarks
	14.2.7 Automatically creating a table of contents

	14.3 Alternative XML solutions
	14.3.1 Writing a letter on company stationery
	14.3.2 Parsing a play
	14.3.3 Parsing (X)HTML
	14.3.4 Using HtmlWorker to parse HTML snippets

	14.4 Enhancing the course catalog (part 2)
	14.5 Summary

	Creating annotations and fields
	15.1 Introducing annotations
	15.1.1 Simple annotations
	15.1.2 Other types of annotations
	15.1.3 Adding annotations to a chunk or image

	15.2 Creating an AcroForm
	15.2.1 Button fields
	15.2.2 Creating text fields
	15.2.3 Creating choice fields

	15.3 Submitting a form
	15.3.1 Choosing field names
	15.3.2 Adding actions to the pushbuttons
	15.3.3 Adding actions

	15.4 Comparing HTML and PDF forms
	15.5 Summary

	Filling and signing AcroForms
	16.1 Filling in the fields of an AcroForm
	16.1.1 Retrieving information about the fields (part 1)
	16.1.2 Filling fields
	16.1.3 Retrieving information from a field (part 2)
	16.1.4 Flattening a PDF file
	16.1.5 Optimizing the flattening process

	16.2 Working with FDF and XFDF files
	16.2.1 Reading and writing FDF files
	16.2.2 Reading XFDF files

	16.3 Signing a PDF file
	16.3.1 Adding a signature field to a PDF file
	16.3.2 Using public and private keys
	16.3.3 Generating keys and certificates
	16.3.4 Signing a document

	16.4 Verifying a PDF file
	16.5 Summary

	iText in web applications
	17.1 Writing PDF to the ServletOutputStream: pitfalls
	17.1.1 Solving problems related to content type-related problems
	17.1.2 Troubleshooting the blank-page problem
	17.1.3 Problems with PDF generated from JSP
	17.1.4 Avoiding multiple hits per PDF
	17.1.5 Workaround for the timeout problem

	17.2 Putting the theory into practice
	17.2.1 A personalized course catalog
	17.2.2 Creating a learning agreement form
	17.2.3 Reading an FDF file in a JSP page

	17.3 Summary

	Under the hood
	18.1 Inside iText and PDF
	18.1.1 Factors of success
	18.1.2 The file structure of a PDF document
	18.1.3 Basic PDF objects
	18.1.4 Climbing up the object tree

	18.2 Extracting and editing text
	18.2.1 Reading a page’s content stream
	18.2.2 Why iText doesn’t do text extraction
	18.2.3 Why you shouldn’t use PDF as a format for editing

	18.3 Rendering PDF
	18.3.1 How to print a PDF file programmatically
	18.3.2 Printing a PDF file in a web application

	18.4 Manipulating PDF files
	18.4.1 Toolbox tools
	18.4.2 The learning agreement (revisited)

	18.5 Summary

	Class diagrams
	A.1 PDF/RTF/HTML creation classes
	A.2 PDF manipulation classes
	A.3 Text element classes
	A.4 Image classes
	A.5 Barcode classes
	A.6 Table classes
	A.7 Font classes
	A.8 Color classes
	A.9 PdfObject classes

	Creating barcodes
	B.1 Barcodes to identify products
	B.2 Barcodes for postal services and other industries
	B.3 Barcode properties
	B.4 Two-dimensional barcodes

	Open parameters
	Signing a PDF with a smart card
	Dealing with exceptions
	E.1 iText-specific exception classes
	E.1.1 com.lowagie.text.BadElementException
	E.1.2 com.lowagie.text.DocumentException

	E.2 Standard Java exceptions
	E.2.1 java.io.IOException
	E.2.2 java.lang.RuntimeException
	E.2.3 Converting checked exceptions

	E.3 Virtual machine errors
	E.3.1 java.lang.OutOfMemoryError
	E.3.2 Class or method not found error

	Pdf/X, Pdf/A, and tagged PDF
	F.1 PDF/X
	F.2 PDF/A
	F.2.1 Creating an XMP metadata stream
	F.2.2 Existing PDF files and XMP metadata

	F.3 Tagged PDF
	F.3.1 Standard structure types
	F.3.2 Marked content

	F.4 To be continued

	Resources
	PDF in general
	Publications by Adobe Systems Incorporated
	Font-related bibliography and sites
	iText-related links
	Links to PDF tools mentioned in the book
	Limited list of other projects and products using iText

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

