
 Your partner in System i Education

 /Free Your RPG

Susan Gantner
susan.gantner@partner400.com
www.Partner400.com
www.SystemiDeveloper.com

If you thought that RPGIV had changed over the years - well "You ain't seen nothin' yet!!"

Most of us have been making extensive use of Evals since they were first introduced with RPG IV in
V3R1. Perhaps like us you have experienced frustration when forced to split a line because you had
run out of space! Maybe you were even tempted to shorten that nice meaningful variable name to
avoid having to use a second line! While you were contemplating this dilemma, you might have
also noted the fact that there was a huge area of white space to the left of the Eval you couldn't use.

V5R1 put an end to that frustration by introducing the notion of completely free-format calculation
specs. Coupled with a large number of new Built-In Functions (BIFs) this "New" RPG remains
familiar, while offering some very powerful new capabilities.

In this session we will look at:

How to code freeform RPG
The new BIFs that add power to the language
New functions that only work in /Free form logic

If you have any questions, please feel free to contact the author: Susan.Gantner@Partner400.com

This presentation may contain small code examples that are furnished as simple examples to
provide an illustration. These examples have not been thoroughly tested under all conditions. We
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
All code examples contained herein are provided to you "as is". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 1-2

Agenda

Why /Free?
The Basics of /Free Syntax
Unsupported Op-Codes

And BIFs that can replace them
Options Only available in /Free

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 3-4

Why /Free?
1. Indented logic is more understandable

Match up nested If ... EndIf, DoW ... EndDo, etc.

2. More efficient use of space in source code
No more wasted space between C and Op Code column
Complex expressions take fewer lines

3. More room for larger names
More descriptive and/or qualified data names

4. New features in /Free only
Freed from the limitations of 2 Factors and a Result field

5. Attraction of new RPG programmers
/Free looks and feels more like other modern languages
Often more powerful for business applications

1) When writing free format logic, I can indent the statements to show the structure of the code. The
code is more easily understood, especially in cases involving more complicated logic blocks, such as
nested If statements, Select/When statements or Monitor blocks. The easier the code is to
understand, the faster and less error prone it will be to maintain.

2) I find that I seldom use Factor 1 in RPG IV. At the same time, because I am no longer limited to
simple arithmetic operations, many expressions - especially those involving built-in functions - get
quite lengthy, often requiring multiple lines to complete. Therefore with fixed format logic, the source
edit screen typically has a huge amount of unused space on the left (i.e., where Factor 1 and the
outdated left-hand conditioning and cycle control indicators would go) while the right side is
complicated with many multi-line statements. Using free format logic, I have much more space for
my expressions. My edit screens are "cleaner" and I can see more logic at a time because there are
fewer multi-line statements.

3) I have fewer length limitations for names in free format logic. I don't often set out to create
COBOL-like names of 30 characters. On the other hand, it's nice that I'm not required to think of an
acceptable abbreviation for "ProcessCustomer" or "ErrorMsgDisplay", which are just slightly too long
to fit into a fixed format column. Qualified data names allow powerful features such as data structure
arrays and nested data structures, but cannot practically fit into a 14 character Factor 1 column.

4) Some new language functions are only available in free format logic. This is because a
column-oriented language such as traditional RPG puts severe limitations on some kinds of new
features that require significant space in the statement for implementation.

5) Last, but not least, free format logic brings RPG more in line with other modern programming
languages, all of which use free format logic. This is important for attracting new developers coming
into the marketplace. Traditional fixed format RPG less attractive and gives RPG the undeserved
appearance of an old-fashioned language not up to modern application tasks. RPG is a powerful and
flexible language that many young developers come to prefer over other more popular language
options for business applications. But they must first be attracted to learn the language.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 5-6

 READ(E) TransFile;
 DOW not %EOF(TransFile);
 IF %Error;
 Eval Msg = 'Read Failure';
 LEAVE;
 ELSE;
 CHAIN(N) CustNo CustMast CustData;
 Eval CustName = %Xlate(UpperCase : LowerCase : CustName);
 EXSR CalcDividend;
 READ(E) TransFile;
 ENDIF;
 ENDDO;

 C READ(E) TransFile
 C DOW Not %EOF(TransFile)
 C IF %Error
 C Eval Msg = 'Read Failure'
 C LEAVE
 C ELSE
 C CustNo CHAIN(N) CustMast CustData
 C Eval CustName = %Xlate(UpperCase:LowerCase
 C : CustName)
 C EXSR CalcDividend
 C READ(E) TransFile
 C ENDIF
 C ENDDO

This small example of a comparison of fixed format RPG IV and /Free format logic illustrates some
of the advantages described on the earlier chart.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 7-8

Calculation Specs can now be completely freeform
Freeform specs are introduced by a /FREE entry
/END-FREE is used to return to fixed format
You can mix /Free and Fixed but don't do it

Syntax: Op-Code{(Exten)} { Factor1 } { Factor2 } { Result Field };
Operands no longer limited to 14 characters
Each statement must end with a semicolon (;)
Only 1 Op-code can be coded on a line
Not all Fixed form Op-codes are supported

Free Form C-Specs

 /Free
 If CustomerNumber = *Blanks;
 Eval CustomerError = True;
 Else;
 CustomerError = False;
 EndIf;
 /End-Free

Free!!
I'm Free!!

Although freeform can be mixed with traditional C specs, the result is code that is ugly and hard to
maintain. Avoid it like the plague!

Wherever possible you should replace operations that do not have a direct freeform equivalent with
options that will work in free form instead. The degree to which such replacement is "possible"
depends on which release of the operating system you are writing for. We will be discussing the
replacement options later in the session.

One of the really nice aspects of using /Free form calcs is that you can indent your source
statements to highlight the logic flow as shown in this short example.

Note the use of the semicolon (;) to specify the end of the statement. As you will soon discover, if
you forget it, you will get some really interesting error messages!

As shown in the example, some op-codes can be omitted completely. In the example we have
omitted the EVAL op-code In the assignment CustomerError = False. Since the EVAL is optional,
either option will work. Later we will look at the exception to this rule.

By the way - the only "Convert to /Free form" option supplied by IBM is provided within the CODE
and WDSc editors. And that conversion is a very rudimentary one. Other software vendors, such
as Linoma Software offer much more full-function conversion options.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 9-10

The Opcode & operands can appear anywhere in posns 8 - 80
Positions 6 & 7 must be blank

Comments are delimited by //
And may be placed at the end of any free form statement (after the ;)
The old-style (*) comments are not accepted

There is no way to define fields in /Free form specifications
But then you wouldn't want to do such a naughty thing anyway!

Resulting indicators may not be specified
The BIFs such as %FOUND should be used instead

More on this later

Two Op Codes are optional: Eval and CallP

/Free Form Calcs Rules

If you are not in a position to move to V5's /Free format yet, there are a number of steps you can
take to prepare yourself for the change. These are all good programming style anyway so you can't
lose!

Use only those opcodes supported by freeform
Defining all variables on D-Specs
Do NOT use conditioning indicators
Avoid resulting indicators whenever possible.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 11-12

 /FREE
 READ(E) TransFile; // Read file to prime do loop
 DOW not %EOF(TransFile); // Continue until all records processed
 IF %Error;
 DSPLY 'The read failed';
 LEAVE;
 ELSE;
 CHAIN(N) CustNo CustMast CustData;
 CustName = %Xlate(Upper : Lower : CustName);
 EXSR CalcDividend;
 READ TransFile;
 ENDIF;
 ENDDO;

 BEGSR CalcDividend;
 TotalSales = %XFoot(MthSales);
 EVAL(H) Dividend = TotalSales / 100 * DivPerc;
 Record_transaction();
 ENDSR;

Free-form Example

Notice the use of // for
end of line comments

Note:
EVAL is required here

because of the Extender

Note that subroutines can be defined and invoked in /Free form

Note again the benefit of indentation of the source. With the source coded this way, it is very clear
which statements belong to the If block and the Else block. And it is clear that that the IF/ELSE block
is all part of the DOW.

Notice that we must use the %EOF and %Error built-in functions because resulting indicators cannot
be used in freeform calcs. That's OK, because even in fixed format source, the use of the BIFs
makes the code far more readable and understandable.

Notice that in this code sample, the EVAL operation code has been omitted - except where it was
necessary to include it because of the half adjust extender.

Now for a tough question: Assuming these calcs are syntactically correct (i.e. the program
containing these calcs will compile), what could Record_transaction() be? Is it an array element? A
subprocedure call? A program call?

It is either an subprocedure or a program call (or, to be more specific, it is the name on the prototype
given to a subprocedure or program to be called.) The CALLP (call with prototype) operation code,
like the EVAL, can be omitted, as it is in this case.

You see another change in syntax for Version 5 in that same line, because prior to V5, if the
procedure or program required no parameters to be passed, we could NOT have coded the empty
parentheses. It is a good idea to use the empty parentheses notation so the name is not mistaken
for a field name. In a free form spec, it is required to use the empty parentheses when no
parameters are being passed.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 13-14

Op-codes not supported in /Free
These fall into six main categories

"Old fashioned" Op-codes whose use is discouraged
e.g. ANDXX, COMPxx, DEFINE, DOxyy, GOTO, and IFxx

Those for which new support has been provided
e.g. ALLOC, CHECK, EXTRCT, LOOKUP, TIME and XLATE

Op-codes with existing (if not identical) expression support
e.g. ADD, DIV, MULT and SUB

Those supported by a combination of enhanced and new support
e.g. ADDDUR and SUBDUR

"Problem Children"
KFLD and KLIST (Alternative support for these was added in V5R2)

The ones the compiler writers don't like: MOVE, MOVEL, MOVEA
EVAL is the alternative but does not directly support type transforms

E.g. Alpha to Numeric, Numeric to Alpha
Function has been added to existing BIFs to support this

But you need to be on V5R3 before you have a complete solution

The next 2 charts contain some substitutions for op codes that are not supported in /Free format.

Note that the Op-code substitutions are not necessarily one-to-one. The substitute might not work
exactly as the original code, especially in the area of error handling. For example the default for
numeric overflow on an ADD operation is to truncate the result and ignore the error. The default for
an addition in an EVAL type operation is to blow up! You need to bear this in mind if you are
converting. Personally we would rather know if numeric overflow occurs, which is why we have
always preferred using EVAL to the older style operations.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 15-16

Op-Code /FREE Substitute
ADD Operator +
ADDDUR Operator +
ALLOC BIF %ALLOC
ANDxx Logical operator AND
BlTxx (Bitwise operations in V5R2)
CABxx (see GOTO)
CALL Op-code CALLP
CALLB Op-code CALLP
CASxx Op-code IF with EXSR
CAT Operator +
CHECK BIF %CHECK
CHECKR BIF %CHECKR
COMP Operators =, <, >, etc.
DEFINE LIKE or DTAARA on D-Spec
DIV Operator / or BIF %DIV

Op-Code /FREE Substitute
DOUxx Opcode DOU
DOWxx Opcode DOW
END Opcodes ENDDO, ENDIF, etc.
EXTRCT BIF %EXTRACT
GOTO LEAVE, ITER, LEAVESR, etc.
IFxx IF
KFLD (See KLIST)
KLIST (Various options in V5R2)
LOOKUP %LOOKUPxx or %TLOOKUPxx
MxxZO (Bitwise operations in V5R2)
MOVE EVALR or %DATE, %TIME, etc.
MOVEA %SubArr in V5R3 or …..

MOVEL EVAL or BIFs for Date, Time etc.

MULT Operator *
MVR BIF %REM

Op-Code Replacements

Op-Code /FREE Substitute

OCCUR BIF %OCCUR
ORxx Operator OR
PARM (see PLIST)
PLIST D-Spec PI & PR definitions
REALLOC BIF %REALLOC
SCAN BIF %SCAN
SETON EVAL *lnxx = *ON
SETOFF EVAL *lnxx = *OFF
SHTDN BIF %SHTDN
SQRT BIF %SQRT
SUB Operator -
SUBDUR Operator - or BIF %DIFF

Op-Code /FREE Substitute

SUBST BIF %SUBST
TAG (see GOTO)
TESTB (Bitwise ops in V5R2)
TESTN (Bitwise ops in V5R2)
TESTZ (Bitwise ops in V5R2)
TIME Time & Timestamp BIFs
WHENxx Opcode WHEN
XFOOT BIF %XFOOT
XLATE BIF %XLATE
Z-ADD Opcode EVAL
Z-SUB Opcode EVAL

Op-Code Replacements

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 17-18

Performing I/O operations in /Free
Replacing unsupported Op-codes

MOVE
ADDDUR & SUBDUR
CALL
Other Unsupported Op-Codes

And the things that replace them

The new BIFs are
not limited to /Free

but can also be used
in Fixed-form Evals

Opcode Alternatives

For most people the biggest "omission" from the list of op-codes supported in /Free is MOVE. There
have been Internet flame wars raging on and off for over two years on this topic - but IBM show no
sign of changing their minds.

We don't have time in this session to go into details about all the of the /Free substitute methods, but
we will take a look at some of the less obvious and/or most required ones.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 19-20

Converting I/O Operations to /Free
You cannot use numbered indicators so ...

Replace them with the I/O related BIFs first introduced in V4R2
They return *On or *Off based on the last relevant I/O operation to the file

%EOF (FileName)
Set by: READ, READE, READP, READPE & WRITE to subfile

%EQUAL (FileName)
Set by SETLL if an exact match is found

%FOUND (FileName)
Note that this is the Inverse of using the NR indicator
Set by: CHAIN, DELETE, SETGT, SETLL

 Read TransFile;
 If Not %EOF(TransFile);
 Chain CustNum CustFile;
 If %Found(CustFile);
 SetLL CustNum Invoices;
 If %Equal(Invoices);

You haven't had to use resulting indicators on I/O operations since V4R2, which is when these BIFs
were first introduced. /Free gives you no choice. There are no resulting indicators, so you have to
use these BIFs.

The use of the file name on the %FOUND and %EQUAL built-in functions is optional, but highly
recommended. If you don't specify a file name, the "naked" BIF defaults to supplying the result from
the last file that could have set this condition. This is probably OK when you first write the program -
but later during maintenance it would be very easy for other lines of code to be introduced, perhaps
something as simple as a call to a subprocedure or subroutine. If that code performs an I/O
operation, then the result you will be testing may have nothing to do with the file you think you are
testing!

Note that %FOUND is not an exact match to its corresponding resulting indicator. Rather it is the
reversal of the indicator setting. When the indicator would have been on, %FOUND will be off.
When the indicator would have been off, %FOUND will be on. The reason for this is obvious if you
think about it. If the compiler writers had matched the indicator exactly, the function would have to
be called %NOTFOUND. Suppose that you wanted to write a test to see if a record was found by a
CHAIN operation. You would have had to code IF NOT %NOTFOUND and that would be too silly
for words!

There is another BIF in this set which provides functionality that was not available before. This is
%OPEN. This provides an easy way for a programmer to determine if a file has been opened.
%OPEN is the only one of the new built-ins that requires the use of a file name.

The file built-in functions always reflect the results of the last file operations to a file even if the
corresponding resulting indicator is specified. For example, %FOUND(file) is updated even if the
last CHAIN operation had a "no record" resulting indicator coded.

Any one I/O operation will only set the values for the built-in functions that are relevant to the
operation. For example, the DELETE operation will not affect the value of the %EOF built-in
function for that file.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 21-22

Associated Error Handling Options
The (E)rror Op-code extender

Can be used with any op-code that allow an error indicator
Affects error handling in exactly the same way as coding the error indicator

%ERROR
Returns the same value as the Error indicator
Value is always set to *Off before the operation begins
Normally used with %Status to determine the exact cause

%STATUS(FileName)
Returns 0 (zero) if no error has occurred since the beginning of the last
operation that specified the (E) extender

Otherwise, the most recent program or file status value
Returns the same value as the *STATUS field in the INFDS or PSDS

For I/O errors and program errors respectively

These options apply to all op-codes with an error indicator

Another option - the Monitor operation . . .

Note unlike most of the other I/O built-ins, %Error cannot specify a file name. %Error always reflects
the state of the last I/O operation for which the (E) extender was specified.

The advent of the new built-in %STATUS means that many programs that only used to define the
INFDS for the purposes of defining the file status no longer need to do so. The resulting code is
often far easier to read.

Note that the (E) extender can be used with any op-code that can define an error indicator, it is not
restricted to I/O operations. Of these, the most commonly used is the TEST op-code. We will look
at the usage of this when we discuss dates later.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 23-24

Replace MOVE - Character to Numeric
Use %DEC (expression { : precision : decimals })

Expression can now be character or numeric
This capability also applies to %FLOAT, %INT, and %UNS
As well as the Half adjust variants (%DECH, %INTH, and %UNSH)

Exception (Status 105) is signalled if character field not valid
Use MONITOR to catch this error

See Rules and comments on "clean up" on Notes page

D CharField S 12a Inz(' -12345.678')
D NumField S 9p 2
D Length C %LEN(NumField)
D Decimals C %DECPOS(NumField)

 /Free
 NumField = %DecH(CharField : 9 : 2);
 // This version "self adjusts" if the definition of NumField changes
 NumField = %DecH(CharField: Length: Decimals);

Rules for format of character string:
Sign is optional. It can be '+' or '-', leading or trailing
The decimal point is optional
Blanks are allowed anywhere in the data.
For %DEC(H) both the Precision and Decimal Place parameters are compulsory
Floating point data (e.g. '2.5E4') is not allowed

In the example below, the assignment at <A> will work correctly. though will cause an exception
(Status code 105) because of the dollar ($) sign. IBM suggests a nice technique to handle this
situation, as demonstrated at <C>. Simply put, the %XLATE BIF is applied to the character
expression, substituting blanks for all unwanted characters (our example only replaces $ and ,
(comma). The resulting blanks will be ignored while processing the expression.
This deals with most common situations, but will not remove all sources of error. (e.g. there might be
two decimal points in the field). One way to validate the character string is to use the subprocedure
ChkNbr, which is part of the CGIDEV2 library available free from IBM. Go to www-922.ibm.com

If you do not wish to validate every character field before converting it, "Wrap" the operation in a
MONITOR group (another wonderful V5R1 innovation) and catch the errors if and when they
happen.

 D CharField1 S 14a Inz(' 1,525.95-')
 D CharField2 S 14a Inz(' $1,525.95-')
 D NumField S 9 2
 D NumberEdits C '$,'
 /Free
 <A> NumField = %Dec(CharField1 : 9 : 2);
 NumField = %Dec(CharField2 : 9 : 2);

 <C> NumField = %Dec(%Xlate(CharField2 : '$,' : ' ') : 9 : 2);

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 25-26

Replace MOVE/MOVEL - Char to Char
If fields are the same length

Replacement is EVAL

If fields are of different lengths
Replacement is (if blank padding is OK):

EVAL for MOVEL
EVALR for MOVE

However, if padding is not desired
%Replace and/or %Subst will be needed
Or use a Data Structure

Handling for character to character moves depends on the length of both the from and to fields.

Very often you will see code that moves blanks to a field and then moves another value in.
Sometimes this is done even when the two fields are both character fields and the same length! At
one point in time they might have been different lengths - but nobody removed the blank fill when the
field length changed.

In fact the "P" extender (i.e. MOVE(P) or MOVEL(P)) to cause target fields to be blank filled has
been around for some time and most blank fills could have been removed years ago!

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 27-28

Replace MOVE - Numeric to Character
Basic option - no decimal places

First choice is to use the BIF %CHAR
But only if you know that there will be no leading zeros

Alternative is to use %EDITC with the 'X' edit code

If the numeric field contains decimal places
Use %EDITC with the 'X' edit code

You need to study exactly what you are trying to achieve

The BIFs will produce a character string
Once the BIF has been selected and you know the length of the result
apply the same rules as for Character to Character

charField = %CHAR(numField);

charField = %EDITC(numField: 'X');

It is worthwhile when replacing MOVEs to determine exactly what was the intent of the original
operation.

Note that %Char converts numeric fields to character, but it suppresses leading zeroes. If you want
to retain leading zeroes in the character field, use %EDITC instead.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 29-30

 D mmddyy S 6S 0

 * DatFld uses the default (*ISO) format
 D DateFld S D Inz(D'2003-06-27')

 * Convert DatFld to numeric using MOVE
 C *MDY Move DateFld mmddyy

 // Equivalent code /Free code at V5R3
 mmddyy = %Dec(DateFld: *MDY);

 // Result: mmddyy = 062703

MOVE - Date to Numeric
%DEC (date | time | timestamp { : format })

Length of returned value is the number of digits in the Date
Or Time or Timestamp

e.g. %DEC(date : *MDY) = length of 6
Length of %DEC(Timestamp) is always 20

If format is not specified - the format of the date field is used
In the example below it would have been *ISO and used 8 digits

V5R3!

This latest enhancement to %DEC takes care of one of the last "uglies" that were forced on us by
the nonsupport of MOVE if /Free form.

In V5R2 IBM gave us the ability to use %DEC to convert character strings to numeric. This still left a
problem with dates. To go from a character or numeric field to a date was not a problem - %Date
gave us that in V5R1. But to go from date to number required the ugly:

Number = %DEC(%CHAR combination as shown in the example below. Thankfully that has
disappeared with the direct support for dates added in V5R3.

** Note that all of the above applies to %UNS, %INT and all of the half adjust variants as well. Not
sure why you would want to half adjust a date but <grin>

Since many of you will not be using V5R3, here's a version of the sample code that works for V5R2.

// If you have to compile for V5R2 then this is the equivalent
 mmddyy = %dec(%Char(DateFld: *mdy): 6: 0);

If you need to do this in /Free form at V5R1 it gets pretty ugly, so we won't show you here.
Personally we'd probably use %Char and a DS - but there are other methods including the use of C
functions. Write us if you want to know more about them.

V5R3!

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 31-32

MOVE - Character/Numeric to Date
New BIF %DATE ({ expression { : date format } })

Converts both character and numeric fields to date
The second parameter specifies the format of the source field

Just as it did with MOVE
If no parameters are passed then the system date is returned

Companion BIFs are %TIME and %TIMESTAMP

D CharDate1 S 6A Inz('011549')
D CharDate2 S 6A Inz('031954')
D ISODate S D DatFmt(*ISO)
D USADate S D DatFmt(*USA)

 * Loading a date field from a character field prior to V5R1
C *MDY0 MOVE CharDate1 ISODate
C *MDY0 MOVE CharDate2 USADate

 // The equivalent code in /Free
 ISODate = %Date(CharDate1: *MDY0);
 USADate = %Date(CharDate2: *MDY0);
 // Expressions are supported - e.g. Join 3 separate character fields
 USADate = %Date(Day + Month + Year): *DMY0);

The %DATE, %TIME and %TIMESTAMP BIFs are used to remove the requirement for a MOVE or
MOVEL operation to convert data from character or numeric fields to date/time/timestamp fields.

Much like %CHAR will format date data into a character field, %DATE will do the reverse for
character fields. The second (format) parameter specifies the format of the data being converted
(i.e. the data represented by the first parameter). If the format is not specified, the default format for
the program is used. If you recall, the default format for the program is the format specified with
DATFMT (or TIMFMT for time fields) on the H spec or, if nothing is specified on the H spec, it will be
*ISO.

Note that the format of the date (or time) returned will always be *ISO.

If you specify either *DATE or UDATE (to retrieve the job date) as the first parameter you should
omit the format parameter altogether.

Note the difference between the job date and system date. *DATE or UDATE return the job date,
%DATE() returns the system date (i.e. the current date). Also note that initializing a date field to
*SYS using the D spec keyword only sets the INITIAL value for the field. So if a program runs over
midnight, the initialized value in a date field defined with INZ(*SYS) will be different from that
returned by %DATE().

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 33-34

Dates - Replacing SUBDUR
Calculating Durations

 %DIFF(Date1 : Date2 : DurationType)
Calculates durations between date, time or timestamp values
Other duration calculations are performed by simple + and - operators

In conjunction with new duration Built-Ins

Duration types are as per ADDDUR / SUBDUR
That is *MS, *S, *MN, *H, *D, *M, *Y

And the long-winded versions *MSECONDS, *SECONDS, *MINUTES, etc.

 * Is the loan due within the next 6 months ?
C DueDate SUBDUR Today MonthsToRun:*M
C IF MonthsToRun < 6

 /Free
 MonthsToRun = %Diff(DueDate : Today : *M);
 If MonthsToRun < 6;

 If %Diff(DueDate : Today : *M) < 6; // Alternate coding

Hurray! Courtesy of the /Free support, we finally have date duration support in expressions! This is
a feature that RPG IV programmers have been wanting since V3R1. Most RPG IV programmers
quickly became addicted to the extended factor 2 operation codes (e.g., EVAL, IF, etc.) and were
dismayed to discover that in order to use the powerful date duration support built in to RPG IV from
the beginning, they were forced to revert to the Factor 1, Factor 2, etc. format to use the powerful
date duration operations.

The code examples here illustrate the ability to replace the ADDDUR and SUBDUR operation codes
with expressions using either %DIFF or a simple arithmetic add (+) operation in combination with the
duration BIF (%Years, in this example).

It also demonstrates that, because the new support is through BIFs, it can be used directly in
expressions without the need for creating intermediate results.

On the next chart, we will show how to also replace the requirement for a MOVE operation code to
get numeric data into a date or time field.

Now, all date data type operations can be done with free form operation codes.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 35-36

Dates - Replacing ADDDUR / SUBDUR
Adding durations to a date, time or timestamp

This function can now be performed by simple addition
The durations are supplied via the appropriate BIFs

e.g. %MINUTES, %HOURS, %DAYS, %MONTHS, %YEARS, etc.
Multiple durations can be handled in a single statement

Subtracting a duration works the same way
i.e. It is achieved through the use of simple subtraction

 * These original duration calculations
C ContrDate AddDur Cyears:*Y ExpDate
C ExpDate AddDur CMonths:*M ExpDate
C ExpDate AddDur 1:*D ExpDate

C ExpDate SubDur 90:*D WarnDate

 // Can be replaced by these /Free calculations
 ExpDate = ContrDate + %Years(CYears) + %Months(CMonths) + %Days(1);

 WarnDate = ExpDate - %Days(90);

As on the previous chart, we are demonstrating here that since the new functionality is supplied by
BIFs, they can be combined in a single expression - no need for the multiple and potentially error
prone intermediate steps.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 37-38

 * Determine if payment is more than 90 days overdue - prior to V5R1

C *MDY0 MOVE DueDate WorkDate
C TIME Today

C Today SubDur WorkDate Temp:*D
C If Temp > 90
C : :
C EndIf

 // And the same calculation in /Free
 If %Diff(%Date(): %Date(DueDate: *MDY0): *Days) > 90;

 EndIf;

Combining The New Date Functions
The full power of the new BIFs appears when combining
them

In the example below it has significantly reduced the amount of code
The difference is actually greater than shown since in the new version there
is no need to define the work fields Temp, Today and WorkDate

%Date is used twice in the calculation
The first time to obtain the system date
The second to convert the numeric field DueDate to a "real" date

Returns the
system date

In this example, you can see how much more powerful it is to be able to use date operations in
expressions. In this small example alone, we did away with 3 temporary work fields. We think the
new operation is also more obvious as to its purpose.

Note the use of %Date for 2 functions - first to retrieve the current date for the calculation and
second to convert the DueDate field to a date form so it can be used in the duration calculation (via
%DIFF).

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 39-40

Replace Call - PRrototype
The modern way to call anything

e.g., program or procedure or subprocedure

Parameter mismatches can become a thing of the past!
The compiler can validate your program calls
Prototypes allow the compiler to validate:

The number of parameters and
Their data type and size

Prototypes can accommodate differences in data definition
For example, allowing an integer to be passed when the callee expects
a value with decimal places

The op-code CALLP is used with Prototypes
 It means CALL using Prototype (and NOT Call Procedure)

Prototypes can be used when calling anything - a program, whether RPGLE or RPG or CLP or
CLLE, etc. or a subprocedure or a C function, a system API - anything.

Prototypes were added to the RPG IV language in the V3R2 and V3R6 releases. Although their
initial purpose was to support Subprocedures, the RPG developers realized that they could be used
to provide additional support for program calls among other things. This helps to address one of the
really annoying problems with the old CALL/PARM syntax. Namely that errors with parameter lists
are not discovered until run-time. It would be much better if we could have the compiler validate the
parameter lists for us, and that's what prototyping provides.

In addition to validating parameters, prototyped calls allow for automatic adjustment in the case of
certain parameter mismatches. For example they can allow you to pass a 7 digit packed field when
a 9 digit zoned is expected. The techniques involved are beyond the scope of this session but you
can find articles on our web site www.Partner400.com

A great many people mistakenly believe that prototypes and CALLP relate only to procedures. This
is not true. CALLP can invoke either a program or a procedure. As we shall see shortly, which type
of call is made depends on keywords on the PR line of the prototype.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 41-42

Anatomy of a Prototyped Call

D TaxCalc PR ExtPgm('PX027C')

D Gross 8S 2

D Allow 8S 2

D Tax 8S 2

Name of the
Prototype

The name used by CallP

Name of the actual
program called

Parameters
Names are

documentary only

C CallP TaxCalc(GrossPay : Allowances : Tax)

Type and Length

Prototype Name Parameters

Identifies entry
as a PRototype

There are two main parts to a prototype

The first line is the PR line itself
This supplies the name of the program or procedure to be called
It also marks the beginning of the parameter list
The PR entry goes in positions 24 -25 (the same place you would put DS for a data structure)

The second and subsequent lines describe the parameters in sequence
Parameters are identified by a blank in positions 24-25 just as the subfields of a data structure are.
The parameter list is terminated by the appearance of any non-blank entry

For example a DS, S, C, PI (more on this later) or another PR
If the program or procedure to be called does not require any parameters - you don't define any!

Note that the names used for the parameters do not match the names of the fields in the CALLP
In fact they could be completely blank and the compiler would be quite happy
It only cares about the number and type of parameters - the names used are irrelevant
Some people use a standard whereby the name used in the prototype identifies the type of field

e.g. Currency, Integer, Name, etc.

The CALLP itself is a free-form operation. The parameters are enclosed in parentheses and
separated by colons.

If there are no parameters, then the parentheses are omitted. In V5R1 and later releases, an empty set
of parentheses can be used instead. This is the preferred method as it makes the intent of the code more
obvious and is compulsory in the /Free version of free-form RPG available in V5R1.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 43-44

 C Call 'PX027C'
 C Parm GrossPay
 C Parm Allowances
 C Parm Tax

Simple Prototype Example
If we are using these field definitions:

Then the following CALL sequence:

Can be replaced by this Prototype and CALLP

 D GrossPay 8S 2
 D Allowances 6S 2
 D Tax 8S 2

D TaxCalc PR ExtPgm('PX027C')
D Gross 8S 2
D Allow 6S 2
D Tax 8S 2

 /Free
 CallP TaxCalc(GrossPay : Allowances : Tax);

In our example the prototype has been hard coded in the calling program.
Normally we would expect to see it being /COPY'd in from a source file supplied by the programmer who

wrote PX027C. This is good practice since who knows better what parameters the program is expecting?

This approach is going to seem like more work at first glance. It is! But there are two things it is
important to remember:

First - you only have to code it once.
Second - our aim is not to speed the writing of the code, rather it is to reduce the opportunity for errors to

be introduced during maintenance. Since 80% of the effort expended on most programs is in
maintenance/enhancements, the extra time pales into insignificance.

Any variance from these rules will be noted and immediately rejected by the compiler. Compare this
to a conventional CALL/PARM situation where the compiler would not produce an error, and the
brand new bug could well be introduced into production.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 45-46

Replacing the *ENTRY PLIST
A Procedure Interface (PI) can replace the *ENTRY PLIST

But the Prototype must also be present
Placing it in a /COPY member is the best idea

Note that the PI entries actually define the fields
In the PR they simply provide information for the compiler

 /Copy TaxCalcPr

 D TaxCalc PI
 D GrossPay 8S 2
 D Allowances 6S 2
 D Tax 8S 2

 D TaxCalc PR ExtPgm('PX027C')
 D 8S 2
 D 6S 2
 D 8S 2

Source TAXCALCPR

We can replace the *ENTRY PLIST by placing a Procedure Interface and Prototype in the called
program.

Don't be tempted to simply clone the prototype using CC in SEU - do the job right and create a
source member to contain the prototype and /COPY it into the called program and also use it in any
program that calls it.

The added benefit for all your "hard work" is that the compiler can now validate the parameters to
make sure they match the prototype. You can also designate fields as read-only via the keyword
CONST. But all of those kind of capabilities require a session of their own.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 47-48

One more nail in the *INnn Coffin!

%LOOKUPxx(SearchFor : Array { : StartIndex {: # Elems} })
Provides the same basic function as the LOOKUP Op-Code

Unlike LOOKUP, SearchFor and Array do not have to match in size and
decimal positions
Also provides optional number of elements to search in addition to starting
index

%LOOKUP - Searches for an exact match
%LOOKUPLE - Searches for an exact match, or the closest item lower
There are also %LOOKUPLT, %LOOKUPGE, and %LOOKUPGT

I'll leave you to guess what they do!

Returns the Index number if SearchFor is found
Otherwise it returns Zero

The LOOKUP Op-code would have set the index (if supplied) to 1
Also %LOOKUP will not change the value of the starting index

Replacing The LOOKUP Op-Code

Note the differences in behavior between %LOOKUP and the corresponding operation code as
shown on the bottom of this chart. Also note that the BIFs %FOUND and %EQUAL are NOT set as
a result of using %LOOKUP, which is different for the operation code. Also note that %LOOKUP can
NOT be used to look up values in tables (unlike the LOOKUP operation code)

However, those of you who use Tables will be pleased to know that there are corresponding table
lookup versions of these BIFs. Not surprisingly they all start with %TLOOKUPxx.

The basic syntax for these BIFs is
%TLOOKUPxx(searchfor : table {: alttable {: # elems} })

%TLOOKUPxx sets the current table element for the specified table and also the alternate table if
specified.

In case the meaning of "One more nail in the *INnn Coffin!" escapes you - LOOKUP was one of a
very few operation codes as of V4R4 that still required the use of resulting indicators (the Hi/Lo/Eq
type) and so it required that numbered indicators still be used. Now, programmers can (and should!)
use the %LOOKUP BIF instead and remove some of those last remaining numbered indicators -
replacing them instead with either named indicators (e.g., to communicate with Display Files) or
BIFs, such as %EOF, %FOUND, %ERROR, etc.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 49-50

New options only available
 in /Free format logic

Now Appearing in /Free Only

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 51-52

I/O Enhancements - New Key Options
%KDS is a free-form replacement for KLIST

Used in Factor 1 position instead of a KLIST name

Syntax - %KDS(keyDSName { : numberOfKeysToUse })
Optional second argument specifies number of keys to be used

All keyed operations can use this new BIF

Generate related DS by using LIKEREC(recname : *KEY)

 // The ProductKeys DS will contain the three fields that make up the
 // key for the Product File (Division, PartNumber and Version)
D ProductKeys DS LikeRec(ProductRec : *Key)

 /Free
 // Read specific record using full key
 Chain %KDS(ProductKeys) ProductRec;

 // Position file based on first 2 key fields
 SetLL %KDS(ProductKeys : 2) ProductRec;

Note V5R2:
Supported only

in /Free

/Free ONLY

Until now, there were two ways to specify the key for a keyed operation. Specify the name of a
single field or the name of a KLIST. KLISTs always annoyed me because you had to wander off
elsewhere in the program to actually find the list. Only then did you know what keys were being
used. This new support offers both an improved alternative to the KLIST approach and a new
method of directly specifying the keys on the operation itself.

The new "KLIST" (actually a BIF called %KDS - Key Data Structure) references key definitions in the
D specs where they belong. Remember the LIKEREC *KEY option we covered earlier? This is
where it comes into play. You can use it to automatically generate a DS containing the file's key
fields. This structure can then be referenced in the I/O operation by specifying the DS name to the
new %KDS function.

So how do you specify that a partial key is to be used? Just use the second parameter of %KDS to
tell the compiler how many of the key fields are to be used.

We will look at the second method on the next chart.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 53-54

I/O Enhancements - New Key Options
Keys can now also be specified as a list of values

List is specified in Factor 1 position, enclosed in parentheses

Any type of field, literal or expression can be used
As long as the base type matches

i.e. The result is numeric for a numeric key, Alpha for an alpha key, etc.
The compiler will perform any required conversions

Using the same rules as for EVAL operations

 /Free
 // Read using specified keys
 Chain (Division : PartNumber : Version) ProductRec;

 // Position file based on first 2 key fields
 SetLL (Division : PartNumber) ProductRec;

 // Position file to specified Part number in Division 99
 SetLL ('99' : PartNumber) ProductRec;

Note V5R2:
Supported only

in /Free

/Free ONLY

The second method is an extension of the current ability to specify a single field as the key (the old
Factor 1).

Instead of a single field, you can now supply a list of fields. The list must be specified within
parentheses with colons (:) used to separate the individual key elements.

Note that the key elements do not have to be fields, they can be any character expression. The
compiler will perform conversion if required.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 55-56

Allows you to specify the list of fields affected by an UPDATE
Only those fields specified will be updated

Syntax - %FIELDS(name1 { : namen ... })

Used in the Result position of the op-code

I/O Enhancements - %FIELDS

FProduct UF E K DISK

D ProductData DS LikeRec(ProdRec:*ALL)

 /free
 // Update record using values in ProductData DS
 Update Product ProductData;

 // Update only UnitCost and UnitPrice fields
 Update Product %Fields(UnitCost : UnitPrice);

Note V5R2:
Supported only

in /Free

/Free ONLY

In many ways this is one of the best of the new features, and we saved it for the end (almost)

This is the capability to limit which fields are modified by an UPDATE operation. We love this one!
It provides a great way to protect your code from the worst efforts of (shall we say) less-gifted
programmers. The list of fields is specified using the new BIF %Fields. Only those fields specified
will be updated.

Why is this useful? Suppose that, during the operation of the program, only certain fields in the file
should be subject to change. By specifying those fields to the UPDATE op code, you are assured
that only those fields will be changed. If during subsequent maintenance tasks a mistake is made
and the value of a field that should not be modified is accidentally changed in the code, it will have
no effect on the database. Only if the %Fields list is also modified can this error result in database
corruption.

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 57-58

Shortform Expression Support (V5R2)
We suspect you'll either love this or hate it

It is kinda nice when using subscripted or qualified names
Particularly if you are a slow typist !!

It allows you to shorten expressions of the type X = X + 1
Instead of repeating the field name (X) you can use shortforms

+= for addition
-= for subtraction
and you can guess what the others are ...

This is not limited to /Free

 // This calculation
 MonthTotal(Month) = MonthTotal(Month) + TotalSale;
 can be shortened to this
 MonthTotal(Month) += TotalSale;
 // and this
 InvoiceTotal = InvoiceTotal - CustDiscount;
 // can similarly be shortened to this
 InvoiceTotal -= CustDiscount;

Numeric operations now support short-form notation for certain functions. Prior to this release, an
addition of the type X = X + 1 required that you repeat the name of the target field. Some people
considered this a step backwards since the old ADD op-code offered a short-form notation that only
required the target field to be specified once, in the result field. e.g. ADD 1 X.

With this new feature, the expression can be written as X += 1. Similar shorthand can be used for
subtraction, multiplication, division, and exponentiation.

I find the syntax a little confusing because my first thought is to key it as X =+ 1 and in fact I have
made that mistake several times already. I will learn in time!

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 59-60

Resources
Linoma Software's RPG Toolbox

The latest evolution of the first RPG III conversion utility
Now accommodates /Free formatting and much more

www.LinomaSoftware.com and follow the RPG Toolbox links

Articles by Jon Paris and Susan Gantner
Link to them from the Partner400 web site

Partner400.com/Articles.htm

Book: Free-Format RPG IV: How to Bring Your RPG Programs
Into the 21st Century

by Jim Martin
Available from MC Press

© Copyright Partner400, 2004-2007. /Free Your RPG - Page - 61-62

