

http://www.e-xact.com/

December 2010 9 www.phparch.com

There are probably a hundred good
reasons or so why you should
check out the NOLOH framework
today, but we thought we’d save
you a little time and just mention
some of our favorites. NOLOH’s

Notables are those brave and

daring features which make it

sharply and uniquely stand out in

the saturated world of frameworks.

REQUIREMENTS

PHP: 5.1+
NOLOH: 1.7.568

Related URLs:

• http://www.noloh.com/
• http://dev.noloh.com/
• http://www.jscolor.com/
• http://www.phparch.com/
• http://www.slideshare.net/noloh/
• http://www.twitter.com/noloh

FEATURE

SELBATO	N
S

®

'

by Asher Snyder & Philip Ross

http://www.noloh.com/
http://dev.noloh.com/
http://www.jscolor.com/
http://www.phparch.com/
http://www.slideshare.net/noloh/
http://www.twitter.com/noloh

December 2010 10 www.phparch.com

NOLOH's Notables

Choosing a framework can be a daunting task.
After all, most everything is considered a
framework nowadays, albeit incorrectly, which

unfortunately makes searching for one that fits your
needs an over saturated nightmare. To help you on
your quest, we’ve decided to deviate from our usu-
ally long articles to present you with a list of the
most notable features of the NOLOH PHP Framework.

Before we delve into these features, I would like
to quickly remind you of what NOLOH is. NOLOH,
which stands for Not One Line Of HTML, is an event-
driven, lightweight, on-demand, object-oriented web
development platform which allows you to develop
your websites or applications in a unified server-side
codebase, while maintaining the agility to extend
your application as you see fit, including implement-
ing existing HTML, third party modules, and safely
interacting with JavaScript.

While the above description might sound like a lot
of buzz, it’s the most accurate description we can
provide without going into significant depth. If you
would like a more detailed explanation, please read
our article “NOLOH: The Comprehensive PHP Framework”
in the May 2010 issue of php|architect.

Out of Sight, Out of Mind
As is often the case in technology, the best fea-
tures are the ones you never have to deal with. This
is especially true with NOLOH as some of its most
powerful features are at the core of the framework
enabling you to develop sophisticated applications
with unprecedented speed and ease. These hidden

heroes are:

• Unified Server-Side Development — This
means that you can actually develop in a
single codebase on the server. By single
codebase, we mean entirely in fully object-
oriented PHP/NOLOH, no HTML, JavaScript,
or CSS necessary (although you can still use
them if you would like). NOLOH handles all
the client-server communication and lifecy-
cle management, allowing your application
to have a stateful continuous lifecycle. This
means no <FORMS>, $_GET, or $_POST. Many of
our users are unaware that the client even
exists, it just works.

• No HTML or JavaScript Necessary — We
must emphasize again that no HTML or
JavaScript is necessary. This means that
your application can consist entirely of PHP
classes, representing objects that make
up your application. This often allows for
speedier and more cost effective develop-
ment as it is not necessary to constantly
switch between client and server frames of
mind, or have a multi-tiered guru on your
team.

• Code once, deploy everywhere — Your
NOLOH application will work across all
browsers and operating systems, includ-
ing screen readers, mobile devices and even
text-based browsers such as Lynx and Links.

NOLOH has different rendering engines that
output unique versions of your application
specifically for the target user. This also
includes an ever improving non-JavaScript
renderer, which allows non-JavaScript users
to browse a non-JavaScript version of your
application, enabling even those users to
partake in your application’s information.

• Automatic Ajax — NOLOH is automatically
Ajax. You don’t have to think about it or do
anything. Every action, update, and request
is automatically transmitted via optimized
Ajax and processed for you automatically by
NOLOH.

• Unprecedented performance both on
client and server — NOLOH is truly light-
weight and on-demand. This means that
only the correct and highly-optimized code
is loaded for each user only when necessary.
Your users will not have to sit through long
loading screens to receive resources they
will never use. If you’re not using it at the
moment, it’s not loaded at that moment. A
comprehensive explanation of this can be
found in the November 2010 php|architect
article titled “Lightweight, On-demand, and
Beyond”.

• Automatic SEO — Since NOLOH generates
different code for different users, this allows
NOLOH to generate a specific version of your

December 2010 11 www.phparch.com

NOLOH's Notables

site for search engines. This version of your
site is highly optimized for search engines
containing W3C Strict validated code, along
with a semantically correct skeleton, and
auto-generated links to dynamically gener-
ated “pages” allowing search engines to
reach content not normally easily accessible,
such as modal windows, action dependent
content, and sub-sections.

Top 10 Useable Notables
Although NOLOH has many exciting features, the rest
of this article will cover the ten most notable fea-
tures. Each notable feature will contain sample code
demonstrating that feature.

No CLI, or Unwieldy Configuration
Unlike many other frameworks, it is not necessary to
start in the command line or fill out configuration
files, you can literally start right away by including
NOLOH and constructing your initial WebPage class.
Below is ALL the required code for hello world in
NOLOH.

require_once('PATH/TO/NOLOH');
class HelloWorld extends WebPage {
 function __construct() {
 //Instantiate WebPage with Title and Alert
 parent::WebPage('Hello World in NOLOH');
 System::Alert('Hello World');
 }
}

Completely Object-Oriented
Your NOLOH applications are comprised entirely of
objects. You can use the built-in objects, extend
them, or create your own. The following demon-
strates instantiating, adding, and setting the Click
events of two instances of a Button object:

$hello = new Button('Hello', 10, 10);
$goodbye = new Button('Goodbye', 10, 50);
//Set Events
$hello->Click
 = new ServerEvent('System', 'Alert', $hello->Text);
$goodbye->Click
 = new ServerEvent('System', 'Alert', $goodbye->Text);
//Add Buttons to Show
$this->Controls->AddRange($hello, $goodbye);

Shifting & Animation
NOLOH has extensive built-in support for shift-
ing, and animation, including drag and drop. Every
NOLOH object has Shifts which allow you to specify
how the object can Shift something or how the ob-
ject can Shift With something. You can add as many
as you like to an object for as many properties as
you like. You can even chain them to create cool ef-
fects and useful behaviors (such as column shifts).

The code sample below creates two Panels, manu-
ally sets their BackColor (you can use CSS for all
visual properties if you like), sets a Shift on $obj1
so that it’s now draggable, and sets a Shift::With
on $obj1 so that it moves with $obj1. As mentioned
previously, you can Shift whatever you like with as
many constraints as you like.

$obj1 = new Panel();
$obj2 = new Panel($obj1->Right + 20);
//Manually set their BackColor
$obj1->BackColor = Color::Red;
$obj2->BackColor = Color::Green;
//Set Shifts
$obj1->Shifts[] = Shift::Location($obj1);
$obj2->Shifts[] = Shift::LocationWith($obj1);
//Add Panels
$this->Controls->AddRange($obj1, $obj2);

We can now use NOLOH’s built-in Animate functions to
animate $obj1, which will in turn also animate $obj2,
due to its Shift With:

Animate::Left($obj1, 600);

Many of our users are
unaware that the client
even exists, it just works.

December 2010 12 www.phparch.com

NOLOH's Notables

Comet
One of the most exciting features of NOLOH is its
Comet support via NOLOH’s Listener object. You
don’t need to set up a different server, go through
hoops, or interact with different Comet libraries.
You simply instantiate a Listener, set it to listen to
a data source (e.g. database, file, function, web ser-
vice) and specify a function for it to call on update.
Unlike most Comet libraries, NOLOH’s built-in Comet
support allows for all the main transports, including
short-polling, long-polling and streaming, and best
of all, you can use it within the confines of your ap-
plication and not externally as is usually the norm.
Check out Philip Ross’s talk “Comet: Pushing the Web

Forward” at http://www.slideshare.net/noloh/comet-
by-pushing-server-data-we-push-the-web-forward, for
an in-depth explanation.

See Listing 1 for the complete Listener example,
showing real-time Flickr photos randomly falling to
their doom. Note that below is the actual listener
line from the file. As you can see, it is only one to
three lines depending on your definition of a line,
and the rest of the code creates and animates an
image from Flickr’s resulting XML.

$this->Controls->Add($listener = new Listener(
'http://query.yahooapis.com/v1/public/yql?q=select%20
source%20from%20flickr.photos.sizes%20WHERE%20photo_
id%20in%20(select%20id%20from%20flickr.photos.recent)%20
and%20label%3D%22Thumbnail%22', $this->LoadImage));

Backwards Compatible & Completely
Separated
Although NOLOH stands for Not One Line of HTML,
this does not mean that you can’t use your exist-
ing HTML, CSS, or JavaScript. In fact, NOLOH was
built from the ground up to allow you to use existing
HTML, CSS, or JavaScript cleanly and efficiently.

First, we’ll cover using CSS within NOLOH. As you
saw earlier, you can directly assign visual properties
via an object’s corresponding properties, however,
you can also do this via CSS. You can use CSS in
NOLOH in 3 ways, directly assigned CSS properties,
CSS classes coupled with style sheets, or generally
through style sheets. Of course, you can mix and
match to fit your needs.

Let’s begin with direct assignment. NOLOH allows

you to directly assign ANY CSS property via the CSS
prefix syntactic sugar. For example:

$object = new Panel();
$object->CSSBackground = '#3366FF';
$object->CSSBorderLeft = '1px solid black';
$object->CSSBorderRight = '1px solid green';

Next, we can add a style sheet directly to our ap-
plication via WebPage’s CSSFiles property. Note that
you can call the following line from anywhere within
your application in any class. If adding to CSSFiles
within your WebPage class, feel free to use $this,
instead of NOLOH’s That() Singleton sugar.

WebPage::That()->CSSFiles->Add('styles.css');

Finally, once we have a style sheet added, we can
assign classes to our object directly via the CSSClass
property.

//styles.css
.SomePanel {
 background: #3366FF;
 border: 5px dotted green;
}
//Then in one of our NOLOH classes.
$object->CSSClass = 'SomePanel';

We can even add multiple CSS classes via the
CSSClasses property, via Add, or AddRange (and remove
them via the corresponding remove functions).
Please assume that we have the corresponding CSS
classes added to our style sheet.

$object->CSSClasses->Add('SomePanel');
$object->CSSClasses->AddRange('GreatPanel', 'BestPanel');

Now, let’s move on to integrating your existing

 1. class FlickrRain extends WebPage {
 2. function FlickrRain() {
 3. parent::WebPage('Flickr Rain');
 4. //Add Listener Bound to Flickr YQL
 5. $this->Controls->Add($listener = new Listener(
 6. 'http://query.yahooapis.com/v1/public/yql?q=select%20source%20
from%20flickr.photos.sizes%20WHERE%20photo_id%20in%20(select%20id%20from%20
flickr.photos.recent)%20and%20label%3D%22Thumbnail%22',
 7. $this->LoadImage));
 8. }
 9. function LoadImage() {
10. $photos = simplexml_load_string(
11. Listener::$Data)->results->size;
12. foreach($photos as $photo) {
13. $url = $photo['source'];
14. $this->Controls->Add($image = new Image(
15. (string)$url,
16. rand(0, $this->Width),
17. rand(0, 200), 100, 100));
18. Animate::Top($image, $this->Height - $image->Height, 3000);
19. Animate::Opacity($image, Animate::Oblivion, 3000);
20. }
21. }
22. }

LISTING 1

http://www.slideshare.net/noloh/comet-by-pushing-server-data-we-push-the-web-forward
http://www.slideshare.net/noloh/comet-by-pushing-server-data-we-push-the-web-forward

December 2010 13 www.phparch.com

NOLOH's Notables

HTML. You can do this in two ways, via NOLOH’s
MarkupRegion and NOLOH’s RichMarkupRegion. Using
NOLOH’s MarkupRegion is very simple, you just instan-
tiate the object, similar to any other object, and
specify a string of HTML, or a path to a file.

$homeCopy = new MarkupRegion('Content/home.htm');

We don’t simply end there, we also have some-
thing called a RichMarkupRegion. A RichMarkupRegion
not only allows you to display your existing HTML,
it also allows you to have your HTML interact with
your NOLOH application in a completely clean and
separated manner, eliminating any programming
logic from your static markup files and leaving the
ultimate decisions to the developer. For example,
consider the following prose.htm Markup file:

//prose.htm
<p>Yes. You gave me a <a>dollar and some candy.
We don't have a brig. I daresay that Fry has discovered
the <a>smelliest object in the known universe!</p>

We can specify RichMarkupRegion to use this file similar
to MarkupRegion.

$activeCopy = new RichMarkupRegion('Content/prose.htm');

In this case, RichMarkupRegion will behave similarly
to MarkupRegion. However, we can now specify what’s
known as an Eventee to our text. Eventees have a
Keyword and Value pair that make up a descriptor.

//prose.htm
<p>Yes. You gave me a
<n:a descriptor='prose:dollar'>dollar</n:a> and some
candy.

 We don't have a brig. I daresay that Fry has discovered
 the <n:a descriptor='prose:smelliest'>smelliest</n:a>
 object in the known universe!</p>

//Somewhere in your NOLOH class
$activeCopy = new RichMarkupRegion('Content/prose.htm');

However, you’ll notice that this produces the same
output as before. This is because we didn’t specify
that anything should happen. Now, let’s assign each
Eventee an event that logs the Value of the Eventee.

$activeCopy = new RichMarkupRegion('Content/prose.htm');
foreach($activeCopy->Eventees as $eventee) {
 $eventee->Click
 =new ServerEvent('System', 'Log', $eventee-
>Value);
}

Let’s take a moment to think of the implications of
this. We can now dynamically specify what we want
to happen and when it should happen without hav-
ing to specify any programming code in our markup.
In the following example, only Eventees with the
value smelliest will do anything.

$activeCopy = new RichMarkupRegion('Content/prose.htm');	
	
foreach($activeCopy->Eventees as $eventee) {
 if($eventee->Value == 'smelliest')	 {
 $eventee->Click
 = new ServerEvent(
 'System', 'Log', $eventee->Value);
 }
}

Please note that if you don’t want to manually
add namespaces or descriptors you can also ac-
cess your MarkupRegion’s elements by the cor-
responding XPath. You can also substitute your
Markup’s elements for real NOLOH object’s using

RichMarkupRegion’s Larva concept.

Use Third-Party Scripts and Widgets with
Ease
Continuing the spirit of the previous feature, we’ll
now show you how you can easily use your existing
JavaScript in your applications. NOLOH has a very
powerful class called ClientScript. ClientScript al-
lows you to add, queue, and call existing JavaScript.
While we won’t cover all of ClientScript, we will cover
the basics and the basic optional values. Please see
the ClientScript API at http://dev.noloh.com/#/api/
ClientScript for an extensive list of its functions
and options.

//Adds JavaScript code to be run immediately on the
client
ClientScript::Add('alert("blah")');
//Adds the JavaScript myscript.js to your application
ClientScript::AddSource('scripts/myscript.js');
//Auto maps and synch an Object's client property
ClientScript::Observe($object, clientValue,
[serverValue])';
//Queues a JavaScript function until the object is added
ClientScript::Queue($this, 'alert', 'blah');
//Sets an Object's client property to some value
ClientScript::Set($object, 'CustomValue', 10);

Please note that all the above have Race variants
where applicable that allow you to bind them to a
client conditional, this allows you to avoid prob-
lems related to race conditions. NOLOH’s ClientScript
functions automatically convert any arguments to
the proper client format for use. You can even pass
in JavaScript objects as arguments, along with raw
strings, and even closures.

Now that we know the basics, we can use the

http://dev.noloh.com/#/api/ClientScript
http://dev.noloh.com/#/api/ClientScript

December 2010 14 www.phparch.com

NOLOH's Notables

above to easily wrap a third-party JavaScript widget
and create a NOLOH module we can use within our
applications. For example, the following is a wrapper
to the popular JSColor module. You’ll see that if we
visit the documentation at http://jscolor.com/try.
php#manual-binding, it suggests you add the follow-
ing line to your client, in addition to the standard
HTML:

var myPicker = new jscolor.color(document.
getElementById('myField1'), {})

Rather than adhere strictly to those directions,
we can easily wrap this module using the above
ClientScript functions. We can simply extend a
TextBox, Add the JSColor source, and Queue a minor
variation of the above line (_N’ is equivalent to
document.getElementById), and that’s it.

class JSColor extends TextBox {
 function JSColor($left=0, $top=0) {
 parent::TextBox($left, $top);
 ClientScript::AddSource('jscolor/jscolor.js');
 ClientScript::Queue($this,
 "new jscolor.color(_N('$this'), {});");
 }
}

We now have a fully instantiable JSColor widget we
can use like any other NOLOH object, for example:

$colorPicker = new JSColor();
$this->Controls->Add($colorPicker);

We’ll leave it as an exercise to the reader to map the
JSColor’s Text or client value to a new SelectedColor
property.

Bookmark & Search Engine Friendly
NOLOH applications are fully bookmark-able via
NOLOH’s URL class. This also has the added benefit
of automatically generating links for tradition-
ally difficult to spider content. To use, simply call
URL::SetToken() during a normal course of events.

function LaunchSection($section)
{
 URL::SetToken('section', $section);
 $newSection = new Section($section);
 ...
}

Similarly, use URL::GetToken() to retrieve the value of
the token during the normal course of events. Please
note that in the following example, we use the op-
tional second parameter specifying a default if no
token is found.

//Assuming we have a Section class that takes in a
section
$activeSection
 = new Section(URL::GetToken('section', 'home')));

Data::$Links
NOLOH has extensive support for the most popu-
lar databases. In addition to this support, NOLOH
Data::$Links allows you to easily access your database
and safely query your data. The following instanti-
ates a DataConnection and stores it in a globally acces-
sible Data::$Link MyDB. Please note that we can do this
for as many databases as we like.

Data::$Links->MyDB
 = new DataConnection(Data::Postgres, 'mydb_name');

We can now query our database via Data::$Links
ExecSQL, ExecView, and ExecFunction functions.

$users = Data::$Links->MyDB
 ->ExecSQL('SELECT * FROM users');
//
$users = Data:::$Links->
 ->ExecView('v_get_all_users');
//	
$users = Data:::$Links
 ->ExecFunction('sp_get_users', 'NY');

We can even query SQL with replacement parameters.
Data::$Links will automatically safeguard any param-
eters you use to prevent SQL injection.

$users = Data:::$Links->MyDB
 ->ExecSQL('SELECT * FROM users state = $1', 'NY');

Similarly, I can use Data::$Links and its CreateCommand
function to create and store a command to be passed
for execution later:

$command = Data::$Links->MyDB
 ->CreateCommand(Data::SQL, 'SELECT * FROM users');	
$command = Data:::$Links->MyDB
 ->CreateCommand(Data::SQL, 'SELECT * FROM users state
= $1', 'NY');
$command = Data:::$Links->
 ->CreateCommand(Data::View, 'v_get_all_users');
$command = Data:::$Links
 ->CreateCommand('sp_get_users', 'NY');

See our Data::$Links article at http://dev.noloh.com/#/
articles/Data-Links/ for more detailed information
and options.

http://jscolor.com/try.php#manual-binding
http://jscolor.com/try.php#manual-binding
http://dev.noloh.com/#/articles/Data-Links/
http://dev.noloh.com/#/articles/Data-Links/

December 2010 15 www.phparch.com

NOLOH's Notables

Great Syntax
We consistently get feedback from our users that
they find NOLOH easy, intuitive, and inexplicably fun
to code in, and this is because we place such great
emphasis on the importance of language design.
This includes consistent notational schemes, descrip-
tive names for classes, functions, and properties,
very sensible class inheritance, and the liberal use
of syntactic sugars. Some of these we have already
mentioned (like the CSS sugar) and some of these
we’ll showcase here, but the true wealth and power
of NOLOH’s syntax cannot be covered by just one
section.

First of all, there is an interchangeable use of
properties and functions via the Get and Set sugars.
This allows one to define their own properties in
their classes (or overload any of NOLOH’s existing
properties) that will be used in the familiar way by
users but that actually execute code (e.g., for the
purposes of validation) in addition to the ordinary
setting of class variables.

This is how a class with custom properties may
be defined. Notice the Get and Set prefixes in the
method names.

class Purchase extends Object {
 private $Price;
 function GetPrice() {
 return $this->Price;
 }
 function SetPrice($value) {
 if(is_numeric($value)) {
 $this->Price = $value;
 }
 else {
 System::Alert('Error: Invalid Price given');

 }
 }
}

This is how a class with custom properties may be
used. Notice the ordinary and natural property nota-
tion instead of method calls.

$order = new Purchase();
/* Calls the corresponding Set method, validates
correctly,
 and sets internal variable to 42.*/
$order->Price = 42;
// Calls the corresponding Get method, thereby logging
42.
System::Log($order->Price);
/* Calls the corresponding Set method, fails validation,
 and alerts an error.*/
$order->Price = 'Hark, a vagrant!';

Another very convenient syntactic sugar related to
setting properties is the cascading feature. By using
the Cas prefix, several properties can be set consecu-
tively without the need to keep re-referencing the
object. This is especially useful when initializing
some objects since quite often, multiple assignments
need to be made.

/*Equivalent to a block of 4 statements individually
 setting the Left, Top, Text, and Click properties of
 $someObject.*/
$someObject->CasLeft(0)
 ->CasTop(0)
 ->CasText('Lorem ipsum, baby')
 ->CasClick(new ServerEvent($this, 'DoSomething'));

Because dealing with special collections of things is
so important and commonplace in programming, we
will cover the syntactic sugars that deal with them
next. As one might naturally expect, these collec-
tions are treated like arrays so you don’t have to

remember two separate sets of syntaxes if you don’t
want to.

For example, we have seen how to use the Add
method on an ArrayList before (e.g., a WebPage’s
Controls property), but did you know that the follow-
ing are all also possible just like they are for PHP’s
native array type?

// Equivalent to an Add call
$this->Controls[] = new Label();
/* Adds to a particular index, and if it was previously
 used, whatever was in it is replaced*/
$this->Controls['somewhere'] = new TextBox();
//Retrieves from a particular index.
System::Log($this->Controls[0]);
// Iterates through all Controls and logs them
foreach($this->Controls as $control) {
 System::Log($control);
}

These syntaxes are not restricted to merely
ArrayLists, but also work for other collections such as
Groups or Events. For example, one may define mul-
tiple Event handlers as follows:

// Tells the Click to call some DoThis method
$this->Click = new ServerEvent($this, 'DoThis');
/* Tells the Click handler to ALSO call some DoThat
 method by appending another ServerEvent*/
$this->Click[] = new ServerEvent($this, 'DoThat');

There is even an All syntactic sugar to allow a de-
veloper to easily iterate over some collection and do
the same kind of operation (e.g., setting a property
or calling a method) on each of its elements.

/* Individually sets each child's Layout
property to Layout::Relative*/
$this->Controls->AllLayout = Layout::Relative;
/* Individually calls the Leave method on each child

December 2010 16 www.phparch.com

NOLOH's Notables

(which is equivalent to calling Clear on the ArrayList)*/
$this->Controls->AllLeave();

Another interesting syntactic sugar is allowing
methods to be fetched (in the form of ServerEvents)
as if they were themselves properties, just like in
functional programming languages. This sometimes
allows for more readable code than having to instan-
tiate ServerEvents manually.

class Sample extends WebPage {
 function Sample() {
 parent::WebPage('Sample');
 $button = new Button('Click here');
 /* Use of the syntactic sugar in order to not have
 to instantiate ServerEvent manually*/

 $button->Click = $this->Greet;
 }
 function Greet() { System::Alert('Good morning!'); }
}

That’s just to give you a little taste of NOLOH’s ex-
tensive and very powerful syntactic sugars. Pretty
sweet, huh?

Fully Extensible
NOLOH is fully extensible allowing you to create your
own objects and even override default functionality.
In the following example, we create our own Panel
with a custom Text property.

class CustomPanel extends Panel {
 private $Title;
 function __construct($left=0, $top=0, $width,
$height){
 parent::Panel($left, $top, $width, $height);
 $this->BackColor = Color::Red;
 $this->Controls->Add($this->Title = new Label());
 }
 function GetText()	 {return $this->Title->Text;}
 function SetText($text) {$this->Title->Text = $text;}
}

As you can see this Panel’s Text property will get and
set the Text of its Title Label. If we instantiate and
add a new CustomPanel and set and Log its Text, we
can expect the Label’s Text to be affected and dis-
played appropriately.

$customPanel = new CustomPanel(10, 20, 100, 200);
$customPanel->Text = 'php|architect';
//Add $customPanel
$this->Controls->Add($customPanel);
//Log Text of CustomPanel which returns Title's Text
System::Log($customPanel->Text);

Try It Out
So there you have it. We hope you enjoyed reading
through the above list of NOLOH’s notable features.
Hopefully you now see how NOLOH is a truly differ-
ent PHP framework and how it might fit into your
development plans. Please feel free to try any of the
above features in your very own free, hosted de-
velopment sandbox. Sign up for one at http://www.
noloh.com today and make NOLOH’s Notables work for
you.

Asher Snyder is a co-founder of NOLOH, the company
behind the NOLOH PHP Framework. A “technological
polymath,” he has extensive experience working with a
vast number of programming languages and development
methodologies from the desktop to the Internet to scaling
servers and architecting advanced databases. When not
working, talking, or writing, he contributes to open-source
and the causes he believes in. Contact: asnyder@noloh.
com.

Philip Ross was born in Kiev, Ukraine. He is a co-founder
of NOLOH and plays a crucial role in developing the
NOLOH kernel. Among his extensive list of contributions,
he was behind NOLOH’s intuitive and advanced Comet
functionality. Phill, as he prefers to be called, is well-versed
and experienced with numerous programming languages
and paradigms and particularly enjoys the subject of their
design philosophies. Outside of development, his interests
mainly lie in the foundations of mathematics - including set
theory, logic, and related topics - and involving himself with
research of alternate systems of set theory.

http://www.php.net/Log
http://www.noloh.com
http://www.noloh.com

http://www.nexcess.com

	FEATURES
	NOLOH's Notables
	Mobile Web in Higher Education
	YiiLocal - Find Stuff Near You
	Limb3 - Yet Another PHP Framework
	When Worlds Collide: Mixing PHP and the .NET Framework

	COLUMNS
	Editorial: Reflections
	Drupal Corner: Drupal for Christmas
	Security Roundup: The End is Near?
	exit: Why and How
	Elephpants

