
Fail-Stop Protocols: An Approach to Designing Secure ProtocolsLi GongSRI InternationalComputer Science Laboratory333 Ravenswood AvenueMenlo Park, California 94025 U.S.A.(gong@csl.sri.com)October 20, 1994Abstract. This paper presents a methodology to facilitate the design and analysis of secure crypto-graphic protocols. This work is based on a novel notion of a fail-stop protocol, which automaticallyhalts in response to any active attack. This paper suggests types of protocols that are fail-stop,outlines some proof techniques for them, and uses examples to illustrate how the notion of a fail-stop protocol can make protocol design easier and can provide a more solid basis for some proposedprotocol analysis methods.1 Background and MotivationIn a distributed system, security depends heavily on the use of secure protocols such as authen-tication protocols (e.g., [21, 26]) and secure communication protocols (e.g., [4]). It is well knownthat such protocols can fail even if the underlying cryptosystems are sound and can have verysubtle security aws that are quite di�cult to debug [6]. In fact, the protocol security problem isundecidable in that, given any protocol analyzer, there are protocols whose security the analyzercannot decide.1Recent years have seen notable e�orts devoted to developing methods { theories, logics, formalmethods, and tools { to facilitate the analysis of the security of cryptographic protocols (e.g.,[11, 6, 17]). Although these results are signi�cant, they are not yet satisfactory due to the followingreasons. Methods based on searching, as the authors themselves pointed out [17], can �nd protocoldesign vulnerabilities to only those attacks that are explicitly modelled. Thus, failure to �nd avulnerability by such a method does not mean that the protocol is secure, but merely that certainlines of attack are less likely to succeed. In addition, like software testing, searching is computation1To relate this problem to the Turing machine halting problem, simply de�ne a protocol that broadcasts all itssecrets if the analyzer �nds it secure and does nothing otherwise.1



intensive.Methods based on modal logic [6, 3], on the other hand, seem more conclusive in that their aimis to produce a proof of protocol security by deducing that certain protocol goals are achieved.However, such methods generally make a number of assumptions some of which cannot be justi�edby the methods themselves. Most of these, such as the assumption that one can identify one's ownmessages or that one can distinguish between a random string and a properly encrypted message,can be guaranteed by additional constraints on protocol speci�cation or implementation. They canalso be dealt with by logics with more complicated constructs (e.g., [13]).The single most di�cult assumption is that a secret remains secret during an execution of theprotocol.2 This assumption is paradoxical { whether a secret can remain secret may depend cruciallyon whether the protocol is secure, thus the assumption cannot be used to derive the security of theprotocol unless a separate mechanism can be used to justify this assumption. One would hope thatthe searching approach can be used to complement the proof-based approach, but because of theunlimited ways in which an attack can take place, it is impossible to model all possible attacks (bothsmart and stupid attacks) that must include all types of attacks as well as all possible instancesof these attacks.3 Indeed, when Nessett [24] raised the di�culty with this assumption of secrecy,no satisfactory answer could be provided. However, it is probably unfair to say that the logic ofBurrows, Abadi, and Needham is awed { the logic's scope is explicitly de�ned not to cover theissue of secrecy [7]. None of the later extensions of this logic resolves this di�culty.An earlier work by Dolev and Yao [11] proved that protocols using public-key cryptosystems [10]and having certain very rigid structures can automatically satisfy the secrecy assumption. However,the restrictions on the protocols are so strict { for instance, one can only append to a message {that the results are not widely applicable.Given the above observations, we propose a new approach to designing secure protocols that iscentered on a notion of fail-stop protocols. This notion is partly inspired by the work on fail-stopprocessors by Schlichting and Schneider [30]. They proposed the concept of a fail-stop processor,which, when failing, stops completely before any e�ect is visible to the outside world. Schneideralso showed how to construct a fail-stop processor using Byzantine agreement [31]. A desirableresult of this fail-stop behavior is that it is much easier to reason about fault-tolerant systems builtwith fail-stop processors, compared with processors that may have omission or Byzantine failures.Just as the notion of fail-stop processors helped to simplify the design and analysis of fault-tolerantsystems, we show that the notion of fail-stop protocols helps to simplify the design and analysis ofsecure protocols.More speci�cally, a fail-stop protocol automatically halts when there is any derivation from thedesigned protocol execution path. Consequently, the only di�erence between e�ects of passiveattacks and active attacks is that the latter can cause early termination of a protocol execution.Thus, we need to analyze only the e�ect of passive attacks, and in particular, it is now much easier2Abadi and Tuttle [3] in their new semantics of the BAN logic [6] tried to relax this assumption by assuminginstead that a secret can be leaked but whoever processes it (maybe illegally) will not misuse it. This is logicallysound, but does not reect what happens in the real world.3Some searching-based method, such as the NRL protocol analyzer [17], are said to have the potential to providesome proving capability, but no general proof methodology is currently available.2



to conclude whether the secrecy assumption can be violated. One obvious bene�t is that once weshow that the secrecy assumption for a protocol holds, a proof of the protocol's security using thelogical analysis method of Burrows, Abadi, and Needham (also called the BAN logic) will be muchmore convincing.From another angle, just as algorithms or programs should be designed for their correctness to beeasily proven [15, 28], security protocols should be designed so that their security can be provenwith relative ease. The di�culties encountered by previous e�orts of protocol analysis, in our view,can be to some extent attributed to the undisciplined ways in which a protocol can be designed(and then submitted for analysis). By imposing a few restrictions on the format the messagesof a protocol can take, we can greatly reduce the types of protocols we have to deal with. Thespeci�c construction of fail-stop protocols presented in this paper can result in practical and usableprotocols, and therefore the restrictions are not as limiting as one might have �rst thought.In short, the advantage of our new approach can be seen in the following light. Proof-based methodsare more favorable than searching-based methods in that the former need to capture only all typesof attacks whereas the latter must in addition capture all (and possibly an in�nite number of)instances of all types of attacks. Our approach's advantage is in excluding the feasibility of activeattacks so that protocol analysis can focus on the remaining case { namely, passive attacks thatmay lead to information leakage { and provide a more solid basis and some simpli�cations for proofsof security.In the rest of this paper, we �rst de�ne (albeit informally) fail-stop protocols. Then, we discuss howto analyze the security of such protocols. After that, we describe how practical fail-stop protocolscan be constructed and give examples. Finally, we discuss possible extensions and some directionsfor future work.2 Fail-Stop Protocols and Their AnalysisWe model a distributed system as a collection of processes which are spatially separated. Theycommunicate with each other by exchanging messages. A protocol is a speci�cation for the formatand relative timing of the messages exchanged. A cryptographic protocol uses cryptographic mech-anisms such as encryption and decryption algorithms to guarantee the integrity, the secrecy, theorigin, the destination, the order, the timeliness, and ultimately the meaning of the messages. Weassume that a protocol executes in steps or rounds.Using Lamport's de�nition of causality [18], we can organize the messages of a protocol into anacyclic directed graph where each arc represents a message and each directed path represents asequence of messages. If a message is altered in any way that is inconsistent with the protocolspeci�cation, then all those messages that are behind this altered message on some path in thegraph (i.e., they are causally after the altered message) will not be sent. We must assume that theattacking party does not possess the encryption key with which the target message is encrypted;otherwise, a forgery may not be detectable.De�nition 1 (Fail-Stop Protocol) A protocol is fail-stop if any attack on a message sent in one3



step will cause all causally-after messages in the next step or later not to be sent.Note that the de�nition is stated in a rather informal language. This is intentional, as the restof the discussion in this paper is also informal. This way, the basic idea and the intuition can bemore easily presented. It should not be a di�cult matter to formalize the idea once it is acceptedas appealing and useful. The following claim follows immediately from the above de�nition.Claim 1 Active attacks do no harm to a fail-stop protocol other than causing early termination.Therefore, we need to consider only passive attacks in which an adversary records messages andtries to compute secrets from them. Such attacks are well understood and we come back to thissubject in the next section. Given Claim 1 and its implications, we can use the following proofmethodology for a fail-stop protocol:Phase 1. Verify that the protocol is fail-stop.Phase 2. Validate that the secrecy assumption holds.Phase 3. Apply BAN-like logics.Table 1: A proof methodologyIn the following sections, we discuss these 3 phases of protocol analysis in more detail. We notehere that the validation of the secrecy assumption sometimes can be used to disprove the securityof a protocol by showing that the assumption does not hold. This usage is independent from theother two phases.We �rst give an example protocol to show that even for fail-stop protocols that hold the secrecyassumption, the application of the BAN logic is still useful in �nding design errors. As typical in theliterature, we use A! B : x to denote that A sends message x to B, (x; y) to denote concatenationof x and y, fxgk to denote encryption of x with key k, and fxg�k to denote decryption of x withkey k.In the following protocol, server S distributes a session key k to be shared between clients A andB. Each message includes the identities for the message sender, the recipient, a timestamp, andkey k, and is encrypted with the key already shared between the server and the recipient.1. S ! A: fS;A; Ts; k; Bgkas2. S ! B: fS;B; Ts; kgkbsTable 2: BAN-like logics still useful for fail-stop protocolsIt is easy to check that this protocol is fail-stop because any attack on either message will makethe message undecipherable. However, the second message di�ers from the �rst in that the session4



key is not clearly associated with the identity of another party, thus B after receiving message 2will not know with whom he shares the key k. Such design errors, which can have serious securityimplications, have been found elsewhere by using BAN-like logics [13].2.1 Practical Fail-Stop ProtocolsA way to verify that a protocol is fail-stop is to show that the protocol conforms to one of theknown speci�cations of fail-stop protocols. To build up such a \library" of protocol speci�cations,we �rst give one of the simplest speci�cations of fail-stop protocols. For simplicity, we assume forthe moment that only symmetric key cryptosystems (such as DES) are used, and every pair ofcommunicating processes share a secret encryption key.Claim 2 A protocol is fail-stop if:1. The content of each message has a header containing the identity of its sender, the identityof its intended recipient, the protocol version number, a message sequence number, and afreshness identi�er.2. Each message is encrypted under the key shared between its sender and intended recipient.3. A process discards all unexpected messages.4. A process halts if an expected message does not arrive within a speci�ed timeout period.Here a freshness identi�er can be a timestamp (if clocks are assumed to be securely and reliablysynchronized) or a nonce issued by the intended recipient. When a freshness identi�er takes on amore complicated form, the rules for reasoning about freshness [6, 13] can be used to determine ifthe identi�er is fresh with regard to the recipient. Basically, if x is deemed fresh and y cannot becomputed (in a computationally feasible way) by someone without the knowledge of x, then y isalso deemed fresh [13].To see that Claim 2 is valid, we note that a message's header uniquely identi�es the position ofthe message (e.g., within which protocol execution and which message of this execution). It is notpossible to use this message elsewhere without modifying the message. However, since the messageis encrypted with the key shared between its sender and recipient, no one else can make undetectablemodi�cations without obtaining the key �rst. In particular, the message header provides su�cientredundancy so that any random modi�cation of the message can be detected with an extremely highprobability. Recently, Abadi and Needham collected a number of prudent engineering principles fordesigning authentication protocols [2]. The above speci�cation of fail-stop protocols satis�es someof these principles.Fail-stop protocols using public-key systems can be similarly formulated. The only di�erence is inthe encryption of the message.2. Each message is signed by the sender's private key. The message can then be op-tionally encrypted under the public key of the recipient.5



The order of signing and encrypting can be reversed in some situations. Also, it is not di�cult tocombine the above two formulations for fail-stop protocols using both types of cryptosystems, butwe do not discuss this in further detail. Since the encryption key may uniquely identify the sender,thus, we can relax the requirement in that the sender identi�cation need not be included in themessage plaintext if the encryption itself is su�cient proof of the sender's identity.Checking whether a protocol conforms to Claim 2 (thus being fail-stop) is easy. For example, theNessett protocol [24] and a few smart-card protocols [1] are fail-stop.Many published protocols are not fail-stop as we de�ned. One reason is that many designers try tobe economical { they would want to send plaintext messages whenever they think it safe to do so.However, this kind of unguided (and rather ad hoc) \optimization" is easily one of the rich sourcesof security bugs. As Roger Needham remarked, one cannot foresee the consequences of being clever[20]. Nevertheless, examples have shown that guided optimizations can indeed identify and removeredundant data from messages [5].Moreover, sometimes auxiliary data are sent in the clear. For example, the identity of the senderof an encrypted message is sent along when it helps the recipient to choose the correct key fordecryption. Although protocols can be designed so that the amount of such auxiliary data is keptto a minimum, the presence of such data do not change the nature of a protocol being fail-stop. Forexample, if the sender identi�cation is modi�ed, then the recipient will choose an incorrect key andfail to decrypt the message. This modi�cation will thus cause the recipient to halt, so the protocolis still fail-stop. Suppose we allow the existence of such auxiliary data, more published protocolscan be viewed as fail-stop. They include the Denning-Sacco protocol [9], the Needham-SchroederPublic-key protocol [21], the Demonstration Protocol and the Enhanced Kerberos Protocol [12],the Wide-mouthed-frog protocol and the CCITT X.509 protocol [5], the Andrew Secure RPC [29],and the Private-key Certi�cate protocol [8]. The fact that there are many existing protocols thatare fail-stop suggest that our formulations are not too limiting for practical applications.2.2 Validating the Secrecy AssumptionIn BAN-like logics, a secrecy assumption is that a data item is known only to a set of parties. Sinceactive attacks simply halt the execution of a fail-stop protocol, an attacker is better o� waiting forthe protocol to complete and gathering as many messages as possible (to use for deducing secrets).Therefore, to check that no other party can obtain the item through attacks, our task is to decidethat, given that one can record all messages exchanged during a protocol execution, can any partylearn a particular data item by manipulating the messages (together with those data items theparty already has in possession)?This question is related to that of the \state of knowledge" [19] in that we need to �nd out whatinformation an attacker has gathered by recording the execution of a protocol.4 The notion andrules of \possession" proposed in the GNY logic [13] can be applied directly for this purpose.Briey, given a set of formulas (or data items) that an attacker is thought to possess (through4We can use the same method to check how much information can be gathered by recording multiple executionsof a protocol or of a number of protocols. We do not further discuss this issue here.6



recording or other means), possession rules can be used to derive all formulas the attacker canpossess. Suppose a formula can be the concatenation of sub-formulas, for example, message hello,I am alive is consists of sub-formulas hello and I am alive. The possession rules can be summarizedas the following:� possession of a formula implies possession of every sub-formulas contained in the formula.� possession of all sub-formulas contained in a formula implies possession of the formula.� possession of a data item implies possession of a function of the data where the function iscomputationally feasible to compute.� possession of a formula and an encryption implies the possession of the formula encryptedwith the key.� possession of an encrypted formula and the appropriate encryption key implies the possessionof the formula after decryption.We later see how these rules can be applied to real examples. It is su�ce to note here thatalthough it seems that these rules can be applied inde�nitely to add new formulas to an attacker'spossession, in practice there are suitable guidelines as to when to terminate when we want to �ndout if a particular secret can be in the attacker's possession. For example, if all relevant formulashave at most 2 levels of nested encryption, then it is futile to try to encrypt beyond two levels.Also, if all formulas exchanged in the protocol are either plaintext or encrypted, then it is uselessto apply decryption to plaintext formulas.2.3 Applying BAN-like LogicsThe last phase in the proof methodology of fail-stop protocols is to apply the BAN-like logics. Aswe have shown in the beginning of this section, fail-stop protocol can still have subtle errors thatcan be captured using BAN-like logics.It is important to note that a fail-stop protocol of the form de�ned in Claim 2 automaticallysatis�es most of the assumptions necessary to apply the BAN logic. For example, the senderinformation ensures that one can identify one's own messages. Also, there is su�cient redundancyin an encrypted message. Moreover, all messages are fresh. Thus, some postulates { especially thoseon freshness and recognizability { are no longer needed here (though they may be needed to verifythat a protocol is fail-stop, as we pointed out earlier), and other postulates can be simpli�ed. Thisadvantage can be seen from another point of view. The logic of Gong, Needham, and Yahalom(GNY) [13] has a number of extensions to BAN so that most of the assumptions in BAN arehandled explicitly in GNY. If we use the GNY logic to analyze a fail-stop protocol, we no longerneed constructs such as \not-originated-here" and \recognizability", and thus the complexity ofthe GNY logic can be greatly reduced.The de�nition of fail-stop protocols does not satisfy the crucial assumption necessary for BAN-likelogics { that all secrets remain secret during protocol execution. Thus we need phase 2 in the proof7



methodology. To validate the secrecy assumption, we can divide secrets into two types. The �rsttype of secrets include those that are used as keys to encrypt messages but are not sent as messagecontent. Clearly these keys cannot be compromised, on the assumption that cryptosystems arestrong and cryptanalysis is infeasible. (And this is the basis for requirement 2 in Claim 2.) Theother type includes secrets that are sent as message contents, and it is this type that our validationprocess deals with.2.4 Protocol Analysis in StagesIn authentication protocols, it is common that a secret, a session key, is �rst sent by the server toclients, who later use it in handshake messages. It appears that we cannot cast such protocols asfail-stop because, paradoxically, in phase 1 we need to assume that encryption keys are secret whileonly phase 2 can we validate this assumption (about the session key). One way to overcome thisdi�culty is to analyze such a protocol in stages. For example, given the following protocol (ourearlier example, with the design error corrected, plus two handshake messages):1. S ! A: fS;A; Ts; k; Bgkas2. S ! B: fS;B; Ts; k; Agkbs3. A ! B: fA;B; Tagk4. B ! A: fB;A; TbgkTable 3: Analysis in stageswe can �rst analyze the protocol without the handshake messages, i.e., the protocol in Table 2(with an additional data item B in message 2), which includes only messages 1 and 2. After the 3phases of proof methodology, if the verdict is that the protocol is secure, then we have proven thatin the second stage of the full protocol (in Table 3), i.e., messages 3 and 4, the encryption keysare securely shared between the message sender and recipient. Thus we can continue and applythe whole cycle of methodology to the full protocol. Obviously, a more complicated protocol canbe analyzed in more than two stages. In the extreme case, we can have step-wise or message-wiseveri�cation.To summarize, the vital advantage of designing fail-stop protocols is that we can use the \posses-sion" rules to verify that the secrecy assumption holds for a protocol. This phase adds considerablecredibility to the claim that a protocol has been analyzed by BAN like logics to be secure.2.5 Complex ProtocolsSecurity protocols in a distributed systems often necessarily interact with each other directly orindirectly. For example, a complex protocol may use simplier protocols as building blocks, in whichcase an important question is whether we can reduce the analysis of the complex protocol to thatof the building blocks in isolation. Moreover, a protocol is usually designed and implemented, and8



its security analyzed, independently of other protocols. Therefore, a crucial question is whetherthe deployment of one protocol invalidates the security claims of another, possibly in such a waythat both protocols need to be modi�ed in order to coexist securely.If all the individual protocols or building blocks are fail-stop, then the analysis of the overallcomplex protocol can indeed be built on analysis of the individual protocol. For example, clearly aprotocol consisting of two fail-stop protocols executed one after another is fail-stop. Also, a protocolconsisting of two fail-stop protocols running in parallel is fail-stop, even the two protocols sharevariables.Claim 3 The sequential and parallel composition of fail-stop protocols is also fail-stop.For such sequential or parallel protocol compositions [14], the analysis of secrecy (see Section 2.2)is insensitive to the order of the interleaving messages. However, the correctness of the overallprotocol as analyzed by BAN-like logics may depend on a particular interleaving order, in whichcase this global ordering should be part of the speci�cation of the overall protocol.3 Examples and DiscussionIn this section, we give examples to demonstrate how the proof methodology proposed in theprevious section can be used in practice. We examine two published protocols, one being shownnot to satisfy the secrecy assumption, and the other being shown secure. We also outline somegeneralizations of fail-stop protocols, such as fail-safe protocols, which help to expand the scope ofprotocols that can be analyzed using our new approach.3.1 Example 1: the Nessett ProtocolOur �rst example is the Nessett protocol [24], as follows.1. A ! B: fna; kabg�k0a2. B ! A: fnbgkabTable 4: Nessett protocolIn message 1, A \distributes" a key kab to be shared between A and B. The message includes anonce na which B regards as fresh, and is signed with A's private key k0a. Message 2 is a handshakemessage which includes a nonce nb which A regards as fresh.First, we can temporarily ignore the required inclusion of sender and recipient identi�cation in themessages since it is unrelated to our discussion here. One can easily see that this protocol conformsto all other aspects of our de�nition in Claim 2, so the protocol is basically fail-stop.9



The implicit secrecy assumption is that only A and B can obtain key kab. To check this assumption,we assume that the attacker can record both messages and can have access to A's public key ka(which is generally known to the public). Now we can use the possession rules [13] as follows:poss(fna; kabg�k0a) AND poss(ka)poss((na; kab))and thenposs((na; kab))poss(kab)In other words, an attacker can obtain kab. Therefore, we can prove that this protocol violatesthe secrecy assumption. Such a proof means that the protocol does not satisfy one of the mostimportant assumptions in BAN like logics, thus the subsequent analysis using BAN is meaninglessand cannot be taken as a counter example to show that BAN is awed. Nevertheless, this protocoldid raise the legitimate question of how to validate the secrecy assumption for any given protocol.Our concept of fail-stop protocol aims precisely to �ll in this gap.We emphasize that this validation procedure (using the possession rules) can be used to disprovethe security of a given protocol (due to leaking of secrets) whether the protocol is fail-stop or not.However, as a crucial stepping stone in proving the security of a protocol, this procedure can beapplied only to fail-stop protocols, because in protocols that are not fail-stop, active attacks canbe successful so that secrets can be leaked in ways not detectable by this procedure.3.2 Example 2: the Needham-Schroeder Public-Key ProtocolOur second example is the Needham-Schroeder public-key protocol [21], and it works as follows.1. A ! S: A;B2. S ! A: fkb; Bg�k0s3. A ! B: fna; Agkb4. B ! S: B;A5. S ! B: fka; Ag�k0s6. B ! A: fna; nbgka7. A ! B: fnbgkbTable 5: Needham-Schroeder public-key protocolIn message 2, S signs a message certifying that B's public key is kb. In message 3, A sends a nonceto B encrypted with B's public key. In message 5, S signs a message certifying that A's public keyis ka. A and B then complete handshake.We contrast this example with the previous example and show how to prove that the secrecyassumption holds. Assume that an attacker can record all messages. Moreover, assume that the10



attacker possesses all the public keys, especially the public key of S, ks. Using the possessionrules, the attacker can only do encryption on the messages. It is obvious (and can be easily mademechanically decidable) that it is fruitless to encrypt messages other than 2 and 5, because furtherencrypting these messages (i.e., messages 1, 3, 4, 6, and 7) cannot help decryption in the future.By encrypting messages 2 with S's public key, or in the language of the possession rules, we have:poss(fkb; Bg�k0s) AND poss(ks)poss((kb; B))and thenposs(kb; B))poss(kb)The attacker has learned nothing new { B's public key is already public information. Similarly,encrypting message 5 does not lead to new information. Since no other encryption of a signatureor decryption of an encrypted message is possible, the validation procedure terminates, and we areconvinced that the secrecy assumption holds. Note that the fact that such an argument is possibleis because the protocol in question is fail-stop, so that no active attacks can be successful and wecan study the protocol in its �xed form.Even if we assume that the attacker is an insider, say A, we can still show that A cannot gainpossession of B's private key. An analysis of this protocol using the BAN logic is contained in [5,p.33].3.3 Fail-Safe Protocols and Other GeneralizationsSome protocols are not fail-stop but can apparently be analyzed in the same way as fail-stopprotocols. For example, when a message arrives whose freshness the recipient cannot decide, it issafe to let the recipient respond with a nonce. We can call such protocols fail-safe. Many existingprotocols are fail-safe in nature, including the revised Needham-Schroeder protocol [22], the Otway-Rees protocol [27], the GLNS nonce protocol [12], the Neuman-Stubblebine protocol [25], and theprotocol for multiple authentication of Kehne et al. [16].Some may argue that the rigid structural requirement in Claim 2 is still too limiting, and indeed itis possible that some such de�ned protocols may transmit unnecessary data. After we are satis�edthat a protocol is secure, we can optimize the protocol while maintaining its security. For example,for a message that is encrypted with a public key, the recipient identity in the message content canbe safely omitted, as long as the remaining message still contains enough redundancy, because noone else can correctly decrypt this message. Similarly, a message that is signed with a private key,the sender identi�cation in the message content can be omitted because no one else is able to signthe message (again, as long as the rest of the message contains enough redundancy). Beside suchsimple rules of optimization, the BAN logic is supposedly to be quite good at �nding redundanciesin messages [6], so it can also be used to optimize a protocol. Note that such optimizations areguided by security analysis so that they do not weaken protocol security. This is di�erent from adhoc economical measures present in many published protocols.11



4 Summary and Future WorkThe general idea of our work reported in this paper is based on the well known observation that if aprogram is well structured then its proof of correctness is likely to be easier and simpler. Therefore,similarly, if a protocol is well designed so that its conformation to certain guidelines ensures thatcertain security properties are (automatically) satis�ed, then its proof of security is likely to beeasier and simpler. In particular, inspired by the work on fail-stop processors [30, 31], we de�nedthe notion of a fail-stop protocol and illustrated how the important secrecy assumption necessary forapplying the BAN logic can be easily validated with the possession rules in the GNY logic for sucha restricted class of protocols. The availability of this validation phase adds signi�cant credibilityto the (positive) outcome of an analysis using the BAN logic. Our discussion also shows that manyexisting protocols are fail-stop in spirit so that our restriction is not too limiting, especially giventhe possible extensions and optimizations.For future work, obviously one direction is to formalize this work, possibly embedding it in someprotocol speci�cation and theory-proving environment. Another direction is to investigate otherpossible constructions of fail-stop protocols and generalizations of the concept of a fail-stop protocolthat can facilitate the design and analysis of cryptographic protocols. Moreover, by imposing a wellde�ned structure, we have removed the threat of active attacks and reduced our tasks to examiningthe security of a protocol under passive wiretaps. It will be very interesting to see how to de�ne ahierarchy of attacker models and show how to convert a protocol for one model into another. Thisis analogous to the work on converting protocols between various fault models [23].AcknowledgementFred Schneider of Cornell University, in a private correspondence of March 20, 1992, gave me earlyencouragement to clarify and develop my initial ideas of fail-stop protocols. These ideas and somelater development were informally presented at the First and Second Cambridge Workshops onSecurity Protocols, University of Cambridge, England, April 1993 and April 1994.References[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and Delegation withSmart-cards. Technical Report 67, DEC System Research Center, Palo Alto, California, Oc-tober 1990.[2] M. Abadi and R.M. Needham. Prudent Engineering Practice for Cryptographic Protocols.In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 122{136,Oakland, California, May 1994.[3] M. Abadi and M. Tuttle. A Semantics for a logic for Authentication (Extended Abstract). InProceedings of the ACM Symposium of Principles of Distributed Computing, pages 201{216,January 1991. 12



[4] A.D. Birrell. Secure Communications Using Remote Procedure Calls. ACM Transactions onComputer Systems, 3(1):1{14, February 1985.[5] M. Burrows, M. Abadi, and R.M. Needham. A Logic for Authentication. Technical Report 39,DEC System Research Center, Palo Alto, California, February 1989. Revised version of Febru-ary 22, 1990.[6] M. Burrows, M. Abadi, and R.M. Needham. A Logic for Authentication. ACM Transactionson Computer Systems, 8(1):18{36, February 1990.[7] M. Burrows, M. Abadi, and R.M. Needham. Rejoinder to Nessett. ACM Operating SystemsReview, 24(2):39{40, April 1990.[8] D. Davis and R. Swick. Network Security via Private-Key Certi�cates. ACM Operating SystemsReview, 24(4):64{67, October 1990.[9] D.E. Denning and G.M. Sacco. Timestamps in Key Distribution Protocols. Communicationsof the ACM, 24(8):533{536, August 1981.[10] W. Di�e and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Infor-mation Theory, IT-22(6):644{65, November 1976.[11] D. Dolev and A.C. Yao. On the Security of Public Key Protocols. IEEE Transactions onInformation Theory, IT-29(2):198{208, March 1983.[12] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer. Protecting Poorly Chosen Secretsfrom Guessing Attacks. IEEE Journal on Selected Areas in Communications, 11(5):648{656,June 1993.[13] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in Cryptographic Protocols.In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 234{248,Oakland, California, May 1990.[14] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.[15] C.B. Jones. The Search for Tractable Ways of Reasoning about Programs. Technical ReportUMCS-92-4-4, Department of Computer Science, University of Manchester, England, March1992.[16] A. Kehne, J. Schonwalder, and H. Langendorfer. A Nonce-Based Protocol for Multiple Au-thentications. ACM Operating Systems Review, 26(4):84{89, October 1992.[17] R.A. Kemmerer, C. Meadows, and J. Millen. Three Systems for Cryptographic ProtocolAnalysis. Journal of Cryptology, October 1993. To appear.[18] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communica-tions of the ACM, 21(7):558{565, July 1978.13



[19] M. Merritt and P. Wolper. States of Knowledge in Cryptographic Protocols. Unpublishedmanuscript, 1985. An earlier version of this work appeared as R. DeMillo, N. Lynch, and M.Merritt. Cryptographic Protocols. In Proceedings of the 14th ACM Symposium on Theory ofComputing, May 1982, pages 383{400.[20] R.M. Needham. Denial of Service. In Proceedings of the 1st ACM Conference on Computerand Communications Security, pages 151{153, Fairfax, Virginia, November 1993.[21] R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large Networksof Computers. Communications of the ACM, 21(12):993{999, December 1978.[22] R.M. Needham and M.D. Schroeder. Authentication Revisited. ACM Operating SystemsReview, 21(1):7, January 1987.[23] G. Neiger and S. Toueg. Automatically Increasing the Fault-Tolerance of Distributed Systems.Technical Report GIT-ICS-89/01, Georgia Institute of Technology, Atlanta, Georgia, January1989.[24] D.M. Nessett. A Critique of the Burrows, Abadi, and Needham Logic. ACM Operating SystemsReview, 24(2):35{38, April 1990.[25] B.C. Neuman and S.G. Stubblebine. A Note on the Use of Timestamps as Nonces. ACMOperating Systems Review, 27(2):10{14, April 1993.[26] B.C. Neuman and T. Ts'o. Kerberos: An Authentication Service for Computer Networks.IEEE Communications, 32(9):33{38, September 1994.[27] D. Otway and O. Rees. E�cient and Timely Mutual Authentication. ACM Operating SystemsReview, 21(1):8{10, January 1987.[28] J. Rushby. Formal Methods and the Certi�cation of Critical Systems. Technical ReportSRI-CSL-93-07, Computer Science Laboratory, SRI International, Menlo Park, California,November 1993.[29] M. Satyanarayanan. Integrating Security in a Large Distributed System. ACM Transactionson Computer System, 7(3):247{280, August 1989.[30] R.D. Schlichting and F.B. Schneider. Fail-Stop Processors: An Approach to Designing Fault-Tolerant Computing Systems. ACM Transactions on Computing Systems, 1(3):222{238, Au-gust 1983.[31] F.B. Schneider. Byzantine Generals in Action: Implementing Fail-Stop Processors. ACMTransactions on Computing Systems, 2(2):145{154, May 1984.14


