Fail-Stop Protocols: An Approach to Designing Secure Protocols

Li Gong

SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, California 94025 U.S.A.

(gong@csl.sri.com)

October 20, 1994

Abstract. This paper presents a methodology to facilitate the design and analysis of secure crypto-
graphic protocols. This work is based on a novel notion of a fail-stop protocol, which automatically
halts in response to any active attack. This paper suggests types of protocols that are fail-stop,
outlines some proof techniques for them, and uses examples to illustrate how the notion of a fail-
stop protocol can make protocol design easier and can provide a more solid basis for some proposed
protocol analysis methods.

1 Background and Motivation

In a distributed system, security depends heavily on the use of secure protocols such as authen-
tication protocols (e.g., [21, 26]) and secure communication protocols (e.g., [4]). It is well known
that such protocols can fail even if the underlying cryptosystems are sound and can have very
subtle security flaws that are quite difficult to debug [6]. In fact, the protocol security problem is
undecidable in that, given any protocol analyzer, there are protocols whose security the analyzer
cannot decide.!

Recent years have seen notable efforts devoted to developing methods — theories, logics, formal
methods, and tools — to facilitate the analysis of the security of cryptographic protocols (e.g.,
[11, 6, 17]). Although these results are significant, they are not yet satisfactory due to the following
reasons. Methods based on searching, as the authors themselves pointed out [17], can find protocol
design vulnerabilities to only those attacks that are explicitly modelled. Thus, failure to find a
vulnerability by such a method does not mean that the protocol is secure, but merely that certain
lines of attack are less likely to succeed. In addition, like software testing, searching is computation

!To relate this problem to the Turing machine halting problem, simply define a protocol that broadcasts all its
secrets if the analyzer finds it secure and does nothing otherwise.

intensive.

Methods based on modal logic [6, 3], on the other hand, seem more conclusive in that their aim
is to produce a proof of protocol security by deducing that certain protocol goals are achieved.
However, such methods generally make a number of assumptions some of which cannot be justified
by the methods themselves. Most of these, such as the assumption that one can identify one’s own
messages or that one can distinguish between a random string and a properly encrypted message,
can be guaranteed by additional constraints on protocol specification or implementation. They can
also be dealt with by logics with more complicated constructs (e.g., [13]).

The single most difficult assumption is that a secret remains secret during an execution of the
protocol.? This assumption is paradoxical — whether a secret can remain secret may depend crucially
on whether the protocol is secure, thus the assumption cannot be used to derive the security of the
protocol unless a separate mechanism can be used to justify this assumption. One would hope that
the searching approach can be used to complement the proof-based approach, but because of the
unlimited ways in which an attack can take place, it is impossible to model all possible attacks (both
smart and stupid attacks) that must include all types of attacks as well as all possible instances
of these attacks.® Indeed, when Nessett [24] raised the difficulty with this assumption of secrecy,
no satisfactory answer could be provided. However, it is probably unfair to say that the logic of
Burrows, Abadi, and Needham is flawed — the logic’s scope is explicitly defined not to cover the
issue of secrecy [7]. None of the later extensions of this logic resolves this difficulty.

An earlier work by Dolev and Yao [11] proved that protocols using public-key cryptosystems [10]
and having certain very rigid structures can automatically satisfy the secrecy assumption. However,
the restrictions on the protocols are so strict — for instance, one can only append to a message —
that the results are not widely applicable.

Given the above observations, we propose a new approach to designing secure protocols that is
centered on a notion of fail-stop protocols. This notion is partly inspired by the work on fail-stop
processors by Schlichting and Schneider [30]. They proposed the concept of a fail-stop processor,
which, when failing, stops completely before any effect is visible to the outside world. Schneider
also showed how to construct a fail-stop processor using Byzantine agreement [31]. A desirable
result of this fail-stop behavior is that it is much easier to reason about fault-tolerant systems built
with fail-stop processors, compared with processors that may have omission or Byzantine failures.
Just as the notion of fail-stop processors helped to simplify the design and analysis of fault-tolerant
systems, we show that the notion of fail-stop protocols helps to simplify the design and analysis of
secure protocols.

More specifically, a fail-stop protocol automatically halts when there is any derivation from the
designed protocol execution path. Consequently, the only difference between effects of passive
attacks and active attacks is that the latter can cause early termination of a protocol execution.
Thus, we need to analyze only the effect of passive attacks, and in particular, it is now much easier

2Abadi and Tuttle [3] in their new semantics of the BAN logic [6] tried to relax this assumption by assuming
instead that a secret can be leaked but whoever processes it (maybe illegally) will not misuse it. This is logically
sound, but does not reflect what happens in the real world.

#Some searching-based method, such as the NRL protocol analyzer [17], are said to have the potential to provide
some proving capability, but no general proof methodology is currently available.

to conclude whether the secrecy assumption can be violated. One obvious benefit is that once we
show that the secrecy assumption for a protocol holds, a proof of the protocol’s security using the
logical analysis method of Burrows, Abadi, and Needham (also called the BAN logic) will be much
more convincing.

From another angle, just as algorithms or programs should be designed for their correctness to be
easily proven [15, 28], security protocols should be designed so that their security can be proven
with relative ease. The difficulties encountered by previous efforts of protocol analysis, in our view,
can be to some extent attributed to the undisciplined ways in which a protocol can be designed
(and then submitted for analysis). By imposing a few restrictions on the format the messages
of a protocol can take, we can greatly reduce the types of protocols we have to deal with. The
specific construction of fail-stop protocols presented in this paper can result in practical and usable
protocols, and therefore the restrictions are not as limiting as one might have first thought.

In short, the advantage of our new approach can be seen in the following light. Proof-based methods
are more favorable than searching-based methods in that the former need to capture only all types
of attacks whereas the latter must in addition capture all (and possibly an infinite number of)
instances of all types of attacks. Our approach’s advantage is in excluding the feasibility of active
attacks so that protocol analysis can focus on the remaining case — namely, passive attacks that
may lead to information leakage — and provide a more solid basis and some simplifications for proofs
of security.

In the rest of this paper, we first define (albeit informally) fail-stop protocols. Then, we discuss how
to analyze the security of such protocols. After that, we describe how practical fail-stop protocols
can be constructed and give examples. Finally, we discuss possible extensions and some directions
for future work.

2 Fail-Stop Protocols and Their Analysis

We model a distributed system as a collection of processes which are spatially separated. They
communicate with each other by exchanging messages. A protocol is a specification for the format
and relative timing of the messages exchanged. A cryptographic protocol uses cryptographic mech-
anisms such as encryption and decryption algorithms to guarantee the integrity, the secrecy, the
origin, the destination, the order, the timeliness, and ultimately the meaning of the messages. We
assume that a protocol executes in steps or rounds.

Using Lamport’s definition of causality [18], we can organize the messages of a protocol into an
acyclic directed graph where each arc represents a message and each directed path represents a
sequence of messages. If a message is altered in any way that is inconsistent with the protocol
specification, then all those messages that are behind this altered message on some path in the
graph (i.e., they are causally after the altered message) will not be sent. We must assume that the
attacking party does not possess the encryption key with which the target message is encrypted;
otherwise, a forgery may not be detectable.

Definition 1 (Fail-Stop Protocol) A protocol is fail-stop if any attack on a message sent in one

step will cause all causally-after messages in the next step or later not to be sent.

Note that the definition is stated in a rather informal language. This is intentional, as the rest
of the discussion in this paper is also informal. This way, the basic idea and the intuition can be
more easily presented. It should not be a difficult matter to formalize the idea once it is accepted
as appealing and useful. The following claim follows immediately from the above definition.

Claim 1 Active attacks do no harm to a fail-stop protocol other than causing early termination.

Therefore, we need to consider only passive attacks in which an adversary records messages and
tries to compute secrets from them. Such attacks are well understood and we come back to this
subject in the next section. Given Claim 1 and its implications, we can use the following proof
methodology for a fail-stop protocol:

Phase 1. Verify that the protocol is fail-stop.
Phase 2. Validate that the secrecy assumption holds.
Phase 3. Apply BAN-like logics.

Table 1: A proof methodology

In the following sections, we discuss these 3 phases of protocol analysis in more detail. We note
here that the validation of the secrecy assumption sometimes can be used to disprove the security
of a protocol by showing that the assumption does not hold. This usage is independent from the
other two phases.

We first give an example protocol to show that even for fail-stop protocols that hold the secrecy
assumption, the application of the BAN logic is still useful in finding design errors. As typical in the
literature, we use A — B : x to denote that A sends message z to B, (z,y) to denote concatenation
of x and y, {2}, to denote encryption of z with key k, and {z}, to denote decryption of z with
key k.

In the following protocol, server S distributes a session key k to be shared between clients A and
B. Fach message includes the identities for the message sender, the recipient, a timestamp, and
key k, and is encrypted with the key already shared between the server and the recipient.

1. S — A: {S7A7T57k7B}kas
2. S — B: {S7B7T57k}kbs

Table 2: BAN-like logics still useful for fail-stop protocols

It is easy to check that this protocol is fail-stop because any attack on either message will make
the message undecipherable. However, the second message differs from the first in that the session

key is not clearly associated with the identity of another party, thus B after receiving message 2
will not know with whom he shares the key k. Such design errors, which can have serious security
implications, have been found elsewhere by using BAN-like logics [13].

2.1 Practical Fail-Stop Protocols

A way to verify that a protocol is fail-stop is to show that the protocol conforms to one of the
known specifications of fail-stop protocols. To build up such a “library” of protocol specifications,
we first give one of the simplest specifications of fail-stop protocols. For simplicity, we assume for
the moment that only symmetric key cryptosystems (such as DES) are used, and every pair of
communicating processes share a secret encryption key.

Claim 2 A protocol is fail-stop if:

1. The content of each message has a header containing the identity of its sender, the identity
of its intended recipient, the protocol version number, a message sequence number, and a
freshness identifier.

2. Fach message is encrypted under the key shared between its sender and intended recipient.
3. A process discards all unexpected messages.

4. A process halts if an expected message does not arrive within a specified timeout period.

Here a freshness identifier can be a timestamp (if clocks are assumed to be securely and reliably
synchronized) or a nonce issued by the intended recipient. When a freshness identifier takes on a
more complicated form, the rules for reasoning about freshness [6, 13] can be used to determine if
the identifier is fresh with regard to the recipient. Basically, if 2 is deemed fresh and y cannot be
computed (in a computationally feasible way) by someone without the knowledge of z, then y is
also deemed fresh [13].

To see that Claim 2 is valid, we note that a message’s header uniquely identifies the position of
the message (e.g., within which protocol execution and which message of this execution). It is not
possible to use this message elsewhere without modifying the message. However, since the message
is encrypted with the key shared between its sender and recipient, no one else can make undetectable
modifications without obtaining the key first. In particular, the message header provides sufficient
redundancy so that any random modification of the message can be detected with an extremely high
probability. Recently, Abadi and Needham collected a number of prudent engineering principles for
designing authentication protocols [2]. The above specification of fail-stop protocols satisfies some
of these principles.

Fail-stop protocols using public-key systems can be similarly formulated. The only difference is in

the encryption of the message.

2. Fach message is signed by the sender’s private key. The message can then be op-
tionally encrypted under the public key of the recipient.

The order of signing and encrypting can be reversed in some situations. Also, it is not difficult to
combine the above two formulations for fail-stop protocols using both types of cryptosystems, but
we do not discuss this in further detail. Since the encryption key may uniquely identify the sender,
thus, we can relax the requirement in that the sender identification need not be included in the
message plaintext if the encryption itself is sufficient proof of the sender’s identity.

Checking whether a protocol conforms to Claim 2 (thus being fail-stop) is easy. For example, the
Nessett protocol [24] and a few smart-card protocols [1] are fail-stop.

Many published protocols are not fail-stop as we defined. One reason is that many designers try to
be economical — they would want to send plaintext messages whenever they think it safe to do so.
However, this kind of unguided (and rather ad hoc) “optimization” is easily one of the rich sources
of security bugs. As Roger Needham remarked, one cannot foresee the consequences of being clever
[20]. Nevertheless, examples have shown that guided optimizations can indeed identify and remove
redundant data from messages [5].

Moreover, sometimes auxiliary data are sent in the clear. For example, the identity of the sender
of an encrypted message is sent along when it helps the recipient to choose the correct key for
decryption. Although protocols can be designed so that the amount of such auxiliary data is kept
to a minimum, the presence of such data do not change the nature of a protocol being fail-stop. For
example, if the sender identification is modified, then the recipient will choose an incorrect key and
fail to decrypt the message. This modification will thus cause the recipient to halt, so the protocol
is still fail-stop. Suppose we allow the existence of such auxiliary data, more published protocols
can be viewed as fail-stop. They include the Denning-Sacco protocol [9], the Needham-Schroeder
Public-key protocol [21], the Demonstration Protocol and the Enhanced Kerberos Protocol [12],
the Wide-mouthed-frog protocol and the CCITT X.509 protocol [5], the Andrew Secure RPC [29],
and the Private-key Certificate protocol [8]. The fact that there are many existing protocols that
are fail-stop suggest that our formulations are not too limiting for practical applications.

2.2 Validating the Secrecy Assumption

In BAN-like logics, a secrecy assumption is that a data item is known only to a set of parties. Since
active attacks simply halt the execution of a fail-stop protocol, an attacker is better off waiting for
the protocol to complete and gathering as many messages as possible (to use for deducing secrets).
Therefore, to check that no other party can obtain the item through attacks, our task is to decide
that, given that one can record all messages exchanged during a protocol execution, can any party
learn a particular data item by manipulating the messages (together with those data items the
party already has in possession)?

This question is related to that of the “state of knowledge” [19] in that we need to find out what
information an attacker has gathered by recording the execution of a protocol.* The notion and
rules of “possession” proposed in the GNY logic [13] can be applied directly for this purpose.
Briefly, given a set of formulas (or data items) that an attacker is thought to possess (through

*We can use the same method to check how much information can be gathered by recording multiple executions
of a protocol or of a number of protocols. We do not further discuss this issue here.

recording or other means), possession rules can be used to derive all formulas the attacker can
possess. Suppose a formula can be the concatenation of sub-formulas, for example, message hello,
I am alive is consists of sub-formulas hello and I am alive. The possession rules can be summarized
as the following:

e possession of a formula implies possession of every sub-formulas contained in the formula.
e possession of all sub-formulas contained in a formula implies possession of the formula.

e possession of a data item implies possession of a function of the data where the function is
computationally feasible to compute.

e possession of a formula and an encryption implies the possession of the formula encrypted
with the key.

e possession of an encrypted formula and the appropriate encryption key implies the possession
of the formula after decryption.

We later see how these rules can be applied to real examples. It is suffice to note here that
although it seems that these rules can be applied indefinitely to add new formulas to an attacker’s
possession, in practice there are suitable guidelines as to when to terminate when we want to find
out if a particular secret can be in the attacker’s possession. For example, if all relevant formulas
have at most 2 levels of nested encryption, then it is futile to try to encrypt beyond two levels.
Also, if all formulas exchanged in the protocol are either plaintext or encrypted, then it is useless
to apply decryption to plaintext formulas.

2.3 Applying BAN-like Logics

The last phase in the proof methodology of fail-stop protocols is to apply the BAN-like logics. As
we have shown in the beginning of this section, fail-stop protocol can still have subtle errors that
can be captured using BAN-like logics.

It is important to note that a fail-stop protocol of the form defined in Claim 2 automatically
satisfies most of the assumptions necessary to apply the BAN logic. For example, the sender
information ensures that one can identify one’s own messages. Also, there is sufficient redundancy
in an encrypted message. Moreover, all messages are fresh. Thus, some postulates — especially those
on freshness and recognizability — are no longer needed here (though they may be needed to verify
that a protocol is fail-stop, as we pointed out earlier), and other postulates can be simplified. This
advantage can be seen from another point of view. The logic of Gong, Needham, and Yahalom
(GNY) [13] has a number of extensions to BAN so that most of the assumptions in BAN are
handled explicitly in GNY. If we use the GNY logic to analyze a fail-stop protocol, we no longer
need constructs such as “not-originated-here” and “recognizability”, and thus the complexity of
the GNY logic can be greatly reduced.

The definition of fail-stop protocols does not satisfy the crucial assumption necessary for BAN-like
logics — that all secrets remain secret during protocol execution. Thus we need phase 2 in the proof

methodology. To validate the secrecy assumption, we can divide secrets into two types. The first
type of secrets include those that are used as keys to encrypt messages but are not sent as message
content. Clearly these keys cannot be compromised, on the assumption that cryptosystems are
strong and cryptanalysis is infeasible. (And this is the basis for requirement 2 in Claim 2.) The
other type includes secrets that are sent as message contents, and it is this type that our validation
process deals with.

2.4 Protocol Analysis in Stages

In authentication protocols, it is common that a secret, a session key, is first sent by the server to
clients, who later use it in handshake messages. It appears that we cannot cast such protocols as
fail-stop because, paradoxically, in phase 1 we need to assume that encryption keys are secret while
only phase 2 can we validate this assumption (about the session key). One way to overcome this
difficulty is to analyze such a protocol in stages. For example, given the following protocol (our
earlier example, with the design error corrected, plus two handshake messages):

S— A: {S,A,Ts, k,B}g,.
S— B: {S,B, Tk, A}y,
A—B: {ABT)
B—A: {B, AT}

=W N

Table 3: Analysis in stages

we can first analyze the protocol without the handshake messages, i.e., the protocol in Table 2
(with an additional data item B in message 2), which includes only messages 1 and 2. After the 3
phases of proof methodology, if the verdict is that the protocol is secure, then we have proven that
in the second stage of the full protocol (in Table 3), i.e., messages 3 and 4, the encryption keys
are securely shared between the message sender and recipient. Thus we can continue and apply
the whole cycle of methodology to the full protocol. Obviously, a more complicated protocol can
be analyzed in more than two stages. In the extreme case, we can have step-wise or message-wise
verification.

To summarize, the vital advantage of designing fail-stop protocols is that we can use the “posses-
sion” rules to verify that the secrecy assumption holds for a protocol. This phase adds considerable
credibility to the claim that a protocol has been analyzed by BAN like logics to be secure.

2.5 Complex Protocols

Security protocols in a distributed systems often necessarily interact with each other directly or
indirectly. For example, a complex protocol may use simplier protocols as building blocks, in which
case an important question is whether we can reduce the analysis of the complex protocol to that
of the building blocks in isolation. Moreover, a protocol is usually designed and implemented, and

its security analyzed, independently of other protocols. Therefore, a crucial question is whether
the deployment of one protocol invalidates the security claims of another, possibly in such a way
that both protocols need to be modified in order to coexist securely.

If all the individual protocols or building blocks are fail-stop, then the analysis of the overall
complex protocol can indeed be built on analysis of the individual protocol. For example, clearly a
protocol consisting of two fail-stop protocols executed one after another is fail-stop. Also, a protocol
consisting of two fail-stop protocols running in parallel is fail-stop, even the two protocols share
variables.

Claim 3 The sequential and parallel composition of fail-stop protocols is also fail-stop.

For such sequential or parallel protocol compositions [14], the analysis of secrecy (see Section 2.2)
is insensitive to the order of the interleaving messages. However, the correctness of the overall
protocol as analyzed by BAN-like logics may depend on a particular interleaving order, in which
case this global ordering should be part of the specification of the overall protocol.

3 Examples and Discussion

In this section, we give examples to demonstrate how the proof methodology proposed in the
previous section can be used in practice. We examine two published protocols, one being shown
not to satisfy the secrecy assumption, and the other being shown secure. We also outline some
generalizations of fail-stop protocols, such as fail-safe protocols, which help to expand the scope of
protocols that can be analyzed using our new approach.

3.1 Example 1: the Nessett Protocol

Our first example is the Nessett protocol [24], as follows.

L. A—B: {ng kel
2. B—Ar {mp}s,

Table 4: Nessett protocol

In message 1, A “distributes” a key k., to be shared between A and B. The message includes a
nonce n, which B regards as fresh, and is signed with A’s private key k!. Message 2 is a handshake
message which includes a nonce ny which A regards as fresh.

First, we can temporarily ignore the required inclusion of sender and recipient identification in the
messages since it is unrelated to our discussion here. One can easily see that this protocol conforms
to all other aspects of our definition in Claim 2, so the protocol is basically fail-stop.

The implicit secrecy assumption is that only A and B can obtain key k,;. To check this assumption,
we assume that the attacker can record both messages and can have access to A’s public key k,
(which is generally known to the public). Now we can use the possession rules [13] as follows:

poss({na, kap} 1,) AND poss(k,)
poss(()

and then

poss((ng, kap))
poss(kqp)

In other words, an attacker can obtain k,;. Therefore, we can prove that this protocol violates
the secrecy assumption. Such a proof means that the protocol does not satisfy one of the most
important assumptions in BAN like logics, thus the subsequent analysis using BAN is meaningless
and cannot be taken as a counter example to show that BAN is flawed. Nevertheless, this protocol
did raise the legitimate question of how to validate the secrecy assumption for any given protocol.
Our concept of fail-stop protocol aims precisely to fill in this gap.

We emphasize that this validation procedure (using the possession rules) can be used to disprove
the security of a given protocol (due to leaking of secrets) whether the protocol is fail-stop or not.
However, as a crucial stepping stone in proving the security of a protocol, this procedure can be
applied only to fail-stop protocols, because in protocols that are not fail-stop, active attacks can
be successful so that secrets can be leaked in ways not detectable by this procedure.

3.2 Example 2: the Needham-Schroeder Public-Key Protocol

Our second example is the Needham-Schroeder public-key protocol [21], and it works as follows.

A—S AB

S — A: {kb,B};,Q
A —B: {n, A,
B—S: B A

S — B: {ka,A};,Q
B — A: {na,nb};;a
A — B: {nb}kb

-] O U W N

Table 5: Needham-Schroeder public-key protocol

In message 2, S signs a message certifying that B’s public key is k3. In message 3, A sends a nonce
to B encrypted with B’s public key. In message 5, S signs a message certifying that A’s public key
is k,. A and B then complete handshake.

We contrast this example with the previous example and show how to prove that the secrecy
assumption holds. Assume that an attacker can record all messages. Moreover, assume that the

10

attacker possesses all the public keys, especially the public key of S, k;. Using the possession
rules, the attacker can only do encryption on the messages. It is obvious (and can be easily made
mechanically decidable) that it is fruitless to encrypt messages other than 2 and 5, because further
encrypting these messages (i.e., messages 1, 3, 4, 6, and 7) cannot help decryption in the future.
By encrypting messages 2 with S’s public key, or in the language of the possession rules, we have:

poss({ks, B},) AND poss(ks)
poss((ky, B))
and then
poss(ky, B))
poss(kp)

The attacker has learned nothing new — B’s public key is already public information. Similarly,
encrypting message 5 does not lead to new information. Since no other encryption of a signature
or decryption of an encrypted message is possible, the validation procedure terminates, and we are
convinced that the secrecy assumption holds. Note that the fact that such an argument is possible
is because the protocol in question is fail-stop, so that no active attacks can be successful and we
can study the protocol in its fixed form.

Even if we assume that the attacker is an insider, say A, we can still show that A cannot gain
possession of B’s private key. An analysis of this protocol using the BAN logic is contained in [5,
p.33].

3.3 Fail-Safe Protocols and Other Generalizations

Some protocols are not fail-stop but can apparently be analyzed in the same way as fail-stop
protocols. For example, when a message arrives whose freshness the recipient cannot decide, it is
safe to let the recipient respond with a nonce. We can call such protocols fail-safe. Many existing
protocols are fail-safe in nature, including the revised Needham-Schroeder protocol [22], the Otway-
Rees protocol [27], the GLNS nonce protocol [12], the Neuman-Stubblebine protocol [25], and the
protocol for multiple authentication of Kehne et al. [16].

Some may argue that the rigid structural requirement in Claim 2 is still too limiting, and indeed it
is possible that some such defined protocols may transmit unnecessary data. After we are satisfied
that a protocol is secure, we can optimize the protocol while maintaining its security. For example,
for a message that is encrypted with a public key, the recipient identity in the message content can
be safely omitted, as long as the remaining message still contains enough redundancy, because no
one else can correctly decrypt this message. Similarly, a message that is signed with a private key,
the sender identification in the message content can be omitted because no one else is able to sign
the message (again, as long as the rest of the message contains enough redundancy). Beside such
simple rules of optimization, the BAN logic is supposedly to be quite good at finding redundancies
in messages [6], so it can also be used to optimize a protocol. Note that such optimizations are
guided by security analysis so that they do not weaken protocol security. This is different from ad
hoc economical measures present in many published protocols.

11

4 Summary and Future Work

The general idea of our work reported in this paper is based on the well known observation that if a
program is well structured then its proof of correctness is likely to be easier and simpler. Therefore,
similarly, if a protocol is well designed so that its conformation to certain guidelines ensures that
certain security properties are (automatically) satisfied, then its proof of security is likely to be
easier and simpler. In particular, inspired by the work on fail-stop processors [30, 31], we defined
the notion of a fail-stop protocol and illustrated how the important secrecy assumption necessary for
applying the BAN logic can be easily validated with the possession rules in the GNY logic for such
a restricted class of protocols. The availability of this validation phase adds significant credibility
to the (positive) outcome of an analysis using the BAN logic. Our discussion also shows that many
existing protocols are fail-stop in spirit so that our restriction is not too limiting, especially given
the possible extensions and optimizations.

For future work, obviously one direction is to formalize this work, possibly embedding it in some
protocol specification and theory-proving environment. Another direction is to investigate other
possible constructions of fail-stop protocols and generalizations of the concept of a fail-stop protocol
that can facilitate the design and analysis of cryptographic protocols. Moreover, by imposing a well
defined structure, we have removed the threat of active attacks and reduced our tasks to examining
the security of a protocol under passive wiretaps. It will be very interesting to see how to define a
hierarchy of attacker models and show how to convert a protocol for one model into another. This
is analogous to the work on converting protocols between various fault models [23].

Acknowledgement

Fred Schneider of Cornell University, in a private correspondence of March 20, 1992, gave me early
encouragement to clarify and develop my initial ideas of fail-stop protocols. These ideas and some
later development were informally presented at the First and Second Cambridge Workshops on
Security Protocols, University of Cambridge, England, April 1993 and April 1994.

References

[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and Delegation with
Smart-cards. Technical Report 67, DEC System Research Center, Palo Alto, California, Oc-
tober 1990.

[2] M. Abadi and R.M. Needham. Prudent Engineering Practice for Cryptographic Protocols.
In Proceedings of the IFEFE Symposium on Research in Security and Privacy, pages 122-136,
Oakland, California, May 1994.

[3] M. Abadi and M. Tuttle. A Semantics for a logic for Authentication (Extended Abstract). In
Proceedings of the ACM Symposium of Principles of Distributed Computing, pages 201-216,
January 1991.

12

[4]

[5]

[10]

[11]

[12]

[16]

[17]

[18]

A.D. Birrell. Secure Communications Using Remote Procedure Calls. ACM Transactions on
Computer Systems, 3(1):1-14, February 1985.

M. Burrows, M. Abadi, and R.M. Needham. A Logic for Authentication. Technical Report 39,
DEC System Research Center, Palo Alto, California, February 1989. Revised version of Febru-
ary 22, 1990.

M. Burrows, M. Abadi, and R.M. Needham. A Logic for Authentication. ACM Transactions
on Computer Systems, 8(1):18-36, February 1990.

M. Burrows, M. Abadi, and R.M. Needham. Rejoinder to Nessett. ACM Operating Systems
Review, 24(2):39-40, April 1990.

D. Davis and R. Swick. Network Security via Private-Key Certificates. ACM Operating Systems
Review, 24(4):64-67, October 1990.

D.E. Denning and G.M. Sacco. Timestamps in Key Distribution Protocols. Communications

of the ACM, 24(8):533-536, August 1981.

W. Diffie and M.E. Hellman. New Directions in Cryptography. IFEF Transactions on Infor-
mation Theory, IT-22(6):644-65, November 1976.

D. Dolev and A.C. Yao. On the Security of Public Key Protocols. IFEFE Transactions on
Information Theory, 1'T-29(2):198-208, March 1983.

L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer. Protecting Poorly Chosen Secrets
from Guessing Attacks. IEEE Journal on Selected Areas in Communications, 11(5):648-656,
June 1993.

L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in Cryptographic Protocols.
In Proceedings of the IFEF Symposium on Research in Security and Privacy, pages 234-248,
Oakland, California, May 1990.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.

C.B. Jones. The Search for Tractable Ways of Reasoning about Programs. Technical Report
UMCS-92-4-4, Department of Computer Science, University of Manchester, England, March
1992.

A. Kehne, J. Schonwalder, and H. Langendorfer. A Nonce-Based Protocol for Multiple Au-
thentications. ACM Operating Systems Review, 26(4):84-89, October 1992.

R.A. Kemmerer, C. Meadows, and J. Millen. Three Systems for Cryptographic Protocol
Analysis. Journal of Cryptology, October 1993. To appear.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communica-
tions of the ACM, 21(7):558-565, July 1978.

13

[19]

[29]

[30]

[31]

M. Merritt and P. Wolper. States of Knowledge in Cryptographic Protocols. Unpublished
manuscript, 1985. An earlier version of this work appeared as R. DeMillo, N. Lynch, and M.
Merritt. Cryptographic Protocols. In Proceedings of the 14th ACM Symposium on Theory of
Computing, May 1982, pages 383-400.

R.M. Needham. Denial of Service. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 151-153, Fairfax, Virginia, November 1993.

R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in Large Networks
of Computers. Communications of the ACM, 21(12):993-999, December 1978.

R.M. Needham and M.D. Schroeder. Authentication Revisited. ACM Operating Systems
Review, 21(1):7, January 1987.

G. Neiger and S. Toueg. Automatically Increasing the Fault-Tolerance of Distributed Systems.
Technical Report GIT-ICS-89/01, Georgia Institute of Technology, Atlanta, Georgia, January
1989.

D.M. Nessett. A Critique of the Burrows, Abadi, and Needham Logic. ACM Operating Systems
Review, 24(2):35-38, April 1990.

B.C. Neuman and S.G. Stubblebine. A Note on the Use of Timestamps as Nonces. ACM
Operating Systems Review, 27(2):10-14, April 1993.

B.C. Neuman and T. Ts’o. Kerberos: An Authentication Service for Computer Networks.
IEFEE Communications, 32(9):33-38, September 1994.

D. Otway and O. Rees. Efficient and Timely Mutual Authentication. ACM Operating Systems
Review, 21(1):8-10, January 1987.

J. Rushby. Formal Methods and the Certification of Critical Systems. Technical Report
SRI-CS1-93-07, Computer Science Laboratory, SRI International, Menlo Park, California,
November 1993.

M. Satyanarayanan. Integrating Security in a Large Distributed System. ACM Transactions
on Computer System, 7(3):247-280, August 1989.

R.D. Schlichting and F.B. Schneider. Fail-Stop Processors: An Approach to Designing Fault-
Tolerant Computing Systems. ACM Transactions on Computing Systems, 1(3):222-238, Au-
gust 1983.

F.B. Schneider. Byzantine Generals in Action: Implementing Fail-Stop Processors. ACM
Transactions on Computing Systems, 2(2):145-154, May 1984.

14

