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Preface  

About this book 

This tutorial is written for programmers who are interested in developing 

applications or libraries for the Cell Broadband Engine™ (Cell BE). It is not 

intended for programmers who want to develop device drivers, compilers, or 

operating systems for the Cell Broadband Engine. 

The descriptions and examples in this tutorial are from the Software Development Kit 

for Multicore Acceleration, Version 3.0. The examples are chosen to highlight the 

general principals required for Cell Broadband Engine programming, so that an 

experienced programmer can apply this knowledge to other environments. 

Who should read this book 

The document is intended for system and application programmers who wish to 

develop Cell Broadband Engine applications. 

Prerequisites 

It is assumed that you are an experienced C/C++ programmer and are familiar 

with the basic concepts of single-instruction, multiple-data (SIMD) vector 

instruction sets, such as the PowerPC 

® Architecture™ Vector/SIMD Multimedia 

Extensions, Intel 

® MMX™, SSE, 3DNOW!, or x86-64 instruction sets. 

It is also assumed that you have the Software Development Kit (SDK) for 

Multicore Acceleration, which includes a Cell BE specific, 64-bit PowerPC Linux 

operating system, SDK code examples, and the IBM Full System Simulator for Cell 

BE. 

Related documentation 

The following is a list of reference and supporting materials for the Cell Broadband 

Engine. Additional documentation for specific SDK components is generally 

provided with that component. 

v   C/C++ Language Extensions for Cell Broadband Engine Architecture 

v   Cell Broadband Engine, Architecture 

v   Cell Broadband Engine Linux Reference Implementation, Application Binary Interface 

Specification 

v   Cell Broadband Engine, Programming Handbook 

v   Cell Broadband Engine, Registers 

v   Accelerated Library Framework, Programmer’s Guide and API Reference 

v   Data Communication and Synchronization, Programmer’s Guide and API Reference 

v   PowerPC Microprocessor Family: The Programming Environments Manual for 64-bit 

Microprocessors 

v   PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology 

Programming Environments Manual, Version 2.06c 

v   PowerPC Operating Environment Architecture, Book III, Version 2.02 

v   PowerPC User Instruction Set Architecture, Book I, Version 2.02 
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v   PowerPC Virtual Environment Architecture, Book II, Version 2.02 

v   SIMD Math Library Specification for Cell Broadband Engine 

v   Software Development Kit, Programmer’s Guide 

v   SPE Runtime Management Library (Version 2) 

v   SPU Application Binary Interface Specification 

v   SPU Assembly Language Specification 

v   Synergistic Processor Unit, Instruction Set Architecture
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Chapter  1.  Overview  of  the  Cell  Broadband  Engine  

Introduction 

The first generation Cell Broadband Engine is the first incarnation of a new family 

of microprocessors conforming to the Cell Broadband Processor Architecture (CBEA). 

The CBEA is a new architecture that extends the 64-bit PowerPC Architecture. 

The CBEA and the Cell Broadband Engine are the result of a collaboration between 

Sony, Toshiba, and IBM, known as STI, formally started in early 2001. 

Background and motivations 

Although the Cell Broadband Engine is initially intended for application in game 

consoles and media-rich consumer-electronics devices such as high-definition 

televisions, the architecture and the Cell Broadband Engine implementation have 

been designed to enable fundamental advances in processor performance. A much 

broader use of the architecture is envisioned. 

The Cell Broadband Engine is a single-chip multiprocessor with nine processors 

operating on a shared, coherent memory. In this respect, it extends current trends 

in PC and server processors. The most distinguishing feature of the Cell 

Broadband Engine is that, although all processors share main storage (the 

effective-address space that includes main memory), their function is specialized 

into two types: 

v   the PowerPC Processor Element (PPE), 

v   the Synergistic Processor Element (SPE).

The Cell Broadband Engine has: 

v   one PPE, 

v   eight SPEs.

The PPE (the first type of processor element) is a 64-bit PowerPC Architecture core. 

It is fully compliant with the 64-bit PowerPC Architecture and can run 32-bit and 

64-bit operating systems and applications. 

The SPE (the second type of processor element) is optimized for running 

compute-intensive applications, and it is not optimized for running an operating 

system. The SPEs are independent processors, each running its own individual 

application programs. Each SPE has full access to coherent shared memory, 

including the memory-mapped I/O space. 

The designation synergistic for this processor was chosen carefully because there is 

a mutual dependence between the PPE and the SPEs. The SPEs depend on the PPE 

to run the operating system, and, in many cases, the top-level control thread of an 

application. The PPE depends on the SPEs to provide the bulk of the application 

performance. 

The SPEs are designed to be programmed in high-level languages and support a 

rich instruction set that includes extensive single-instruction, multiple-data (SIMD) 

functionality. However, just like conventional processors with SIMD extensions, use 

of SIMD data types is preferred, not mandatory. For programming convenience, 

the PPE also supports the PowerPC Architecture Vector/SIMD Multimedia 

Extension. 
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To an application programmer, the Cell Broadband Engine looks like a 9-way 

coherent multiprocessor. The PPE is more adept at control-intensive tasks and 

quicker at task switching. The SPEs are more adept at compute-intensive tasks and 

slower at task switching. However, either processor is capable of both types of 

functions. This specialization has allowed increased efficiency in the 

implementation of both the PPE and especially the SPEs. It is a significant factor in 

the approximate order-of-magnitude improvement in peak computational 

performance and area-and-power efficiency that the Cell Broadband Engine 

achieves over conventional PC processors. 

A significant difference between the PPE and SPEs is how they access memory: 

v   The PPE accesses main storage (the effective-address space that includes main 

memory) with load and store instructions that go between a private register file 

and main storage (which may be cached). 

v   The SPEs access main storage with direct memory access (DMA) commands that 

go between main storage and a private local memory used to store both 

instructions and data. SPE instruction-fetches and load and store instructions 

access this private local store, rather than shared main storage. This 3-level 

organization of storage (register file, local store, main storage), with 

asynchronous DMA transfers between local store and main storage, is a radical 

break with conventional architecture and programming models, because it 

explicitly parallelizes computation and the transfers of data and instructions.

The  reason for this radical change is that memory latency, measured in processor 

cycles, has gone up several hundredfold in the last 20 years. The result is that 

application performance is, in most cases, limited by memory latency rather than 

by peak compute capability or peak bandwidth. When a sequential program on a 

conventional architecture performs a load instruction that misses in the caches, 

program execution now comes to a halt for several hundred cycles. Compared to 

this penalty, the few cycles it takes to set up a DMA  transfer for an SPE is quite 

small. Conventional processors, even with deep and costly speculation, manage to 

get, at best, a handful of independent memory accesses in flight. The result can be 

compared to a bucket brigade in which a hundred people are required to cover the 

distance to the water needed to put the fire out, but only a few buckets are 

available. In contrast, the explicit DMA  model allows each SPE to have many 

concurrent memory accesses in flight, without the need for speculation. 

The most productive SPE memory-access model appears to be the one in which a 

list (such as a scatter-gather list) of DMA transfers is constructed in an SPE’s local 

store, so that the SPE’s DMA controller can process the list asynchronously while 

the SPE operates on previously transferred data. In several cases, this new 

approach to accessing memory has led to application performance exceeding that 

of conventional processors by almost two orders of magnitude, significantly more 

than one would expect from the peak performance ratio (about 10x) between the 

Cell Broadband Engine and conventional PC processors. 

It is also possible to write compilers that manage an SPE’s local Store as a very 

large second-level register file or to automatically bring in code when needed and 

present a conventional symmetric multiprocessing (SMP) model. Although such a 

compiler exists, at least in prototype form, it does not today result in the most 

optimal application performance. Hence, this tutorial focuses on approaches to 

programming the Cell Broadband Engine that expose the local store and the 

asynchronous DMA-transfer commands. 
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Scaling the three performance-limiting walls 

The Cell Broadband Engine overcomes three important limiters of contemporary 

microprocessor performance: power use, memory use, and processor frequency. 

Scaling the power-limitation wall 

Increasingly, microprocessor performance is limited by achievable power 

dissipation rather than by the number of available integrated-circuit resources 

(transistors and wires). 

Therefore, the only way to significantly increase the performance of 

microprocessors is to improve power efficiency at about the same rate as the 

performance increase. 

One way to increase power efficiency is to differentiate between: 

v   processors optimized to run an operating system and control-intensive code, and 

v   processors optimized to run compute-intensive applications.

The Cell Broadband Engine does this by providing a general-purpose PPE to run 

the operating system and other control-plane code, and eight SPEs specialized for 

computing data-rich (data-plane) applications. 

Scaling the memory-limitation wall 

On multi-gigahertz symmetric multiprocessors (even those with integrated memory 

controllers) latency to DRAM memory is currently approaching 1,000 cycles. 

As a result, program performance is dominated by the activity of moving data 

between main storage (the effective-address space that includes main memory) and 

the processor. Increasingly, compilers and even application writers must manage 

this movement of data explicitly, even though the hardware cache mechanisms are 

supposed to relieve them of this task. 

The Cell Broadband Engine’s SPEs use two mechanisms to deal with long 

main-memory latencies: 

v   a 3-level memory structure (main storage, local stores in each SPE, and large 

register files in each SPE), 

v   asynchronous DMA  transfers between main storage and local stores.

These features allow programmers to schedule simultaneous data and code 

transfers to cover long latencies effectively. Because of this organization, the Cell 

Broadband Engine can usefully support 128 simultaneous transfers between the 

eight SPE local stores and main storage. This surpasses the number of 

simultaneous transfers on conventional processors by a factor of almost twenty. 

Scaling the frequency-limitation wall 

Conventional processors require increasingly deeper instruction pipelines to 

achieve higher operating frequencies. This technique has reached a point of 

diminishing returns – and even negative returns if power is taken into account. 

By specializing the PPE and the SPEs for control and compute-intensive tasks, 

respectively, the Cell Broadband Engine Architecture, on which the Cell Broadband 

Engine is based, allows both the PPE and the SPEs to be designed for high 

frequency without excessive overhead. The PPE achieves efficiency primarily by 

executing two threads simultaneously rather than by optimizing single-thread 

performance. 
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Each SPE achieves efficiency by using a large register file, which supports many 

simultaneous in-process instructions without the overhead of register-renaming or 

out-of-order processing. Each SPE also achieves efficiency by using asynchronous 

DMA transfers, which support many concurrent memory operations without the 

overhead of speculation. 

How the Cell Broadband Engine overcomes performance 

limitations 

By optimizing control-plane and data-plane processors individually, the Cell 

Broadband Engine alleviates the problems posed by the power, memory, and 

frequency limitations. 

The net result is a processor that, at the power budget of a conventional PC 

processor, can provide approximately ten-fold the peak performance of a 

conventional processor. Of course, actual application performance varies. Some 

applications may benefit little from the SPEs, whereas others show a performance 

increase well in excess of ten-fold. In general, compute-intensive applications that 

use 32-bit or smaller data formats (such as single-precision floating-point and 

integer) are excellent candidates for the Cell Broadband Engine. 

The remainder of this chapter describes the Cell Broadband Engine hardware, 

some basic programming conventions, a typical software-development sequence, 

and the major support tools available in the software development kit (SDK). 

v   Programming the PPE is described in Chapter 2, “The PPE and the 

programming process,” on page 19. 

v   Programming the SPEs is described in Chapter 3, “Programming the SPEs,” on 

page 49. 

v   Programming models are described in Chapter 4, “Programming models,” on 

page 117. 

v   The IBM Full System Simulator for the Cell Broadband Engine is described in 

Chapter 5, “The simulator,” on page 123. 

v   A glossary is provided in “Glossary” on page 159.

Architecture overview 

The Cell Broadband Engine consists of nine processors on a single chip, all 

connected to each other and to external devices by a high-bandwidth, 

memory-coherent bus. 

Figure 1 on page 5 shows a block diagram of the Cell Broadband Engine. The main 

blocks include the: 

v   PowerPC Processor Element (PPE). The PPE is the main processor. It contains a 

64-bit PowerPC Architecture reduced instruction set computer (RISC) core with a 

traditional virtual-memory subsystem. It runs an operating system, manages 

system resources, and is intended primarily for control processing, including the 

allocation and management of SPE threads. It can run legacy PowerPC 

Architecture software and performs well executing system-control code. It 

supports both the PowerPC instruction set and the Vector/SIMD Multimedia 

Extension instruction set. 

v   Synergistic Processor Elements (SPEs). The eight SPEs are SIMD processors 

optimized for data-rich operations allocated to them by the PPE. Each of these 

identical elements contains a RISC core, 256-KB, software-controlled local store 

for instructions and data, and a large (128-bit, 128-entry) unified register file. The 

SPEs support a special SIMD instruction set, and they rely on asynchronous 
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DMA  transfers to move data and instructions between main storage (the 

effective-address space that includes main memory) and their local stores. SPE 

DMA  transfers access main storage using PowerPC effective addresses. As on 

the PPE, address translation is governed by PowerPC Architecture segment and 

page tables. The SPEs are not intended to run an operating system. 

v   Element Interconnect Bus (EIB). The PPE and SPEs communicate coherently with 

each other and with main storage and I/O through the EIB. The EIB is a 4-ring 

structure (two clockwise and two counterclockwise) for data, and a tree structure 

for commands. The EIB’s internal bandwidth is 96 bytes per cycle, and it can 

support more than 100 outstanding DMA  memory requests between main 

storage and the SPEs.

 

The memory-coherent EIB has two external interfaces, as shown in Figure 1: 

v   The Memory Interface Controller (MIC) provides the interface between the EIB and 

main storage. It supports two Rambus Extreme Data Rate (XDR) I/O (XIO) 

memory channels and memory accesses on each channel of 1-8, 16, 32, 64, or 128 

bytes. 

v   The Cell Broadband Engine Interface (BEI) manages data transfers between the EIB 

and I/O devices. It provides address translation, command processing, an 

internal interrupt controller, and bus interfacing. It supports two Rambus FlexIO 

external I/O channels. One channel supports only non-coherent I/O devices. 

The other channel can be configured to support either non-coherent transfers or 

coherent transfers that extend the logical EIB to another compatible external 

device, such as another Cell Broadband Engine.

The Cell Broadband Engine supports concurrent real-time and non-real-time 

operating systems and resource management. Software development in the C/C++ 

language is supported by a rich set of language extensions that define C/C++ data 

types for SIMD operations and map C/C++ intrinsics (commands, in the form of 

function calls) to one or more assembly instructions. 

  

Figure 1. Overview of Cell Broadband Engine architecture
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These language extensions give C/C++ programmers much greater control over 

code performance, without the need for assembly-language programming. Software 

development is further supported by: 

v   a complete Linux-based SDK, 

v   a full-system simulator, and 

v   a rich set of application libraries, performance tools and debug tools.

The PowerPC Processor Element 

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit 

RISC processor that conforms to the PowerPC Architecture, version 2.02, with the 

Vector/SIMD Multimedia Extension. 

Programs written for the PowerPC 970 processor, for example, should run on the 

Cell Broadband Engine without modification. 

As shown in Figure 2, the PPE consists of two main units: 

v   The Power Processor Unit (PPU). 

v   The Power Processor Storage Subsystem (PPSS).

The  PPE is responsible for overall control of the system. It runs the operating 

systems for all applications running on the Cell Broadband Engine. 

 

The PPU deals with instruction control and execution. It includes: 

v   the full set of 64-bit PowerPC registers, 

v   32 128-bit vector registers, 

v   a 32-KB level 1 (L1) instruction cache, 

v   a 32-KB level 1 (L1) data cache, 

v   an instruction-control unit, 

v   a load and store unit, 

v   a fixed-point integer unit, 

  

Figure 2. PowerPC Processor Element (PPE) block diagram
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v   a floating-point unit, 

v   a vector unit, 

v   a branch unit, 

v   a virtual-memory management unit.

The PPU supports two simultaneous threads of execution and can be viewed as a 

2-way multiprocessor with shared dataflow. This appears to software as two 

independent processing units. The state for each thread is duplicated, including all 

architected and special-purpose registers except those that deal with system-level 

resources, such as logical partitions, memory, and thread-control. Most 

non-architected resources, such as caches and queues, are shared by both threads, 

except in cases where the resource is small or offers a critical performance 

improvement to multithreaded applications. 

The PPSS handles memory requests from the PPE and external requests to the PPE 

from other processors or I/O devices. It includes: 

v   a unified 512-KB level 2 (L2) instruction and data cache, 

v   various queues, 

v   a bus interface unit that handles bus arbitration and pacing on the EIB.

Memory is seen as a linear array of bytes indexed from 0 to 2⁶⁴ - 1. Each byte is 

identified by its index, called an address, and each byte contains a value. One 

storage access occurs at a time, and all accesses appear to occur in program order. 

The L2 cache and the address-translation caches use replacement-management 

tables that allow software to control use of the caches. This software control over 

cache resources is especially useful for real-time programming. 

Synergistic Processor Elements 

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor 

specialized for data-rich, compute-intensive SIMD applications. 

As shown in Figure 3 on page 8, each SPE consists of two main units: 

v   The Synergistic Processor Unit (SPU). 

v   The Memory Flow Controller (MFC).
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The SPU deals with instruction control and execution. It includes a single register 

file with 128 registers (each one 128 bits wide), a unified (instructions and data) 

256-KB local store (LS), an instruction-control unit, a load and store unit, two 

fixed-point units, a floating-point unit, and a channel-and-DMA interface. The SPU 

implements a new SIMD instruction set, the SPU Instruction Set Architecture, that is 

specific to the Broadband Processor Architecture. 

Each SPU is an independent processor with its own program counter and is 

optimized to run SPE threads spawned by the PPE. The SPU fetches instructions 

from its own LS, and it loads and stores data from and to its own LS. With respect 

to accesses by its SPU, the LS is unprotected and un-translated storage. The MFC 

contains a DMA controller that supports DMA transfers. Programs running on the 

SPU, the PPE, or another SPU, use the MFC’s DMA  transfers to move instructions 

and data between the SPU’s LS and main storage. (Main storage is the 

effective-address space that includes main memory, other SPEs’ LS, and 

memory-mapped registers such as memory-mapped I/O [MMIO] registers.) The 

MFC interfaces the SPU to the EIB, implements bus bandwidth-reservation 

features, and synchronizes operations between the SPU and all other processors in 

the system. 

To support DMA transfers, the MFC  maintains and processes queues of DMA 

commands. After a DMA command has been queued to the MFC, the SPU can 

continue to execute instructions while the MFC processes the DMA command 

autonomously and asynchronously. The MFC also can autonomously execute a 

sequence of DMA transfers, such as scatter-gather lists, in response to a DMA-list 

command. This autonomous execution of MFC DMA commands and SPU 

instructions allows DMA transfers to be conveniently scheduled to hide memory 

latency. 

Each DMA transfer can be up to 16 KB in size. However, only the MFC’s 

associated SPU can issue DMA-list commands. These can represent up to 2,048 

DMA transfers, each one up to 16 KB in size. DMA  transfers are coherent with 

respect to main storage. Virtual-memory address-translation information is 

provided to each MFC by the operating system running on the PPE. Attributes of 

system storage (address translation and protection) are governed by the page and 

  

Figure 3. Synergistic Processor Element (SPE) block diagram
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segment tables of the PowerPC Architecture. Although privileged software on the 

PPE can map LS addresses and certain MFC resources to the main-storage address 

space, enabling the PPE or other SPUs in the system to access these resources, this 

aliased memory is not coherent in the system. 

The SPEs provide a deterministic operating environment. They do not have caches, 

so cache misses are not a factor in their performance. Pipeline-scheduling rules are 

simple, so it is easy to statically determine the performance of code. Although the 

LS is shared between DMA read and write operations, load and store operations, 

and instruction prefetch, DMA operations are accumulated and can only access the 

LS for at most one of every eight cycles. Instruction prefetch delivers at least 17 

instructions sequentially from the branch target. Thus, the impact of DMA 

operations on loads and stores and program-execution times is, by design, limited. 

Programming Overview 

The instruction set for the PPE is an extended version of the PowerPC instruction 

set. The extensions consist of the Vector/SIMD Multimedia Extension instruction set 

plus a few additions and changes to PowerPC instructions. 

The instruction set for the SPE is similar to that of the PPE’s Vector/SIMD 

Multimedia Extension instruction set. Although the PPE and the SPEs execute 

SIMD instructions, the two instruction sets are different, and programs for the PPE 

and SPEs must be compiled by different compilers. 

Byte ordering and bit numbering 

Storage of data and instructions in the Cell Broadband Engine is big-endian. 

Big-endian ordering has the following characteristics: 

v   Most-significant byte is stored at the lowest address, and least-significant byte is 

stored at the highest address. 

v   Bit numbering within a byte goes from most-significant bit (bit 0) to 

least-significant bit (bit n). This differs from some other big-endian processors.

Figure 4 on page 10 shows a summary of the byte-ordering and bit-ordering in 

memory, as well as the bit-numbering conventions. 
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SIMD vectorization 

A vector is an instruction operand containing a set of data elements packed into a 

one-dimensional array. The elements can be integer or floating-point values. Most 

Vector/SIMD Multimedia Extension and SPU instructions operate on vector 

operands. Vectors are also called SIMD operands or packed operands. 

SIMD processing exploits data-level parallelism. Data-level parallelism means that 

the operations required to transform a set of vector elements can be performed on 

all elements of the vector at the same time. That is, a single instruction can be 

applied to multiple data elements in parallel. 

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the 

PPE, they are supported by the Vector/SIMD Multimedia Extension instruction set. 

In the SPEs, they are supported by the SPU instruction set. 

In both the PPE and SPEs, vector registers hold multiple data elements as a single 

vector. The data paths and registers supporting SIMD operations are 128 bits wide, 

corresponding to four full 32-bit words. This means that four 32-bit words can be 

loaded into a single register, and, for example, added to four other words in a 

different register in a single operation. Figure 5 on page 11 shows such an 

operation. Similar operations can be performed on vector operands containing 16 

bytes, 8 halfwords, or 2 doublewords. 

 

  

Figure 4. Big-endian byte and bit ordering
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The process of preparing a program for use on a vector processor is called 

vectorization or SIMDization. It can be done manually by the programmer, or it can 

be done by a compiler that does auto-vectorization. 

Figure 6 shows another example of an SIMD operation– in this case, a byte-shuffle 

operation. Here, the bytes selected for the shuffle from the source registers, VA and 

VB, are based on byte entries in the control vector, VC, in which a 0 specifies VA 

and a 1 specifies VB. The result of the shuffle is placed in register VT. 

   

SIMD C-language intrinsics 

Both the Vector/SIMD Multimedia Extension and SPU instruction sets have 

extensions that support C-language intrinsics. Intrinsics are C-language commands, 

in the form of function calls, that are convenient substitutes for one or more  inline 

assembly-language instructions. 

In a specific instruction set, most intrinsic names use a standard prefix in their 

mnemonic, and some intrinsic names incorporate the mnemonic of an associated 

  

Figure 5. Four concurrent Add operations

  

Figure 6. Byte-shuffle operation
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assembly-language instruction. For example, the Vector/SIMD Multimedia 

Extension intrinsic that implements the add Vector/SIMD Multimedia Extension 

assembly-language instruction is named vec_add, and the SPU intrinsic that 

implements the stop SPU assembly-language instruction is named spu_stop. 

The PPE’s Vector/SIMD Multimedia Extension instruction set and the SPE’s SPU 

instruction set both have extensions that define somewhat different sets of 

intrinsics, but they all fall into four types of intrinsics. These are listed in Table 1-1. 

Although the intrinsics provided by the two instruction sets are similar in function, 

their naming conventions and function-call forms are different. 

 Table 1. PPE and SPE intrinsic classes 

Types of 

Intrinsic Definition PPE SPE 

Specific One-to-one mapping to a single assembly-language 

instruction. 

X X 

Generic Map  to one or more assembly-language instructions, 

depending on types of input parameters. 

X X 

Composite Constructed from a sequence of Specific or Generic 

intrinsics. 

X 

Predicates Evaluate SIMD conditionals. X 

  

For more information about the PPE intrinsics, see “C/C++ language extensions 

(intrinsics)” on page 25. 

For more information about the SPE intrinsics, see “SPU C/C++ language 

extensions (intrinsics)” on page 64. 

Threads and tasks 

In a system running the Linux operating system, the main thread of a program is a 

Linux thread running on the PPE. The program’s main Linux thread can spawn 

one or more Cell Broadband Engine Linux tasks. 

A Cell Broadband Engine Linux task has one or more Linux threads associated 

with it that may execute on either a PPE or a SPE. An SPE thread is a Linux thread 

that is executing on a SPE. These terms are defined in Table 2. 

The software threads described in this section are unrelated to the hardware 

multithreading capability of the PPE. 

 Table 2. Definition of threads and tasks 

Term Definition 

Linux thread A thread running in the Linux operating-system environment. 

PPE thread A Linux thread running on a PPE. 

SPE thread A Linux thread running on an SPE. Each such thread: 

v   has its own  SPE context which includes the 128 x 128-bit 

register file, program counter, and MFC Command Queues. 

v   can communicate with other execution units (or with 

effective-address memory through the MFC channel 

interface). 
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Table 2. Definition of threads and tasks (continued) 

Term Definition 

Cell Broadband Engine 

Linux task 

A task running on the PPE and SPE. 

v   Each such task has one or more Linux threads. 

v   All  the Linux threads within the task share the task’s 

resources.
  

A Linux thread can interact directly with an SPE thread through the SPE’s local 

store or its problem state. It can interact indirectly through effective-address (EA) 

memory or the interface provided by the SPE Runtime Management library 

subroutines. 

The operating system defines the mechanism and policy for scheduling an 

available SPE. It must prioritize among all the Cell Broadband Engine Linux 

applications in the system, and it must schedule SPE execution independent from 

regular Linux threads. It is also responsible for runtime loading, passing 

parameters to SPE programs, notification of SPE events and errors, and debugger 

support. 

The runtime environment 

The PPE runs PowerPC applications and operating systems, which may include 

Vector/SIMD Multimedia Extension instructions. 

The PPE requires an operating system that is extended to support the hardware 

features of Cell Broadband Engines, such as multiprocessing with the SPEs, access 

to the PPE Vector/SIMD Multimedia Extension functions, the Cell Broadband 

Engine interrupt controller, and all other functions on the Cell Broadband Engine. 

The assumed development and operating-system environment for this tutorial are 

described in the “Preface” on page iii. In this operating environment, the PPE 

handles thread allocation and resource management among SPEs. The PPE’s Linux 

kernel controls the SPUs’ execution of programs. 

SPE threads follow the M:N thread model, meaning M threads distributed over N 

processor elements. Typically SPE threads run to completion. However, the SPE 

threads are pre-emptible in accordance with the thread’s scheduling policy and 

priority. Time slice quanta for the SPE threads is typically longer than PPE threads 

because of the SPE context switch is relatively heavy. 

The Linux kernel manages virtual memory, including mapping each SPE’s local 

store (LS) and problem state (PS) into the effective-address space. The kernel also 

controls virtual-memory mapping of MFC resources, as well as MFC segment-fault 

and page-fault handling. Large pages (16-MB pages), using the hugetlbfs Linux 

extension, are supported. 

Application partitioning 

Programs running on the Cell Broadband Engine’s nine processor elements 

typically partition the work among the available processor elements. 

In determining when and how to distribute the workload and data, take into 

account the following considerations: 

v   processing-load distribution, 

v   program structure, 
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v   program data flow and data access patterns, 

v   cost, in time and complexity of code movement and data movement among 

processors, and 

v   cost of loading the bus and bus attachments.

The main model for partitioning an application is PPE-centric, as shown in 

Figure 7. 

 

In the PPE-centric model, the main application runs on the PPE, and individual 

tasks are off-loaded to the SPEs. The PPE then waits for, and coordinates, the 

results returning from the SPEs. This model fits an application with serial data and 

parallel computation. 

In the SPE-centric model, most of the application code is distributed among the 

SPEs. The PPE acts as a centralized resource manager for the SPEs. Each SPE 

fetches its next work item from main storage (or its own local store) when it 

completes its current work. 

There are three ways in which the SPEs can be used in the PPE-centric model: 

v   the multistage pipeline model, 

v   the parallel stages model, and 

v   the services model.

The first two of these are shown in Figure 8 on page 15. 

If a task requires sequential stages, the SPEs can act as a multistage pipeline. The left 

side of Figure 8 on page 15 shows a multistage pipeline. Here, the stream of data is 

sent into the first SPE, which performs the first stage of the processing. The first 

SPE then passes the data to the next SPE for the next stage of processing. After the 

last SPE has done the final stage of processing on its data, that data is returned to 

the PPE. As with any pipeline architecture, parallel processing occurs, with various 

portions of data in different stages of being processed. 

Multistage pipelining is typically avoided because of the difficulty of load 

balancing. In addition, the multistage model increases the data-movement 

requirement because data must be moved for each stage of the pipeline. 

 

  

Figure 7. Application partitioning model
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If the task to be performed is not a multistage task, but a task in which there is a 

large amount of data that can be partitioned and acted on at the same time, then it 

typically make sense to use SPEs to process different portions of that data in 

parallel. This parallel stages model is shown on the right side of Figure 8. 

The third way in which SPEs can be used in a PPE-centric model is the services 

model. In the services model, the PPE assigns different services to different SPEs, 

and the PPE’s main process calls upon the appropriate SPE when a particular 

service is needed. 

Figure 9 shows the PPE-centric services model. Here, one SPE processes data 

encryption, another SPE processes MPEG encoding, and a third SPE processes 

curve analysis. Fixed static allocation of SPU services should be avoided. These 

services should be virtualized and managed on a demand-initiated basis. 

 

For a more detailed view of programming models, see Chapter 4, “Programming 

models,” on page 117. 

  

Figure 8. PPE-centric multistage pipeline model and parallel stages model

  

Figure 9. PPE-centric services model
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The software development kit 

A software development kit (SDK) is available for the Cell Broadband Engine. 

The SDK contains the essential tools required for developing programs for the Cell 

Broadband Engine. “Preface” on page iii describes the assumptions with respect to 

the available SDK. 

The SDK consists of numerous components including the following: 

v   The IBM Full System Simulator for the Cell Broadband Engine, systemsim (see 

Chapter 5, “The simulator,” on page 123). 

v   system root image containing Linux execution environment for use within 

systemsim. 

v   GNU tools including C and C++ compilers, linkers, assemblers and binary 

utilities for both PPU and SPU. 

v   IBM xlc (C and C++) compiler for both PPU and SPU. 

v   IBM xlf (Fortran) compiler for both PPU and SPU. 

v   newlib for the SPU. newlib is a C standard library designed for use on 

embedded systems. 

v   gdb debuggers for both PPU and SPU with support for remote gdbserver 

debugging. The PPU debugger also provides combined, PPU and SPU, 

debugging. 

v   PPC64 Linux with CBE enhancements. 

v   SPE Runtime Management Library providing a standardized, low-level 

application programming interface for application access to the SPEs. 

v   Libraries to assist in the development and execution of parallel applications, 

including the: 

–   Accelerated Library Framework library (ALF) support SM,  and the 

–   Data Communication and Synchronization (DaCS) library.
v    Performance tools including: 

–   oprofile – a system-wide profiler for Linux, 

–   CellPerfCount – a low level tool to configure and access HW performance 

counters, 

–   FDPR-Pro – a tool for gather information for feedback directed optimization, 

–   CodeAnalyzer – examines executable files and displays detailed information 

about functions, basic blocks, and assembly instructions, and 

–   Visual Performance Analyzer (VPA) – an Eclipse-based performance 

visualization toolkit. 

–   spu_timing – a static timing analysis timing tool that instruments assembly 

source (either compiler or programmer generated) with expected, linear, 

instruction timing details. 

–   PDT – a performance debugging tool which provides a tracing infrastructure 

for application timing analysis.
v    An Eclipse-based Integrated Development Environment (IDE) to improve 

programmer productivity and integration of development tools. 

v   Standardized SIMD math libraries for the PPU’s Vector/SIMD Multimedia 

Extension and the SPU. 

v   Mathematical Acceleration Subsystem (MASS) libraries supporting both long and 

short (SIMD) vectors. 

v   Cell optimized domain-specific application libraries, including Basic Linear 

Algebra Subprograms (BLAS) library, Fast Fourier Transform (FFT) library, and 

Monte Carlo Random Number Generator library. 
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v   Example source code containing programming examples, example libraries, 

benchmarks, and demos.
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Chapter  2.  The  PPE  and  the  programming  process  

This chapter describes the PowerPC Processor Element (PPE) registers, the PPE’s 

two instruction sets, and the C-language intrinsics for the PPE and Vector/SIMD 

Multimedia Extension instructions. 

“The PowerPC Processor Element” on page 6 introduced the organization and 

functions of the PowerPC Processor Element (PPE). This chapter describes the 

relation between the PPE and Synergistic Processor Element (SPE) address spaces. 

Examples are provided of: 

v   PPE-initiated DMA transfers between main storage and an SPE’s local store (LS). 

v   PPE thread-creation for the SPE.

PPE registers 

This section describes the complete set of PowerPC Processor Element (PPE) user 

(problem-state) registers. 

Figure 10 on page 20 shows all the PPE user (problem-state) registers. All 

computational instructions operate only on registers – there are no computational 

instructions that modify storage. 

To use a storage operand in a computation and then modify the same or another 

storage location, the contents of the storage operand must be: 

1.   loaded into a register, 

2.   modified, 

3.   stored back to the target location.
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The PPE registers include: 

v   General-Purpose Registers (GPRs) – Fixed-point instructions operate on the full 

64-bit width of the GPRs, of which there are 32. The instructions are 

mode-independent, except that in 32-bit mode, the processor uses only the 

low-order 32 bits for determination of a memory address and the carry, 

overflow, and record status bits. 

v   Floating-Point Registers (FPRs) – The 32 FPRs are 64 bits wide. The internal 

format of floating-point data is the IEEE 754 double-precision format. 

Single-precision results are maintained internally in the double-precision format. 

v   Link Register (LR) – The 64-bit LR can be used to hold the effective address of a 

branch target. Branch instructions with the link bit (LK) set to 1 (that is, 

subroutine-call instructions) copy the next instruction address into the LR. A 

Move To Special-Purpose Register instruction can copy the contents of a GPR 

into the LR. 

v   Count Register (CTR) – The 64-bit CTR can be used to hold either a loop counter 

or the effective address of a branch target. Some conditional-branch instruction 

  

Figure 10. PPE user-register set
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forms decrement the CTR and test it for a zero value. A Move To 

Special-Purpose Register instruction can copy the contents of a GPR into the 

CTR. 

v   Fixed-Point Exception Register (XER) – The 64-bit XER contains the carry and 

overflow bits and the byte count for the move-assist instructions. Most 

arithmetic operations have instruction forms for setting the carry and overflow 

bit. 

v   Condition Register (CR) – Conditional comparisons are performed by first setting 

a condition code in the 32-bit CR with a compare instruction or with a recording 

instruction. The condition code is then available as a value or can be tested by a 

branch instruction to control program flow. The CR consists of eight 

independent 4-bit fields grouped together for convenient save or restore during 

a context switch. Each field can hold status information from a comparison, 

arithmetic, or logical operation. The compiler can schedule CR fields to avoid 

data hazards in the same way that it schedules the use of GPRs. Writes to the 

CR occur only for instructions that explicitly request them; most operations have 

recording and non-recording instruction forms. 

v   Floating-Point Status and Control Register (FPSCR) – The processor updates the 

32-bit FPSCR after every floating-point operation to record information about the 

result and any associated exceptions. The status information required by IEEE 

754 is included, plus some additional information for exception handling. 

v   Vector Registers (VRs) – There are 32 128-bit-wide VRs. They serve as source and 

destination registers for all vector instructions. 

v   Vector Status and Control Register (VSCR) – The 32-bit VSCR is read and written 

in a manner similar to the FPSCR. It has 2 defined bits, a non-Java™ mode bit 

and a saturation bit; the remaining bits are reserved. Special instructions are 

provided to move the VSCR to a VR register. 

v   Vector Save Register (VRSAVE) – The 32-bit VRSAVE register assists user and 

privileged software in saving and restoring the architectural state across context 

switches.

PPE instruction sets 

The PowerPC Processor Element (PPE) supports two instruction sets: the PowerPC 

instruction set and the Vector/SIMD Multimedia Extension instruction set. 

Although most of the coding for the Cell Broadband Engine will be in a high-level 

language like C or C++, an understanding of the PPE architecture and instruction 

sets adds considerably to a developer’s ability to produce efficient, optimized code. 

This is particularly true because C-language intrinsics are provided for the PPE’s 

Vector/SIMD Multimedia Extension instruction set, and these intrinsics map 

directly to one or more Vector/SIMD Multimedia Extension assembly-language 

instructions. 

The PowerPC instruction set uses instructions that are 4 bytes long and 

word-aligned. It supports byte, halfword, word, and doubleword operand accesses 

between storage and its 32 general-purpose registers (GPRs). The instruction set 

also supports word and doubleword operand accesses between storage and a set of 

32 floating-point registers (FPRs). Signed integers are represented in 

twos-complement form. 

The Vector/SIMD Multimedia Extension instruction set uses instructions that, like 

PowerPC instructions, are 4 bytes long and word-aligned. However, all of its 

operands are 128 bits wide. Most of the Vector/SIMD Multimedia Extension 
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operands are vectors, including single-precision floating-point, integer, scalar, and 

fixed-point of vector-element sizes of 8,16, and 32 bits. 

The sections that follow briefly summarize key points of the instruction sets. 

However, for a complete description of the PowerPC instruction sets, refer to these 

publications: 

v   PowerPC Microprocessor Family, Programming Environments Manual for 64-Bit 

Microprocessors 

v   PowerPC Microprocessor Family, Vector/SIMD Multimedia Extension Technology 

Programming Environments Manual

PowerPC instructions 

Whenever instruction addresses are presented to the processor, the low-order 2 bits 

are ignored. 

Similarly, whenever the processor develops an instruction address, the low-order 2 

bits are zero. The address of either an instruction or a multiple-byte data value is 

its lowest-numbered byte. This address points to the most-significant end 

(big-endian convention). The little-endian convention is not supported. 

Arithmetic for address computation is unsigned and ignores any carry out of bit 0 

(the MSb). 

For an overview of the big-endian bit and byte numbering used by the PPE, see 

“Byte ordering and bit numbering” on page 9. 

Addressing modes 

All instructions, except branches, generate addresses by incrementing a program 

counter. All load and store instructions specify a base register. 

The effective address in memory for a data value is calculated relative to the base 

register in one of three ways: 

v   Register + Displacement – The displacement forms of the load and store 

instructions calculate an address that is the sum of a displacement specified by 

the sign-extended 16-bit immediate field of the instruction plus the contents of 

the base register. 

v   Register + Register – The indexed forms of the load and store instructions 

calculate an address that is the sum of the contents of the index register, which 

is a GPR, plus the contents of the base register. 

v   Register – The Load String Immediate and Store String Immediate instructions 

use the unmodified contents of the base register to calculate an address.

Loads and stores can specify an update form that reloads the base register with the 

computed address, unless the base register is the target register of the load. 

Branches are the only instructions that explicitly specify the address of the next 

instruction. A branch instruction specifies the effective address of the branch target 

in one of the following ways: 

v   Branch Not Taken – The byte address of the next instruction is the byte address of 

the current instruction, plus 4. 

v   Absolute – The word address of the next instruction is given in an immediate 

field of the branch instruction. 
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v   Relative – The word address of the next instruction is given by the sum of the 

immediate field of the branch instruction and the word address of the branch 

instruction itself. 

v   Link Register or Count Register – The byte address of the next instruction is the 

effective byte address of the branch target specified in the Link Register or 

Count Register, respectively.

Instruction types 

The PowerPC Processor Element (PPE)’s PowerPC instructions can have up to three 

operands. Most computational instructions specify two source operands and one 

destination operand. 

The PPE’s PowerPC instructions include the following types: 

v   Integer Instructions – These include arithmetic, compare, logical, and rotate/shift 

instructions. They operate on byte, halfword, word, and doubleword operands. 

v   Floating-Point Instructions – These include floating-point arithmetic, multiply-add, 

compare, and move instructions, as well as instructions that affect the 

Floating-Point Status and Control Register (FPSCR). Floating-point instructions 

operate on single-precision and double-precision floating-point operands. 

v   Load and Store Instructions – These include integer and floating-point load and 

store instructions, with byte-reverse, multiple, and string options for the integer 

loads and stores. 

v   Memory Synchronization Instructions – These instructions control the order in 

which memory operations are completed with respect to asynchronous events, 

and the order in which memory operations are seen by other processors or 

memory-access mechanisms. The instruction types include load and store with 

reservation, synchronization, and enforce in-order execution of I/O. They are 

especially useful for multiprocessing. 

v   Flow Control Instructions – These include branch, Condition-Register logical, trap, 

and other instructions that affect the instruction flow. 

v   Processor Control Instructions – These instructions are used for synchronizing 

memory accesses and managing caches, Translation Lookaside Buffers (TLBs), 

segment registers, and other privileged processor states. They include 

move-to/from special-purpose register instructions. 

v   Memory and Cache Control Instructions – These instructions control caches, TLBs, 

and segment registers. 

v   External Control Instructions – These instructions allow a user-level program to 

communicate with a special-purpose device.

Compatibility with existing PowerPC code 

The PowerPC Processor Element (PPE) complies with version 2.0.2 of the PowerPC 

architecture, with only minor exceptions. 

The following optional user-mode instructions are implemented: 

v   fsqrt(.) – Floating-point square root 

v   fsqrts(.) – Floating-point square root single 

v   fres(.) – Floating-point reciprocal estimate single, A-form 

v   frsqrte(.) – Floating-point reciprocal square root estimate, A-form 

v   fsel(.) – Floating-point select 

v   mtocrf – Move to one condition register field, XFX-form 

v   mfocrf – Move from one condition register field, XFX-form

The  following optional instructions that are defined in the PowerPC Book I are not 

implemented. Use of these instructions will cause an illegal-instruction interrupt: 
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v   mcrxr – Move to condition register from XER 

v   bccbr – Branch condition to CBR

The following instructions that are not defined in the PowerPC Architecture are 

implemented. Since these instructions are not part of the architecture, they should 

be considered highly implementation-specific. 

v   ldbrx – Load doubleword byte reverse indexed, X-form 

v   sdbrx – Store doubleword byte reverse indexed, X-form

In  addition, the little endian option for data ordering is not available. A complete 

list of differences can be found in the Cell Broadband Engine, Programming Handbook. 

Vector/SIMD Multimedia Extension instructions 

The 128-bit Vector/SIMD Multimedia Extension unit (VXU) operates concurrently 

with the PPU’s fixed-point integer unit (FXU) and floating-point execution unit 

(FPU). 

Like PowerPC instructions, the Vector/SIMD Multimedia Extension instructions are 

4 bytes long and word-aligned. The Vector/SIMD Multimedia Extension 

instructions support simultaneous execution on multiple elements that make up 

the 128-bit vector operands. These vector elements may be byte, halfword, or 

word. 

 

The Vector/SIMD Multimedia Extension instructions are fully described in the 

PowerPC Microprocessor Family, Vector/SIMD Multimedia Extension Technology 

Programming Environments manual. 

All Vector/SIMD Multimedia Extension instructions are designed to be easily 

“pipelined”. Parallel execution with the PPE’s integer and floating-point 

instructions is simplified by the fact that Vector/SIMD Multimedia Extension 

instructions: 

v   do not generate exceptions (other than data-storage interrupt exceptions on loads 

and stores), 

  

Figure 11. Concurrent execution of integer, floating-point, and vector units
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v   do not support unaligned memory accesses or complex functions, and 

v   share few resources or communication paths with the other PPE execution units.

Addressing modes 

The PowerPC Processor Element (PPE) supports not only basic load and store 

operations, but also load and store vector left- or right-indexed forms. 

All Vector/SIMD Multimedia Extension load and store operations use the register 

+ register indexed addressing mode, which forms the sum of the contents of an 

index GPR plus the contents of a base-address GPR. This addressing mode is very 

useful for accessing arrays. 

In addition to the load and store operations, the Vector/SIMD Multimedia 

Extension instruction set provides a powerful set of element-manipulation 

instructions – for example, shuffle, permute (similar to the SPEs’ shuffle), rotate, 

and shift – to manipulate vector elements into the desired alignment and 

arrangement after the vectors have been loaded into vector registers. 

Instruction types 

Most Vector/SIMD Multimedia Extension instructions have three or four 128-bit 

vector operands – two or three source operands and one result. Also, most 

instructions are SIMD in nature. 

The instructions have been chosen for their utility in digital signal processing 

(DSP) algorithms, including 3D graphics. 

The Vector/SIMD Multimedia Extension instructions include the following types: 

v   Vector Integer Instructions – These include vector arithmetic, compare, logical, 

rotate, and shift instructions. They operate on byte, halfword, and word vector 

elements. The instructions use saturation-clamping. 

v   Vector Floating-Point Instructions – These include floating-point arithmetic, 

multiply/add, rounding and conversion, compare, and estimate instructions. 

They operate on single-precision floating-point vector elements. 

v   Vector Load and Store Instructions – These include only basic integer and 

floating-point load and store instructions. No update forms of the load and store 

instruction are provided. They operate on 128-bit vectors. 

v   Vector Permutation and Formatting Instructions – These include vector pack, 

unpack, merge, splat, permute, select, and shift instructions. 

v   Processor Control Instructions – These include instructions that read and write the 

vector status and control register (VSCR). 

v   Memory Control Instructions – These include instructions for managing caches 

(user-level and supervisor-level). These instructions are “no-ops”.

C/C++ language extensions (intrinsics) 

A set of C-language extensions are available for PowerPC Processor Element (PPE) 

and Vector/SIMD Multimedia Extension programming. 

These extensions include additional vector data types and a large set of scalar and 

vector commands (intrinsics). The intrinsics are essentially inline 

assembly-language instructions, in the form of function calls, that have syntax 

familiar to high-level programmers using the C language. 

The intrinsics provide explicit control of the PPE or Vector/SIMD Multimedia 

Extension instructions without directly managing registers and scheduling 
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instructions, as assembly-language programming requires. A compiler that 

supports these C-language extensions will emit code optimized for the PPE and/or 

the Vector/SIMD Multimedia Extension architecture. 

Scalar intrinsics 

A minimal set of specific intrinsincs, to make the underlying PPU instruction set 

accessible from the C programming language, have been provided. These intrinsics 

are declared in the system header file ppu_intrinsics.h. 

 Table 3. PPE-specific scalar intrinsics 

Intrinsic Description 

__cctph() Change Thread Priority to High 

__cctpl() Change Thread Priority to Low 

__cctpm() Change Thread Priority to Medium 

d = __cntlz(a) Count Leading Doubleword Zeros 

d = __cntlzw(a) Count Leading Word Zeros 

__db10cyc() Delay 10 Cycles at Dispatch 

__db12cyc() Delay 12 Cycles at Dispatch 

__db16cyc() Delay 16 Cycles at Dispatch 

__db8cyc() Delay 8 Cycles at Dispatch 

__dcbf(pointer) Data Cache Block Flush 

__dcbst(pointer) Data Cache Block Store 

__dcbt(pointer) Data Cache Block Touch 

__dcbt_TH1000(eatrunc, d, ug, id) Start Streaming Data 

__dcbt_TH1010(g0, s, unitcnt, t, u, id) Stop Streaming Data 

__dcbtst(pointer) Data Cache Block Touch for Store 

__dcbz(pointer) Data Cache Block Set to Zero 

__eieio() Enforce In-Order Execution of I/O 

d = __fabs(a) Double Absolute Value 

d = __fabsf(a) Float Absolute Value 

d = __fcfid(a) Convert Doubleword to Double 

d = __fctid(a) Convert Double to Doubleword 

d = __fctidz(a) Convert Double to Doubleword with 

Round Towards Zero 

d = __fctiw(a) Convert Double to Word 

d = __fctiwz(a) Convert Double to Word with Round 

Toward Zero 

d = __fmadd(a,b,c) Double Fused Multiply and Add  

d = __fmadds(a,b,c) Float Fused Multiply and Add  

d = __fmsub(a,b,c) Double Fused Multiply and Subtract 

d = __fmsubs(a,b,c) Float Fused Multiply and Subtract 

d = __fmul(a,b) Double Mulitply 

d = __fmuls(a,b) Float Multiply 

d = __fnabs(a) Double Negative Absolute Value 

d = __fnabsf(a) Float Negative Absolute Value 
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Table 3. PPE-specific scalar intrinsics (continued) 

Intrinsic Description 

d = __fnmadd(a,b,c) Double Fused Negative Multiply and 

Add  

d = __fnmadds(a,b,c) Float Fused Negative Multiply and Add  

d = __fnmsub(a,b,c) Double Fused Negative Multiply and 

Subtract 

d = __fnmsubs(a,b,c) Float Fused Negative Multiply and 

Subtract 

d = __fres(a) Float Reciprocal Estimate 

d = __frsp(a) Round to Single Precision 

d = __fsel(a,b,c) Floating Point Select of Double 

d = __fsels(a,b,c) Floating Point Select of Float 

d = __fsqrt(a) Double Square Root 

d = __fsqrts(a) Float Square Root 

__icbi(pointer) Instruction Cache Block Invalidate 

__isync() Instruction Sync 

d = __ldarx(pointer) Load Doubleword with Reserved 

d = __ldbrx(pointer) Load Reversed Doubleword 

d = __lhbrx(pointer) Load Reversed Halfword 

d = __lwarx(pointer) Load Word with Reserved 

d = __lwbrx(pointer) Load Reversed Word 

__lwsync() Light Weight Sync 

d = __mffs() Move from Floating-Point Status and 

Control Register 

d = __mfspr(spr) Move from Special Purpose Regiser 

d = __mftb() Move from Time Base 

__mtfsb0(bt) Unset Field of FPSCR 

__mtfsb1(bt) Set Field of FPSCR 

__mtfsf(flm,b) Set Fields of FPSCR 

__mtfsfi(bf,u) Set Field FPSCR from other Field 

__mtspr(spr,value) Move to Special Purpose Register 

d = __mulhdu(a,b) Multiply Double Unsigned Word, High 

Part 

d = __mulhd(a,b) Multiply Doubleword, High Part 

d = __mulhwu(a,b) Multiply Unsigned Word, High Part 

d = __mulhw(a,b) Multiply Word, High Part 

__nop() No Operation 

__protected_stream_count(count,id) Set the Number of Blocks to Stream 

__protected_stream_go() Start All  Streams 

__protected_stream_set(d,addr,id) Set Up a Stream 

__protected_stream_stop(id) Stop a Stream 

__protected_stream_stop_all() Stop All  Streams 

 

Chapter 2. The PPE and  the  programming  process  27



Table 3. PPE-specific scalar intrinsics (continued) 

Intrinsic Description 

__protected_unlimited_stream_set(d,addr,id) Set Up an Unlimited Stream 

d = __rldcl(a,b,mb) Rotate Left Doubleword then Clear Left 

d = __rldcr(a,b,me) Rotate Left Doubleword then Clear Right 

d = __rldic(a,sh,mb) Rotate Left Doubleword Immediate then 

Clear 

d = __rldicl(a,sh,mb) Rotate Left Doubleword Immediate then 

Clear Left 

d = __rldicr(a,sh,me) Rotate Left Doubleword Immediate then 

Clear Right 

d = __rldimi(a,b,sh.mb) Rotate Left Doubleword Immediate then 

Mask Insert 

d = __rlwimi(a,b,sh,mb,me) Rotate Left Word Immediate the Mask 

Insert 

d = __rlwinm(a,sh,mb,me) Rotate Left Word Immediate then AND 

with Mask 

d = __rlwnm(a,v,mb,me) Rotate Left Word then AND with Mask 

d = __setflm(a) Save and Set the FPSCR 

__stdbrx(pointer,b) Store Reversed Doubleword 

d = __stdcx(pointer,b) Store Doubleword Conditional 

__sthbrx(pointer,b) Store Reversed Halfword 

__stwbrx(pointer,b) Store Reversed Word 

d = __stwcx(pointer,b) Store Word Conditional 

__sync() Sync
  

Vector data types 

The Vector/SIMD Multimedia Extension model adds a set of fundamental data 

types, called vector types. 

Vector types are shown in Table 4 on page 29. The represented values are in 

decimal (base-10) notation. The vector registers are 128 bits and can contain: 

v   Sixteen 8-bit values, signed or unsigned 

v   Eight 16-bit values, signed or unsigned 

v   Four 32-bit values, signed or unsigned 

v   Four single-precision IEEE-754 floating-point values

The  vector types use the prefix vector in front of one of standard C data 

types—for example vector signed int and vector unsigned short. A vector type 

represents a vector of as many of the specified C data type as will fit in a 128-bit 

register. Hence, the vector signed int is a 128-bit operand containing four 32-bit 

signed ints. The vector unsigned short is a 128-bit operand containing eight 

unsigned values. 

Note: Since the token, vector, is a keyword in the Vector/SIMD Multimedia 

Extension data types, you are recommended not to use the term elsewhere in the 

program (for example, as a variable name).
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Table 4. Vector/SIMD Multimedia Extension data types 

Vector Data Type Meaning Values 

vector unsigned char Sixteen 8-bit unsigned values 0 ... 255 

vector signed char Sixteen 8-bit signed values -128 ... 127 

vector bool char Sixteen 8-bit unsigned boolean 0 (false), 255 (true) 

vector unsigned short Eight 16-bit unsigned values 0 ... 65535 

vector unsigned short int Eight 16-bit unsigned values 0 ... 65535 

vector signed short Eight 16-bit signed values -32768 ... 32767 

vector signed short int Eight 16-bit signed values -32768 ... 32767 

vector bool short Eight 16-bit unsigned boolean 0 (false), 65535 (true) 

vector bool short int Eight 16-bit unsigned boolean 0 (false), 65535 (true) 

vector unsigned int Four 32-bit unsigned values 0 ... 2³² - 1 

vector signed int Four 32-bit signed values -2³¹ ... 2³¹ - 1 

vector bool int Four 32-bit unsigned values 0 (false), 2³¹ - 1 (true) 

vector float Four 32-bit single precision IEEE-754 values 

vector pixel Eight 16-bit unsigned values 1/5/5/5 pixel
  

Introducing fundamental vector data types permits the compiler to provide 

stronger type-checking and supports overloaded operations on vector types. 

Vector intrinsics 

Vector/SIMD Multimedia Extension intrinsics are grouped into three classes. 

These classes are: 

v   Specific Intrinsics – Intrinsics that have a one-to-one mapping with a single 

assembly-language instruction 

v   Generic Intrinsics – Intrinsics that map to one or more assembly-language 

instructions as a function of the type of input parameters 

v   Predicates Intrinsics – Intrinsics that compare values and return an integer that 

may be used directly as a value or as a condition for branching 

The Vector/SIMD Multimedia Extension intrinsics and predicates use the prefix 

vec_ in front of an assembly-language or operation mnemonic; predicate intrinsics 

use the prefixes vec_all and vec_any. When compiled, the intrinsics generate one 

or more Vector/SIMD Multimedia Extension assembly-language instructions. 

The specific and generic intrinsics are shown in Table 5. The predicate intrinsics are 

shown in Table 6 on page 32. 

 Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics 

Intrinsic Description 

Arithmetic Intrinsics 

d = vec_abs(a) Vector Absolute Value 

d = vec_abss(a) Vector Absolute Value Saturated 

d = vec_add(a,b) Vector Add  

d = vec_addc(a,b) Vector Add  Carryout Unsigned Word 

d = vec_adds(a,b) Vector Add  Saturated 
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Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued) 

Intrinsic Description 

d = vec_avg(a,b) Vector Average 

d = vec_madd(a,b,c) Vector Multiply Add  

d = vec_madds(a,b,c) Vector Multiply Add  Saturated 

d = vec_max(a,b) Vector Maximum 

d = vec_min(a,b) Vector Minimum 

d = vec_mladd(a,b,c) Vector Multiply Low and Add  Unsigned Half Word 

d = vec_mradds(a,b,c) Vector Multiply Round and Add  Saturated 

d = vec_msum(a,b,c) Vector Multiply Sum 

d = vec_msums(a,b,c) Vector Multiply Sum Saturated 

d = vec_mule(a,b) Vector Multiply Even 

d = vec_mulo(a,b) Vector Multiply Odd  

d = vec_nmsub(a,b,c) Vector Negative Multiply Subtract 

d = vec_sub(a,b) Vector Subtract 

d = vec_subc(a,b) Vector Subtract Carryout 

d = vec_subs(a,b) Vector Subtract Saturated 

d = vec_sum4s(a,b) Vector Sum Across Partial (1/4) Saturated 

d = vec_sum2s(a,b) Vector Sum Across Partial (1/2) Saturated 

d = vec_sums(a,b) Vector Sum Saturated 

Rounding And  Conversion Intrinsics 

d = vec_ceil(a) Vector Ceiling 

d = vec_ctf(a,b) Vector Convert from Fixed-Point Word 

d = vec_cts(a,b) Vector Convert to Signed Fixed-Point Word Saturated 

d = vec_ctu(a,b) Vector Convert to Unsigned Fixed-Point Word Saturated 

d = vec_floor(a) Vector Floor 

d = vec_trunc(a) Vector Truncate 

Floating-Point Estimate Intrinsics 

d = vec_expte(a) Vector Is 2 Raised to the Exponent Estimate 

Floating-Point 

d = vec_loge(a) Vector Log2 Estimate Floating-Point 

d = vec_re(a) Vector Reciprocal Estimate 

d = vec_rsqrte(a) Vector Reciprocal Square Root Estimate 

Compare Intrinsics 

d = vec_cmpb(a,b) Vector Compare Bounds Floating-Point 

d = vec_cmpeq(a,b) Vector Compare Equal 

d = vec_cmpge(a,b) Vector Compare Greater Than or Equal 

d = vec_cmpgt(a,b) Vector Compare Greater Than 

d = vec_cmple(a,b) Vector Compare Less Than or Equal 

d = vec_cmplt(a,b) Vector Compare Less Than 

Logical Intrinsics 

d = vec_and(a,b) Vector Logical AND 
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Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued) 

Intrinsic Description 

d = vec_andc(a,b) Vector Logical AND with Complement 

d = vec_nor(a,b) Vector Logical NOR 

d = vec_or(a,b) Vector Logical OR 

d = vec_xor(a,b) Vector Logical XOR  

Rotate and Shift Intrinsics 

d = vec_rl(a,b) Vector Rotate Left 

d = vec_round(a) Vector Round 

d = vec_sl(a,b) Vector Shift Left 

d = vec_sld(a,b,c) Vector Shift Left Double 

d = vec_sll(a,b) Vector Shift Left Long 

d = vec_slo(a,b) Vector Shift Left by Octet 

d = vec_sr(a,b) Vector Shift Right 

d = vec_sra(a,b) Vector Shift Right Algebraic 

d = vec_srl(a,b) Vector Shift Right Long 

d = vec_sro(a,b) Vector Shift Right by Octet 

Load and Store Intrinsics 

d = vec_ld(a,b) Vector Load Indexed 

d = vec_lde(a,b) Vector Load Element Indexed 

d = vec_ldl(a,b) Vector Load Indexed LRU 

d = vec_lvlx(a,b) Load Vector Left Indexed 

d = vec_lvlxl(a,b) Load Vector Left Indexed Last 

d = vec_lvrx(a,b) Load Vector Right Indexed 

d = vec_lvrxl(a,b) Load Vector Right Indexed Last 

d = vec_lvsl(a,b) Vector Load for Shift Left 

d = vec_lvsr(a,b) Vector Load Shift Right 

d = vec_stvlx(a,b) Store Vector Left Indexed 

d = vec_stvlxl(a,b) Store Vector Left Indexed Last 

d = vec_stvrx(a,b) Store Vector Right Indexed 

d = vec_stvrxl(a,b) Store Vector Right Indexed Last 

vec_st(a,b,c) Vector Store Indexed 

vec_ste(a,b,c) Vector Store Element Indexed 

vec_stl(a,b,c) Vector Store Indexed LRU 

Pack and Unpack Intrinsics 

d = vec_pack(a,b) Vector Pack 

d = vec_packpx(a,b) Vector Pack Pixel 

d = vec_packs(a,b) Vector Pack Saturated 

d = vec_packsu(a,b) Vector Pack Saturated Unsigned 

d = vec_unpackh(a) Vector Unpack High Element 

d = vec_unpackl(a) Vector Unpack Low Element 

Merge Intrinsics 
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Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued) 

Intrinsic Description 

d = vec_mergeh(a,b) Vector Merge High 

d = vec_mergel(a,b) Vector Merge Low 

Permute and Select Intrinsics 

d = vec_perm(a,b,c) Vector Permute 

d = vec_sel(a,b,c) Vector Select 

Stream Intrinsics 

vec_dss(a) Vector Data Stream Stop 

vec_dssall() Vector Stream Stop All  

vec_dst(a,b,c) Vector Data Stream Touch 

vec_dstst(a,b,c) Vector Data Stream Touch for Store 

vec_dststt(a,b,c) Vector Data Stream Touch for Store Transient 

vec_dstt(a,b,c) Vector Data Stream Touch Transient 

Move Intrinsics 

d = vec_mfvscr Vector Move from Vector Status and Control Register 

vec_mtvscr(a) Vector Move to Vector Status and Control Register 

Replicate Intrinsics 

d = vec_splat(a,b) Vector Splat 

d = vec_splat_s8(a) Vector Splat Signed Byte 

d = vec_splat_s16(a) Vector Splat Signed Half-Word 

d = vec_splat_s32(a) Vector Splat Signed Word 

d = vec_splat_u8(a) Vector Splat Unsigned Byte 

d = vec_splat_u16(a) Vector Splat Unsigned Half-Word 

d = vec_splat_u32(a) Vector Splat Unsigned Word 

Scalar Intrinsics 

d = vec_extract(a,element) Extract Vector Element from Vector 

d = vec_insert(a,b,element) Insert Scalar into Specified Vector Element 

d = vec_promote(a,element) Promote Scalar to a Vector 

d = vec_splats(a) Splat Scalar to Vector
  

 Table 6. Vector/SIMD Multimedia Extension predicate intrinsics 

Predicate Description 

All  Predicates 

d = vec_all_eq(a,b) All  Elements Equal 

d = vec_all_ge(a,b) All  Elements Greater Than or Equal 

d = vec_all_gt(a,b) All  Elements Greater Than 

d = vec_all_in(a,b) All  Elements in Bounds 

d = vec_all_le(a,b) All  Elements Less Than or Equal 

d = vec_all_lt(a,b) All  Elements Less Than 

d = vec_all_nan(a) All  Elements Not  a Number 

d = vec_all_ne(a,b) All  Elements Not  Equal 
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Table 6. Vector/SIMD Multimedia Extension predicate intrinsics (continued) 

Predicate Description 

d = vec_all_nge(a,b) All  Elements Not  Greater Than or Equal 

d = vec_all_ngt(a,b) All  Elements Not  Greater Than 

d = vec_all_nle(a,b) All  Elements Not  Less Than or Equal 

d = vec_all_nlt(a,b) All  Elements Not  Less Than 

d = vec_all_numeric(a) All  Elements Numeric 

Any  Predicates 

d = vec_any_eq(a,b) Any  Element Equal 

d = vec_any_ge(a,b) Any  Element Greater Than or Equal 

d = vec_any_gt(a,b) Any  Element Greater Than 

d = vec_any_le(a,b) Any  Element Less Than or Equal 

d = vec_any_lt(a,b) Any  Element Less Than 

d = vec_any_nan(a) Any  Element Not  a Number 

d = vec_any_ne(a,b) Any  Element Not  Equal 

d = vec_any_nge(a,b) Any  Element Not  Greater Than or Equal 

d = vec_any_ngt(a,b) Any  Element Not  Greater Than 

d = vec_any_nle(a,b) Any  Element Not  Less Than or Equal 

d = vec_any_nlt(a,b) Any  Element Not  Less Than 

d = vec_any_numeric(a) Any  Element Numeric 

d = vec_any_out(a,b) Any  Element Out  of Bounds
  

Programming with Vector/SIMD Multimedia Extension 

intrinsics 

Vector/SIMD Multimedia Extension data types and Vector/SIMD Multimedia 

Extension intrinsics can be used in a seamless way throughout a C-language 

program. 

You do not need to setup, to enter a special mode, or to include a special header 

file. 

Example: incorporating Vector instructions into a PPE program 

The sample program vmx_sample illustrates the ease with which vector instructions 

can be incorporated into a PPE program. 

The program vmx_sample performs this processing: 

1.   “typedefs” a union of an array of four ints and a vector of signed ints. This is 

only done so we can refer to the values in two different ways. (Vector elements 

can also be accessed using the SPU intrinsic, spu_extract. For more information 

about SPU intrinsics, see “Intrinsic classes” on page 66. 

2.   Loads the literal value 2 into each of the four 32-bit fields of vector vConst. 

3.   Loads four different integer values into the fields of vector v1. 

4.   Calls the vec_add intrinsic, and the two vectors are added with the result being 

assigned to v2.
#include <stdio.h> 

  

// Define a type we can look at either as an array of ints or as a vector.
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typedef union { 

 int iVals[4]; 

 vector signed int myVec; 

} vecVar; 

  

int main() 

{ 

 vecVar v1, v2, vConst;  // define variables 

  

 // load the literal value 2 into the 4 positions in vConst, 

 vConst.myVec = (vector signed int){2, 2, 2, 2}; 

  

 // load 4 values into the 4 element of vector v1 

 v1.myVec = (vector signed int){10, 20, 30, 40}; 

  

 // call vector add function 

 v2.myVec = vec_add( v1.myVec, vConst.myVec ); 

  

 // see what we got! 

 printf("\nResults:\nv2[0] = %d, v2[1] = %d, v2[2] = %d, v2[3] = %d\n\n", 

   v2.iVals[0], v2.iVals[1], v2.iVals[2], v2.iVals[3]); 

  

 return 0; 

} 

See “Developing code for the Cell Broadband Engine” on page 41 for more 

information on how to run the example on the simulator. 

Figure 12 shows the results of running the sample program. 

   

Example: array-summing 

This example illustrates array-summing using a function that sums an input array 

of 16-byte values. 

The following code contains three versions of a function that sums an input array 

of 16-byte values. For this kind of array-summing function, you have several 

options: 

v   You can unroll the scalar code to slightly improve the performance. 

v   You can use the Vector/SIMD Multimedia Extension to significantly improve the 

performance. 

v   You can eliminate the loop entirely.

The first option performs 16 iterations of the loop. The second option performs 

only four iterations of the loop but with four additions in each iteration. The third 

option uses Vector/SIMD Multimedia Extension intrinsics to eliminate the loop 

entirely. 

[user@bringup /]# callthru source vmx_sample > vmx_sample 

[user@bringup /]# chmod +x vmx_sample 

[user@bringup /]# vmx_sample 

  

Results: 

v2[0] = 12, v2[1] = 22, v2[2] = 32, v2[3] = 42 

  

[user@bringup /]# _ 

Figure 12. Running the Vector/SIMD Multimedia Extension sample program
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// 16 iterations of a loop 

int rolled_sum(unsigned char bytes[16]) 

{ 

 int i; 

 int sum = 0; 

 for (i = 0; i < 16; ++i) { 

  sum += bytes[i]; 

 } 

 return sum; 

} 

  

  

// 4 iterations of a loop, with 4 additions in each iteration 

int unrolled_sum(unsigned char bytes[16]) 

{ 

 int i; 

 int sum[4] = {0, 0, 0, 0}; 

 for (i = 0; i < 16; i += 4) { 

  sum[0] += bytes[i + 0]; 

  sum[1] += bytes[i + 1]; 

  sum[2] += bytes[i + 2]; 

  sum[3] += bytes[i + 3]; 

 } 

 return sum[0] + sum[1] + sum[2] + sum[3]; 

} 

  

// Vectorized for  Vector/SIMD Multimedia Extension 

int vectorized_sum(unsigned char bytes[16]) 

{ 

  vector unsigned char vbytes; 

  union { 

    int i[4]; 

    vector signed int v; 

  } sum; 

  vector unsigned int zero = (vector unsigned int){0}; 

  

  // Perform a misaligned vector load of the 16 bytes. 

  vbytes = vec_perm(vec_ld(0, bytes), vec_ld(16, bytes), vec_lvsl(0, bytes)); 

  

  // Sum the 16 bytes of the vector 

  sum.v = vec_sums((vector signed int)vec_sum4s(vbytes, zero), 

    (vector signed int)zero); 

  

  // Extract the sum and return the result. 

  return (sum.i[3]); 

} 

The PPE and the SPEs 

This section describes the relationship between the PowerPC Processor Element (PPE) 

and the Synergistic Processor Elements (SPEs). 

Storage Domains 

Three types of storage domains are defined in the Cell Broadband Engine: one 

main-storage domain , eight SPE local store domains , and eight SPE channel domains. 

The three types of storage domains are shown in Figure 13 on page 36. The 

main-storage domain, which is the entire effective-address space, can be configured 

by the PPE operating system to be shared by all processors and memory-mapped 

devices in the system (all I/O is memory-mapped). 
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However, the local-storage and channel problem-state (user-state) domains are 

private to the SPU, LS, and MFC of each SPE. 

 

 An SPE can only fetch instructions from its own LS, and loads and stores can only 

access the LS. An SPE or PPE performs data transfers between the SPE’s LS and 

main storage primarily using DMA  transfers controlled by the MFC  DMA  

controller for that SPE. Software on the SPE’s SPU interacts with the MFC  through 

channels, which enqueue DMA commands and provide other facilities, such as 

mailboxes, signal notification, and access auxiliary resources. 

An SPE program references its own LS using a Local Store Address (LSA). The LS 

of each SPE is also assigned a Real Address (RA) range within the system’s 

memory map. This allows privileged software to map LS areas into the effective 

address (EA) space, where the PPE, other SPEs, and other devices that generate 

EAs can access the LS. 

Each SPE’s MFC  serves as a data-transfer engine. DMA transfer requests contain 

both an LSA and an EA. Thus, they can address both an SPE’s LS and main 

storage and thereby initiate DMA  transfers between the domains. The MFC 

accomplishes this by maintaining and processing an MFC command queue. DMA 

requests can be sent to an MFC either by software on its associated SPU or on the 

PPE, or by any other processing device that has access to the MFC’s MMIO 

problem-state registers. 

  

Figure 13. Storage domains defined in the Cell Broadband Engine
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The queued requests are converted into DMA transfers. Each MFC can maintain 

and process multiple in-progress DMA command requests and DMA transfers. The 

MFC can also autonomously manage a sequence of DMA transfers in response to a 

DMA-list command from its associated SPU. Each DMA command is tagged with a 

5-bit Tag Group ID. Software can use this identifier to check or wait on the 

completion of all queued commands in one or more tag groups. 

The MFC  supports naturally aligned transfer sizes of 1, 2, 4, or 8 bytes, and 

multiples of 16-bytes, with a maximum transfer size of 16 KB. Peak performance 

can be achieved for transfers when both the EA and LSA are 128-byte aligned and 

the size of the transfer is a multiple of 128 bytes. 

Each MFC  has an associated memory management unit (MMU) that holds and 

processes address-translation and access-permission information supplied by the 

PPE operating system. This MMU  is distinct from the one used by the PPE. To 

process an effective address provided by a DMA  command, the MMU uses the 

same method as the PPE memory-management functions. Thus, DMA  transfers are 

coherent with respect to system storage. Attributes of system storage are governed 

by the page and segment tables of the PowerPC Architecture. 

The PPE or other processing devices can initiate MFC commands on a particular 

MFC by accessing its MFC  Command-Parameter Registers, shown in Table 7. These 

registers are mapped to the system’s real-address space. The PPE performs MMIO 

reads and writes to access these registers. The registers are contained in each SPE’s 

memory region, and DMA  command requests are made by writing parameters to 

the registers. 

 Table 7. MFC  command-parameter registers for PPE-initiated DMA transfers 

Name  Mnemonic 

Max. 

Entries R/W  

Width 

(bits) 

MFC Local-Storage Address MFC_LSA 1 W 32 

MFC Effective Address High MFC_EAH 1 W 32 

MFC Effective Address Low MFC_EAL 1 W 32 

MFC Transfer Size 

MFC Command Tag Identification 

MFC_Size 

MFC_TagID 

1 W 32 

MFC Class ID and Command 

Opcode 

MFC_ClassID_CMD 8 W 32 

MFC Command Status MFC_CMDStatus 1 R 32
  

Note: The MFC_EAH and MFC_EAL can be written in a single 64-bit store. Similarly, 

MFC_Size, MFC_TagID, and MFC_ClassID_CMD can also be written in a single 64-bit 

store. 

Issuing DMA commands from the PPE 

To enqueue a DMA  command from the PPE, access the MFC Command-Parameter 

Registers in this sequence: 

1.   Write the LS address to the MFC_LSA register. 

2.   Write the effective address high and low parts to the MFC_EAH and MFC_EAL 

registers. 

3.   Write the transfer size and tag ID to the MFC_Size and MFC_TagID registers. 

4.   Write the class ID and command opcode to the MFC_ClassID_CMD registers. 
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5.   Read the MFC_CMDStatus register to determine the success or failure of the 

attempt to enqueue a DMA  command. 

The least-significant 2 bits of the command status value returned from the read of 

the MFC_CMDStatus register indicate the success or error of the attempt to enqueue a 

DMA. The values of these two bits have the following meanings: 

v   0 – Indicates that the enqueue was successful. 

v   1 – Indicates that a sequence error occurred while enqueuing the DMA. For 

example, an interrupt occurred, then another DMA was started within an 

interrupt handler. In this case, the DMA enqueue sequence must be restarted at 

step 1. 

v   2 – Indicates that the enqueue failed due to insufficient space in the command 

queue. 

v   3 – Indicates that both errors occurred. 

In the case of insufficient space, software could wait for space to become available 

before attempting the DMA transfer again, or software could simply continue 

attempting to enqueue the DMA until successful. 

Creating threads for the SPEs 

Programs to be run on an SPE are most often written in C or C++ (or assembly 

language) and can use the SPE data types and intrinsics defined in the SPU C/C++ 

Language Extensions. 

The SPU C/C++ Language Extensions are described in “SPU C/C++ language 

extensions (intrinsics)” on page 64. The SPE code modules must be written and 

compiled separately from the PPE code modules, using different compilers. A PPE 

module starts an SPE module running by creating a thread on the SPE, using the 

spe_context_create, spe_program_load, and spe_context_run library calls, 

provided in the SPE runtime management library. 

The spe_context_create call creates a context for the SPE thread which contains 

the persistent information about a logical SPE. This information should not be 

accessed directly by the application. The signature and parameter synopsis for the 

spe_create_thread library call is: 

spe_context_ptr_t  spe_context_create(unsigned int flags, 

  spe_gang_context_ptr_t gang) 

v   flags – This is a bit-wise OR of modifiers that is applied when the new context 

is created. The following values are accepted: 

–   0 – No modifiers are applied. 

–   SPE_EVENTS_ENABLE – Configure the context with event handling enabled. 

–   SPE_CFG_SIGNOTIFY1_OR – Configure the SPU Signal Notification 1 Register to 

be in “logical OR” mode instead of the default “Overwrite” mode. 

–   SPE_CFG_SIGNOTIFY2_OR – Configure the SPU Signal Notification 2 Register to 

be in “logical OR” mode instead of the default “Overwrite” mode. 

–   SPE_MAP_PS – Request permission for memory-mapped access to the SPE 

thread’s problem state area. 

–   SPE_ISOLATE – Specifies that the SPE will execute in the isolation mode. 

–   SPE_ISOLATED_EMULATE – Specifies that the SPE will execute in an emulated 

isolation mode.
v    gang – Collection of contexts in which the context being created should made a 

part of.
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Before being able to run an SPE context, an SPE program has to be loaded into the 

context using the spe_program_load subroutine. The signature and parameter 

synopsis for the spe_program_load library call is: 

int  spe_program_load(spe_context_ptr spe, spe_program_handle_t *program) 

v   spe – The SPE context in which in specified program is to be loaded. 

v   program – Indicates the program to be loaded into the SPE context. This is an 

opaque pointer to an SPE Executable and Linking Format (ELF) image that has 

already been loaded and mapped into system memory. This pointer is normally 

provided as a symbol reference to an SPE ELF executable image that has been 

embedded into a PPE ELF object and linked with the calling PPE program. This 

pointer can also be established dynamically by loading a shared library 

containing an embedded SPE ELF executable, using dlopen(2) and dlsym(2), or 

by using the spe_image_open function to load and map a raw SPE ELF 

executable. 

An SPE context is executed on a physical SPE by calling the spe_context_run 

function. This subroutine causes the current PPE thread to transition to a SPE 

thread by passing its execution control from the PPE to the SPE whose context is 

scheduled to run on. The PPE resumes execution when the SPE stops.

Note: In order to achieve multiple threads of execution (PPE and SPE threads), 

separate “pthreads” must be created for each thread of execution using 

pthread_create. An example is provided in “Producing a simple multi-threaded 

CBE program” on page 42. 

The signature and parameter synopsis for the spe_context_run library call is: 

int spe_context_run(spe_context_ptr_t spe, unsigned int *entry, 

  unsigned int runflags, void *argp, void *envp, spe_stop_info_t *stopinfo) 

v   spe — The context to be run. 

v   entry — Pointer initial value of the instruction pointer in which the SPE 

program should start executing. If the value pointed to by entry is 

SPE_DEFAULT_ENTRY, the default entry for the main program obtained from 

loaded SPE image will be used. Upon return from the spe_context_run call, the 

value pointed to by entry contains the next instruction to be executed upon 

resumption of the program. 

v   runflags — This is a bit-wise OR of modifiers which request specific behavior 

when the SPE context is run. Flags include: 

–   0 — Default behavior. No modifiers are applied. 

–   SPE_RUN_USER_REGS — Specifies that the SPE setup registers, r3, r4, and r5, are 

initialized with the 48 bytes pointed to by argp. 

–   SPE_NO_CALLBACKS — Specifies that register SPE library callbacks should not 

be automatically executed. This includes “PPE-assisted library calls” that are 

provided by the SPE Runtime library.
v   argp — An optional pointer to application specific data. It is passed as the 

second parameter of the SPU program. 

v   envp — An optional pointer to environment specific data. It is passed as the 

third parameter of the SPU program. 

v   stopinfo — An optional pointer to a structure of type spe_stop_info_t that 

provides information as to the reason why the SPE stopped running. See library 

documentation for more details on this structure. 

The following code sample shows PPE code creating a SPE context, loading a SPE 

program into the context and running the program from the current thread. 
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#include <libspe2.h> 

extern spe_program_handle_t spe_code; 

... 

spe_context_ptr_t ctx; 

unsigned int entry = SPE_DEFAULT_ENTRY; 

  

if ((ctx = spe_context_create(0, NULL)) == NULL) { 

 perror(“Failed creating SPE context); 

 exit(1); 

} 

if (spe_program_load(ctx, &spe_code)) { 

 perror(“Failed loading program”); 

 exit(1); 

} 

if (spe_context_run(ctx, &entry, 0, NULL, NULL, NULL) < 0) { 

 perror(“Failed running context”); 

 exit(1); 

} 

Communication between the PPE and SPEs 

The PPE communicates with the SPEs through privileged-state and problem-state 

MMIO registers supported by the MFC of each SPE. 

These registers are accessed by the associated SPE through its channel mechanism 

(see“Channels” on page 55), which consist of unidirectional registers and queues 

and support logic. The three primary communication mechanisms between the PPE 

and SPEs are mailboxes, signal notification registers, and DM)  

Mailboxes are queues for exchanging 32-bit messages. Two mailboxes (the SPU 

Write Outbound Mailbox and the SPU Write Outbound Interrupt Mailbox) are 

provided for sending messages from the SPE to the PPE. One mailbox (the SPU 

Read Inbound Mailbox) is provided for sending messages to the SPE. Table 8 lists 

the mailbox channels and their associated MMIO registers. 

Note: Mailboxes can also be used as a communications mechanism between SPEs. 

This is accomplished by an SPE DMAing data into the other SPE’s mailbox using 

the effective addressed problem state mapping. 

 Table 8. Mailbox channels and MMIO  registers 

Name  

Channel MMIO  Register 

Mnemonic 

Max. 

entries R/W  

Width 

(bits) Mnemonic 

Max. 

entries R/W  

Width 

(bits) 

SPU Write 

Outbound Mailbox 

SPU_WrOutMbox 1 W 32 SPU_Out_Mbox 1 R 32 

SPU Read Inbound 

Mailbox 

SPU_RdInMbox 4 R 32 SPU_In_Mbox 4 W 32 

SPU Write 

Outbound 

Interrupt Mailbox 

SPU_WrOutIntrMbox 1 W 32 SPU_Out_Intr_Mbox 1 R 32

  

SPU signal-notification channels are inbound (to an SPE) 32-bit registers. They can 

be configured for one-to-one signaling or many-to-one signaling. An SPE read of 

one of its two signal-notification channels clears the channel. A PPE MMIO read 

does not clear the channel. Table 9 on page 41 lists the signal-notification channels 

and associated MMIO registers. 
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Table 9. Signal notification channels and MMIO  registers 

Name  

Channel MMIO  Register 

Mnemonic 

Max. 

entries R/W  

Width 

(bits) Mnemonic 

Max. 

entries R/W 

Width 

(bits) 

SPU Signal 

Notification 1 

SPU_RdSigNotify1 1 R 32 SPU_Sig_Notify_1 1 R/W 32 

SPU Signal 

Notification 2 

SPU_RdSigNotify2 1 R 32 SPU_Sig_Notify_2 1 R/W 32

  

The PPE is often used as an application controller, managing and distributing work 

to the SPEs. A large part of this task is loading main storage with the data to be 

processed, and then notifying the SPE by either writing to the SPU Read Inbound 

Mailbox or writing to one of the SPE’s signal notification registers. 

Mailboxes are also useful when the SPE places computational results in main 

storage via DMA. After requesting the DMA transfer, the SPE waits for the DMAs 

to complete, and then writes to an SPU Write Outbound Mailbox to notify the PPE 

that its computation is complete. The PPE can use either a mailbox or a signal to 

let an SPE know that the PPE has placed computational results in main storage via 

DMA. 

Developing code for the Cell Broadband Engine 

There can be several types of programs, including PPE programs, SPE programs, 

and Cell Broadband Engine programs (PPE programs with embedded SPE 

programs). 

The PPE and SPE programs use different compilers. The correct compiler, compiler 

flags, and libraries must be used for the intended processor and program type. The 

PPE typically sets up, starts, and stops an SPE. Communication between the PPE 

and SPEs is an important consideration. 

To aid in simplifying the process of producing programs for the Cell Broadband 

Engine, the SDK’s Samples (see “The software development kit” on page 16) 

provides a build environment based upon the make utility. For additional details 

on the SDK’s build environment, consult the file README_build_env.txt located in 

/opt/cell/sdk/buildutils. 

Programmers can declare the types of programs in the makefile, and the correct 

compiler, compiler options, and libraries will be used for the build. The most 

important target types are PROGRAM_ppu and PROGRAM_spu, for building PPE 

programs and SPE programs, respectively. To use makefile definitions supplied by 

the SDK for producing programs, include the following line at the bottom of the 

makefile: 

include ../../../buildutils/make.footer 

Insert as many instances of “../” as necessary to reach the top of the directory tree 

where buildutils resides. Alternatively, make.footer can be sourced directly 

(useful when working on projects within the Eclipse IDE framework), by defining 

CELL_TOP environment variable and sourcing the make.footer as follows: 

include $(CELL_TOP)/buildutils/make.footer 
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The makefiles in the SDK Samples support both methods of importing the 

make.footer. 

Figure 14 shows a sample directory structure and makefiles for a system with a 

PPE program and an SPE program. This sample project sampleproj has a project 

directory and two subdirectories. The ppu directory contains the source code and 

makefile for the PPE program. The spu directory has the source code and makefile 

for the SPE program. The makefile in the project directory executes the makefiles 

in the two subdirectories. This is only one of the possible project directory 

structures. 

   

Producing a simple multi-threaded CBE program 

To produce a simple program for the CBE, you should follow the steps listed 

below (this example is included in the SDK in /opt/cell/sdk/src/tutorial/
simple).  

The project is called simple. For this example, the PPE code will be built in the 

project directory, instead of a ppu sub-directory. 

1.   Create a directory named simple. 

2.   In directory simple, create a file named Makefile using the following code: 

######################################################################## 

#   Subdirectories 

######################################################################## 

  

DIRS  :=  spu 

  

######################################################################## 

#                       Target 

######################################################################## 

  

PROGRAM_ppu   :=  simple 

  

######################################################################## 

#                       Local Defines 

######################################################################## 

 

  

Figure 14. Sample project directory structure and makefiles
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IMPORTS         := spu/lib_simple_spu.a -lspe2 -lpthread 

# imports the embedded simple_spu library 

# allows consolidation of spu program into ppe binary 

  

######################################################################## 

#   make.footer 

######################################################################## 

  

# make.footer is in the top of the SDK 

ifdef CELL_TOP 

 include $(CELL_TOP)/buildutils/make.footer 

else 

 include ../../../../buildutils/make.footer 

endif 

3.   In directory simple, create a file simple.c using the following code: 

#include <stdlib.h> 

#include <stdio.h> 

#include <errno.h> 

#include <libspe2.h> 

#include <pthread.h> 

  

extern spe_program_handle_t simple_spu; 

  

#define MAX_SPU_THREADS  16 

  

  

void *ppu_pthread_function(void *arg) { 

 spe_context_ptr_t ctx; 

 unsigned int entry = SPE_DEFAULT_ENTRY; 

  

 ctx = *((spe_context_ptr_t *)arg); 

 if (spe_context_run(ctx,&entry, 0, NULL, NULL, NULL) < 0) { 

  perror ("Failed running context"); 

  exit (1); 

 } 

 pthread_exit(NULL); 

} 

  

  

int main() 

{ 

 int i,spu_threads; 

 spe_context_ptr_t ctxs[MAX_SPU_THREADS]; 

 pthread_t threads[MAX_SPU_THREADS]; 

  

/* Determine the number of SPE threads to create */ 

spu_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1); 

if (spu_threads > MAX_SPU_THREADS) spu_threads = MAX_SPU_THREADS; 

  

 /* Create several SPE-threads to execute ’simple_spu’ */ 

 for(i=0; i<spu_threads; i++) { 

  /* Create context */ 

  if ((ctxs[i] = spe_context_create (0, NULL)) == NULL) { 

   perror ("Failed creating context"); 

   exit (1); 

  } 

  /* Load program into context */ 

  if (spe_program_load (ctxs[i],&simple_spu)) { 

   perror ("Failed loading program"); 

   exit (1); 

  } 

   /* Create thread for each SPE context */ 

      if (pthread_create (&threads[i], NULL,&ppu_pthread_function,&ctxs[i]))  { 

   perror ("Failed creating thread"); 

   exit (1); 

    }
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/* Wait for SPU-thread to complete execution. */ 

 for (i=0; i<spu_threads; i++) { 

  if (pthread_join (threads[i], NULL)) { 

   perror("Failed pthread_join"); 

   exit (1); 

  } 

 } 

  

 printf("\nThe program has successfully executed.\n"); 

  

 return (0); 

} 

4.   Create a directory named spu. 

5.   In the directory spu, create a file named Makefile using the following code: 

####################################################################### 

#   Target 

######################################################################## 

  

PROGRAMS_spu    := simple_spu 

  

# created embedded library 

LIBRARY_embed   := lib_simple_spu.a 

  

######################################################################## 

#   make.footer 

######################################################################## 

  

# make.footer is in the top of the SDK 

ifdef CELL_TOP 

 include $(CELL_TOP)/buildutils/make.footer 

else 

 include ../../../../../buildutils/make.footer 

endif 

6.   In the same directory, create a file simple_spu.c using the following code: 

#include <stdio.h> 

  

int main(unsigned long long id) 

{ 

  

 /* The first parameter of an spu program will always be the spe_id of the spe 

  * thread that issued it. 

  */ 

 printf("Hello Cell (0x%llx)\n", id); 

  

 return 0; 

} 

7.   Compile the program by entering the following command at the command line 

while in the simple directory: 

make 

This CBE program then creates SPE threads that output “Hello Cell (#)\n” to the 

systemsim output window, where # is the spe_id of the SPE thread that issued the 

print. 

Running the program in the simulator 

Now that we have compiled the program, it can now be executed either on a CBE 

system or a simulation of a CBE system. In this case, we will use the IBM Full System 

Simulator for the Cell Broadband Engine as a simulation of a CBE system by 

starting the simulator, importing the program, and executing it. 
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To start the IBM Full System Simulator for the Cell Broadband Engine with a 

graphics user interface: 

1.   Create a private, non-root, simulator execution environment. 

  mkdir sim 

  cd sim 

  cp /opt/ibm/systemsim-cell/run/cell/linux/.systemsim.tcl . 

  export PATH=/opt/ibm/systemsim-cell/bin:$PATH 

2.   Start the simulator with a graphical user interface: 

  systemsim -g 

3.   Two new windows will appear on the screen. The first is a 

command-line/console window labeled mysim in the window’s title bar. The 

second is the simulator graphical user interface (GUI) window. These windows 

are shown in Figure 15. 

 

The window labeled mysim is an uart window that, when Linux boots, it 

becomes a Linux console window. When the console window first appears, it is 

empty and there is no user prompt, because Linux has not yet been booted on 

the simulated system. 

  

Figure 15. Windows visible after starting the simulator GUI
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The window in which the simulator was started (systemsim -g) is the simulator 

command-line window. 

4.   Boot the Linux operating system on the simulator by clicking the Go button on 

the graphical user interface (GUI). To make the simulator run “quickly”, click 

the Fast Mode button prior to Go.  This forces the simulator to bypass its 

standard analysis and statistic collection features. The console window will 

begin to display the Linux booting process. When Linux has finished booting 

on the simulator, a command prompt will be visible in the window. Figure 16 

shows the window on completion of the boot process. 

 

The simulator is now ready to import the sample program into its environment. 

Before doing that, however, you can confirm that the program is not in the 

simulator environment, by entering the ls command at the prompt in the 

console window, and observing that simple is not listed in the directory listing. 

5.   Import the program from the base simulator hosting environment into the 

simulator environment by entering the following command: 

callthru source /tmp/simple > simple 

This command tells the simulator environment to “call through” to the 

simulator hosting environment’s /tmp directory, retrieve the file called simple, 

and copy that file to the simulator file system. If you now enter an ls 

command in the console window, you will see simple listed in the current 

directory. Figure 17 on page 47 shows the process of loading the program into 

the simulation environment. 

Alternatively, one can permanently add or delete files to the sysroot disk 

image by performing a loop device mount the sysroot disk image and copying 

or removing files from the mounted image, prior to booting the simulation 

environment. For example, the following sequence: 

  

Figure 16. Console window on completion of Linux boot

 

46 Programming  Tutorial



mount -o loop /opt/ibm/systemsim-cell/image/cell/sysroot_disk /mnt 

  cp /tmp/simple /mnt/simple 

  umount /mnt 

copies the simple executable from the host system’s /tmp directory to the 

sysroot’s / directory. 

 

Even though the file had execute permissions in the base simulator hosting 

environment, the newly imported file in the emulator environment does not. 

6.   Add execute permissions to the program file simple by issuing the following 

command: 

  chmod +x simple 

7.   Execute the program by issuing the following command: 

  ./simple 

The output of the program will appear in the console window. Figure 18 on page 

48 shows the output of running the sample program. 

 

  

Figure 17. Loading the program into the simulation environment
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Debugging programs 

Debugging a program is often the most challenging part of programming, 

especially with multithreaded programs. The SDK contains several tools for 

debugging, the most important of which are the gdb debugger and the IBM Full 

System Simulator for the Cell Broadband Engine. 

The gdb debugger is a command-line debugger available as part of the GNU 

development environment. Because of the Cell Broadband Engine’s unique 

characteristics, gdb has been modified so that there are actually two versions of the 

debugger – ppu-gdb for debugging PPE and combined PPE and SPE programs, and 

spu-gdb for debugging SPE programs. For additional information on using ppu-gdb 

and spu-gdb, consult the Software Development Kit, Programmer’s Guide. 

The other tool for debugging a Cell Broadband Engine program is the IBM Full 

System Simulator for the Cell Broadband Engine. This simulator lets you view many 

aspects of the simulated running program in GUI mode. You can also control many 

aspects of the simulator using Tcl commands. The simulator is described more 

fully in Chapter 5, “The simulator,” on page 123. 

  

Figure 18. Running the sample program
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Chapter  3.  Programming  the  SPEs  

The eight identical Synergistic Processor Elements (SPEs) are optimized for 

compute-intensive applications in which a program’s data and instruction needs 

can be anticipated and transferred into the local store (LS) by DMA while the SPE 

computes using previously transferred data and instructions. 

The streaming data sets in 3D graphics, media, and broadband communications are 

examples of applications that run well on SPEs. However, the SPEs are not 

optimized for running programs that have significant branching, such as an 

operating system. Each SPE supports only a single program context at any one 

time. Typically, the operating system runs on the PPE, and user-mode threads are 

execute on the SPEs. 

The SPEs achieve high performance, in part, by eliminating the overhead of load 

and store address translation, hardware-managed caches, out-of-order instruction 

issue, and branch prediction. Instead, the SPEs capitalize on the high 

computational efficiencies that can be obtained for streaming-data applications by 

providing a large (128-entry by 128-bit) unified register file, dual-instruction issue, 

and high DMA bandwidth between the LS and main storage. 

Each SPE supports the single-instruction, multiple-data (SIMD) instruction 

architecture, described in the SPU Instruction Set Architecture . Although details of 

this instruction set are given in the sections that follow, an SPE is normally 

programmed in a high-level language like C or C++. The SPU instruction set is 

supported by a rich set of language extensions for C/C++, described in the C/C++ 

Language Extensions for Cell Broadband Engine Architecture specification. These 

extensions define SIMD data types and intrinsics (commands, in the form of 

function calls) that map to one or more assembly-language instructions, giving 

programmers very convenient and productive control over code performance 

without the need for assembly-language programming. 

SPE configuration 

This section describes the main components of a Synergistic Processor Element 

(SPE). 

The main components are shown in Figure 19 on page 50. Their functions include: 

v   Synergistic Processor Unit (SPU) — The SPU executes SPU instructions fetched 

from its 256-KB LS. The SPU fills its LS with instructions and data using DMA 

transfers initiated from SPU or PPE software. 

v   Memory Flow Controller (MFC) — The MFC provides the interface, by means of 

the Element Interconnect bus (EIB), between the SPU and main storage. The 

MFC performs DMA transfers between the SPU’s LS and main storage, and it 

supports mailbox and signal-notification messaging between the SPE and the 

PPE and other devices. The SPU communicates with its MFC through SPU 

channels. The PPE and other devices (including other SPEs) communicate with 

an MFC  through memory-mapped I/O (MMIO) registers associated with the 

SPU’s channels.
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Synergistic Processor Unit 

Each of the eight SPEs is an independent processor with its own program counter, 

register file, and 256-KB LS. 

An SPE operates directly on instructions and data in its LS. It fills its LS by 

requesting DMA transfers from its MFC, which manages the DMA transfers. The 

SPU has specialized units for executing load and store, fixed-point, floating-point 

unit (single-precision and double-precision), and channel-interface instructions. 

The large 128-entry, 128-bit wide register file, and its flat architecture (all operand 

types stored in a single register file), allows for instruction-latency hiding without 

speculation. The register file is unified—meaning that all data types (integer, 

single-precision and double-precision floating-point, scalars, vectors, logicals, bytes, 

and others) use the same register file. The register file also stores return addresses, 

results of comparisons, and so forth. As a consequence of the large, unified register 

file, expensive hardware techniques such as out-of-order processing or deep 

speculation are not needed to achieve high performance. 

LS addresses can be aliased by PPE privileged software onto the main-storage 

(effective-address) space. DMA  transfers between the LS and main storage are 

coherent in the system. A pointer to a data structure created on the PPE can be 

passed to an SPU, and the SPU can use this pointer to issue a DMA command to 

  

Figure 19. SPE architectural block diagram
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bring the data structure into its LS. PPE software can use locking instructions and 

mailboxes for synchronization and mutual exclusion. 

The SPU architecture has the following restrictions: 

v   No direct (SPU-program addressable) access to main storage. The SPU accesses 

main storage only by using the MFC’s DMA transfers. 

v   No direct access to system control, such as page-table entries. PPE privileged 

software provides the SPU with the address-translation information that its MFC  

needs. 

v   With respect to accesses by its SPU, the LS is unprotected and un-translated 

storage.

SPE registers 

This section describes the Synergistic Processor Element (SPE) user registers. 

The complete set of SPE user registers is shown in Figure 20. All computational 

instructions operate only on registers—there are no computational instructions that 

modify storage. The SPE registers include: 

v   General-Purpose Registers (GPRs) — All data types can be stored in the 128-bit 

GPRs, of which there are 128. 

v   Floating-Point Status and Control Register (FPSCR) — The processor updates the 

128-bit FPSCR after every floating-point operation to record information about 

the result and any associated exceptions.

   

Floating-point operations 

The SPU executes both single-precision and double-precision floating-point 

operations. Single-precision instructions are performed in 4-way SIMD fashion, 

fully pipelined, whereas double-precision instructions are partially pipelined. 

The data formats for single-precision and double-precision instructions are those 

defined by IEEE Standard 754, but the results calculated by single-precision 

instructions are not fully compliant with IEEE Standard 754. 

  

Figure 20. SPE user-register set
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For single-precision operations, the range of normalized numbers is extended 

beyond the IEEE standard. The representable, nonzero numbers range from 

Xmin = 2¹²⁶ to Xmax = (2 -²³)2¹²⁸. If the exact result overflows (that is, if it is 

larger in magnitude than Xmax), the rounded result is set to Xmax with the 

appropriate sign. If the exact result underflows (that is, if it is smaller in 

magnitude than Xmin), the rounded result is forced to zero. A zero result is always 

a positive zero. 

Single-precision floating-point operations implement IEEE 754 arithmetic with the 

following changes: 

v   Only one rounding mode is supported: round towards zero, also known as 

truncation. 

v   Denormal operands are treated as zero, and denormal results are forced to zero. 

v   Numbers with an exponent of all ones are interpreted as normalized numbers 

and not as infinity or not-a-number (NaN). 

Double-precision operations do not support the IEEE precise trap (exception) 

mode. If a double-precision denormal or not-a-number (NaN) result does not 

conform to IEEE Standard 754, then the deviation is recorded in a sticky bit in the 

FPSCR register, which can be accessed using the fscrrd and fscrwr instructions or 

the spu_mffpscr and spu_mtfpscr intrinsics. 

Double-precision instructions are performed as two double-precision operations in 

2-way SIMD fashion. However, the SPU is capable of performing only one 

double-precision operation per cycle. Thus, the SPU executes double-precision 

instructions by breaking up the SIMD operands and executing the two operations 

in consecutive instruction slots in the pipeline. Although double-precision 

instructions have 13-clock-cycle latencies, only the final seven cycles are pipelined. 

No other instructions are dual-issued with double-precision instructions, and no 

instructions of any kind are issued for six cycles after a double-precision 

instruction is issued. 

Local Store 

The local store (LS) can be regarded as a software-controlled cache that is filled and 

emptied by DMA transfers. 

Key features of the LS include: 

v   Holds instructions and data 

v   16-bytes-per-cycle load and store bandwidth, quadword aligned only 

v   128-bytes-per-cycle DMA-transfer bandwidth 

v   128-byte instruction prefetch per cycle

Competition might occur for access to the LS by: 

v   loads, 

v   stores, 

v    DMA  reads, 

v   DMA writes, 

v   instruction fetches.

The SPU arbitrates access to the LS according the following priorities (with the 

highest priority first): 

1.   DMA  reads and writes by the PPE or an I/O device. 

2.   SPU loads and stores. 

3.   Instruction prefetch.
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Table 10 summarizes the LS-arbitration priorities and transfer sizes. DMA reads 

and writes always have highest priority. Because hardware supports 128-bit DMA 

reads and writes, these operations occupy, at most, one of every eight cycles (one 

of sixteen for DMA reads, and one of sixteen for DMA  writes) to the LS. Thus, 

except for highly optimized code, the impact of DMA reads and writes on LS 

availability for loads, stores, and instruction fetches can be ignored. 

 Table 10. LS-Access Arbitration Priority and Transfer Size 

Transaction 

Transfer 

Size 

(Bytes) Priority 

Maximum Local 

Store Occupancy 

(SPU Cycle) Access Path 

MMIO  ≤ 16 1-Highest 1/8 Line Interface 

DMA ≤ 128 1 

DMA-List 

Transfer-Element Fetch 

128 1 1/4 Quadword 

Interface 

ECC  Scrub 16 2 1/10 

SPU Load/Store 16 3 1 

Hint Fetch 128 3 1 Line Interface 

Inline Fetch 128 4-Lowest 1/16 for inline 

code
  

After DMA  reads and writes, the next-highest user-initiated priority is given to 

load and store instructions. The rationale for doing so is that load and store 

instructions usually help a program’s progress, whereas instruction fetches are 

often speculative. The SPE supports only 16-byte load and store operations that are 

16-byte-aligned. It uses a second instruction (byte shuffle) to place bytes in a 

different order if, for example, the program requires only a 4-byte quantity or a 

quantity with a different data alignment. To store something that is not aligned, 

use a read-modify-write operation. 

The lowest priority for LS access is given to instruction fetches, of which there are 

three types: flush-initiated fetches, inline prefetches, and hint fetches. Instruction 

fetches load 32 instructions per SPU request by accessing all banks of the LS 

simultaneously. Because the LS is single-ported, it is important that DMA and 

instruction-fetch activity transfer as much useful data as possible in each LS 

request. 

Pipelines and dual-issue rules 

The SPU has two pipelines, named even (pipeline 0) and odd (pipeline 1). Into 

these pipelines, the SPU can issue can issue and complete up to two instructions 

per cycle, one in each of the pipelines. 

Whether an instruction goes to the even or odd pipeline depends on its instruction 

type, which is related to the execution unit that performs the function. Each 

execution unit is assigned to one of the two pipelines. Table 11 summarizes the 

instruction types, latencies, and pipeline assignments. 

 Table 11. SPU Instruction Latency and Pipeline, by Instruction Class 

Instruction 

Class Description 

Latency (clock 

cycles) Pipeline 

LS Load and store 6 Odd  

HB Branch hints 15 Odd  
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Table 11. SPU Instruction Latency and Pipeline, by Instruction Class (continued) 

Instruction 

Class Description 

Latency (clock 

cycles) Pipeline 

BR Branch resolution 4 Odd  

CH Channel interface, special-purpose 

registers 

6 Odd  

SP Single-precision floating-point 6 Even 

DP Double-precision floating-point 13² Even 

FI Floating-point integer 7 Even 

SH Shuffle 4 Odd  

FX Simple fixed-point 2 Even 

WS Word rotate and shift 4 Even 

BO Byte operations 4 Even 

NOP No operation (execute) - Even 

LNOP  No operation (load) - Odd
  

Note:  

1.   Inline or correctly hinted branches have zero-cycle delay. The mispredicted 

branch penalty is 18-19 clock cycles. 

2.   Six cycles of a double-precision floating-point operation are instruction-issue 

stalls. No instructions of any kind are issued for six cycles after a 

double-precision floating point instruction is issued.

The SPU issues all instructions in program order according to the pipeline 

assignment. Each instruction is part of a doubleword-aligned instruction pair called 

a fetch group. 

A fetch group can have one or two valid instructions, but it must be aligned to 

doubleword boundaries. This means that the first instruction in the fetch group is 

from an even word address, and the second instruction from an odd word address. 

The SPU processes fetch groups one at a time, continuing to the next fetch group 

when the current instruction group becomes empty. An instruction becomes 

issueable when register dependencies are satisfied and there is no structural hazard 

(resource conflict) with prior instructions or DMA or error-correcting code (ECC) 

activity. 

Dual-issue occurs when a fetch group has two issueable instructions in which the 

first instruction can be executed on the even pipeline and the second instruction 

can be executed on the odd pipeline. If a fetch group cannot be dual-issued, but 

the first instruction can be issued, the first instruction is issued to the proper 

execution pipeline and the second instruction is held until it can be issued. A new 

fetch group is loaded after both instructions of the current fetch group are issued. 

Memory flow controller 

The primary functions of the Memory Flow Controller (MFC) are to connect the 

SPU to the EIB and support DMA  transfers between main storage and the LS. 

Figure 19 on page 50 shows the functions of the MFC. 
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The MFC  maintains and processes queues of DMA commands from its SPU or 

from the PPE or other devices. The MFC’s DMA controller (DMAC) executes the 

DMA commands. This allows the SPU to continue execution in parallel with the 

MFC’s DMA transfers. 

The DMA  and other MFC  commands, and the command queues, are described in 

“MFC commands” on page 76. 

To make DMA transfers between main storage and the LS possible, privileged 

software on the PPE provides the LS and MFC resources, such as memory-mapped 

I/O (MMIO) registers, with effective-address aliases in main storage. This enables 

software on the PPE or other SPUs and devices to access the MFC resources and 

control the SPU. Privileged software on the PPE also provides address-translation 

information to the MFC  for use in DMA transfers. DMA  transfers are coherent with 

respect to system storage. Attributes of system storage (address translation and 

protection) are governed by the page and segment tables of the PowerPC 

Architecture. 

The MFC  supports channels and associated MMIO registers for the purposes of 

enqueueing and monitoring DMA  commands, monitoring SPU events, performing 

interprocessor-communication via mailboxes and signal-notification, accessing 

auxiliary resources such as the decrementer (timer), and other functions. 

In addition to supporting DMA transfers, channels, and MMIO registers, the MFC 

also supports bus-bandwidth reservation features and synchronizes operations 

between the SPU and other processing units in the system. 

Channels 

Channels are unidirectional message-passing interfaces that support 32-bit messages 

and commands. Many of the channels provide communications between the SPE 

and its MFC, which in turn, mediates communication with the PPE and other 

devices. 

Table 12 lists the channels and their attributes. Reserved and privileged channels 

are omitted. 

Software on the SPU uses special channel instructions (shown in Table 13 on page 

57) to read and write channel registers and queues. 

Software on the PPE and other devices use load and store instructions to read and 

write to MFC’s MMIO registers that are associated with the SPU’s channels. 

 Table 12. SPE Channels 

Channel Name  Mnemonic 

Size 

(bits) R/W  Blocking 

SPU Events 

0 SPU Read Event Status SPU_RdEventStat 32 R Yes 

1 SPU Write Event Mask SPU_WrEventMask 32 W No 

2 SPU Write Event Acknowledgment SPU_WrEventAck 32 W No 

SPU Signal Notification 

3 SPU Signal Notification 1 SPU_RdSigNotify1 32 R Yes 

4 SPU Signal Notification 2 SPU_RdSigNotify2 32 R Yes 

SPU Decrementer 
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Table 12. SPE Channels (continued) 

Channel Name  Mnemonic 

Size 

(bits) R/W  Blocking 

7 SPU Write Decrementer SPU_WrDec 32 W No 

8 SPU Read Decrementer SPU_RdDec 32 R No 

MFC Multisource Synchronization 

9 MFC Write Multisource Synchronization 

Request 

MFC_WrMSSyncReq 32 W Yes 

SPU and MFC Read Mask 

11 SPU Read Event Mask SPU_RdEventMask 32 R No 

12 MFC Read Tag-Group Query Mask MFC_RdTagMask 32 R No 

SPU State Management 

13 SPU Read Machine Status SPU_RdMachStat 32 R No 

14 SPU Write State Save-and-Restore SPU_WrSRR0 32 W No 

15 SPU Read State Save-and-Restore SPU_RdSRR0 32 R No 

MFC Command Parameters 

16 MFC Local Store Address MFC_LSA 32 W No 

17 MFC Effective Address High MFC_EAH  32 W No 

18 MFC Effective Address Low or List 

Address 

MFC_EAL  32 W No 

19 MFC Transfer Size or List Size MFC_Size 16 W No 

20 MFC Command Tag Identification MFC_TagID 16 W No 

21 MFC Command Opcode or ClassID MFC_Cmd  32 W Yes 

MFC Tag Status 

22 MFC Write Tag-Group Query Mask MFC_WrTagMask 32 W No 

23 MFC Write Tag Status Update Request MFC_WrTagUpdate 32 W Yes 

24 MFC Read Tag-Group Status MFC_RdTagStat 32 R Yes 

25 MFC Read List Stall-and-Notify Tag Status MFC_RdListStallStat 32 R Yes 

26 MFC Write List Stall-and-Notify Tag 

Acknowledgement 

MFC_WrListStallAck 32 W No 

27 MFC Read Atomic Command Status MFC_RdAtomicStat 32 R Yes 

SPU Mailboxes 

28 SPU Write Outbound Mailbox SPU_WrOutMbox 32 W Yes 

29 SPU Read Inbound Mailbox SPU_RdInMbox 32 R Yes 

30 SPU Write Outbound Interrupt Mailbox SPU_WrOutIntrMbox 32 W Yes
  

Each channel has a corresponding count that indicates the remaining capacity (the 

maximum number of outstanding transfers) in that channel. This count is 

decremented when a channel instruction is issued to the channel, and the count 

increments when an action associated with that channel completes. Each channel is 

implemented with either blocking or non-blocking semantics. 

Blocking channels cause the SPE to stall (suspend execution in a low-power state) 

when the SPE reads or writes a channel with a count of zero. 
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Key features of the SPE channel operations include: 

v   All transactions on the channel interface are unidirectional. 

v   Each channel transaction is independent of any other transaction. 

v   Sequential read and write transactions are supported. 

v   External access to control MMIO registers has higher priority than channel 

operations. 

v   Channel operations are done in program order. 

v   Channel read operations to reserved channels return zeros. 

v   Channel write operations to reserved channels have no effect. 

v   Reading of channel counts on reserved channels returns zero.

Channel instructions 

The SPU Instruction Set Architecture defines three channel instructions: rdch, wrch, 

and rchcnt. 

A summary of the SPU Instruction Set Architecture is shown in “SPU instruction 

set” on page 60. The rdch, wrch, and rchcnt channel instructions are shown in 

Table 13. 

Software running on an SPE uses the channel instructions to write parameters and 

enqueue the MFC commands, as described in “MFC commands” on page 76. 

Table 13 includes both the SPU assembly-language instructions and their 

corresponding C-language intrinsics. 

The intrinsics are described in “SPU C/C++ language extensions (intrinsics)” on 

page 64. 

 Table 13. SPE Channel Instructions 

Instruction 

Assembler 

Instruction 

C-Language 

Intrinsic Description 

Read Channel rdch spu_readch 

spu_readchqw 

Causes data to be read from the 

addressed channel and stored into 

the selected General-Purpose 

Register (GPR). 

Write Channel wrch  spu_writech 

spu_writechqw 

Causes data to be read from the 

selected GPR  and stored in the 

addressed channel 

Read Channel 

Count 

rchcnt spu_readchcnt Causes the count associated with 

the addressed channel to be stored 

in the selected GPR.
  

If the write channel is nonblocking, a wrch instruction can be issued regardless of 

the value of the channel count for that channel. If the write channel is blocking , 

then a wrch instruction that is issued when the count for that channel is equal to 

zero will stall the SPE. Stalling on a wrch instruction can be useful because it saves 

power, but to avoid stalling, software should first read the channel count to ensure 

that it is not zero before issuing a wrch instruction. 

The method used to determine the channel count is dependent on the program. 

The program can poll the channel count for that register, using the rchcnt 
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instruction, or the program can issue a wrch instruction. If the program issues a 

wrch instruction, the SPE stalls, waiting until an acknowledgment is received from 

the write channel. 

When an SPE program needs to receive information, it uses a rdch instruction. 

Usually, this information is held in an SPE register. The information can be loaded 

into this register through the channel interface using a read-data-load transaction. 

v   If the read channel is nonblocking, then a rdch instruction can be issued 

regardless of the value of the channel count for that channel. 

v   In the SPE, if the channel is a blocking channel, the SPE does not read from this 

register until the channel count for that register indicates that the data is valid 

(that is, when the count is greater than zero). 

v   If the count is zero, then there is no data in the channel and the SPE stalls until 

actions associated with that channel occur.

These actions can include the updating of the MFC_RdTagStat channel (see Table 12 

on page 55), the PPE writing data to the corresponding MMIO register (such as a 

mailbox channel), or other actions. The method used to determine the count 

depends on the program. The program can: 

v   poll the channel count for that register using the rchcnt instruction, or 

v   issue the rdch instruction.

If the program issues a rdch instruction, the SPE stalls, waiting until valid data is 

loaded. 

The channel instructions are architected as 128 bits wide, but in the Cell Broadband 

Engine, channel instructions set use only the 32 bits from the preferred slot (the 

left-most word, word element 0) in the register. 

Mailboxes 

Mailboxes are queues that support exchanges of 32-bit messages between an SPE 

and other devices. Each mailbox queue has an SPE channel assignment as well as a 

corresponding MMIO register assignment. 

Two 1-entry mailbox queues are provided for sending messages from the SPE: 

v   SPU Write Outbound Mailbox 

v   SPU Write Outbound Interrupt Mailbox

One 4-entry mailbox queue is provided for sending messages to the SPE: 

v   SPU Read Inbound Mailbox 

Each mailbox has an SPE channel assignment (see Table 12 on page 55) as well as a 

corresponding MMIO register. To access the mailbox, an SPE program uses rdch 

and wrch instructions (see Table 13 on page 57). The PPE and other processors use 

load and store instructions to access the corresponding MMIO addresses. 

Data written by an SPE program to one of these mailboxes using a wrch instruction 

is available to any processor or device that reads the corresponding MMIO register. 

Data written by a device to the SPU Read Inbound Mailbox using an MMIO write 

is available to an SPE program by reading that mailbox using a rdch or rchcnt 

instruction. An MMIO read from either of the SPU Write Outbound Mailboxes, or 

a write to the SPU Read Inbound Mailbox, can be programmed to set an SPE 

event. The event can in turn cause an SPE interrupt. A wrch instruction to the SPU 

Write Outbound Interrupt Mailbox can also be programmed to cause an interrupt 

to a processor or other device. 
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Each time a PPE program writes to the 4-entry SPU Read Inbound Mailbox queue, 

the channel count for that channel increments. Each time a SPU program reads the 

mailbox queue, the channel count decrements. The mailbox is a FIFO queue; the 

SPE program reads the oldest data first. If the PPE program writes more than four 

times before the SPE program reads the data, then the channel count stays at four, 

and the fourth location contains the last data written by the PPE. For example, if 

the PPE program writes five times before the SPE program reads the data, then the 

data read is the first, second, third, and fifth data elements. The fourth data 

element has been overwritten. 

Mailbox operations are blocking operations: a write to a outbound mailbox register 

that is already full stalls the SPE until a slot is created in the mailbox by a PPE 

read. Similarly, a SPE read from an empty inbound mailbox is stalled until the PPE 

(or an SPE) writes to the mailbox. If the channel capacity count is zero for a 

channel that is configured as a blocking channel, then a channel instruction issued 

to that channel causes the SPE to stall and to stop issuing instructions until the 

channel is read. To prevent stalling in this case, the SPE program needs to read the 

count register associated with the particular mailbox and decide whether or not to 

read from or write to the mailbox. 

There are at least three ways to deal with anticipated mailbox messages: 

v   The SPE software reads the channel (rdch), which will block until something 

arrives. 

v   The SPE software reads from the channel’s count (rchcnt), which will return the 

count (zero or one); the software can then decide what to do. 

v   The SPE software sets up its interrupt facility to respond to mailbox events. 

Although the mailboxes are primarily intended for communication between the 

PPE and the SPEs, they can also be used for communication between an SPE and 

other SPEs, processors, or devices. For this to happen, however, privileged 

software needs to allow one SPE to access the mailbox register in another SPE. If 

software does not allow this, then only system memory communications are 

available for SPE-to-SPE communications. 

Signal notification 

Signal-notification channels, or signals , are inbound (to an SPE) registers. They can 

be used by other SPEs, the PPE, or other devices to send information, such as a 

buffer-completion synchronization flag, to an SPE. 

Each SPE has two 32-bit signal-notification registers, each of which has a 

corresponding memory-mapped I/O (MMIO) register into which the 

signal-notification data is written by the sending processor. Unlike mailbox 

messaging, signal senders use one of three special MFC  send-signal commands to 

send a signal: 

v   sndsig 

v   sndsigf 

v   sndsigb

These are described in “MFC commands” on page 76. 

An SPE can only read its local signal-notification channels. The PPE or other 

processors can write or read the corresponding MMIO register. This allows the 

target SPE to do polling, blocking, or set up an interrupt as ways of responding to 

signals. An SPE read of one of its two signal-notification channels clears the 

channel atomically. An MMIO read does not clear a channel. An SPE read from the 

signaling channel will be stalled when no signal is pending at the time of the read. 
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A signal-notification channel can be configured by software to be in overwrite mode 

or OR mode . In overwrite mode (also called one-to-one signaling), sending a signal 

(writing to the MMIO address) overwrites previous contents. In OR mode (also 

called many-to-one signaling), sending a signal ORs the new 1 bits into the current 

contents. In the case of one-to-one signaling, there is usually no substantial 

difference in performance between signaling and using a mailbox. 

The differences between mailboxes and signal-notification channels include: 

v   Capacity — Signal-notification channels are registers. Mailboxes are queues. 

v   Direction — Each SPE supports signal-notification channels that are only inbound 

(to the SPE). Their mailboxes support both outbound and inbound 

communication. However, an SPE can send signals to another SPE using MFC 

send-signal commands. 

v   Interrupts — One of the mailboxes interrupts the PPE. Signal-notification 

channels have no such automatic feature. 

v   Many-to-One — Signal-notification channels (but not mailboxes) can be 

configured as many-to-one (OR mode) or as one-to-one (overwrite mode). 

v   Unique Commands — Signal-notification channels have specific MFC send-signal 

commands (sndsig, sndsigf, and sndsigb) for writing to them (see “MFC 

commands” on page 76). 

v   Reset — Reading a signal-notification register automatically resets (clears) its bits. 

v   Count — The channel counts have different meaning. Mailbox channel counts 

indicate the number of available (unoccupied) entries in the mailbox queue. The 

signal-notification channel count indicates whether there are any pending 

(unserviced) signals. 

v   Number — Each SPE has two signal-notification channels versus three mailboxes.

SPU instruction set 

The SPU Instruction Set Architecture (ISA) fully documents the instructions 

supported by the SPEs. This section summarizes the ISA. 

Programmers writing in a high-level language like C or C++ can use the intrinsics 

described in “SPU C/C++ language extensions (intrinsics)” on page 64 to improve 

their control over the SPE hardware. Because the functions performed by these 

intrinsics are closely related to the assembly-language instructions of the SPU 

Instruction Set Architecture , this overview may be helpful in understanding the 

utility of the intrinsics. 

The SPU ISA operates primarily on SIMD vector operands, both fixed-point and 

floating-point, with support for some scalar operands. The PPE and the SPE both 

execute SIMD instructions, but the two processors execute different instruction sets, 

and programs for the PPE and SPEs must be compiled by different compilers. 

Data layout in registers 

The SPE supports big-endian data ordering, an ordering in which the 

lowest-address byte and lowest-numbered bit are the most-significant (high) byte 

and bit, respectively. 

Bits in registers are numbered in ascending order from left to right, with bit 0 

representing the most-significant bit (MSb) and bit 127 the least-significant bit 

(LSb) as shown in the figure below. The SPE architecture does not define or use 
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little endian data ordering. 

 

The SPU hardware defines the following data types: 

v   byte — 8 bits 

v   halfword — 16 bits 

v   word — 32 bits 

v   doubleword — 64 bits 

v   quadword — 128 bits 

These data types are indicated by shading in Figure 22. The left-most word (bytes 

0, 1, 2, and 3) of a register is called the preferred scalar slot (also shown in 

Figure 22). 

When instructions use or produce scalar operands or addresses, the values are in 

the preferred slot. A set of store assist instructions is available to help store bytes, 

halfwords, words, and doublewords. 

 

The SPE programming model defines the vector data types shown in Table 14 for 

the C programming language. These data types are all 128 bits long and contain 

from 1 to 16 elements per vector. 

 Table 14. Vector Data Types 

Vector Data Type Content 

vector unsigned char Sixteen 8-bit unsigned chars 

vector signed char Sixteen 8-bit signed chars 

vector unsigned short Eight 16-bit unsigned halfwords 

vector signed short Eight 16-bit signed halfwords 

vector unsigned int Four 32-bit unsigned words 

  

Figure 21. Big-endian ordering supported by the SPE

  

Figure 22. Register layout of data types and preferred (scalar) slot
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Table 14. Vector Data Types (continued) 

Vector Data Type Content 

vector signed int Four 32-bit signed words 

vector unsigned long long Two 64-bit unsigned doublewords 

vector signed long long Two 64-bit signed doublewords 

vector float Four 32-bit single-precision floats 

vector double Two 64-bit double precision floats 

qword quadword (16-byte)
  

Instruction types 

There are 204 instructions in the SPU Instruction Set Architecture , and they are 

grouped into 11 classes according to their functionality. 

These instruction classes are shown in Table 15. 

 Table 15. SPU Instruction Types 

Type Number 

Memory Load and Store 16 

Constant Formation 6 

Integer and Logical Operations 59 

Shift and Rotate 31 

Compare, Branch, and Halt 40 

Hint-for-Branch 3 

Floating-Point 28 

Control 8 

SPU Channel 3 

SPU Interrupt Facility 7 

Synchronization and Ordering 3
  

Figure 23 on page 63 shows one example of an SPU SIMD instruction — the 

floating-point add instruction, fa. This instruction simultaneously adds four pairs 

of floating-point vector elements, stored in registers ra and rb,  and produces four 

floating-point results, written to register rt.  

 

 

62 Programming  Tutorial



Depending on the programmer’s performance requirements and code size 

restraints, advantages can be gained by properly grouping data in an SIMD vector. 

Figure 24 shows a natural way of using SIMD vectors to store the homogenous 

data values (x, y, z, w) for the three vertices (a, b, c) of a triangle in a 3D-graphics 

application. This arrangement is called an array of structures (AOS), because the 

data values for each vertex are organized in a single structure, and the set of all 

such structures (vertices) is an array. 

 

The data-packing approach that is shown in Figure 24 often produces small code 

sizes, but it typically executes poorly and generally requires significant 

loop-unrolling to improve its efficiency. If the vertices contain fewer components 

than the SIMD vector can hold (for example, three components instead of four), 

SIMD efficiencies are compromised. 

Another method of organizing data in SIMD vectors is a structure of arrays (SOA). 

Here, each corresponding data value for each vertex is stored in a corresponding 

location in a set of vectors. Think of the data as if it were scalar, and the vectors 

are populated with independent data across the vector. This is different from the 

previous example, where the four values of each vertex are stored in one vector. 

Figure 25 on page 64 shows the use of SIMD vectors to represent the x, y, z vertices 

for four triangles. Not only are the data types the same across the vector, but now 

their data interpretation is the same. Depending on the algorithm, software might 

  

Figure 23. SIMD floating-point Add instruction function

  

Figure 24. Array-of-structures data organization for one triangle
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execute more efficiently with this SIMD data organization than with the 

organization shown in Figure 24 on page 63. 

 

For further details about the SPU instructions, refer to these documents: 

v   The SPU Instruction Set Architecture, 

v   The SPU Assembly Language Specification.

SPU C/C++ language extensions (intrinsics) 

A large set of SPU C/C++ language extensions (intrinsics) make the underlying SPU 

Instruction Set Architecture and hardware features conveniently available to C 

programmers. These intrinsics can be used in place of assembly-language code 

when writing in the C or C++ languages. 

The intrinsics are essentially in-line assembly-language instructions in the form of 

C-language function calls. They provide the programmer with explicit control of 

the SPE SIMD instructions without directly managing registers. A well-written 

compiler that supports these intrinsics will emit efficient code for the SPE 

architecture. The techniques used by compilers to generate efficient code include: 

v   Register coloring 

v   Instruction scheduling (dual-issue optimization) 

v   Data loads and stores 

v   Loop blocking, fusion, unrolling 

v   Correct up-stream placement of branch hints 

v   Literal vector construction 

For example, an SPU compiler provides the intrinsic t = spu_add(a, b) as a 

substitute for the assembly-language instruction fa rt,ra,rb . The compiler will 

generate a floating-point add instruction (fa rt, ra, rb)  for the SPU intrinsic 

  

Figure 25. Structure-of-arrays data organization for four triangles
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t = spu_add(a, b),  assuming t , a , and b are vector float variables. The system 

header file (spu_intrinsics.h) defines the SPU language extension intrinsics. 

The intrinsics are defined fully in the C/C++ Language Extensions for Cell Broadband 

Engine Architecture specification. The PPU and the SPU instruction sets have 

similar, but distinct, SIMD intrinsics. It is important to understand the mapping 

between the PPU and SPU SIMD intrinsics when developing applications on the 

PPE that will eventually be ported to the SPEs. 

Assembly language versus intrinsics comparison: an example 

The ease of implementing a DMA  transfer using intrinsics versus 

assembly-language instructions is illustrated in the example-implementation of the 

dma_transfer subroutine that is provided in this section. 

The dma_transfer subroutine issues a DMA command with transfer size bytes 

from the LS address lsa, to or from the 64-bit effective address specified by eah | 

eal. The DMA  command specified by the dma parameter is tagged using the 

specified tag_id parameter. 

extern void dma_transfer(volatile void *lsa,  // local store address 

             unsigned int eah,         // high 32-bit effective address 

             unsigned int eal,         // low 32-bit effective address 

             unsigned int size,        // transfer size in bytes 

             unsigned int tag_id,       // tag identifier (0-31) 

             unsigned int cmd);        // DMA command 

The Application Binary Interface (ABI)-compliant assembly-language implementation 

of the subroutine would be: 

      .text 

      .global  dma_transfer 

   dma_transfer: 

      wrch    $MFC_LSA, $3 

      wrch   $MFC_EAH, $4 

      wrch   $MFC_EAL, $5 

      wrch    $MFC_Size, $6 

      wrch    $MFC_TagID, $7 

      wrch    $MFC_Cmd, $8 

      bi    $0 

A comparable C implementation using the SPU intrinsic, spu_writech, for the 

write-channel (wrch) instruction would be: 

#include <spu_intrinsics.h> 

  

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal, 

             unsigned int size, unsigned int tag_id, unsigned int cmd) 

{ 

     spu_writech(MFC_LSA, (unsigned int)lsa); 

     spu_writech(MFC_EAH, eah); 

     spu_writech(MFC_EAL, eal); 

     spu_writech(MFC_Size, size); 

     spu_writech(MFC_TagID, tag_id); 

     spu_writech(MFC_Cmd, cmd); 

} 

This particular function could be more simply written using the spu_mfcdma64 

composite intrinsic, as: 

#include <spu_intrinsics.h> 

  

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,
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unsigned int size, unsigned int tag_id, unsigned int cmd) 

{ 

     spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd); 

} 

Intrinsic classes 

SPU intrinsics are grouped into the three classes that are described in this section. 

v   Specific Intrinsics — Intrinsics that have a one-to-one mapping with a single 

assembly-language instruction. Programmers rarely need these intrinsics for 

implementing inline assembly code because the Joint Software Reference 

Environment (JSRE) has adopted gcc-style inline assembly. 

v   Generic Intrinsics — Intrinsics that map to one or more assembly-language 

instructions as a function of the type of input parameters. 

v   Composite Intrinsics — Convenience intrinsics constructed from a sequence of 

specific or generic intrinsics. 

Intrinsics are not provided for all assembly-language instructions. Some 

assembly-language instructions (for example, branches, branch hints, and interrupt 

return) are naturally accessible through the C/C++ language semantics. Many SPU 

intrinsics are different than PPE intrinsics (see “Differences between PPE and SPE 

SIMD support” on page 72). 

Specific intrinsics 

Specific intrinsics have a one-to-one mapping with a single assembly-language 

instruction. 

All specific intrinsics are named using the SPU assembly instruction prefixed by 

the string, si_. For example, the specific intrinsic that implements the stop 

assembly instruction is named si_stop. 

Specific intrinsics are provided for all instructions except branch, branch-hint, and 

interrupt-return instructions. All specific intrinsics are also available in the form of 

generic intrinsics, except for the specific intrinsics shown in Table 16. The specific 

intrinsics shown in this table fall into three categories: 

v    Instructions generated using basic variable-referencing (that is, using vector and 

scalar loads and stores), 

v    Instructions used for immediate vector construction, 

v    Instructions that have limited usefulness and are not expected to be used except 

in rare conditions.

 Table 16. Specific intrinsics not available as generic intrinsics 

Intrinsic Description 

Generate Controls for Sub-Quadword Insertion Intrinsics 

d = si_cbd(a, imm)  Generate controls for byte insertion (d form) 

d = si_cbx(a, b) Generate controls for byte insertion (x form) 

d = si_cdd(a, imm)  Generate controls for doubleword insertion (d form) 

d = si_cdx(a, b) Generate controls for doubleword insertion (x form) 

d = si_chd(a, imm)  Generate controls for halfword insertion (d form) 

d = si_chx(a, b) Generate controls for halfword insertion (x form) 

d = si_cwd(a, imm)  Generate controls for word insertion (d form) 

d = si_cwx(a, b) Generate controls for word insertion (x form) 

 

66 Programming  Tutorial



Table 16. Specific intrinsics not available as generic intrinsics (continued) 

Intrinsic Description 

Constant Formation Intrinsics 

d = si_il(imm) Immediate load word 

d = si_ila(imm) Immediate load address 

d = si_ilh(imm) Immediate load halfword 

d = si_ilhu(imm) Immediate load halfword upper 

d = si_iohl(a, imm)  Immediate or halfword lower 

No Operation Intrinsics 

si_lnop( No operation (load) 

si_nop() No operation (execute) 

Memory Load and Store Intrinsics 

d = si_lqa(imm) Load quadword (a form) 

d = si_lqd(a, imm)  Load quadword (d form) 

d = si_lqr(imm) Load quadword instruction relative 

d = si_lqx(a, b) Load quadword (x form) 

si_stqa(a, imm)  Store quadword (a form) 

si_stqd(a, b, imm)  Store quadword (d form) 

si_stqr(a, imm)  Store quadword instruction relative 

si_stqx(a, b, c) Store quadword (x form) 

Control Intrinsics 

si_stopd(a, b, c) Stop and signal with dependencies
  

Specific intrinsics accept only the following types of arguments: 

v   Immediate literals, as an explicit constant expression or as a symbolic address. 

v   Enumerations. 

v   Quadword arguments (variables of type qword).

Arguments of other types must be cast to the qword data type. When using specific 

intrinsics, it might be necessary to cast from scalar types to the qword data type, or 

from the qword data type to scalar types. Similar to casting between vector data 

types, specific cast intrinsics have no effect on an argument that is stored in a 

register. All specific casting intrinsics are of the following form: 

d = casting_intrinsic(a) 

For example, to add 3 to the integer i: 

int i; 

i = si_to_int (si_ai (si_from_int(i), 3)); 

Table 17 lists the specific casting intrinsics. 

 Table 17. Specific Casting Intrinsics 

Intrinsic Description 

si_to_char Cast byte element 3 of qword to char. 

si_to_uchar Cast byte element 3 of qword to unsigned char. 

si_to_short Cast halfword element 1 of qword to short. 
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Table 17. Specific Casting Intrinsics (continued) 

Intrinsic Description 

si_to_ushort Cast halfword element 1 of qword to unsigned short. 

si_to_int Cast word element 0 of qword to int. 

si_to_uint Cast word element 0 of qword to unsigned int. 

si_to_ptr Cast word element 0 of qword to a void pointer. 

si_to_llong Cast doubleword element 0 of qword to long long. 

si_to_ullong Cast doubleword element 0 of qword to unsigned long 

long. 

si_to_float Cast word element 0 of qword to float. 

si_to_double Cast doubleword element 0 of qword to double. 

si_from_char Cast char to byte element 3 of qword. 

si_from_uchar Cast unsigned char to byte element 3 of qword. 

si_from_short Cast short to halfword element 1 of qword. 

si_from_ushort Cast unsigned short to halfword element 1 of qword. 

si_from_int Cast int to word element 0 of qword. 

si_from_uint Cast unsigned int to word element 0 of qword. 

si_from_ptr Cast void pointer to word element 0 of qword. 

si_from_llong Cast long long to doubleword element 0 of qword. 

si_from_ullong Cast unsigned long long to doubleword element 0 of 

qword. 

si_from_float Cast float to word element 0 of qword. 

si_from_double Cast double to doubleword element 0 of qword.
  

Generic intrinsics 

Generic intrinsics map to one or more assembly-language instructions, as a 

function of the type of its input parameters. Generic intrinsics are often 

implemented as compiler built-ins. 

All of the generic intrinsics are prefixed by the string spu_. For example, the 

intrinsic that implements the stop assembly instruction is named spu_stop. 

Generic intrinsics are provided for all SPU instructions, except for the following: 

v   branch 

v   branch hint 

v   interrupt return 

v   generate control for insertion (used for scalar stores) 

v   constant formation 

v   no-op 

v   memory load and store 

v   stop and signal with dependencies (stopd) 

Many generic intrinsics accept scalars as one of their operands. These correspond 

to intrinsics that map to instructions with immediate values. 
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Table 18 lists the generic intrinsics. 

 Table 18. Generic SPU Intrinsics 

Intrinsic Description 

Constant Formation Intrinsics 

d = spu_splats(a) Replicate scalar a into all elements of vector d 

Conversion Intrinsics 

d = spu_convtf(a, scale) Convert integer vector to float vector 

d = spu_convts(a, scale) Convert float vector to signed int vector 

d = spu_convtu(a, scale) Convert float vector to unsigned float vector 

d = spu_extend(a) Sign extend vector 

d = spu_rountf(a) Round double vector to float vector 

Arithmetic Intrinsics 

d = spu_add(a, b) Vector add 

d = spu_addx(a, b, c) Vector add extended 

d = spu_genb(a, b) Vector generate borrow 

d = spu_genbx(a, b, c) Vector generate borrow extended 

d = spu_genc(a, b) Vector generate carry 

d = spu_gencx(a, b, c) Vector generate carry extended 

d = spu_madd(a, b, c) Vector multiply and add 

d = spu_mhhadd(a, b, c) Vector multiply high high and add 

d = spu_msub(a, b, c) Vector multiply and subtract 

d = spu_mul(a, b) Vector multiply 

d = spu_mulh(a, b) Vector multiply high 

d = spu_mulhh(a, b) Vector multiply high high 

d = spu_mulo(a, b) Vector multiply odd 

d = spu_mulsr(a, b) Vector multiply and shift right 

d = spu_nmadd(a, b, c) Negative vector multiply and add 

d = spu_nmsub(a, b, c) Negative vector multiply and subtract 

d = spu_re(a) Vector floating-point reciprocal estimate 

d = spu_rsqrte(a) Vector floating-point reciprocal square root estimate 

d = spu_sub(a, b) Vector subtract 

d = spu_subx(a, b, c) Vector subtract extended 

Byte Operation Intrinsics 

d = spu_absd(a, b) Vector absolute difference 

d = spu_avg(a, b) Vector average 

d = spu_sumb(a, b) Vector sum bytes into shorts 

Compare, Branch, and Halt Intrinsics 

d = spu_bisled(func) Branch indirect and set link if external data 

d = spu_cmpabseq(a, b) Vector compare absolute equal 

d = spu_cmpabsgt(a, b) Vector compare absolute greater than 

d = spu_cmpeq(a, b) Vector compare equal 

d = spu_cmpgt(a, b) Vector compare greater than 
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Table 18. Generic SPU Intrinsics (continued) 

Intrinsic Description 

(void) spu_hcmpeq(a, b) Halt if compare equal 

(void) spu_hcmpgt(a, b) Halt if compare greater than 

d = spu_testsv(a, values) Element-wise test for special value 

Bit and Mask Intrinsics 

d = spu_cntb(a) Vector count ones for bytes 

d = spu_cntlz(a) Vector count leading zeros 

d = spu_gather(a) Gather bits from elements 

d = spu_maskb(a) Form select byte mask 

d = spu_maskh(a) Form select halfword mask 

d = spu_maskw(a) Form select word mask 

d = spu_sel(a, b, pattern) Select bits 

d = spu_shuffle(a, b, pattern) Shuffle bytes of a vector 

Logical Intrinsics 

d = spu_and(a, b) Vector bit-wise AND 

d = spu_andc(a, b) Vector bit-wise AND with complement 

d = spu_eqv(a, b) Vector bit-wise equivalent 

d = spu_nand(a, b) Vector bit-wise complement of AND 

d = spu_nor(a, b) Vector bit-wise complement of OR 

d = spu_or(a, b) Vector bit-wise OR 

d = spu_orc(a, b) Vector bit-wise OR with complement 

d = spu_orx(a) Bit-wise OR word elements 

d = spu_xor(a, b) Vector bit-wise exclusive OR 

Rotate Intrinsics 

d = spu_rl(a, count) Element-wise bit rotate left 

d = spu_rlmask(a, count) Element-wise bit rotate left and mask 

d = spu_rlmaska(a, count) Element-wise bit algebraic rotate and mask 

d = spu_rlmaskqw(a, count) Bit rotate and mask quadword 

d = spu_rlmaskqwbyte(a, count) Byte rotate and mask quadword 

d = spu_rlmaskqwbytebc(a, count) Byte rotate and mask quadword using bit rotate 

count 

d = spu_rlqw(a, count) Bit rotate quadword left 

d = spu_rlqwbyte(a, count) Byte rotate quadword left 

d = spu_rlqwbytebc(a, count) Byte rotate quadword left using bit rotate count 

Shift Intrinsics 

d = spu_sl(a, count) Element-wise bit shift left 

d = spu_slqw(a, count) Bit shift quadword left 

d = spu_slqwbyte(a, count) Byte shift quadword left 

d = spu_slqwbytebc(a, count) Byte shift quadword left using bit shift count 

Control Intrinsics 

(void) spu_idisable() Disable interrupts 
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Table 18. Generic SPU Intrinsics (continued) 

Intrinsic Description 

(void) spu_ienable() Enable interrupts 

(void) spu_mffpscr() Move from floating-point status and control register 

(void) spu_mfspr(register) Move from special-purpose register 

(void) spu_mtfpscr(a) Move to floating-point status and control register 

(void) spu_mtspr(register, a) Move to special-purpose register 

(void) spu_dsync() Synchronize data 

(void) spu_stop(type) Stop and signal 

(void) spu_sync() Synchronize 

Scalar Intrinsics 

d = spu_extract(a, element) Extract vector element from vector 

d = spu_insert(a, b, element) Insert scalar into specified vector element 

d = spu_promote(a, element) Promote scalar to vector 

Channel Control Intrinsics 

d = spu_readch(channel) Read word channel 

d = spu_readchqw(channel) Read quadword channel 

d = spu_readchcnt(channel) Read channel count 

(void) spu_writech(channel, a) Write word channel 

(void) spu_writechqw(channel, a) Write quadword channel
  

Composite SPU intrinsics 

Composite intrinsics are constructed from a sequence of specific or generic 

intrinsics. 

All of the composite intrinsics are prefixed by the string spu_. Table 19 lists the 

composite intrinsics. 

 Table 19. Composite SPU intrinsics 

Intrinsic Description 

spu_mfcdma32(ls, ea, size, tagid, 

cmd) 

Initiate DMA to or from 32-bit effective address 

spu_mfcdma64(ls, eahi, ealow, size, 

tagid, cmd) 

Initiate DMA to or from 64-bit effective address 

spu_mfcstat(type) Read MFC tag status
  

For further information about the SPU intrinsics, refer to the C/C++ Language 

Extensions for Cell Broadband Engine Architecture document. 

Promoting scalar data types to vector data types 

The SPU loads and stores one quadword at-a-time. When instructions use or 

produce scalar operands (including addresses), the value is kept in the preferred 

scalar slot of a SIMD register. 

Scalar (sub quadword) loads and stores require several instructions to format the 

data for use on the SIMD architecture of the SPE. 
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Scalar loads must be rotated into the preferred slot. Scalar stores require a read, 

scalar insert, and write operation. These extra formatting instructions reduce 

performance. 

Vector operations on scalar data are not efficient. The following strategies can be 

used to make operations on scalar data more efficient: 

v   Change the scalars to quadword vectors. By eliminating the three extra 

instructions associated with loading and storing scalars, code size and execution 

time can be reduced. 

v   Cluster scalars into groups, and load multiple scalars at a time using a 

quadword memory access. Manually extract or insert the scalars as needed. This 

will eliminate redundant loads and stores.

SPU intrinsics are provided in the C/C++ Language Extensions to efficiently 

promote scalars to vectors, or vectors to scalars. These intrinsics are listed in 

Table 20. 

 Table 20. Intrinsics for Changing Scalar and Vector Data Types 

Instruction Description 

d = spu_insert Insert a scalar into a specified vector element. 

d = spu_promote Promote a scalar to a vector. 

d = spu_extract Extract a vector element from its vector.
  

Differences between PPE and SPE SIMD support 

This section describes the architectural and language-extension differences between 

PPE and SPE SIMD support. 

Architectural differences between PPE and SPE SIMD support 

The PPE processes SIMD operations in the VXU within its PPU. The operations are 

those of the Vector/SIMD Multimedia Extension instruction set. 

The SPEs process SIMD operations in their SPU. The operations are those of the 

SPU instruction set. 

The major differences between the PPE and SPE architectures are summarized in 

Table 21. 

 Table 21. PPE and SPE Architectural Comparison 

Feature PPE SPE 

Number of SIMD registers 32 (128-bit) 128 (128-bit) 

Organization of register files separate fixed-point, 

floating-point, and vector 

registers 

unified 

Load latency variable (cache) fixed 

Addressability 2⁶⁴ bytes 

 256-KB local store 

2⁶⁴ bytes via DMA 

Instruction set more orthogonal optimized for 

single-precision float 

Single-precision IEEE 754-1985 extended range 
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Table 21. PPE and SPE Architectural Comparison (continued) 

Feature PPE SPE 

Doubleword no doubleword SIMD double-precision 

floating-point SIMD
  

Language-extension differences between PPE and SPE SIMD 

support 

The SPE’s SPU instruction set is similar to that of the PPE’s Vector/SIMD Multimedia 

Extension instruction set, in that both operate on 128-bit SIMD vectors. 

However, from a programmer’s perspective, these instruction sets are quite 

different, and their respective language extensions have different intrinsics and 

data types. 

Table 22 specifies the supported vector data types for each of the SIMD engines 

(PPE and SPE) in the Cell Broadband Engine, where: 

v   an “x” signifies support 

v   a “—”  signifies no support

 Table 22. PPE versus SPU Vector Data Types 

Vector Data Type PPE SPU 

vector unsigned char x x 

vector signed char x x 

vector bool char x — 

vector unsigned short x x 

vector signed short x x 

vector bool short x — 

vector pixel x — 

vector unsigned int x x 

vector signed int x x 

vector bool int x — 

vector float x x 

vector unsigned long long — x 

vector signed long long — x 

vector double — x
  

The key differences are: 

v   Only the Vector/SIMD Multimedia Extension instruction set supports pixel 

vectors. 

v   Only the SPU instruction set supports doubleword vectors. 

The SPUs quadword data type is excluded from the list because it is a 

type-agnostic register reference instead of a specific vector data type. The 

quadword data type is used exclusively as an operand in specific intrinsics — those 

which have a one-to-one mapping with a single assembly-language instruction. For 

details, see “Intrinsic classes” on page 66. 
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Also, the Vector/SIMD Multimedia Extension instruction set provides these 

operations that are not directly supported by a single instruction in the SPU 

instruction set: 

v   Saturating math 

v   Sum-across 

v   Log2 

and 2x 

v   Ceiling and floor 

v   Complete byte instructions 

Likewise, the SPU instruction set provides these operations that are not directly 

supported by a single instruction in the Vector/SIMD Multimedia Extension 

instruction set: 

v   Immediate operands 

v   Double-precision floating-point 

v   Sum of absolute difference 

v   Count ones in bytes 

v   Count leading zeros 

v   Equivalence 

v   Nand 

v   Or complement 

v   Extend sign 

v   Gather bits 

v   Form select mask 

v   Integer multiply and accumulate 

v   Multiply subtract 

v   Multiply float 

v   Shuffle byte special conditions 

v   Carry and borrow generate 

v   Sum bytes across 

v   Extended shift range 

These differences between the Vector/SIMD Multimedia Extension and SPU 

instruction sets must be kept in mind when porting code from the PPE to the SPE. 

Ported programs need to consider not only equivalent instructions but also code 

performance. See “Porting SIMD code from the PPE to the SPEs” on page 92 for 

more on porting code. 

To improve code portability between PPE and SPU programs, spu_intrinsics.h 

provides single-token typedefs for vector keyword data types. These typedefs are 

shown in Table 23. 

These single-token types serve as class names for extending generic intrinsics for 

mapping to-and-from Vector/SIMD Multimedia Extension intrinsics and SPU 

intrinsics. 

 Table 23. Single-Token Vector Keyword Data Types 

Vector Keyword Data Type Single-Token Typedef 

vector unsigned char vec_uchar16 

vector signed char vec_char16 
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Table 23. Single-Token Vector Keyword Data Types (continued) 

Vector Keyword Data Type Single-Token Typedef 

vector unsigned short vec_ushort8 

vector signed short vec_short8 

vector unsigned int vec_unit4 

vector signed int vec_int4 

vector unsigned long long vec_ullong2 

vector signed long long vec_llong2 

vector float vec_float4 

vector double vec_double2
  

Compiler directives 

Like compiler intrinsics, compiler directives are crucial programming elements. 

The restrict qualifier is well-known in many C/C++ implementations, and it is 

part of the SPU language extension. When the restrict keyword is used to qualify 

a pointer, it specifies that all accesses to the object pointed to are done through the 

pointer. For example: 

 void *memcpy(void * restrict s1, void * restrict s2, size_t n); 

By specifying s1 and s2 as pointers that are restricted, the programmer is 

specifying that the source and destination objects (for the memory copy) do not 

overlap. 

Another directive is __builtin_expect . Since branch mispredicts are relatively 

expensive, __builtin_expect provides a way for the programmer to direct branch 

prediction. This example: 

 int __builtin_expect(int exp, int value) 

returns the result of evaluating exp , and means that the programmer expects exp 

to equal value . The value can be a constant for compile-time prediction, or a 

variable used for run-time prediction. 

Two more directives are the aligned attribute, and the _align_hint directive. The 

aligned attribute is used to ensure proper DMA alignment, for efficient data 

transfer. The syntax is the same as in many implementations of gcc: 

 float factor __attribute__((aligned (16));  //aligns “factor” to a quadword 

The _align_hint directive helps compilers “auto-vectorize”. Although it looks like 

an intrinsic, it is more properly described as a compiler directive, since no code is 

generated as a result of using the directive. The example: 

 _align_hint(ptr, base, offset) 

informs the compiler that the pointer, ptr , points to data with a base alignment of 

base , with a byte offset from the base alignment of offset . The base alignment 

must be a power of two. Giving 0 as the base alignment implies that the pointer 

has no known alignment. The offset must be less than the base, or, zero. The 

_align_hint directive should not be used with pointers that are not naturally 

aligned. 
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MFC commands 

The MFC supports a set of MFC  commands. These commands provide the main 

mechanism that enables code executing in an SPU to access main storage and 

maintain synchronization with other processors and devices in the system. 

The MFC is described in “Memory flow controller” on page 54. MFC commands 

can be issued either by code running on the MFC’s associated SPU or by code 

running on the PPE or other device, as follows: 

v   Code running on the SPU issues an MFC command by executing a series of 

writes using channel instructions, which are described in Table 13 on page 57. 

v   Code running on the PPE or other devices issues an MFC command by 

performing a series of stores and loads to memory-mapped I/O (MMIO) registers in 

the MFC.

The commands are queued in one of two independent MFC  command queues: 

v   MFC  SPU Command Queue — For channel-initiated commands by the associated 

SPU 

v   MFC  Proxy Command Queue — For MMIO-initiated commands by the PPE or 

other device 

MFC commands that transfer data are referred to as DMA commands. The 

data-transfer direction for MFC DMA commands is always referenced from the 

perspective of an SPE. Therefore, commands that transfer data into an SPE (from 

main storage to local store), are considered get commands, and transfers of data 

out of an SPE (from local store to main storage) are considered put commands. 

The MFC DMA commands are shown in Table 24. This table also indicates whether 

the commands are supported for SPEs (by means of a corresponding channel) and 

for the PPE (by means of a corresponding MMIO register), or both. 

The suffixes associated with the MFC DMA  commands are shown in Table 25 on 

page 78. 

The MFC synchronization commands are shown in Table 26 on page 79. 

The MFC atomic commands are shown in Table 27 on page 79. 

 Table 24. MFC  DMA  Command 

Mnemonic 

Supported 

By Description 

Put Commands 

put PPE, SPE Moves data from local store to the effective address. 

puts PPE Moves data from local store to the effective address and 

starts the SPU after the DMA operation completes. 

putf PPE, SPE Moves data from local store to the effective address with 

fence (this command is locally ordered with respect to all 

previously issued commands within the same tag group 

and command queue). 

putb PPE, SPE Moves data from local store to the effective address with 

barrier (this command and all subsequent commands with 

the same tag ID as this command are locally ordered with 

respect to all previously issued commands within the same 

tag group and command queue). 
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Table 24. MFC  DMA Command (continued) 

Mnemonic 

Supported 

By Description 

putfs PPE Moves data from local store to the effective address with 

fence (this command is locally ordered with respect to all 

previously issued commands within the same tag group 

and command queue) and starts the SPU after the DMA 

operation completes. 

putbs PPE Moves data from local store to the effective address with 

barrier (this command and all subsequent commands with 

the same tag ID as this command are locally ordered with 

respect to all previously issued commands within the same 

tag group and command queue) and starts the SPU after 

the DMA operation completes. 

putl SPE Moves data from local store to the effective address using 

an MFC list. 

putlf SPE Moves data from local store to the effective address using 

an MFC list with fence (this command is locally ordered 

with respect to all previously issued commands within the 

same tag group and command queue). 

putlb SPE Moves data from local store to the effective address using 

an MFC list with barrier (this command and all subsequent 

commands with the same tag ID as this command are 

locally ordered with respect to all previously issued 

commands within the same tag group and command 

queue). 

Get  Commands 

get PPE, SPE Moves data from the effective address to local store. 

gets PPE Moves data from the effective address to local store, and 

starts the SPU after the DMA operation completes. 

getf PPE, SPE Moves data from the effective address to local store with 

fence (this command is locally ordered with respect to all 

previously issued commands within the same tag group 

and command queue). 

getb PPE, SPE Moves data from the effective address to local store with 

barrier (this command and all subsequent commands with 

the same tag ID as this command are locally ordered with 

respect to all previously issued commands within the same 

tag group and command queue). 

getfs PPE Moves data from the effective address to local store with 

fence (this command is locally ordered with respect to all 

previously issued commands within the same tag group), 

and starts the SPU after the DMA operation completes. 

getbs PPE Moves data from the effective address to local store with 

barrier (this command and all subsequent commands with 

the same tag ID as this command are locally ordered with 

respect to all previously issued commands within the same 

tag group and command queue), and starts the SPU after 

the DMA operation completes. 

getl SPE Moves data from the effective address to local store using 

an MFC list. 
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Table 24. MFC  DMA  Command (continued) 

Mnemonic 

Supported 

By Description 

getlf SPE Moves data from the effective address to local store using 

an MFC list with fence (this command is locally ordered 

with respect to all previously issued commands within the 

same tag group and command queue). 

getlb SPE Moves data from the effective address to local store using 

an MFC list with barrier (this command and all subsequent 

commands with the same tag ID as this command are 

locally ordered with respect to all previously issued 

commands within the same tag group and command 

queue).
  

The suffixes in Table 25 are associated with the MFC DMA commands, and extend 

or refine the function of a command. For example, a put command moves data 

from local store to the effective address. A puts command moves data from local 

store to the effective address and starts the SPU after the DMA operation 

completes. 

v   Commands with an s suffix can only be issued to the MFC Proxy command 

queue. 

v   Commands with a 1 suffix and all the MFC atomic commands can only be 

issued by the SPE (to the MFC SPU command queue). 

v   All other commands described in this section can be issued by either the SPE or 

the PPE.

Commands issued by the PPE are issued on behalf of the SPE and are sent to the 

MFC Proxy command queue. 

 Table 25. MFC  Command Suffixes 

Suffix Description 

s Starts the execution of the SPU at the current location indicated by the SPU Next 

Program Counter Register after the data has been transferred into or out of the 

local store. 

f Tag-specific fence. Commands with a tag-specific fence are locally ordered with 

respect to all previously-issued commands within the same tag group and 

command queue. 

b Tag-specific barrier. Commands with a tag-specific barrier are locally ordered with 

respect to all previously-issued commands within the same tag group and 

command queue and all subsequently-issued commands to the same command 

queue with the same tag. 

l List command. Executes a list of DMA transfer elements located in local store. The 

maximum number of elements is 2,048, and each element describes a transfer of 

up to 16 KB.
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Table 26. MFC  Synchronization Commands 

Command 

Supported 

By Description 

barrier PPE, SPE Barrier type ordering. Ensures ordering of all preceding, 

nonimmediate DMA commands with respect to all 

commands following the barrier command within the same 

command queue. The barrier command has no effect on the 

immediate DMA commands: getllar, putllc , and putlluc. 

mfceieio PPE, SPE Controls the ordering of get commands with respect to put 

commands, and of get commands with respect to get 

commands accessing storage that is caching inhibited and 

guarded. Also controls the ordering of put commands with 

respect to put commands accessing storage that is memory 

coherence required and not caching inhibited. 

mfcsync PPE, SPE Controls the ordering of DMA put and get operations 

within the specified tag group with respect to other 

processing units and mechanisms in the system. 

sndsig PPE, SPE Update SPU Signal Notification Registers in an I/O device 

or another SPE. 

sndsigb PPE, SPE Update SPU Signal Notification Registers in an I/O device 

or another SPE with barrier. 

sndsigf PPE, SPE Update SPU Signal Notification Registers in an I/O device 

or another SPE with fence.
  

 Table 27. MFC  Atomic Commands 

Command 

Supported 

By Description 

getllar SPE Get  lock line and create a reservation (executed 

immediately). 

putllc SPE Put lock line conditional on a reservation (executed 

immediately). 

putlluc SPE Put lock line unconditional (executed immediately). 

putqlluc SPE Put lock line unconditional (queued form).
  

DMA-command tag groups 

All DMA commands except getllar, putllc, and putlluc can be tagged with a 

5-bit Tag Group ID. 

By assigning a DMA command or group of commands to different tag groups, the 

status of the entire tag group can be determined within a single command queue 

(the MFC SPU Command Queue or the MFC Proxy Command Queue). 

Software can use this identifier to check or wait on the completion of all queued 

commands in one or more tag groups. Tagging is optional but can be useful when 

using barriers to control the ordering of MFC commands within a single command 

queue. 

DMA commands within a tag group can be synchronized with a fence or barrier 

option by appending an f or b, respectively, to the command mnemonic. Execution 

of a fenced command option is delayed until all previously issued commands 

within the same tag group have been performed. Execution of a barrier command 
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option and all subsequent commands is delayed until all previously issued 

commands in the same tag group have been performed. 

Synchronizing DMA transfers 

MFC commands can be used to control the order in which DMA  storage accesses 

are performed. 

The MFC synchronization commands are shown in Table 26 on page 79. There are: 

v   four atomic commands (getllar, putllc, putlluc, and putqlluc), 

v   three send-signal commands (sndsig, sndsigf, and sndsigb), 

v   three barrier commands (barrier , mfcsync , and mfceieio ).

MFC input and output macros 

The C/C++ Language Extensions for Cell Broadband Engine architecture 

specification also defines a set of optional convenience macros to assist in accessing 

the SPU and MFC  facilities available through the channel interface. 

These macros, specified in spu_mfcio.h , can either be implemented as macros or 

as built-in functions within the compiler. 

 Table 28. MFC  Input and Output Macros 

Macro Description 

Effective Address Utilities 

mfc_ea2h(ea) Extract higher 32-bits from effective address 

mfc_ea2l(ea) Extract lower 32-bits from effective address 

mfc_hl2ea(high, low) Concatenate higher and lower 32-bits of an 

effective address 

mfc_ceil128(value) Round up value to the next multiple of 128 

DMA Commands 

mfc_put(ls, ea, size, tag, tid, rid) Move data from local storage to effective 

address 

mfc_putb(ls, ea, size, tag, tid, rid) Move data from local storage to effective 

address with barrier 

mfc_putf(ls, ea, size, tag, tid, rid) Move data from local storage to effective 

address with fence 

mfc_get(ls, ea, size, tag, tid, rid) Move data from effective address to local 

storage 

mfc_getb(ls, ea, size, tag, tid, rid) Move data from effective address to local 

storage with barrier 

mfc_getf(ls, ea, size, tag, tid, rid) Move data from effective address to local 

storage with fence 

List DMA Commands 

mfc_putl(ls, ea, list, list_size, tag, tid, rid) Move data from local storage to effective 

address using MFC list 

mfc_putlb(ls, ea, list, list_size, tag, tid, rid) Move data from local storage to effective 

address using MFC list with barrier 

mfc_putlf(ls, ea, list, list_size, tag, tid, rid) Move data from local storage to effective 

address listing MFC list with fence 
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Table 28. MFC  Input and Output Macros (continued) 

Macro Description 

mfc_getl(ls, ea, list, list_size, tag, tid, rid) Move data from effective address to local 

storage using MFC list 

mfc_getlb(ls, ea, list, list_size, tag, tid, rid) Move data from effective address to local 

storage using MFC list with barrier 

mfc_getlf(ls, ea, list, list_size, tag, tid, rid) Move data from effective address to local 

storage using MFC list with fence 

Atomic Update Commands 

mfc_getllar(ls, ea, tid, rid) Get  lock line and create reservation 

mfc_putllc(ls, ea, tid, rid) Put lock line if reservation for effective 

address exists 

mfc_putlluc(ls, ea, tid, rid) Put lock line unconditional 

mfc_putqlluc(ls, ea, tag, tid, rid) Put queued lock line unconditional 

Synchronization Commands 

mfc_sndsig(ls, ea, tag, tid, rid) Send signal 

mfc_sndsigb(ls, ea, tag, tid, rid) Send signal with barrier 

mfc_sndsigf(ls, ea, tag, tid, rid) Send signal with fence 

mfc_barrier(tag) Enqueue mfc_barrier command into DMA 

queue 

mfc_eieio(tag, tid, rid) Enqueue mfc_eieio command into DMA 

queue 

mfc_sync(tag) Enqueue mfc_sync command into DMA 

queue 

DMA Status 

mfc_stat_ cmd_queue() Check number of available entries in MFC 

DMA queue 

mfc_write_tag_mask(mask) Set tag mask to select tag groups to be 

included in query operation 

mfc_read_tag_mask() Read tag mask indicating groups to be 

included in query operation 

mfc_write_tag_update(ts) Request the tag status to be updated 

mfc_write_tag_update_immediate() Request that tag status be updated 

immediately 

mfc_write_tag_update_any() Request that tag status be updated when any 

tag groups complete 

mfc_write_tag_update_all() Request that tag status be updated when all 

tag groups complete 

mfc_stat_tag_update() Check availability of tag Update Request 

Status channel 

mfc_read_tag_status() Wait for an updated tag status 

mfc_read_tag_status_immediate() Wait for the updated tag status of any 

enabled group 

mfc_read_tag_status_any() Wait for no outstanding operations for any 

enabled groups 

mfc_read_tag_status_all() Wait for no outstanding operations for all 

enabled groups 
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Table 28. MFC  Input and Output Macros (continued) 

Macro Description 

mfc_stat_tag_status() Check availability of MFC_RdTagStat channel 

mfc_read_list_stall_status() Read list DMA stall-and-notify status 

mfc_stat_list_stall_status() Check availability of List DMA 

stall-and-notify status 

mfc_write_list_stall_ack(tag) Acknowledge tag group containing stalled 

DMA list commands 

mfc_read_atomic_status() Check availability of atomic command status 

Multisource Synchronization Request 

mfc_write_multi_src_sync_request() Request multisource synchronization 

mfc_stat_multi_src_sync_request() Check status of multisource synchronization 

request 

SPU Signal Notification 

spu_read_signal1() Atomically read and clear Signal Notification 

1 channel 

spu_stat_signal1() Check if pending signals exist on Signal 

Notification 1 channel 

spu_read_signal2() Atomically read and clear Signal Notification 

2 channel 

spu_stat_signal2() Check if pending signals exist on Signal 

Notification 2 channel 

SPU Mailboxes 

spu_read_in_mbox() Read next data entry in the SPU Inbound 

Mailbox 

spu_stat_in_mbox() Get  the number of data entries in the SPU 

Inbound Mailbox 

spu_write_out_mbox(data) Send data to the SPU Outbound Mailbox 

spu_stat_out_mbox() Get  the available capacity of the SPU 

Outbound Mailbox 

spu_write_out_intr_mbox(data) Send data to the SPU Outbound Interrupt 

Mailbox 

spu_stat_out_intr_mbox() Get  the available capacity of the SPU 

Outbound Interrupt Mailbox 

SPU Decrementer 

spu_read_decrementer() Read the current value of the decrementer 

spu_write_decrementer(count) Load a value into the decrementer 

SPU Events 

spu_read_event_status() Read the event status or stall until status is 

available 

spu_stat_event_status() Check availability of event status 

spu_write_event_mask(mask) Select events to be monitored by event status 

spu_write_event_ack(ack) Acknowledge events 

spu_read_event_mask() Read Event Status Mask 

SPU State Mangement 

spu_read_machine_status() Read current SPU machine status 
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Table 28. MFC  Input and Output Macros (continued) 

Macro Description 

spu_write_srr0(srr0) Write to the SPU Save Restore Register 0 

spu_read_srr0() Read the SPU Save Restore Register 0
  

To facilitate cooperative use of MFC tag ID’s amongst multiple autonomous 

software components, a tag manager is provided. The functions provided by the tag 

manager are specified in Table 29. 

 Table 29. MFC  Tag Manager Functions 

Function Description 

mfc_tag_reserve() Reserve a single tag for exclusive use 

mfc_tag_release() Release a single tag from exclusive use 

mfc_multi_tag_reserve() Reserve a sequential group of tags for 

exclusive use 

mfc_multi_tag_release() Release a sequential group of tags from 

exclusive use
  

Coding methods and examples 

The sections included here describe some coding methods, with examples in SPU 

assembly language, C language, SPU C-language intrinsics, and MFC  commands, 

or in a combination thereof. 

These instruction and command sets are summarized in: 

v   SPU assembly language — (see “SPU instruction set” on page 60) 

v   SPU C-language intrinsics — (see “SPU C/C++ language extensions (intrinsics)” 

on page 64) 

v   MFC commands — (see “MFC commands” on page 76)

DMA transfers 

DMA commands transfer data between the LS and main storage. 

Main storage is addressed by an effective address (EA) operand in a DMA 

command. The LS is addressed by the local store address (LSA) operand in a DMA 

command. The size of a single DMA transfer is limited to 16 KB: 

v   put commands move data from LS to main storage. 

v   get commands move data from main storage to LS.

The LS data is accessed sequentially with a minimum step of one quadword. 

Software on an SPE accesses its MFC’s DMA-transfer facilities through the 

channels listed in “Channels” on page 55. To enqueue a DMA command, SPE 

software writes the MFC  Command Parameter Channel Registers with the wrch 

instruction (described in “Channel instructions” on page 57) in the following 

sequence: 

1.   Write the EA-high (EAH) to the MFC_EAH channel. 

2.   Write the EA-low (EAL) to the MFC_EAL channel. 

3.   Write the transfer size to the MFC_Size channel. 
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4.   Write the tag ID to the MFC_TagID channel. 

5.   Write the class ID and command opcode to the MFC_Cmd channel.

The  following examples shows how to initiate a DMA transfer from an SPE. 

extern void dma_transfer(volatile void *lsa,     // local store address 

              unsigned int eah,        // high 32-bit effective address 

              unsigned int eal,        // low 32-bit effective address 

              unsigned int size,       // transfer size in bytes 

              unsigned int tag_id,     // tag identifier (0-31) 

An ABI-compliant assembly-language implementation of the subroutine is: 

   .text 

   .global   dma_transfer 

dma_transfer: 

   wrch        $MFC_LSA, $3 

   wrch        $MFC_EAH, $4 

   wrch        $MFC_EAL, $5 

   wrch        $MFC_Size, $6 

   wrch        $MFC_TagID, $7 

   wrch        $MFC_Cmd, $8 

   bi          $0 

A comparable C implementation using the SPU composite intrinsic spu_mfcdma64 

is: 

#include <spu_intrinsics.h> 

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal, 

             unsigned int size, unsigned int tag_id, unsigned int cmd) 

{ 

     spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd); 

} 

The performance of a DMA  data transfer is best when the source and destination 

addresses are aligned on a cache line boundary are are at least a cache line sized. 

Quadword-offset-aligned data transfers generate full cache-line bus requests for 

every unrolling, except possibly the first and last unrolling. 

Transfers that start or end in the middle of a cache line transfer a partial cache line 

(less than 8 quadwords) in the first or last bus request, respectively. 

DMA-list transfers 

A DMA list is a sequence of transfer elements (or list elements) that, together with 

an initiating DMA-list command, specifies a sequence of DMA transfers between a 

single area of LS and possibly discontinuous areas in main storage. 

Such DMA lists are stored in an SPE’s LS, and the sequence of transfers is initiated 

with a DMA-list command, such as getl or putl. 

DMA-list commands can only be issued by programs running on an SPE, but the 

PPE or other devices can create and store the lists in an SPE’s LS. DMA lists can be 

used to implement scatter-gather functions between main storage and the LS. 

Creating the DMA list 

Each transfer element in the DMA  list contains a transfer size, the low half of an 

effective address, and a stall-and-notify bit that can be used to suspend list 

execution after transferring a list element whose stall-and-notify bit is set. 
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Each DMA  transfer specified in a list can transfer up to 16 KB of data, and the list 

can have up to 2,048 (2 K) transfer elements. 

Software creates the list and stores it in the LS. Lists must be stored in the LS on 

an 8-byte boundary. The form of a transfer element is {LTS, EAL}. 

v   The first word (LTS) is the list transfer size, the most-significant bit of which 

serves as an optional stall-and-notify flag. 

v   The second word (EAL) is the low-order 32-bits of an EA.

Transfer elements are processed sequentially, in the order they are stored. If the 

stall-and-notify flag is set for a transfer element, the MFC will stop processing 

the DMA list after performing the transfer for that element until the SPE program 

clears the DMA  List Command Stall-And-Notify Event from the SPU Read Event 

Status Channel. This gives programs an opportunity to modify subsequent transfer 

elements before they are processed by the MFC. 

Initiating the transfers specified in the DMA list 

After the list is stored in the LS, the execution of the list is initiated by a DMA-list 

command, such as getl or putl, from the SPE whose LS contains the list. 

DMA-list commands, such as single-transfer DMA commands, require that 

parameters are written to the MFC  Command Parameter channels in the way 

described in “DMA transfers” on page 83. However, a DMA-list command requires 

two different types of parameters than those required by a single-transfer DMA  

command: 

v   MFC_EAL : This parameter must be written with the starting local store address 

(LSA) of the list , rather then with the EAL. (The EAL is specified in each transfer 

element.) 

v   MFC_Size : This parameter must be written with the size of the list , rather then 

the transfer size. (The transfer size is specified in each transfer element.) The list 

size is equal to the number of transfer elements, multiplied by the size of the 

transfer-element structure (8 bytes).

The starting LSA and the EA-high (EAH) are specified only once, in the DMA-list 

command that initiates the transfers. The LSA is internally incremented based on 

the amount of data transferred by each transfer element. However, if the starting 

LSA for each transfer element in a list does not begin on a 16-byte boundary, then 

hardware automatically increments the LSA to the next 16-byte boundary. 

The EAL for each transfer element is in the 4-GB area defined by EAH. 

DMA-list transfers: programming example 

The C-language sample program included here creates a DMA list and, in the last 

line, uses an spu_mfcdma32 intrinsic to issue a single DMA-list command (getl) to 

transfer a main-storage region into LS. 

/* dma_list_sample.c - SPU MFC-DMA list sample code. 

 * 

 * This sample defines a transfer-element data structure, which 

 * contains the element’s transfer size and low-order 32 bytes of the effective 

 * address. Also defined in the structure, but not used by this sample, 

 * is the DMA-list stall-and-notify bit, which can be used to indicate 

 * that the MFC should suspend list execution after transferring a list 

 * element whose stall-and-notify bit is set. 

 */ 

  

#include <spu_mfcio.h> 
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struct dma_list_elem { 

    union { 

  unsigned int all32; 

  struct { 

       unsigned nbytes: 31; 

       unsigned stall:  1; 

         } bits; 

    } size; 

    unsigned int ea_low; 

}; 

  

struct dma_list_elem list[16] __attribute__ ((aligned (8))); 

  

void get_large_region(void *dst, unsigned int ea_low, unsigned int nbytes) 

{ 

    unsigned int i = 0; 

    unsigned int tagid = 0; 

    unsigned int listsize; 

  

    /* get_large_region 

     *    Use a single DMA list command request to transfer 

     *    a "large" memory region into LS. The total size to 

     *    be copied may be larger than the MFC’s single element 

     *    transfer limit of 16kb. 

     */ 

  

    if (!nbytes) 

 return; 

  

    while (nbytes > 0) { 

  unsigned int sz; 

  

  sz = (nbytes < 16384) ? nbytes : 16384; 

  list[i].size.all32 = sz; 

  list[i].ea_low = ea_low; 

  

  nbytes -= sz; 

  ea_low += sz; 

  i++; 

    } 

  

  

/* Specify the list size and initiate the list transfer 

 */ 

  

    listsize = i * sizeof(struct dma_list_elem); 

    spu_mfcdma32(dst, (unsigned int) &list[0], listsize, tagid, MFC_GETL_CMD); 

} 

Moving double-buffered data 

SPE programs use DMA  transfers to move data and instructions between main 

storage and the local store (LS) in the SPE. 

Consider an SPE program that requires large amounts of data from main storage. 

The following is a simple scheme to achieve that data transfer: 

1.   Start a DMA  data transfer from main storage to buffer B in the LS. 

2.   Wait for the transfer to complete. 

3.   Use the data in buffer B. 

4.   Repeat.

This method wastes a great deal of time waiting for DMA transfers to complete. 

We can speed up the process significantly by allocating two buffers, B0 

and B1 

, and 
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overlapping computation on one buffer with data transfer in the other. This 

technique is called double buffering. Figure 26 shows a flow diagram for this double 

buffering scheme. 

Double buffering is a form of multibuffering, which is the method of using multiple 

buffers in a circular queue to overlap processing and data transfer. 

 

The following C-language example illustrates double buffering: 

/* Example C code demonstrating double buffering using 

 * buffers B[0] and B[1]. In this example, an array of data 

 * starting at the effective address eahi|ealow is DMAed 

 * into the SPU’s local store in 4-KB chunks and processed 

 * by the use_data subroutine. 

 */ 

#include <spu_intrinsics.h> 

#include "spu_mfcio.h" 

  

#define BUFFER_SIZE  4096 

  

volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128))); 

  

void double_buffer_example(unsigned int eahi, unsigned int ealow, int buffers) 

{ 

  int next_idx, buf_idx = 0; 

  

  // Initiate DMA transfer 

  spu_mfcdma64(B[buf_idx], eahi, ealow, BUFFER_SIZE, buf_idx, MFC_GET_CMD); 

  ealow += BUFFER_SIZE; 

  

  while (--buffers) { 

    next_idx = buf_idx  ̂ 1; 

  

    // Initiate next DMA transfer 

    spu_mfcdma64(B[next_idx], eahi, ealow, BUFFER_SIZE, next_idx, MFC_GET_CMD); 

    ealow += BUFFER_SIZE; 

  

    // Wait for previous transfer to complete 

    spu_writech(MFC_WrTagMask, 1 << buf_idx); 

    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  

    // Use the data from the previous transfer 

    use_data(B[buf_idx]); 

 

  

Figure 26. DMA  transfers using a double-buffering method
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buf_idx = next_idx; 

  } 

  

  // Wait for last transfer to complete 

  spu_writech(MFC_WrTagMask, 1 << buf_idx); 

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  

  // Use the data from the last transfer 

  use_data(B[buf_idx]); 

} 

Note: The above example is hardcoded to use tag ids 0 and 1. Applications are 

encouraged to use the tag manager functions to reserve tag ids for cooperative 

allocations of tags between independent software components. 

To use double buffering effectively, follow these rules for DMA transfers on the 

SPE: 

v   Use multiple LS buffers. 

v   Use unique DMA tag IDs, one for each LS buffer or logical group of LS buffers. 

v   Use fenced command options to order the DMA transfers within a tag group. 

v   Use barrier command options to order DMA transfers within the MFC’s DMA  

controller. 

The purpose of double buffering is to maximize the time spent in the compute 

phase of a program and minimize the time spent waiting for DMA transfers to 

complete. Let τt 

represent the time required to transfer a buffer B, and let τc 

represent the time required to compute on data contained in that buffer. In general, 

the higher the ratio τt/τc, the more performance benefit an application will realize 

from a double-buffering scheme. 

Vectorizing  a loop 

A compiler that automatically merges scalar data into a parallel-packed SIMD data 

structure is called an auto-vectorizing compiler. Such compilers must handle all the 

high-level language constructs, and therefore do not always produce optimal code. 

A simple example of vectorizing a loop is shown below. The original loop 

multiplies two arrays, term by term. The arrays are assumed to remain scalar 

outside of the subroutine vmult. 

/* Scalar version */ 

int mult(float *array1, float *array2, float *out, int arraySize) { 

 int i; 

 for (i = 0; i < arraySize; i++) { 

  out[i] = array1[i] * array2[i]; 

 } 

 return 0; 

} 

  

/* Vectorized version */ 

int vmult(float *array1, float *array2, float *out, int arraySize) { 

 /* This code assumes that the arrays are quadword-aligned. */ 

 /* This code assumes that the arraySize is divisible by 4. */ 

  

 int i, arraySizebyfour; 

 arraySizebyfour = arraySize >> 2;     /* arraySize/4 vectors */ 

 vector float *varray1 = (vector float *) (array1); 

 vector float *varray2 = (vector float *) (array2); 

 vector float *vout = (vector float *) (out); 

  

 for (i = 0; i < arraySizebyfour; i++) {
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/*spu_mul is an intrinsic that multiplies vectors */ 

  vout[i] = spu_mul(varray1[i], varray2[i]); 

 } 

  

 return 0; 

} 

Reducing the impact of branches 

The SPU hardware assumes linear instruction flow, and produces no stall penalties 

from sequential instruction execution. A branch instruction has the potential of 

disrupting the assumed sequential flow. 

Correctly predicted branches execute in one cycle, but a mispredicted branch 

(conditional or unconditional) incurs a penalty of approximately 18-19 cycles. 

Considering the typical SPU instruction latency of two-to-seven cycles, 

mispredicted branches can seriously degrade program performance. Branches also 

create scheduling barriers, reducing the opportunity of for dual issue and covering 

up dependency stalls. 

The most effective means of reducing the impact of branches is to eliminate them 

using three primary methods — inlining, unrolling, and predication. The next 

effective means of reducing the impact of branches is to use the branch-hint 

instructions. 

If a branch hint is provided, software speculates that the instruction branches to 

the target path. If a hint is not provided, software speculates that the branch is not 

taken (that is, instruction execution continues sequentially). If either speculation is 

incorrect, there is a large penalty (flush and refetch). 

Function-inlining and loop-unrolling 

Function-inlining and loop-unrolling are two techniques often used to increase the 

size of basic blocks (sequences of consecutive instructions without branches), which 

increases scheduling opportunities. 

Function-inlining eliminates the two branches associated with function-call linkage. 

These include the branch and set link for function-call entry, and the branch 

indirect for function-call return. 

Loop-unrolling eliminates branches by decreasing the number of loop iterations. 

Loop unrolling can be manual, compiler directed, or compiler automated. Typically, 

branches associated with looping are inexpensive because they are highly 

predictable. However, if a loop can be fully unrolled, then all branches can be 

eliminated—including the final nonpredicted branch. 

Care should be taken when exploiting function inlining and loop unrolling. 

Over-aggressive use of these techniques can result in code that is too large to fit in 

the LS. 

Predication using select-bits instruction 

The select-bits (selb) instruction is the key to eliminating branches for simple 

control-flow statements (for example, if and if-then-else constructs). An 

if-then-else statement can be made branchless by computing the results of both 

the then and else clauses and using select bits (selb) to choose the result as a 

function of the conditional. 

If computing both the results costs less than a mispredicted branch, then there are 

additional savings. 
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For example, consider the following simple if-then-else statement: 

unsigned int a, b, c; 

 ... 

if (a > b)   d += a; 

else         d += 1; 

This code sequence, when directly converted to an SPU instruction sequence 

without branch optimizations, would look like: 

 clgt  cc, a, b 

 brz  cc, else 

then: 

 a  d, d, a 

 br  done 

else: 

 ai  d, d, 1 

done: 

Using the select bits instruction, this simple conditional becomes: 

 clgt   cc, a, b                   /* compute the greater-than condition */ 

 a      d_plus_a, d, a             /* add d + a */ 

 ai     d_plus_1, d, 1             /* add d + 1 */ 

 selb   d, d_plus_1, d_plus_a, cc  /* select proper result */ 

This example shows: 

v   Both branches were eliminated, and the correct result was placed in d . 

v   New registers were needed to maintain potential values of d (d_plus_a and 

d_plus_1 ). This does not put significant pressure on the register file because the 

register file is so large and the life of these variables is very short. 

v   The rewritten code sequence is smaller. 

v   The latency of the operations permits the scheduler to cover most of the cost of 

computing both conditions. Further scheduling these instructions with those 

before and after this code sequence will likely improve performance even 

further.

Here is another example of using the select bit — this time with C intrinsics. This 

code fragment shows how to use SPU intrinsics, including spu_cmpgt , spu_add , 

and spu_sel , to eliminate conditional branches. 

The following sequence generates four instructions, assuming a, b, c are already in 

registers (because we are promoting and extracting to and from the preferred 

integer element, the spu_promote and spu_extract intrinsics produce no additional 

instructions): 

        unsigned int a,b,c; 

        vector unsigned int vc1, vab, va, vb, vc; 

  

        va = spu_promote(a, 0); 

        vb = spu_promote(b, 0); 

        vc = spu_promote(c, 0); 

        vc1 = spu_add(vc, 1); 

        vab = spu_add(va, vb); 

        vc  = spu_sel(vab, vc1, spu_cmpgt(va, vb)); 

        c = spu_extract(vc, 0); 

Reducing branch mispredicts with branch hint 

General-purpose processors have typically addressed branch prediction by 

supporting hardware look-asides with branch history tables (BHT), branch target 

address caches (BTAC), or branch target instruction caches (BTIC). 
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The SPU addresses branch prediction through a set of hint for branch (HBR) 

instructions that facilitate efficient branch processing by allowing programs to 

avoid the penalty of taken branches. 

v   If a branch hint is provided, software speculates that the instruction branches to 

the target path. 

v   If a hint is not provided, software speculates that the instruction does not branch 

to a new location (that is, it stays inline). 

v   If speculation is incorrect, the speculated branch is flushed and refetched.

It  is possible to sequence multiple hints in advance of multiple branches. As with 

all programmer-provided hints, care must be exercised when using branch hints 

because, if the information provided is incorrect, performance might degrade. 

Branch-hint instructions can provide three kinds of advance knowledge about 

future branches: 

v   Address of the branch target (that is, where will the branch take the flow of 

control) 

v   Address of the actual branch instruction (known as the hint-trigger address ) 

v   Prefetch schedule (when to initiate prefetching instructions at the branch target)

Branch-hint instructions load a branch-target buffer (BTB) in the SPU. When the 

BTB is loaded with a branch target, the hint-trigger address and branch address are 

also loaded into the BTB. After loading, the BTB monitors the instruction stream as 

it goes into the issue stage of the pipeline. When the address of the instruction 

going into issue matches the hint trigger address, the hint is triggered, and the 

SPU speculates to the target address in the hint buffer. 

Branch-hint instructions have no program-visible effects. They provide a hint to the 

SPE architecture about a future branch instruction, with the intention that the 

information be used to improve performance by prefetching the branch target. The 

SPE branch-hint instructions are shown in Table 30. There are immediate and 

indirect forms for this instruction class. The location of the branch is always 

specified by an immediate operand in the instruction. 

 Table 30. Branch-Hint Instructions 

Instruction Description 

hbr s11, ra Hint for branch (r-form). Hint that the instruction addressed by 

the sum of the address of the current instruction and the signed 

extended, 11-bit value s11 will branch to the address contained in 

word element 0 of register ra. This form is used to hint function 

returns, pointer function calls, and other situations that give rise 

to indirect branches. 

hbra s11, s18 Hint for branch (a-form). Hint that the instruction addressed by 

the sum of the address of the current instruction and the signed 

extended, 11-bit value s11 will branch to the address specified by 

the sign extended, 18-bit value s18. 

hbrr s11, s18 Hint for branch relative. Hint that the instruction addressed by the 

sum of the address of the current instruction and the signed 

extended, 11-bit value s11 will branch to the address specified by 

the sum of the address of the current instruction and sign 

extended, 18-bit value s18.
  

The following rules apply to the hint for branch (HBR) instructions: 
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v   An HBR instruction should be placed at least 11 cycles followed by four 

instruction pairs before the branch instructions being hinted by the HBR 

instruction. In other words, an HBR instruction must be followed by at least 11 

cycles of instructions, followed by eight instructions aligned on an even address 

boundary. More separation between the hint and branch improves the 

performance of applications on future SPU implementations. 

v   If an HBR instruction is placed too close to the branch, then a hint stall will 

result. This results in the branch instruction stalling until the timing requirement 

of the HBR instruction is satisfied. 

v   If an HBR instruction is placed closer to the hint-trigger address than four 

instruction pairs plus one cycle, then the hint stall does not occur and the HBR 

is not used. 

v   Only one HBR instruction can be active at a time. Issuing another HBR cancels 

the current one. 

v   An HBR instruction can be moved outside of a loop and will be effective on 

each loop iteration as long as another HBR instruction is not executed. 

v   The HBR instruction must be placed within 255 instructions of the branch 

instruction. 

v   The HBR instruction only affects performance. 

The HBR instructions can be used to support multiple strategies of branch 

prediction. These include: 

v   Static Branch Prediction — Prediction based upon branch type or displacement, 

and prediction based upon profiling or linguistic hints. 

v   Dynamic Branch Prediction — Software caching of branch-target addresses, and 

using control flow to record branching history. 

A common approach to generating static branch prediction is to use expert 

knowledge that is obtained either by feedback-directed optimization techniques or 

using linguistic hints supplied by the programmer. 

The document C/C++ Language Extensions for Cell Broadband Engine Architecture 

defines a mechanism for directing branch prediction. The __builtin_expect 

directive allows programmers to predict conditional program statements. The 

following example demonstrates how a programmer can predict that a conditional 

statement is false (a is not larger than b). 

 if(__builtin_expect((a>b),0)) 

   c += a; 

 else 

   d += 1; 

Not only can the __builtin_expect directive be used for static branch prediction, it 

can be used for dynamic branch prediction. 

Porting SIMD code from the PPE to the SPEs 

For some, it is easier to write SIMD programs by writing them first for the PPE, 

and then porting them to the SPEs. This approach postpones some SPE-related 

considerations of dealing with the local store (LS) size, data movements, and 

debug until after the port. The approach can also allow partitioning of the work 

into simpler (perhaps more digestible) steps on the SPEs. 

After the Vector/SIMD Multimedia Extension code is working properly on the 

PPE, a strategy for parallelizing the algorithm across multiple SPEs can be 
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developed. This is often, but not always, a data-partitioning method. The effort 

might involve converting from Vector/SIMD Multimedia Extension intrinsics to 

SPU intrinsics, adding data-transfer and synchronization constructs, and tuning for 

performance. It might be useful to test the impact of various techniques, such as 

DMA double buffering, loop unrolling, branch elimination, alternative intrinsics, 

number of SPEs, and so forth. Debugging tools such as the static timing-analysis 

tool and the IBM Full System Simulator for the Cell Broadband Engine are available 

to assist this effort, as described in “Performance analysis” on page 106. 

Alternatively, experienced Cell Broadband Engine programmers may prefer to skip 

the Vector/SIMD Multimedia Extension coding phase and go directly to SPU 

programming. In some cases, SIMD programming can be easier on an SPE than the 

PPE because of the SPE’s unified register file. 

The earlier chapters in this tutorial describe the Vector/SIMD Multimedia 

Extension and SPU programming environments and some of their differences. 

Armed with knowledge of these differences, one can devise a strategy for 

developing code that is portable between the PPE and the SPEs. The strategy one 

should employ depends upon the type of instructions to be executed, the variety of 

vector data types, and the performance objectives. Solutions span the range of 

simple macro translation to full functional mapping. 

Code-mapping considerations 

There are several challenges associated with mapping code designed for one 

instruction set and compiled for another instruction set. These including 

performance, unmappable constructs, limited size of LS, and equivalent precision, 

as described in this section. 

Code-mapping performance considerations 

Simple remapping of low-level intrinsics can result in less-than-optimal 

performance, depending upon the intrinsics used. 

Understanding the dynamic range of the remapping’s operands can reduce the 

performance impact of simple remapping. 

Unmappable constructs considerations 

Differences in the processing of intrinsics make simple translation of certain 

intrinsics unmappable. 

The unmappable SPU intrinsics include: 

v   stop and stopd 

v   conditional halt 

v   interrupt enable and disable 

v   move to and from status control and special-purpose registers 

v   channel instructions 

v   branch on external data

Limited size of LS considerations 

Vector/SIMD Multimedia Extension programs mapped to SPU programs might not 

fit within the LS of the SPE, either because the program is initially too big or 

because mapping expands the code. 
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Equivalent precision considerations 

The SPU instruction set does not fully implement the IEEE 754 single-precision 

floating-point standard (default rounding mode is round to zero , denormals are 

treated as zero, and there are no infinities or NaNs). 

Therefore, floating-point results on an SPE may differ slightly from floating-point 

results using the PPE’s PowerPC instruction set. In addition, all estimation 

intrinsics (for example, ceiling, floor, reciprocal estimate, reciprocal square root 

estimate, exponent estimate, and log estimate) do not have equivalent accuracy on 

the SPU and PPE PowerPC instruction sets. 

However, the instructions in the PPE’s Vector/SIMD Multimedia Extension have a 

graphics rounding mode that allows programs written with Vector/SIMD Multimedia 

Extension instructions to produce floating-point results that are equivalent in 

precision to those written in the SPU instruction set. In this Vector/SIMD 

Multimedia Extension mode, as in the SPU environment, the default rounding 

mode is round to zero, denormals are treated as zero, and there are no infinities or 

NaNs. 

Details on the graphics rounding mode can be found in Cell Broadband Engine, 

Programming Handbook. 

Simple macro translation 

For many programs, it is possible to use a simple macro translation strategy for 

developing code that is portable between the Vector/SIMD Multimedia Extension 

and SPU instruction sets. 

The keys to simple macro translation are: 

v   Use a Compatible Vector-Literal Construction Format — The PPE Vector/SIMD 

Multimedia Extension and the SPE’s SPU instruction set specifies two styles of 

constructing literal vectors: curly brace and parenthesis. Some compilers support 

both styles. A set of construction macros can be used to insulate programs from 

any differences in the tools. 

v   Use Single-Token Vector Data Types — The C/C++ Language Extensions for Cell 

Broadband Engine Architecture document specifies a set of single-token vector data 

types. Because these are single-token, the data types can be easily redefined by a 

preprocessor to the desired target processor. Additional single-token data types 

must be standardized for the unique Vector/SIMD Multimedia Extension data 

types. Table 31 lists the data types. See also: 

–   Table 22 on page 73. 

–   Table 23 on page 74.

 Table 31. Vector/SIMD Multimedia Extension Single-Token Data Types 

Vector Data Type Single-Token Data Type 

vector bool char vec_bchar16 

vector bool short vec_bshort8 

vector bool int vec_bint4 

vector pixel vec_pixel8
  

v   Use Intrinsics that Map  One-to-One — Regardless of the technique used to provide 

portability, performance will be optimized if the operations map one-to-one 

between Vector/SIMD Multimedia Extension intrinsics and SPU intrinsics. 
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The SPU intrinsics that map one-to-one with Vector/SIMD Multimedia Extension 

(except for the specific intrinsics described in “Specific intrinsics” on page 66) 

are shown in Table 32. 

The Vector/SIMD Multimedia Extension intrinsics that map one-to-one with SPU 

are shown in Table 33. 

 Table 32. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping 

SPU Intrinsic 

Vector/SIMD 

Multimedia 

Extension Intrinsic For Data Types 

spu_add vec_add vector operands only, no scalar operands 

spu_and vec_and vector operands only, no scalar operands 

spu_andc vec_andc all 

spu_avg vec_avg all 

spu_cmpeq vec_cmpeq vector operands only, no scalar operands 

spu_cmpgt vec_cmpgt vector operands only, no scalar operands 

spu_convtf vec_ctf limited scale range (5 bits) 

spu_convts vec_cts limited scale range (5 bits) 

spu_convtu vec_ctu limited scale range (5 bits) 

spu_extract vec_extract all 

spu_genc vec_addc all 

spu_insert vec_insert all 

spu_madd vec_madd float only 

spu_mulhh vec_mule all 

spu_mulo vec_mulo halfword vector operands only, no scalar 

operands 

spu_nmsub vec_nmsub float only 

spu_nor vec_nor all 

spu_or vec_or vector operands only, no scalar operands 

spu_promote vec_promote all 

spu_re vec_re all 

spu_rl vec_rl vector operands only, no scalar operands 

spu_rsqrte vec_rsqrte all 

spu_sel vec_sel all 

spu_splats vec_splats all 

spu_sub vec_sub vector operands only, no scalar operands 

spu_genb vec_subc vector operands only, no scalar operands 

spu_xor vec_xor vector operands only, no scalar operands
  

 Table 33. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping 

Vector/SIMD 

Multimedia Extension 

Intrinsic SPU Intrinsic For Data Types 

vec_add spu_add halfwords, words, and floats only (not 

bytes) 
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Table 33. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU 

Mapping (continued) 

Vector/SIMD 

Multimedia Extension 

Intrinsic SPU Intrinsic For Data Types 

vec_addc spu_genc all 

vec_and spu_and all 

vec_andc spu_andc all 

vec_avg spu_avg unsigned chars only 

vec_cmpeq spu_cmpeq all 

vec_cmpgt spu_cmpgt all 

vec_ctf spu_convtf all 

vec_cts spu_convts all 

vec_ctu spu_convtu all 

vec_extract spu_extract all 

vec_insert spu_insert all 

vec_madd spu_madd all 

vec_mulo spu_mulo halfwords only (not bytes) 

vec_nmsub spu_nmsub all 

vec_nor spu_nor all 

vec_or spu_or all 

vec_promote spu_promote all 

vec_re spu_re all 

vec_rl spu_rl halfwords and words only (not bytes) 

vec_rsqrte spu_rsqrte all 

vec_sel spu_sel all 

vec_splats spu_splats all 

vec_sub spu_sub halfwords, words, and floats only 

vec_subc spu_genb all 

vec_xor spu_xor all
  

Note: The toolchain contains headers files of overloaded C++ functions that can 

used to assist in mapping or porting of Vector/SIMD Multimedia Extension 

intrinsics to SPU intrinsics, and vice-versa.

Example 1: Euler particle-system simulation 

This programming example illustrates many of the concepts discussed earlier in 

this chapter. 

It can be found in the SDK under: 

 /opt/cell/sdk/src/tutorial/euler 

This example — a simple Euler-based particle-system simulation — illustrates the 

following steps involved in coding for the Cell Broadband Engine: 

1.   Transform scaler code to vector code (SIMDize) for execution on the PPE’s VXU. 
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2.   Port the code for execution on the SPE’s SPU unit. 

3.   Parallelize the code for execution across multiple SPEs.

A  subsequent step — tuning the code for performance on the SPE — is covered in 

“Performance analysis” on page 106. The above steps are only one example of 

coding for the Cell Broadband Engine. The steps can be reordered or combined, 

depending upon the skill and comfort level of the programmer. 

This example shows a particle-system simulation using numerical integration 

techniques to animate a large set of particles. Numerical integration is 

implemented using Euler’s method of integration. It computes the next value of a 

function of time, F(t), by incrementing the current value of the function by the 

product of the time step and the derivative of the function: 

 F(t + dt) = F(t) + dt*F’(t); 

Our simple particle system consists of: 

v   An array of 3-D positions for each particle (pos[]) 

v   An array of 3-D velocities for each particle (vel[]) 

v   An array of masses for each particle (mass[]) 

v   A force vector that varies over time (force)

This programming example is intended to illustrate programming concepts for the 

Cell Broadband Engine, and is not meant to be a physically realistic simulation. 

For example, it does not consider: 

v   how the time-variant force function and the time step, dt, is computed (instead, 

the example treats them as constants). 

v   particle collisions.

In addition, we assume that all 3-D vectors (x,y,z) are expressed as 4-D 

homogeneous coordinates (x,y,z,1). 

Initial scalar code 

The following code shows a C implementation of the Euler algorithm, 

implemented for a uniprocessor using scalar data. There are no intrinsics calls in 

this listing. 

#define END_OF_TIME     10 

#define PARTICLES       100000 

  

typedef struct { 

  float x, y, z, w; 

} vec4D; 

  

vec4D pos[PARTICLES];         // particle positions 

vec4D vel[PARTICLES];         // particle velocities 

vec4D force;                  // current force being applied to the particles 

float inv_mass[PARTICLES];    // inverse mass of the particles 

float dt = 1.0f;              // step in time 

  

int main() 

{ 

  int i; 

  float time; 

  float dt_inv_mass; 

  

  // For each step in time 

  for (time=0; time<END_OF_TIME; time += dt) { 

    // For each particle 

    for (i=0; i<PARTICLES; i++) {
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// Compute the new position and velocity as acted upon by the force f. 

      pos[i].x = vel[i].x * dt + pos[i].x; 

      pos[i].y = vel[i].y * dt + pos[i].y; 

      pos[i].z = vel[i].z * dt + pos[i].z; 

  

      dt_inv_mass = dt * inv_mass[i]; 

  

      vel[i].x = dt_inv_mass * force.x + vel[i].x; 

      vel[i].y = dt_inv_mass * force.y + vel[i].y; 

      vel[i].z = dt_inv_mass * force.z + vel[i].z; 

    } 

  } 

  return (0); 

} 

Step 1: SIMDize the code for execution on the PPE 

There are multiple strategies for SIMDizing code for execution either on the PPE’s 

VXU or on an SPE’s SPU unit. The technique chosen depends upon the type of 

data being operated on and the interdependencies of the data computations. 

There are several strategies to consider: 

v   Let the Compiler Do It — This will work effectively for some code samples (like 

this simple example), but it tends to be unsuccessful for more complicated code. 

Results will vary depending upon the algorithm, the language the code is 

expressed in, coding style, and capabilities of the compiler. 

v   Array-of-Structures (AOS) Form — This is the most common technique when the 

input data is naturally expressed as a vector (also call vector-across form). 3-D 

graphic applications express geometry as 3-component or 4-component vectors. 

These components naturally fit within a 4-component, single-precision 

floating-point vector. See also Figure 24 on page 63. 

v   Structure-of-Arrays (SOA) Form — In this form, you collect the individual 

elements of the natural vectors into separate arrays (also called parallel-array 

form). The code is then written as if it were to execute scalar instructions, but it 

will be executing SIMD instructions. This results in code that computes four 

single-precision floats results simultaneously. See also Figure 25 on page 64. 

v   Hybrid Forms — Often it is important that the input vector format remain 

unchanged. But SOA solutions are easier to code and more efficient than the 

AOS solutions. In this case, one can: 

v   Input the data in its natural, AOS form. 

v   Transform each data element on the fly into SOA form, using either the vec_perm 

(Vector/SIMD Multimedia Extension) or the spu_shuffle (SPU) intrinsic. 

v   Perform computation using the SOA technique. 

v   Translate each output back into its natural, AOS form. 

Assuming the compiler auto-SIMDization is either unavailable or ineffective, you 

must adjust the data structures for efficient SIMD access. This decision cannot be 

made without also considering the SPE data-accessing method and the 

data-parallelization method. In addition, data should be aligned or padded for 

efficient quadword accesses, using the aligned attribute. 

Step 1a: SIMDize in Array-of-Structures Form for Vector/SIMD Multimedia 

Extension 

The following example shows how to SIMDize in the AOS form. Vector/SIMD 

Multimedia Extension intrinsics are used, and they can be identified by their prefix 
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vec_. The algorithm assumes that the number of particles is a multiple of four. 

Special code must be included to handle the last number of particles that is not a 

multiple of four. 

#define END_OF_TIME     10 

#define PARTICLES       100000 

  

typedef struct { 

  float x, y, z, w; 

} vec4D; 

vec4D pos[PARTICLES] __attribute__ ((aligned (16))); 

vec4D vel[PARTICLES] __attribute__ ((aligned (16))); 

vec4D force __attribute__ ((aligned (16))); 

float inv_mass[PARTICLES] __attribute__ ((aligned (16))); 

float dt __attribute__ ((aligned (16))) = 1.0f; 

  

int main() 

{ 

  int i; 

  float time; 

  float dt_inv_mass __attribute__ ((aligned (16))); 

  vector float dt_v, dt_inv_mass_v; 

  vector float *pos_v, *vel_v, force_v; 

  vector float zero = (vector float){0.0f, 0.0f, 0.0f, 0.0f}; 

  

  pos_v = (vector float *)pos; 

  vel_v = (vector float *)vel; 

  force_v = *((vector float *)&force); 

  

  // Replicate the variable time step across elements 0-2 of 

  // a floating point vector. Force the last element (3) to zero. 

  dt_v = vec_sld(vec_splat(vec_lde(0, &dt), 0), zero, 4); 

  

  // For each step in time 

  for (time=0; time<END_OF_TIME; time += dt) { 

    // For each particle 

    for (i=0; i<PARTICLES; i++) { 

      // Compute the new position and velocity as acted upon by the force f. 

      pos_v[i] = vec_madd(vel_v[i], dt_v, pos_v[i]); 

  

      dt_inv_mass = dt * inv_mass[i]; 

      dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0); 

  

      vel_v[i] = vec_madd(dt_inv_mass_v, force_v, vel_v[i]); 

    } 

  } 

  return (0); 

} 

Step 1b: : SIMDize in Structure-of-Arrays Form for Vector/SIMD Multimedia 

Extension 

The following example shows how to SIMDize in the SOA form. As in Step 1a, the 

algorithm assumes that the number of particles is a multiple of 4. 

#define END_OF_TIME     10 

#define PARTICLES       100000 

  

typedef struct { 

  float x, y, z, w; 

} vec4D; 

  

// Separate arrays for each component of the vector. 

vector float pos_x[PARTICLES/4], pos_y[PARTICLES/4], pos_z[PARTICLES/4]; 

vector float vel_x[PARTICLES/4], vel_y[PARTICLES/4], vel_z[PARTICLES/4]; 

vec4D force __attribute__ ((aligned (16))); 

float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
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float dt = 1.0f; 

  

int main() 

{ 

  int i; 

  float time; 

  float dt_inv_mass __attribute__ ((aligned (16))); 

  vector float force_v, force_x, force_y, force_z; 

  vector float dt_v, dt_inv_mass_v; 

  

  // Create a replicated vector for each component of the force vector. 

  force_v = *(vector float *)(&force); 

  force_x = vec_splat(force_v, 0); 

  force_y = vec_splat(force_v, 1); 

  force_z = vec_splat(force_v, 2); 

  

  // Replicate the variable time step across all elements. 

  dt_v = vec_splat(vec_lde(0, &dt), 0); 

  

  // For each step in time 

  for (time=0; time<END_OF_TIME; time += dt) { 

    // For each particle 

    for (i=0; i<PARTICLES/4; i++) { 

      // Compute the new position and velocity as acted upon by the force f. 

      pos_x[i] = vec_madd(vel_x[i], dt_v, pos_x[i]); 

      pos_y[i] = vec_madd(vel_y[i], dt_v, pos_y[i]); 

      pos_z[i] = vec_madd(vel_z[i], dt_v, pos_z[i]); 

  

      dt_inv_mass = dt * inv_mass[i]; 

      dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0); 

  

      vel_x[i] = vec_madd(dt_inv_mass_v, force_x, vel_x[i]); 

      vel_y[i] = vec_madd(dt_inv_mass_v, force_y, vel_y[i]); 

      vel_z[i] = vec_madd(dt_inv_mass_v, force_z, vel_z[i]); 

    } 

  } 

  return (0); 

} 

Step 2: Port the PPE code for execution on the SPE 

This step entails: (1) creating an SPE thread of execution on the PPE, (2) migrating 

the computation loops from Vector/SIMD Multimedia Extension intrinsics to SPU 

intrinsic, and finally (3) adding DMA transfers to move data in and out of the 

SPE’s local store (LS). 

We assume that the particle data structures cannot be restructured into SOA form. 

Therefore, we use Step 1a from the previous section (the AOS form). SPU intrinsics 

are used, and they can be identified by their prefix spu_. 

Moving the code from the PPE to the SPE requires: 

v   Creating a control-structure, called parameter context, that defines the 

parameters to be computed on the SPE. This includes pointers to the particle 

array data, current force information, and so forth. The pointer to the context 

control-structure defined in the PPE is passed to the SPE thread by using the 

parameter passing mechanism in spe_create_thread. Alternatively, this 

information could have been passed via the mailbox. 

v   Porting the computation for execution on the SPE. The complexity of this 

operation depends upon the types of data and types of intrinsics used. For this 

case, some of the intrinsics only require a simple name translation (for example, 

vec_madd to spu_madd). The translation of the scalar values is a little more 

extensive. 
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v   Adding an additional looping construct to partition the data arrays into smaller 

blocks. This is required because all the data does not fit within the SPE’s local 

store. 

v   Adding DMA transfers to move data in and out of the SPE’s local store.

particle.h: 

#define END_OF_TIME     10 

#define PARTICLES       100000 

  

typedef struct { 

  float x, y, z, w; 

} vec4D; 

  

typedef struct { 

  int particles;        // number of particles to process 

  vector float *pos_v;  // pointer to array of position vectors 

  vector float *vel_v;  // pointer to array of velocity vectors 

  float *inv_mass;      // pointer to array of mass vectors 

  vector float force_v; // force vector 

  float dt;             // current step in time 

} context; 

PPE Makefile: 

######################################################################## 

#                       Subdirectories 

######################################################################## 

  

DIRS  := spu 

  

######################################################################## 

#                       Target 

######################################################################## 

  

PROGRAM_ppu  := euler_spe 

  

######################################################################## 

#                       Local Defines 

######################################################################## 

  

IMPORTS         := spu/lib_particle_spu.a -lspe2 -lpthread 

  

######################################################################## 

#                       make.footer 

######################################################################## 

  

ifdef CELL_TOP 

 include $(CELL_TOP)/buildutils/make.footer 

else 

 include ../../../../../buildutils/make.footer 

endif 

PPE Code: 

#include <stdio.h> 

#include <stdlib.h> 

#include <libspe2.h> 

#include <pthread.h> 

#include "particle.h" 

  

vec4D pos[PARTICLES] __attribute__ ((aligned (16))); 

vec4D vel[PARTICLES] __attribute__ ((aligned (16))); 

vec4D force __attribute__ ((aligned (16))); 

float inv_mass[PARTICLES] __attribute__ ((aligned (16))); 

float dt = 1.0f; 
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extern spe_program_handle_t particle; 

  

typedef struct ppu_pthread_data { 

  spe_context_ptr_t spe_ctx; 

  pthread_t pthread; 

  unsigned int entry; 

  void *argp; 

} ppu_pthread_data_t; 

  

  

void *ppu_pthread_function(void *arg) { 

  ppu_pthread_data_t *datap = (ppu_pthread_data_t *)arg; 

  

  if (spe_context_run(datap->spe_ctx, &datap->entry, 0, 

    datap->argp, NULL, NULL) < 0) { 

    perror ("Failed running context\n"); 

    exit (1); 

  } 

  pthread_exit(NULL); 

} 

  

int main() 

{ 

  ppu_pthread_data_t data; 

  parm_context ctx __attribute__ ((aligned (16))); 

  

  ctx.particles = PARTICLES; 

  ctx.pos_v = (vector float *)pos; 

  ctx.vel_v = (vector float *)vel; 

  ctx.force_v = *((vector float *)&force); 

  ctx.inv_mass = inv_mass; 

  ctx.dt = dt; 

  

  /* Create a SPE context */ 

  if ((data.spe_ctx = spe_context_create (0, NULL)) == NULL) { 

    perror ("Failed creating context"); 

    exit (1); 

  } 

  /* Load SPE program into the SPE context*/ 

  if (spe_program_load (data.spe_ctx, &particle))  { 

    perror ("Failed loading program"); 

    exit (1); 

  } 

  /* Initialize context run data */ 

  data.entry = SPE_DEFAULT_ENTRY; 

  data.argp = &ctx; 

  /* Create pthread for each of the SPE contexts */ 

  if (pthread_create (&data.pthread, NULL, &ppu_pthread_function, &data)) { 

    perror ("Failed creating thread"); 

    exit (1); 

  } 

  /* Wait for the threads to complete */ 

  if (pthread_join (data.pthread, NULL)) { 

    perror ("Failed joining thread\n"); 

    exit (1); 

  } 

  return (0); 

} 

SPE Makefile: 

######################################################################## 

#   Target 

######################################################################## 

  

PROGRAM_spu      := particle 

LIBRARY_embed    := lib_particle_spu.a
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######################################################################## 

#   Local Defines 

######################################################################## 

  

INCLUDE   := -I .. 

  

######################################################################## 

#   make.footer 

######################################################################## 

  

ifdef CELL_TOP 

 include $(CELL_TOP)/buildutils/make.footer 

else 

 include ../../../../../../buildutils/make.footer 

endif 

SPE Code: 

#include <spu_intrinsics.h> 

#include <spu_mfcio.h> 

#include "particle.h" 

  

#define PARTICLES_PER_BLOCK             1024 

  

// Local store structures and buffers. 

volatile context ctx; 

volatile vector float pos[PARTICLES_PER_BLOCK]; 

volatile vector float vel[PARTICLES_PER_BLOCK]; 

volatile float inv_mass[PARTICLES_PER_BLOCK]; 

  

int main(unsigned long long spe_id, unsigned long long parm) 

{ 

  int i, j; 

  int left, cnt; 

  float time; 

  unsigned int tag_id; 

  vector float dt_v, dt_inv_mass_v; 

  

 /* Reserve a tag ID */ 

  tag_id = mfc_tag_reserve(); 

  

  spu_writech(MFC_WrTagMask, -1); 

  

  // Input parameter parm is a pointer to the particle context. 

  // Fetch the context, waiting for it to complete. 

  spu_mfcdma32((void *)(&ctx), (unsigned int)parm, sizeof(context), 

    tag_id, MFC_GET_CMD); 

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  

  dt_v = spu_splats(ctx.dt); 

  

  // For each step in time 

  for (time=0; time<END_OF_TIME; time += ctx.dt) { 

    // For each block of particles 

    for (i=0; i<ctx.particles; i+=PARTICLES_PER_BLOCK) { 

      // Determine the number of particles in this block. 

      left = ctx.particles - i; 

      cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK; 

  

      // Fetch the data - position, velocity, inverse_mass. Wait for DMA to 

      // complete before performing computation. 

      spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt * 

        sizeof(vector float), tag_id, MFC_GET_CMD); 

      spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt * 

        sizeof(vector float), tag_id, MFC_GET_CMD); 

      spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx.inv_mass+i), cnt *
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sizeof(float), tag_id, MFC_GET_CMD); 

      (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  

      // Compute the step in time for the block of particles 

      for (j=0; j<cnt; j++) { 

        pos[j] = spu_madd(vel[j], dt_v, pos[j]); 

        dt_inv_mass_v = spu_mul(dt_v, spu_splats(inv_mass[j])); 

        vel[j] = spu_madd(dt_inv_mass_v, ctx.force_v, vel[j]); 

      } 

  

      // Put the position and velocity data back into main storage 

      spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt * 

        sizeof(vector float), tag_id, MFC_PUT_CMD); 

      spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt * 

        sizeof(vector float), tag_id, MFC_PUT_CMD); 

    } 

  } 

  // Wait for final DMAs to complete before terminating SPE thread. 

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  return (0); 

} 

Step 3: Parallelize code for execution across multiple SPEs 

The most common and practical method of parallelizing computation across 

multiple SPEs is to partition the data. This works well for applications with little 

or no data dependency. 

In our example, we can partition the Euler integration of the particle equally 

among the available SPEs. If there are four available SPEs, then the first quarter of 

the particles is processed by the first SPE, the second quarter of the particles is 

processed by the second SPE, and so forth. 

The SPE code for this step is the same as that in Step 2, so only the PPE code is 

shown below. 

PPE Code: 

#include <stdio.h> 

#include <stdlib.h> 

#include <libspe2.h> 

#include <pthread.h> 

#include "particle.h" 

  

#define MAX_SPE_THREADS  16 

  

vec4D pos[PARTICLES] __attribute__ ((aligned (16))); 

vec4D vel[PARTICLES] __attribute__ ((aligned (16))); 

vec4D force __attribute__ ((aligned (16))); 

float inv_mass[PARTICLES] __attribute__ ((aligned (16))); 

float dt = 1.0f; 

  

extern spe_program_handle_t particle; 

  

typedef struct ppu_pthread_data { 

  spe_context_ptr_t spe_ctx; 

  pthread_t pthread; 

  unsigned int entry; 

  void *argp; 

} ppu_pthread_data_t; 

  

void *ppu_pthread_function(void *arg) { 

  ppu_pthread_data_t *datap = (ppu_pthread_data_t *)arg; 

  

  if (spe_context_run(datap->spe_ctx, &datap->entry, 0, datap->argp, NULL, 

    NULL) < 0)                        {
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perror ("Failed running context\n"); 

    exit (1); 

  } 

  pthread_exit(NULL); 

} 

  

  

int main() 

{ 

  int i, offset, count, spe_threads; 

  ppu_pthread_data_t datas[MAX_SPE_THREADS]; 

  parm_context ctxs[MAX_SPE_THREADS] __attribute__ ((aligned (16))); 

  

/* Determine the number of SPE threads to create */ 

  spe_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1); 

  if (spe_threads > MAX_SPE_THREADS) spe_threads = MAX_SPE_THREADS; 

  

/* Create multiple SPE threads */ 

  for (i=0, offset=0; i<spe_threads; i++, offset+=count) { 

    /* Construct a parameter context for each SPE. Make sure 

     * that each SPEs (excluding the last) particle count is a multiple 

     * of 4 so that inv_mass context pointer is always quadword aligned. 

     */ 

    count = (PARTICLES / spe_threads + 3) & ~3; 

    ctxs[i].particles = (i==(SPE_THREADS-1)) ? PARTICLES - offset : count; 

    ctxs[i].pos_v = (vector float *)&pos[offset]; 

    ctxs[i].vel_v = (vector float *)&vel[offset]; 

    ctxs[i].force_v = *((vector float *)&force); 

    ctxs[i].inv_mass = &inv_mass[offset]; 

    ctxs[i].dt = dt; 

  

    /* Create SPE context */ 

    if ((datas[i].spe_ctx = spe_context_create (0, NULL)) == NULL) { 

        perror ("Failed creating context"); 

        exit (1); 

    } 

    /* Load SPE program into the SPE context */ 

    if (spe_program_load (datas[i].spe_ctx, &particle)) { 

      perror ("Failed loading program"); 

      exit (1); 

    } 

    /* Initialize context run data */ 

    datas[i].entry = SPE_DEFAULT_ENTRY; 

    datas[i].argp = &ctxs[i]; 

  

    /* Create pthread for each of the SPE conexts */ 

    if (pthread_create (&datas[i].pthread, NULL, &ppu_pthread_function, 

      &datas[i])){ 

      perror ("Failed creating thread"); 

    } 

  } 

  

  /* Wait for all the SPE threads to complete.*/ 

  for (i=0; i<spe_threads; i++) { 

    if (pthread_join (datas[i].pthread, NULL)) { 

      perror ("Failed joining thread"); 

      exit (1); 

    } 

  } 

  

  return (0); 

} 

Now that the program has been migrated to the SPEs, you can analyze and tune 

its performance. This is discussed in “Performance analysis” on page 106. 
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Performance analysis 

After a Cell Broadband Engine program executes without errors on the PPE and 

the SPEs, optimization through parameter-tuning can begin. 

Programmers typically tune for performance using algorithmic methods. This is 

important for SPE programming also. But equally important for SPE programming 

is performance tuning through the elimination of stalls. There are two forms of 

stalls to consider: 

v   instruction dependency stalls, and 

v   data stalls.

Instruction stalls can be analyzed statically or dynamically. 

Performance issues 

Two software tools are available in the SDK to assist in measuring the performance 

of programs: the spu-timing static timing analyzer, and the IBM Full System 

Simulator for the Cell Broadband Engine. 

The spu-timing analyzer performs a static timing analysis of a program by 

annotating its assembly instructions with the instruction-pipeline state. This 

analysis is useful for coarsely spotting dual-issue rates (odd and even pipeline use) 

and assessing what program sections may be experiencing instruction-dependency 

and data-dependency stalls. It is useful, for example, for determining whether or 

not dependencies might be mitigated by unrolling, or whether reordering of 

instructions or better placement of no-ops will improve the dual-issue behavior in 

a loop. However, static analysis outputs typically do not provide numerical 

performance information about program execution. Thus, it cannot report anything 

definitive about cycle counts, branches taken or not taken, branches hinted or not 

hinted, DMA  transfers, and so forth. 

The IBM Full System Simulator for the Cell Broadband Engine performs a dynamic 

analysis of program execution. It is available in the SDK. Any part of a program, 

from a single line to the entire program, can be studied. Performance numbers are 

provided for: 

v   Instruction histograms (for example, branch, hint, and prefetch) 

v   Cycles per instruction (CPI) 

v   Single-issue and dual-issue rates 

v   Stall statistics 

v   Register use

The output of the IBM Full System Simulator for the Cell Broadband Engine can be 

a text listing or a graphic plot. 

Example 1: Tuning  SPE performance with static and dynamic 

timing analysis 

Static analysis of SPE threads 

The listing below shows an spu-timing static timing analysis for the inner loop of 

the SPE code. 

The SPE code is shown in “Step 2: Port the PPE code for execution on the SPE” on 

page 100, the Euler Particle-System Simulation example. This listing shows 

significant dependency stalls (indicated by the “-”) and poor dual-issue rates. The 
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inner loop has an instruction mix of eight even-pipeline (pipe 0) instructions and 

ten odd-pipeline (pipe 1) instructions. Therefore, any program changes that 

minimize data dependencies will improve dual-issue rates and lower the cycle per 

instruction (CPI). 

       .L19: 

0D                                                78       a       $49,$8,$10 

1D 012                                            789      lqx     $51,$6,$9 

0D                                                 89      ila     $47,66051 

1D 0123                                            89      lqx     $52,$6,$11 

0  0                                                9      ai      $7,$7,-1 

0  ----456789                                              fma     $50,$51,$12,$52 

1       -----012345                                        stqx    $50,$6,$11 

1             123456                                       lqx     $48,$8,$10 

0D             23                                          ai      $8,$8,4 

1D             234567                                      lqa     $44,ctx+16 

1               345678                                     lqx     $43,$6,$9 

1                ---7890                                   rotqby  $46,$48,$49 

1                    ---1234                               shufb   $45,$46,$46,$47 

0                        ---567890                         fm      $42,$12,$45 

0d                           -----123456                   fma     $41,$42,$44,$43 

1d                                ------789012              stqx    $41,$6,$9 

0D                                       89                 ai      $6,$6,16 

                                                         .L39: 

1D                                       8901                brnz    $7,.L19 

The character columns in the above static-analysis listing have the following 

meanings: 

v   Column 1 — The first column shows the pipeline that issued an instruction. 

Pipeline 0 is represented by 0 in the first column and pipeline 1 is represented 

by 1. 

v   Column 2 — The second column can contain a D, d, or “nothing”. A D signifies a 

successful dual-issue was accomplished by the two instructions listed in 

row-pairs. A d signifies a dual-issue was possible, but did not occur due to 

dependencies; for example, operands being in flight. If there is no entry in the 

second column, dual-issue could not be performed because the issue rules were 

not satisfied (for example, an even-pipeline instruction was fetched from an odd 

LS address or an odd-pipeline instruction was fetched from an even LS address). 

See “Pipelines and dual-issue rules” on page 53. 

v   Column 3 — The third column is always blank. 

v   Columns 4 through 53 — The next 50 columns represent clock cycles and are 

repeated as 0123456789 five times. A digit is displayed in these columns 

whenever the instruction executes during that clock cycle. Therefore, an 

<n>-cycle instruction will display <n> digits. Dependency stalls are flagged by a 

dash (“-”). 

v   Columns 54 and beyond — The remaining entries on the row are the 

assembly-language instructions or assembler-line addresses (for example, .L19) 

of the program’s assembly code.

Static-analysis timing files can be quickly interpreted by: 

v   Scanning the columns of digits. Small slopes (more horizontal) are bad. Large 

slopes (more vertical) are good. 

v   Looking for instructions with dependencies (those with dashes in the listing). 

v   Looking for instructions with poor dual-issue rates — either a d or “nothing” in 

column 2. 

This information can be used to understand what areas of code are scheduled well 

and which are poorly scheduled. 
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About SPU_TIMING: 

If you are using a Bash shell, you can set SPU_TIMING as a shell variable by using 

the command export SPU_TIMING=1. You can also set SPU_TIMING in the makefile 

and build the .s file by using the following statement: 

 SPU_TIMING=1 make foo.s 

This creates the timing file for file foo.c . It sets the SPU_TIMING variable only in 

the sub-shell of the makefile. It generates foo.s and then invokes spu-timing on 

foo.s to produce a foo.s.timing file. 

Another way to invoke the performance tool is by entering one of the following 

statements in the command prompt: 

 SPU_TIMING=1 make foo.s 

Dynamic analysis of SPE threads 

The listing below shows a dynamic timing analysis on the same SPE inner loop 

using the IBM Full System Simulator for the Cell Broadband Engine. 

The results confirm the view of program execution from the static timing analysis: 

v   It shows poor dual-issue rates (7%) and large dependency stalls (65%), resulting 

in a overall CPI of 2.39. 

v   Most workloads should be capable of achieving a CPI of 0.7 to 0.9, roughly 3 

times better than this. 

v   The number of used registers is 73, a 57.03% utilization of the full 128 register 

set.
  SPU DD1.0 

  *** 

  Total Cycle count               43120454 

  Total Instruction count         18068949 

  Total CPI                       2.39 

  *** 

  Performance Cycle count         43120454 

  Performance Instruction count   18068949 (18062968) 

  Performance CPI                 2.39 (2.39) 

  

  Branch instructions             1001990 

  Branch taken                    1000007 

  Branch not taken                1983 

  

  Hint instructions               1973 

  Hint hit                        1000001 

  

  Contention at LS between Load/Store and Prefetch 2000986 

  

  Single cycle                                          12049144 ( 27.9%) 

  Dual cycle                                             3006912 (  7.0%) 

  Nop cycle                                                 4003 (  0.0%) 

  Stall due to branch miss                                 17977 (  0.0%) 

  Stall due to prefetch miss                                   0 (  0.0%) 

  Stall due to dependency                               28042299 ( 65.0%) 

  Stall due to fp resource conflict                            0 (  0.0%) 

  Stall due to waiting for hint target                       110 (  0.0%) 

  Stall due to dp pipeline                                     0 (  0.0%) 

  Channel stall cycle                                          0 (  0.0%) 

  SPU Initialization cycle                                     9 (  0.0%) 

  ----------------------------------------------------------------------- 

  Total cycle                                           43120454 (100.0%) 

  

  Stall cycles due to dependency on each pipelines
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FX2        5909 

   SHUF       6011772 

   FX3        1960 

   LS         7022608 

   BR         0 

   SPR        0 

   LNOP       0 

   NOP        0 

   FXB        0 

   FP6        15000050 

   FP7        0 

   FPD        0 

  

  The number of used registers are 73; the used ratio is 57.03 

Optimizations 

To eliminate stalls and improve the CPI — and ultimately the performance — the 

compiler needs more instructions to schedule, so that the program does not stall. 

The SPE’s large register file allows the compiler or the programmer to unroll loops. 

In our example program, there are no inter-loop dependencies (loop-carried 

dependencies), and our dynamic analysis shows that the register usage is fairly 

small, so moderately aggressive unrolling will not produce register spilling (that is, 

registers having to be written into temporary stack storage). 

Most compilers can automatically unroll loops. Sometimes this is effective. But 

because automatic loop unrolling is not always effective, or because the 

programmer wants explicit control to manage the limited local store, this example 

shows how to manually unroll the loop. 

The first pass of optimizations include: 

v   Unroll the loop to provide additional instructions for interleaving. 

v   Load DMA-buffer contents into local nonvolatile registers to eliminate volatile 

migration constraints. 

v   Eliminate scalar loads (the inv_mass variable). 

v   Eliminate extra multiplies of dt*inv_mass and splat the products after the SIMD 

multiply, instead of before the multiply. 

v   Interleave DMA transfers with computation by multibuffering the inputs and 

outputs to eliminate (or reduce) DMA  stalls. These stalls are not reflected in the 

static and dynamic analyses. In the process of adding double buffering, the inner 

loop is moved into a function, so that the code need not be repeated.

The  following SPE code results from these optimizations. Among the changes are 

the addition of a GET instruction with a barrier suffix (B), accomplished by the 

spu_mfcdma32() intrinsic with the MFC_GETB_CMD parameter. This GET is the barrier 

form of MFC_GET_CMD. The barrier form is used to ensure that previously computed 

results are put before the get for the next buffer’s data. 

#include <spu_intrinsics.h> 

#include <spu_mfcio.h> 

#include "particle.h" 

  

#define PARTICLES_PER_BLOCK             1024 

  

// Local store structures and buffers. 

volatile context ctx; 

volatile vector float pos[2][PARTICLES_PER_BLOCK]; 

volatile vector float vel[2][PARTICLES_PER_BLOCK]; 

volatile vector float inv_mass[2][PARTICLES_PER_BLOCK/4]; 
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void process_buffer(int buffer, int cnt, vector float dt_v) 

{ 

  int i; 

  volatile vector float *p_inv_mass_v; 

  vector float force_v, inv_mass_v; 

  vector float pos0, pos1, pos2, pos3; 

  vector float vel0, vel1, vel2, vel3; 

  vector float dt_inv_mass_v, dt_inv_mass_v_0, dt_inv_mass_v_1, 

    dt_inv_mass_v_2, dt_inv_mass_v_3; 

  vector unsigned char splat_word_0 = 

 (vector unsigned char){0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}; 

  vector unsigned char splat_word_1 = 

 (vector unsigned char){4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}; 

  vector unsigned char splat_word_2 = 

 (vector unsigned char){8, 9,10,11, 8, 9,10,11, 8, 9,10,11, 8, 9,10,11}; 

  vector unsigned char splat_word_3 = 

 (vector unsigned char){12,13,14,15,12,13,14,15,12,13,14,15,12,13,14,15}; 

  

  p_inv_mass_v = (volatile vector float *)&inv_mass[buffer][0]; 

  force_v = ctx.force_v; 

  

  // Compute the step in time for the block of particles, four 

  // particle at a time. 

  for (i=0; i<cnt; i+=4) { 

    inv_mass_v = *p_inv_mass_v++; 

  

    pos0 = pos[buffer][i+0]; 

    pos1 = pos[buffer][i+1]; 

    pos2 = pos[buffer][i+2]; 

    pos3 = pos[buffer][i+3]; 

  

    vel0 = vel[buffer][i+0]; 

    vel1 = vel[buffer][i+1]; 

    vel2 = vel[buffer][i+2]; 

    vel3 = vel[buffer][i+3]; 

  

    dt_inv_mass_v = spu_mul(dt_v, inv_mass_v); 

  

    pos0 = spu_madd(vel0, dt_v, pos0); 

    pos1 = spu_madd(vel1, dt_v, pos1); 

    pos2 = spu_madd(vel2, dt_v, pos2); 

    pos3 = spu_madd(vel3, dt_v, pos3); 

  

    dt_inv_mass_v_0 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_0); 

    dt_inv_mass_v_1 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_1); 

    dt_inv_mass_v_2 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_2); 

    dt_inv_mass_v_3 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_3); 

  

    vel0 = spu_madd(dt_inv_mass_v_0, force_v, vel0); 

    vel1 = spu_madd(dt_inv_mass_v_1, force_v, vel1); 

    vel2 = spu_madd(dt_inv_mass_v_2, force_v, vel2); 

    vel3 = spu_madd(dt_inv_mass_v_3, force_v, vel3); 

  

    pos[buffer][i+0] = pos0; 

    pos[buffer][i+1] = pos1; 

    pos[buffer][i+2] = pos2; 

    pos[buffer][i+3] = pos3; 

  

    vel[buffer][i+0] = vel0; 

    vel[buffer][i+1] = vel1; 

    vel[buffer][i+2] = vel2; 

    vel[buffer][i+3] = vel3; 

  } 

} 

  

  

int main(unsigned long long spe_id, unsigned long long argv)
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{ 

  int buffer, next_buffer; 

  int cnt, next_cnt, left; 

  float time, dt; 

  vector float dt_v; 

  volatile vector float *ctx_pos_v, *ctx_vel_v; 

  volatile vector float *next_ctx_pos_v, *next_ctx_vel_v; 

  volatile float *ctx_inv_mass, *next_ctx_inv_mass; 

  unsigned int tags[2]; 

  

  // Reserve a pair of DMA tag IDs 

  tags[0] = mfc_tag_reserve(); 

  tags[1] = mfc_tag_reserve(); 

  

  // Input parameter argv is a pointer to the particle context. 

  // Fetch the context, waiting for it to complete. 

  spu_writech(MFC_WrTagMask, 1 << tags[0]); 

  spu_mfcdma32((void *)(&ctx), (unsigned int)argv, sizeof(context), tags[0], 

    MFC_GET_CMD); 

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  

  dt = ctx.dt; 

  dt_v = spu_splats(dt); 

  

  // For each step in time 

  for (time=0; time<END_OF_TIME; time += dt) { 

    // For each double buffered block of particles 

    left = ctx.particles; 

  

    cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK; 

  

    ctx_pos_v = ctx.pos_v; 

    ctx_vel_v = ctx.vel_v; 

    ctx_inv_mass = ctx.inv_mass; 

  

    // Prefetch first buffer of input data 

    buffer = 0; 

    spu_mfcdma32((void *)(pos), (unsigned int)(ctx_pos_v), cnt * 

      sizeof(vector float), tags[0], MFC_GETB_CMD); 

    spu_mfcdma32((void *)(vel), (unsigned int)(ctx_vel_v), cnt * 

      sizeof(vector float), tags[0], MFC_GET_CMD); 

    spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx_inv_mass), cnt * 

      sizeof(float), tags[0], MFC_GET_CMD); 

  

    while (cnt < left) { 

      left -= cnt; 

  

      next_ctx_pos_v = ctx_pos_v + cnt; 

      next_ctx_vel_v = ctx_vel_v + cnt; 

      next_ctx_inv_mass = ctx_inv_mass + cnt; 

      next_cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK; 

  

      // Prefetch next buffer so the data is available for computation on next 

      //   loop iteration. 

      // The first DMA is barriered so that we don’t GET data before the 

      //   previous iteration’s data is PUT. 

      next_buffer = buffer^1; 

  

      spu_mfcdma32((void *)(&pos[next_buffer][0]), (unsigned int)(next_ctx_pos_v), 

        next_cnt * sizeof(vector float), tags[next_buffer], MFC_GETB_CMD); 

      spu_mfcdma32((void *)(&vel[next_buffer][0]), (unsigned int)(next_ctx_vel_v), 

        next_cnt * sizeof(vector float), tags[next_buffer], MFC_GET_CMD); 

      spu_mfcdma32((void *)(&inv_mass[next_buffer][0]), (unsigned int) 

        (next_ctx_inv_mass), next_cnt * sizeof(float), tags[next_buffer], 

         MFC_GET_CMD); 

  

      // Wait for previously prefetched data
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spu_writech(MFC_WrTagMask, 1 << tags[buffer]); 

      (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  

      process_buffer(buffer, cnt, dt_v); 

  

      // Put the buffer’s position and velocity data back into main storage 

      spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt * 

        sizeof(vector float), tags[buffer], MFC_PUT_CMD); 

      spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt * 

        sizeof(vector float), tags[buffer], MFC_PUT_CMD); 

  

      ctx_pos_v = next_ctx_pos_v; 

      ctx_vel_v = next_ctx_vel_v; 

      ctx_inv_mass = next_ctx_inv_mass; 

  

      buffer = next_buffer; 

      cnt = next_cnt; 

    } 

  

    // Wait for previously prefetched data 

    spu_writech(MFC_WrTagMask, 1 << tags[buffer]); 

    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  

    process_buffer(buffer, cnt, dt_v); 

  

    // Put the buffer’s position and velocity data back into main storage 

    spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt * 

      sizeof(vector float), tags[buffer], MFC_PUT_CMD); 

    spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt * 

      sizeof(vector float), tags[buffer], MFC_PUT_CMD); 

  

    // Wait for DMAs to complete before starting the next step in time. 

    spu_writech(MFC_WrTagMask, 1 << tags[buffer]); 

    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL); 

  } 

  

  return (0); 

} 

Static analysis of optimization 

The listing below shows a spu_timing static timing analysis for the optimized SPE 

thread (process _buffer subroutine only). 

.type   process_buffer, @function 

                                                               process_buffer: 

0D 0123                                                         shli    $2,$3,10 

1D 012345                                                       lqa     $19,ctx+16 

0D  12                                                          ori     $6,$3,0 

1D  1234                                                        shlqbyi $24,$4,0 

0D   23                                                         cgti    $3,$4,0 

1D   2345                                                       shlqbyi $18,$5,0 

0D    34                                                        ila     $4,inv_mass 

1D    3456                                                      fsmbi   $21,0 

0      45                                                       ilhu    $27,1029 

0       56                                                      ilhu    $26,2057 

0        67                                                     ilhu    $25,3085 

0         78                                                    ila     $28,66051 

0          89                                                   a       $20,$2,$4 

0           90                                                  iohl    $27,1543 

0D           01                                                 iohl    $26,2571 

1D           0                                                  lnop 

0D            12                                                iohl    $25,3599 

1D            1234                                              brz     $3,.L7 

0              2345                                             shli    $17,$6,14 

0               34                                              ila     $23,pos 

0D               45                                             ila     $22,vel 

1D               456789                                         hbra    .L10,.L5
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1                 5                                             lnop 

0                  6                                            nop     $127 

                                                               .L5: 

0D                  78                                          ila     $43,pos 

1D                  789012                                      lqd     $41,0($20) 

0D                   89                                         ila     $42,vel 

1D                   890123                                     lqx     $40,$17,$23 

0                     90                                        a       $6,$17,$43 

0                      01                                       a       $7,$17,$42 

0D                      12                                      ai      $21,$21,4 

1D                      123456                                  lqd     $39,16($6) 

0D                       23                                     ai      $20,$20,16 

1D                       234567                                 lqd     $38,32($6) 

0D                        345678                                fm      $36,$18,$41 

1D                        345678                                lqd     $37,48($6) 

0D                         45                                   cgt     $16,$24,$21 

1D                         456789                               lqx     $13,$17,$22 

1                           567890                              lqd     $34,16($7) 

1                            678901                             lqd     $14,32($7) 

1                             789012                            lqd     $15,48($7) 

1                              -9012                            shufb   $35,$36,$36,$28 

0D                               012345                         fma     $32,$13,$18,$40 

1D                               0123                           shufb   $33,$36,$36,$27 

0D                                123456                        fma     $10,$34,$18,$39 

1D                                1234                          shufb   $31,$36,$36,$26 

0D                                 234567                       fma     $11,$14,$18,$38 

1D                                 2345                         shufb   $30,$36,$36,$25 

0                                   345678                      fma     $8,$15,$18,$37 

0                                    456789                     fma     $29,$35,$19,$13 

0D                                    567890                    fma     $5,$33,$19,$34 

1D                                    5                         lnop 

0D                                     678901                   fma     $12,$31,$19,$14 

1D                                     678901                   stqx    $32,$17,$23 

0D                                      789012                  fma     $9,$30,$19,$15 

1D                                      789012                  stqd    $10,16($6) 

1                                        890123                 stqd    $11,32($6) 

1                                         901234                stqd    $8,48($6) 

0D                                         0                    nop     $127 

1D                                         012345               stqx    $29,$17,$22 

0D                                          12                  ai      $17,$17,64 

1D                                          123456              stqd    $5,16($7) 

1                                            234567             stqd    $12,32($7) 

1                                             345678            stqd    $9,48($7) 

0D                                             4                nop     $127 

                                                               .L10: 

1D                                             4567             brnz    $16,.L5 

                                                               .L7: 

0D                                              5               nop     $127 

1D                                              5678            bi      $lr 

Dynamic analysis of optimizations 

The listing below shows a dynamic timing analysis on the IBM Full System 

Simulator for the Cell Broadband Engine for the optimized SPE thread (process buffer 

only). It shows that 78 registers are used, so the used percentage is 60.94. 

  SPU DD1.0 

  *** 

  Total Cycle count               7134843 

  Total Instruction count         10602009 

  Total CPI                       0.67 

  *** 

  Performance Cycle count         7134843 

  Performance Instruction count   10602009 (9839265) 

  Performance CPI                 0.67 (0.73) 

  

  Branch instructions             253940 

  Branch taken                    251967
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Branch not taken                1973 

  

  Hint instructions               2952 

  Hint hit                        250980 

  

  Contention at LS between Load/Store and Prefetch 6871 

  

  Single cycle                                           3815689 ( 53.5%) 

  Dual cycle                                             3011788 ( 42.2%) 

  Nop cycle                                                 5898 (  0.1%) 

  Stall due to branch miss                                 34655 (  0.5%) 

  Stall due to prefetch miss                                   0 (  0.0%) 

  Stall due to dependency                                 266732 (  3.7%) 

  Stall due to fp resource conflict                            0 (  0.0%) 

  Stall due to waiting for hint target                        72 (  0.0%) 

  Stall due to dp pipeline                                     0 (  0.0%) 

  Channel stall cycle                                          0 (  0.0%) 

  SPU Initialization cycle                                     9 (  0.0%) 

  ----------------------------------------------------------------------- 

  Total cycle                                            7134843 (100.0%) 

  

  Stall cycles due to dependency on each pipelines 

   FX2        8808 

   SHUF       1971 

   FX3        5870 

   LS         32 

   BR         0 

   SPR        1 

   LNOP       0 

   NOP        0 

   FXB        0 

   FP6        250050 

   FP7        0 

   FPD        0 

  

  The number of used registers are 78, the used ratio is 60.94 

The above static and dynamic timing analysis of the optimized SPE code reveals: 

v   Significant increase in dual-issue rate and reduction in dependency stalls. The 

static analysis shows that the process_buffer inner loop still contains a 

single-cycle stall and some instructions that are not dual-issued. Further 

performance improvements could likely be achieved by either more loop 

unrolling or software loop-pipelining. 

v   The number of instructions has decreased by 41% from the initial instruction 

count. 

v   The CPI has dropped from 2.39 to a more typical 0.73. 

v   The performance of the SPE code, measured in total cycle count, has gone from 

approximately 43 M cycles to 7 M cycles, an improvement of more than 6x. This 

improvement does not take into account the DMA  latency-hiding (stall 

elimination) provided by double buffering.

For details about performance simulation, including examples of coding for 

simulations, see Chapter 5, “The simulator,” on page 123. The IBM Full System 

Simulator for the Cell Broadband Engine described in that chapter supports 

performance simulation for a full system, including the MFCs, caches, bus, and 

memory controller. ) 
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General SPE programming tips 

This section contains a short summary of general tips for optimizing the 

performance of SPE programs. 

v   Local Store 

–   Design for the LS size. The LS holds up to 256 KB for the program, stack, 

local data structures, and DMA buffers. One can do a lot with 256 KB, but be 

aware of this size. 

–   Use overlays (runtime download program kernels) to build complex function 

servers in the LS (see “SPE overlays” on page 121).
v    DMA Transfers 

–   Use SPE-initiated DMA transfers rather than PPE-initiated DMA transfers. 

There are more SPEs than the one PPE, and the PPE can enqueue only eight 

DMA  requests whereas each SPE can enqueue 16. 

–   Overlap DMA with computation by double buffering or multibuffering (see 

“Moving double-buffered data” on page 86). Multibuffer code or (typically) 

data. 

–   Use double buffering to hide memory latency. 

–   Use fence command options to order DMA transfers within a tag group. 

–   Use barrier command options to order DMA transfers within the queue.
v    Loops 

–   Unroll loops to reduce dependencies and increase dual-issue rates. This 

exploits the large SPU register file. 

–   Compiler auto-unrolling is not perfect, but pretty good.
v    SIMD Strategy 

–   Choose an SIMD strategy appropriate for your algorithm. For example: 

–   Evaluate array-of-structure (AOS) organization. For graphics vertices, this 

organization (also called or vector-across) can have more-efficient code size 

and simpler DMA needs, but less-efficient computation unless the code is 

unrolled. 

–   Evaluate structure-of-arrays (SOA) organization. For graphics vertices, this 

organization (also called parallel-array) can be easier to SIMDize, but the data 

must be maintained in separate arrays or the SPU must shuffle AOS data into 

an SOA form. 

–   Consider the effects of unrolling when choosing an SIMD strategy.
v    Load/Store 

–   Scalar loads and stores are slow, with long latency. 

–   SPUs only support quadword loads and stores. 

–   Consider making scalars into quadword integer vectors. 

–   Load or store scalar arrays as quadwords, and perform your own extraction 

and insertion to eliminate load and store instructions.
v    Branches 

–   Eliminate nonpredicted branches. 

–   Use feedback-directed optimization. 

–   Use the __builtin_expect language directive when you can explicitly direct 

branch prediction.
v   Multiplies 
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–   Avoid integer multiplies on operands greater than 16 bits in size. The SPU 

supports only a “16-bit x16-bit multiply”. A “32-bit multiply” requires five 

instructions (three 16-bit multiplies and two adds). 

–   Keep array elements sized to a power-of-2 to avoid multiplies when indexing. 

–   Cast operands to unsigned short prior to multiplying. Constants are of type 

int and also require casting. Use a macro to explicitly perform 16-bit 

multiplies. This can avoid inadvertent introduction of signed extends and 

masks due to casting.
v    Pointers 

–   Use the PPE’s load/store with update instructions. These allow sequential 

indexing through an array without the need of additional instructions to 

increment the array pointer. 

–   For the SPEs (which do not support load/store with update instructions), 

use the d-form instructions to specify an immediate offset from a base array 

pointer.
v   Dual-Issue 

–   Choose intrinsics carefully to maximize dual-issue rates or reduce latencies. 

–   Dual issue will occur if a pipe-0 instruction is even-addressed, a pipe-1 

instruction is odd-addressed, and there are no dependencies (operands are 

available). 

–   Code generators use nops to align instructions for dual-issue. 

–   Use software pipeline loops to improve dual-issue rates.
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Chapter  4.  Programming  models  

On any processor, coding optimizations are achieved by exploiting the unique 

features of the hardware. In the case of the Cell Broadband Engine, the large 

number of SPEs, their large register file, and their ability to hide main-storage 

latency with concurrent computation and DMA transfers support many interesting 

programming models. 

With the computational efficiency of the SPEs, software developers can create 

programs that manage dataflow as opposed to leaving dataflow to a compiler or to 

later optimizations. 

Many of the unique features of the SPE are handled by the compiler, although 

programmers looking for the best performance can take advantage of the features 

independently of the compiler. It is almost never necessary to program the SPE in 

assembly language. C intrinsics provide a convenient way to program the efficient 

movement and buffering of data. 

“Application partitioning” on page 13 introduced some concepts for application 

programming. 

This chapter introduces these seven types of programming models: 

v   Function-Offload Model, 

v   Device-Extension Model, 

v   Computation-Acceleration Model, 

v   Streaming Model, 

v   Shared-Memory Multiprocessor Model, 

v   Asymmetric-Thread Runtime Model, 

v   User-Mode Thread Model.

Function-Offload Model 

In the Function-Offload Model, the SPEs are used as accelerators for 

performance-critical procedures. 

This model is the quickest way to effectively use the Cell Broadband Engine with 

an existing application. In this model, the main application runs on the PPE and 

calls selected procedures to run on one or more SPEs. 

The Function-Offload Model is sometimes called the Remote Procedure Call (RPC) 

Model. The model allows a PPE program to call a procedure located on an SPE as 

if it were calling a local procedure on the PPE. This provides an easy way for 

programmers to use the asynchronous parallelism of the SPEs without having to 

understand the low-level workings of the MFC DMA layer. 

In this model, you identify which procedures should execute on the PPE and 

which should execute on the SPEs. The PPE and SPE source modules must be 

compiled separately, by different compilers. 
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Remote procedure call 

The Function Offload or Remote Procedure Call (RPC) Model is implemented 

using stubs as proxies. 

A method stub , or simply stub , is a small piece of code used to stand in for some 

other code. The stub or proxy acts as a local surrogate for the remote procedure, 

hiding the details of server communication. The main code on the PPE contains a 

stub for each remote procedure on the SPEs. Each procedure on an SPE has a stub 

that takes care of running the procedure and communicating with the PPE. 

When the program on the PPE calls a remote procedure, it actually calls that 

procedure’s stub located on the PPE. The stub code initializes the SPE with the 

necessary data and code, packs the procedure’s parameters, and sends a mailbox 

message to the SPE to start its stub procedure. 

The SPE stub retrieves the parameters and executes the procedure locally on the 

SPE. The PPE program then retrieves the output parameters. Figure 27 shows an 

example of a program using this method. 

   

Device-Extension Model 

The Device Extension Model is a special case of the Function-Offload Model in 

which the SPEs act like I/O devices. 

SPEs can also act as intelligent front ends to an I/O device. Mailboxes can be used 

as command and response FIFOs between the PPE and SPEs. 

The SPEs can interact with I/O devices because: 

v   all I/O devices are memory-mapped, and 

v   the SPEs DMA  transfers support transfer sizes of a single byte.

I/O  devices can use an SPE’s signal-notification facility (described in “Signal 

notification” on page 59) to tell the SPE when commands complete. 

When SPEs are used in the Device-Extension Model, they usually run privileged 

software that is part of the operating system. As such, this code is trusted and may 

be given access to privileged registers for a physical device. For example, a secure 

file system may be treated as a device. The operating system’s device driver can be 

written to use the SPE for encryption and decryption and for responding to 

disk-controller requests on all file reads and writes to this virtual device. 

  

Figure 27. Example of the Function-Offload (or RPC) Model
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Computation-Acceleration  Model 

The Computation-Acceleration Model is an SPE-centric model that provides a 

smaller-grained and more integrated use of SPEs. 

The model speeds up applications that use computation-intensive mathematical 

functions without requiring significant rewrite of the applications. Most 

computation-intensive sections of the application run on SPEs. The PPE acts as a 

control and system-service facility. 

Multiple SPEs work in parallel. The work is partitioned manually by the 

programmer, or automatically by the compilers. The SPEs must efficiently schedule 

MFC DMA commands that move instructions and data. 

This model either uses shared memory to communicate among SPEs, or it uses a 

message-passing model. 

Streaming model 

In the Streaming Model, each SPE, in either a serial or parallel pipeline, computes 

data that streams through. 

The PPE acts as a stream controller, and the SPEs act as stream-data processors. 

For the SPEs, on-chip load and store bandwidth exceeds off-chip DMA-transfer 

bandwidth by an order of magnitude. If each SPE has an equivalent amount of 

work, this model can be an efficient way to use the Cell Broadband Engine because 

data remains inside the Cell Broadband Engine as long as possible. 

The PPE and SPEs support message-passing between the PPE, the processing SPE, 

and other SPEs. 

Although the SDK does not include a formal streaming language, most of the 

programs written for the Cell Broadband Engine are likely to use the streaming 

model to some extent. For example, the Euler particle-system simulation (described 

in “Example 1: Euler particle-system simulation” on page 96) implements the 

streaming model. This particle-system simulation contains a computational kernel 

that streams packets of data through the kernel for each step in time. 

Shared-Memory Multiprocessor Model 

The Cell Broadband Engine can be programmed as a shared-memory 

multiprocessor, using two different instruction sets. The SPEs and the PPE fully 

interoperate in a cache-coherent Shared-Memory Multiprocessor Model. 

All DMA operations in the SPEs are cache-coherent. Shared-memory load 

instructions are replaced by DMA operations from shared memory to local store 

(LS), followed by a load from LS to the register file. The DMA  operations use an 

effective address that is common to the PPE and all the SPEs. Shared-memory store 

instructions are replaced by a store from the register file to the LS, followed by a 

DMA operation from LS to shared memory. 

The SPE’s DMA lock-line commands provide the equivalent of the PowerPC 

Architecture atomic-update primitives (load with reservation and store 

conditional). 
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A compiler or interpreter could manage part of the LS as a local cache for 

instructions and data obtained from shared memory. 

Asymmetric-Thread Runtime Model 

Threads can be scheduled to run on either the PPE or on the SPEs, and threads 

interact with one another in the same way they do in a conventional symmetric 

multiprocessor. The Asymmetric-Thread Runtime Model extends thread task models 

and lightweight task models to include the different instruction sets supported by 

the PPE and SPE. 

Scheduling policies are applied to the PPE and SPE threads to optimize 

performance. Although preemptive task-switching is supported on SPEs for 

debugging purposes, there is a runtime performance and resource-allocation cost. 

FIFO run-to-completion models, or lightweight cooperatively-yielding models, can 

be used for efficient task-scheduling. 

A single SPE can run only one thread at a time; it cannot support multiple 

simultaneous threads. 

The Asymmetric-Thread Runtime Model is flexible and supports all of the other 

programming models described in this chapter. Any program that explicitly calls 

spe_context_create and spe_context_run is an example of the Asymmetric-Thread 

Runtime Model. For an example of envoking SPE threads, see “Creating threads 

for the SPEs” on page 38. 

This is the fundamental model provided by the SDK’s SPU Runtime Management 

Library, and it is identified by user threads (both PPE and SPE) running on the 

Cell Broadband Engine’s heterogeneous processing complex. 

User-mode thread model 

The User-Mode Thread Model refers to one SPE thread managing a set of user-level 

functions running in parallel. 

The user-level functions are called microthreads (and also user threads and user-level 

tasks) . The SPE thread is supported by the operating system. The microthreads are 

created and supported by user software; the operating system is not involved. 

However, the set of microthreads can run across a set of SPUs. 

The SPU application schedules tasks in shared memory, and the tasks are 

processed by available SPUs. For example, in game programming, the tasks can 

refer to scene objects that need updating. Microthreads can complete at any time, 

and new microthreads can be spawned at any time. 

One advantage of this programming model is that the microthreads, running on a 

set of SPUs under the control of an SPE thread, have predictable overhead. A 

single SPE cannot save and restore the MFC commands queues without assistance 

from the PPE. 

Cell application frameworks 

The complexity of implementing many of these programming models is 

significantly reduced by using application frameworks. 

 

120 Programming  Tutorial



One such framework is the Accelerated Library Framework (ALF). This framework 

provides a set of functions to help programmers solve data parallel computation 

problems on hybrid systems using a single-program-multiple-data (SPMD) 

programming style. Features include architecturally independent data transfer 

management, parallel task management, multi-buffering, and data partitioning. 

For further details about the ALF, refer to the Accelerated Library Framework, User’s 

Guide. 

SPE overlays 

When code does not fit in an SPE’s local store, overlays can be useful. 

An overlay is SPU code that is dynamically loaded and executed by a running SPU 

program. It cannot be independently loaded or run on an SPE. SPE overlays allow 

the programmer to manage SPU code in a modular fashion. 

The specific SPU code that is needed at runtime is dynamically loaded. 

Additional information on developing code with overlays is provided in the 

Software Development Kit, Programmer’s Guide. 
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Chapter  5.  The  simulator  

The IBM Full System Simulator for the Cell Broadband Engine is a generalized 

simulator that can be configured to simulate a broad range of full-system 

configurations. 

The simulator supports full functional simulation , including the: 

v   PPE 

v   SPEs 

v   MFCs 

v   PPE caches 

v   bus 

v   memory controller

It can simulate and capture many levels of operational details on instruction 

execution, cache and memory subsystems, interrupt subsystems, communications, 

and other important system functions. It also supports some cycle-accurate 

simulation (performance or timing simulation). 

Figure 28 shows the simulation stack. The simulator is part of the software 

development kit (SDK). 

 

If accurate timing and cycle-level simulation are not required, the simulator can be 

used in its functional-only mode , running as a debugger to test the functions and 

features of a program. 

If cycle-level analysis is required, it can be used in performance simulation (or timing 

simulation) mode, to get accurate performance analyses. 

  

Figure 28. Simulation stack

 

  123



Simulator configurations are extensible and can be modified using Tool Command 

Language (Tcl) commands to produce the type and level of analysis required. 

The simulator itself is a general tool that can be configured for a broad range of 

microprocessors and hardware simulations. The SDK, however, provides a 

ready-made configuration of the simulator for Cell Broadband Engine system 

development and analysis. 

Simulator basics 

This section provided as overview of IBM Full System Simulator for the Cell 

Broadband Engine. 

Additional details can be found in the simulator’s documentation installed in 

/opt/ibm/systemsim-cell/doc. 

Operating-system modes 

The simulator has two modes of operation, with regard to operating systems: Linux 

mode, and standalone mode. 

Linux mode 

In Linux mode, after the simulator is configured and loaded, the simulator boots 

the Linux operating system on the simulated system. 

At runtime, the operating system is simulated along with the running programs. 

The simulated operating system takes care of all the system calls, just as it would 

in a non-simulation (real) environment. 

Standalone mode 

In standalone mode, the application is loaded without an operating system. 

Standalone applications are user-mode applications that are normally run on an 

operating system. On a real system, these applications rely on the operating system 

to perform certain tasks, including loading the program, address translation, and 

system-call support. In standalone mode, the simulator provides some of this 

support, allowing applications to run without having to first boot an operating 

system on the simulator. 

There are, however, limitations that apply when building an application to be 

loaded and run by the simulator without an operating system. Typically, the 

operating system provides address-translation support. 

v   Since an operating system is not present in this mode, the simulator loads 

executables without address translation, so that the effective address is the same as 

the real address. Therefore, all addresses referenced in the executable must be 

valid real addresses. 

v   If the simulator has been configured with 64 MB of memory, all addresses must 

fit in the range of X’0’ to X’3FFFFFF’.

Interacting with the simulator 

There are two ways to interact with the simulator. Firstly, by issuing commands to 

the simulated system. Secondly, by issuing commands to the simulator. 

The simulated system is the Linux environment on top of the simulated Cell 

Broadband Engine, where you run and debug programs. You interact with it by 
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entering commands at the Linux command prompt, in the console window. The 

console window is a Linux shell of the simulated Linux operating system. 

You can also control the simulator itself, configuring it to do such tasks as collect 

and display performance statistics on particular SPEs, or set breakpoints in code. 

These commands are entered at the simulator command line in the simulator 

command window, or using the equivalent actions in the graphical user interface 

(GUI). 

The GUI is a graphical means of interacting with the simulator. The GUI is 

described in “Graphical User Interface” on page 126. 

Figure 29 shows the simulator windows, and the layers with which they 

communicate. 

   

Command-line interface 

To start the simulator in command-line mode, enter the following command: 

PATH=/opt/ibm/systemsim-cell/bin:$PATH; systemsim. 

This command starts the simulator, which initializes the simulation and displays 

the prompt: 

 systemsim % 

The window displaying the simulator prompt is the command window. While 

starting the simulation, the simulator creates the console window, which is initially 

labeled UART0 in the window’s title bar. 

All commands must be entered at the prompt in the command window (that is, 

the window in which the simulator was started). Some of the important commands 

are shown in Table 34 on page 126. 

  

Figure 29. Simulator structures and screens
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Table 34. Important Commands for the IBM Full System Simulator for the Cell Broadband 

Engine 

Simulator Command Meaning 

quit Closes the simulation and exits the simulator. 

help Displays a list of the available simulator commands. 

mysim go Starts or continues the simulation. The first time it is issued, 

the simulator boots the Linux operating system on the 

simulation. 

mysim spu n set model 

mode 

Sets SPEn into model mode, where n is a value from 0 to 7 

and mode is either pipeline or instruction. 

mysim spu n display 

statistics 

Displays to the simulator command window, the performance 

analysis statistics collected on SPEn, where n is a value from 0 

to 7. Statistics are only collected when the SPE is executing in 

pipeline mode.
  

The simulator prompt is displayed in the command window when the simulation 

is stopped, or paused. When the simulation is running, the command window, 

instead, displays a copy of the output to the console window and simulation-cycle 

information every few seconds, and the prompt is not available. 

To stop the simulation and get back the prompt — use the Ctrl-c key sequence. 

This will stop the simulation, and the prompt will reappear. 

Graphical User Interface 

The simulator’s GUI offers a visual display of the state of the simulated system, 

including the PPE and the eight SPEs. 

You can view the values of the registers, memory, and channels, as well as viewing 

performance statistics. The GUI also offers an alternate method of interacting with 

the simulator. Figure 30 on page 127 shows the main GUI window that appears 

when the GUI is launched. 
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The main GUI window has two basic areas: 

v   The vertical panel on the left. 

v   The rows of buttons on the right.

The vertical panel represents the simulated system and its components. The rows 

of buttons are used to control the simulator. 

To start the GUI from the Linux run directory, enter: 

 PATH=/opt/ibm/systemsin-cell/bin:$PATH; systemsim -g 

The simulator will then configure the simulator as a Cell Broadband Engine and 

display the main GUI window, labeled with the name of the application program. 

When the GUI window first appears, click the Go button to boot the Linux 

operating system. 

For a detailed description of starting the simulator and running a program see 

“Running the program in the simulator” on page 44. 

The simulation panel 

When the main GUI window first appears, the vertical panel contains a single 

folder labeled mysim. 

To see the contents of mysim, click on the plus sign (+) in front of the folder icon. 

When the folder is expanded, you can see its contents. These include 

v   a PPE (labelled PPE0:0:0 and PPE0:0:1, 

v   the two threads of the PPE), 

v   eight SPEs (SPE0... SPE7).

  

Figure 30. Main Graphical User Interface for the simulator
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The folders representing the processors can be further expanded to show the 

viewable objects and the options and actions available. Figure 31 shows the vertical 

panel with several of the processor folders expanded. 

   

PPE components 

There are five PPE components visible in the expanded PPE folder. 

The five visible PPE components are: 

v   PCTrack 

v   PCCCore 

v   GPRegs 

v   FPRegs 

v   PCAddressing

Double-clicking a folder icon brings up a window displaying the program-state 

data. Several of the available windows are shown in the figures provided here. 

The general-purpose registers (GPRs) and the floating-point registers (FPRs) can be 

viewed separately by double-clicking on the GPRegs and the FPRegs folders 

respectively. 

  

Figure 31. Project and processor folders
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Figure 32 shows the GPR window, and Figure 33 shows the FPR window. As data 

changes in the simulated registers, the data in the windows is updated and 

registers that have changed state are highlighted. 

 

 

The PPE Core window (PPCCore) shows the contents of all the registers of the PPE, 

including the Vector/SIMD Multimedia Extension registers. Figure 34 on page 130 

shows the PPE Core window. 

 

  

Figure 32. PPE General-Purpose Registers window

  

Figure 33. PPE Floating-Point Registers window
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SPE components 

The SPE folders (SPE0 ... SPE7) each have ten sub-items. 

Five of the sub-items represent windows that show data in the registers, channels, 

and memory: 

v   SPUTrack 

v   SPUCore 

v   SPEChannel 

v   LS_Stats 

v   SPUMemory

Two of the sub-items, and , represent windows that show state information on the 

MFC: 

v   MFC  

v   MFC_XLate

The last three sub-items represent actions to perform on the SPE: 

v   SPUStats 

v   Model 

v   Load-Exec

Several interesting SPE data windows are shown in this section’s figures. Figure 35 

on page 131 shows the MFC  window, which provides internal MFC state 

information. Figure 36 on page 132 shows the MFC_XLate window, which provides 

translation structure state information. Figure 37 on page 133 shows the 

SPEChannel window, which provides information about the SPE’s channels. 

 

  

Figure 34. PPE Core window
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Figure 35. SPE MFC  window
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Figure 36. SPE MFC  Address Translation window

 

132 Programming  Tutorial



The last three items in an SPE folder represent actions to perform, with respect to 

the associated SPE. The first of these is SPUStats. When the system is stopped and 

you double-click on this item, the simulator displays program performance 

statistics in its own pop-up window. 

Figure 38 on page 134 shows an example of a statistics dump. These statistics are 

only collected when the Model is set to pipeline mode. 

 

  

Figure 37. SPE Channels window
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The next item in the SPE folder is labelled either: 

v   Model: instruction, 

v   Model: pipeline, or 

v   Model: fast.

The label indicates whether the simulation is in: 

v   instruction mode for checking and debugging the functionality of a program, 

v   pipeline mode for collecting performance statistics on the program, or 

v   fast mode for fast functional simulation only.

The model can be toggled by double-clicking the item. The Perf Models button on 

the GUI can also be used to display a menu for setting the simulator model modes 

of all of the SPEs simultaneously. 

  

Figure 38. SPE statistics
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The last item in the SPE folder, Load-Exec, is used for loading an executable onto 

an SPE. When you double-click the item, a file-browsing window is displayed, 

allowing you to find and select the executable file to load. 

GUI buttons 

On the right side of the GUI screen are five rows of buttons. These are used to 

manipulate the simulation process. 

The five rows of buttons, shown in Figure 30 on page 127, do the following: 

v   Advance Cycle — Advances the simulation by a set number of cycles. The default 

value is 1 cycle, but it can be changed by entering an integer value in the 

textbox above the buttons, or by moving the slider next to the textbox. The 

drop-down menu at the top of the GUI allows the user to select the time domain 

for cycle stepping. The time units to use for cycles are expressed in terms of 

various system components. The simulation must be stopped for this button to 

work; if the simulation is not stopped, the button is inactive. 

v   Go — Starts or continues the simulation. In the SDK’s simulator, the first time 

the Go button is clicked it initiates the Linux boot process. (In general, the action 

of the Go button is determined by the startup tcl file located in the directory 

from which the simulator is started.) 

v   Stop — Pauses the simulation. 

v   Service GDB — Allows the external gdb debugger to attach to the running 

program. This button is also inactive while the simulation is running. 

v   Triggers/Breakpoints — Displays a window showing the current triggers and 

breakpoints. 

v   Update GUI — Refreshes all of the GUI screens. By default, the GUI screens are 

updated automatically every four seconds. Click this button to force an update. 

v   Debug Controls — Displays a window of the available debug controls and allows 

you to select which ones should be active. Once enabled, corresponding 

information messages will be displayed. Figure 39 on page 137 shows the Debug 

Controls window. 

v   Options — Displays a window allowing you to select fonts for the GUI display. 

On a separate tab, you can enter the gdb debugger port. 

v   Emitters — Displays a window with the defined emitters, with separate tabs for 

writers and readers. Figure 46 on page 148 shows the Emitters window. For more 

on emitters, see “Emitters” on page 147. 

v   Fast Mode — Toggles fast mode on and off. Fast mode accelerates the execution 

of the PPE at the expense of disabling certain system-analysis features. It is 

useful for quickly advancing the simulation to a point of interest. When fast 

mode is on, the button appears depressed; otherwise it appears normal. Fast 

mode can also be enabled with the mysim fast on command and disabled with 

the mysim fast off command. 

v   Perf Models — Displays a window in which various performance models can be 

selected for the various system simulator components. Provides a convenient 

means to set each SPU’s simulation mode to either cycle accurate pipeline mode 

or instruction mode or fast functional-only mode. The same capabilities are 

available using the Model:instruction, Model:pipeline, Model:fast toggle menu 

sub-item under each SPE in the tree menu at the left of the main control panel. 

Figure 42 on page 140 shows the SPU Performance Model Modes window. 

v   SPE Visualization — Plots histograms of SPU and DMA event counts. The counts 

are sampled at user defined intervals, and are continuously displayed. Two 

modes of display are provided: a “scroll” view, which tracks only the most 
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recent time segment, and a “compress” view, which accumulates samples to 

provide an overview of the event counts during the time elapsed. Users can 

view collected data in either detail or summary panels. 

–   The detailed, single-SPE panel tracks SPU pipeline phenomena (such as stalls, 

instructions executed by type, and issue events), and DMA transaction counts 

by type (gets, puts, atomics, and so forth). 

–   The summary panel tracks all eight SPEs for the CBE, with each plot showing 

a subset of the detailed event count data available.

Figure 40 on page 138 shows the SPE Visualization window. 

v   Process-Tree and Process-Tree-Stats — This feature requires OS kernel hooks that 

allow the simulator to display process information. This feature is currently not 

provided in the SDK kernel. 

v   Track All PCs — Figure 41 on page 139 shows the Track All PCs window. 

v   SPU Modes — Provides a convenient means to set each SPU’s simulation mode 

to either cycle accurate pipeline mode or fast functional-only mode. The same 

capabilities are available using the Model:instruction or Model:pipeline toggle 

menu sub-item under each SPE in the tree menu at the left of the main control 

panel. Figure 42 on page 140 shows the SPU Modes window. 

v   Event Log — Enables a set of predefined triggers to start collecting the log 

information. The window provides a set of buttons that can be used to set the 

marker cycle to a point in the process. 

v   Exit — Exits the simulator and closes the GUI window. 

 

 

136 Programming  Tutorial



Figure 39. Debug Controls window
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Figure 40. SPE Visualization window
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Figure 41. Track All  PCs  window
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Performance monitoring 

The simulator provides both functional-only and cycle-accurate simulation modes. 

The functional-only mode models the effects of instructions, without accurately 

modeling the time required to execute the instructions. In functional-only mode, a 

fixed latency is assigned to each instruction; the latency can be arbitrarily altered 

by the user. Since latency is fixed, it does not account for processor implementation 

and resource conflict effects that cause instruction latencies to vary. Functional-only 

mode assumes that memory accesses are synchronous and instantaneous. This 

mode is useful for software development and debugging, when a precise measure 

of execution time is not required. 

The cycle-accurate mode models not only functional accuracy but also timing. It 

considers internal execution and timing policies as well as the mechanisms of 

system components, such as arbiters, queues, and pipelines. Operations may take 

several cycles to complete, accounting for both processing time and resource 

constraints. 

The cycle-accurate mode allows you to: 

v   Gather and compare performance statistics on full systems, including the PPE, 

SPEs, MFCs, PPE caches, bus, and memory controller. 

v   Determine precise values for system validation and tuning parameters, such as 

cache latency. 

v   Characterize the system workload. 

v   Forecast performance at future loads, and fine-tune performance benchmarks for 

future validation.

  

Figure 42. SPU Modes window
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In the cycle-accurate mode, the simulator automatically collects many performance 

statistics. Some of the more important SPE statistics are: 

v   Total cycle count 

v   Count of branch instructions 

v   Count of branches taken 

v   Count of branches not taken 

v   Count of branch-hint instructions 

v   Count of branch-hints taken 

v   Contention for an SPE’s local store 

v   Stall cycles due to dependencies on various pipelines

Displaying performance statistics 

You can collect and display simple performance statistics on a program without 

performing any instrumentation of the program code. Collection of more complex 

statistics requires program instrumentation. 

The following steps demonstrate how to collect and display simple performance 

statistics. The example PPE program starts (“spawns”) the same thread on three 

SPEs. 

v   When an SPE thread is spawned, its SPE number (any number between 0 and 7) 

is passed in a data structure as a parameter to the main function. 

v   The SPE program contains a for-loop that is executed zero or more times. 

v   The number of times it is executed is equal to three times the value passed to its 

main function.

The names of the PPE and SPE programs are tpa1 and tpa1_spu, respectively. Part 

of the most important sections of the programs are shown in “Example program: 

tpa1” on page 146. 

The following steps are marked as to whether they are performed in the 

simulator’s command window or its console window. To collect and display simple 

performance statistics, do the following: 

1.   Start the simulator. Start the simulator by entering the following command: 

 PATH=/opt/ibm/systemsin-cell/bin:$PATH; systemsim 

This command starts the simulator in command-line mode, and displays the 

simulator prompt. 

 systemsim % 

2.   In the command window, set the SPUs to pipeline mode. An SPU must be in 

pipeline mode to collect performance statistics from that SPU. If, instead, the 

SPU is in instruction mode, it will only report the total instruction count. Use 

the mysim spu command to set those processors to pipeline mode, as follows: 

 mysim spu 0 set model pipeline 

 mysim spu 1 set model pipeline 

 mysim spu 2 set model pipeline 

Note: The specific SPU numbers are examples only. The operating system may 

assign the SPU programs to execute on a different set of SPUs. You can also use 

the SPU Modes button or the folder under each SPE labeled Model to set the 

model to pipeline mode. 

3.   In the command window, boot Linux. Boot the Linux operating system on the 

simulated PPE by entering: 
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mysim go 

4.   In the console window, load the executables. Load the PPE and SPE executables 

from the base environment into the simulated environment, and set their file 

permissions to executable, as follows: 

 callthru source tpa1 > tpa1 

 callthru source tpa1_spu > tpa1_spu 

 chmod +x tpa1 

 chmod +x tpa1_spu 

5.   In the console window, run the PPE program. Run the PPE program in the 

simulation by entering the name of the executable file, as follows: 

 tpa1 

6.   In the command window, pause the simulation and display statistics. When the 

program finishes execution, select the simulator control window. Pause the 

simulator by entering the Ctrl-c key sequence. To display the performance 

statistics for the three SPEs, enter the following commands: 

 mysim spu 0 display statistics 

 mysim spu 1 display statistics 

 mysim spu 2 display statistics 

As each command is entered, the simulator displays the performance statistics in 

the simulator command window. Figure 43 on page 143 shows a screen image of 

the SPE 0 performance statistics. 
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Although the programs on SPE 0 and SPE 2 are the same, the program on SPE 0 

executed the loop zero times, but the program on SPE 2 executed the loop six 

times. 

You can compare the performance statistics of SPE 0 (Figure 43) with those of 

SPE 2, which are shown in Figure 44 on page 144. 

Note: The statistics collected in this manner include the SPU cycles required to 

load the SPE thread, start the SPE thread, and cleanup the SPE thread upon 

SPU DD3.0 

*** 

Total Cycle count               35185 

Total Instruction count         643 

Total CPI                       54.72 

*** 

Performance Cycle count         35185 

Performance Instruction count   1701 (1502) 

Performance CPI                 20.68 (23.43) 

  

Branch instructions             135 

Branch taken                    120 

Branch not taken                15 

  

Hint instructions               9 

Hint hit                        31 

  

Contention at LS between Load/Store and Prefetch 49 

  

Single cycle                                              1108 (  3.1%) 

Dual cycle                                                 197 (  0.6%) 

Nop cycle                                                  137 (  0.4%) 

Stall due to branch miss                                  1655 (  4.7%) 

Stall due to prefetch miss                                   0 (  0.0%) 

Stall due to dependency                                    826 (  2.3%) 

Stall due to fp resource conflict                            0 (  0.0%) 

Stall due to waiting for hint target                        11 (  0.0%) 

Issue stalls due to pipe hazards                             6 (  0.0%) 

Channel stall cycle                                      31236 ( 88.8%) 

SPU Initialization cycle                                     9 (  0.0%) 

----------------------------------------------------------------------- 

Total cycle                                              35185 (100.0%) 

  

Stall cycles due to dependency on each pipelines 

 FX2        62 (  7.5% of all dependency stalls) 

 SHUF       322 ( 39.0% of all dependency stalls) 

 FX3        2 (  0.2% of all dependency stalls) 

 LS         413 ( 50.0% of all dependency stalls) 

 BR         0 (  0.0% of all dependency stalls) 

 SPR        21 (  2.5% of all dependency stalls) 

 LNOP       0 (  0.0% of all dependency stalls) 

 NOP        0 (  0.0% of all dependency stalls) 

 FXB        0 (  0.0% of all dependency stalls) 

 FP6        0 (  0.0% of all dependency stalls) 

 FP7        0 (  0.0% of all dependency stalls) 

 FPD        6 (  0.7% of all dependency stalls) 

  

The number of used registers are 128, the used ratio is 100.00 

dumped pipeline stats 

Figure 43. tpa1 statistics for SPE 0
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completion. 

   

SPE performance profile checkpoints 

The simulator can automatically capture system-wide performance statistics that 

are useful in determining the sources of performance degradation, such as channel 

stalls and instruction-scheduling problems. 

You can also use SPE performance profile checkpoints to delimit a specific region of 

code over which performance statistics are to be gathered. 

SPU DD3.0 

*** 

Total Cycle count               35537 

Total Instruction count         643 

Total CPI                       55.27 

*** 

Performance Cycle count         35537 

Performance Instruction count   1802 (1590) 

Performance CPI                 19.72 (22.35) 

  

Branch instructions             153 

Branch taken                    136 

Branch not taken                17 

  

Hint instructions               15 

Hint hit                        37 

  

Contention at LS between Load/Store and Prefetch 49 

  

Single cycle                                              1170 (  3.3%) 

Dual cycle                                                 210 (  0.6%) 

Nop cycle                                                  150 (  0.4%) 

Stall due to branch miss                                  1854 (  5.2%) 

Stall due to prefetch miss                                   0 (  0.0%) 

Stall due to dependency                                    879 (  2.5%) 

Stall due to fp resource conflict                            0 (  0.0%) 

Stall due to waiting for hint target                        23 (  0.1%) 

Issue stalls due to pipe hazards                             6 (  0.0%) 

Channel stall cycle                                      31236 ( 87.9%) 

SPU Initialization cycle                                     9 (  0.0%) 

----------------------------------------------------------------------- 

Total cycle                                              35537 (100.0%) 

  

Stall cycles due to dependency on each pipelines 

 FX2        86 (  9.8% of all dependency stalls) 

 SHUF       348 ( 39.6% of all dependency stalls) 

 FX3        2 (  0.2% of all dependency stalls) 

 LS         413 ( 47.0% of all dependency stalls) 

 BR         3 (  0.3% of all dependency stalls) 

 SPR        21 (  2.4% of all dependency stalls) 

 LNOP       0 (  0.0% of all dependency stalls) 

 NOP        0 (  0.0% of all dependency stalls) 

 FXB        0 (  0.0% of all dependency stalls) 

 FP6        0 (  0.0% of all dependency stalls) 

 FP7        0 (  0.0% of all dependency stalls) 

 FPD        6 (  0.7% of all dependency stalls) 

  

The number of used registers are 128, the used ratio is 100.00 

dumped pipeline stats 

Figure 44. tpa1 statistics for SPE 2
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Performance profile checkpoints (such as prof_clear , prof_start and prof_stop in 

the code samples below) can be used to capture higher-level statistics such as the 

total number of instructions, the number of instructions other than no-op 

instructions, and the total number of cycles executed by the profiled code segment. 

The checkpoints are special no-op instructions that indicate to the simulator that 

some special action should be performed. No-op instructions are used because they 

allow the same program to be executed on real hardware. A SPE header file, 

profile.h , provides a convenient function-call-like interface to invoke these 

instructions. 

In addition to displaying performance information, certain performance profile 

checkpoints can control the statistics-gathering functions of the SPU. 

For example, profile checkpoints can be used to capture the total cycle count on a 

specific SPE. The resulting statistic can then be used to further guide the tuning of 

an algorithm or structure of the SPE. The following example illustrates the 

profile-checkpoint code that can be added to an SPE program in order to clear, 

start, and stop a performance counter: 

 #include <profile.h> 

 . . . 

 prof_clear();     // clear performance counter 

 prof_start();     // start recording performance statistics 

 ... 

  <code_to_be_profiled> 

 ... 

 prof_stop();     // stop recording performance statistics 

When a profile checkpoint is encountered in the code, an instruction is issued to 

the simulator, causing the simulator to print data identifying the calling SPE and 

the associated timing event. The data is displayed on the simulator control 

window in the following format: 

SPUn: CPm, xxxxx(yyyyy), zzzzzzz 

where: 

v   n is the number of the SPE on which the profile checkpoint has been issued, 

v   m is the checkpoint number, 

v   xxxxx is the instruction counter, 

v   yyyyy is the instruction count excluding no-ops, 

v   zzzzzz is the cycle counter.

The following example uses the tpa1_spu program and instruments the loop with 

the prof_clear , prof_start and prof_stop profile checkpoints. The relevant code 

is shown here. 

// file tpa2_spu.c 

  

#include <sim_printf.h> 

#include <profile.h> 

  

 ... 

  

 prof_clear(); 

 prof_start(); 

 for( i=0; i<spe_num*3; i++ ) 

  sim_printf("SPE#: %lld, Count: %d\n", spe_num, i); 

 prof_stop(); 
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Figure 45 shows the output produced by the program. 

   

Example program: tpa1 

The following example program tpa1 is used in the sections above to show the 

basic performance statistics that can be collected and displayed without 

instrumentation of the code. 

tpa1.c is the source code for the PPE, which spawns three copies of program 

tpa1_spu on SPEs 0, 1 and 2. The code in tpa1_spu executes the for-loop a different 

number of times in each of the SPEs. For each SPE, the loop is executed three 

times the number passed in as the parameter. 

// file tpa1.c - error checking removed to improve readability 

  

 ... 

  

 // the value of nr_spus is 3 

 for (i = 0; i < nr_spus; i++) { 

    spe_context_ptr_t spe; 

    spe_program_handle_t *tpa1_spu; 

    unsigned int entry = SPE_DEFAULT_ENTRY; 

    union { 

   void *ptr; 

   unsigned int spe_num; 

  } t_info; 

  

   spe = spe_context_create(0, NULL); 

   tpa1_spu = spe_image_open("tpa1_spu") 

   (void)spe_program_load(spe, &tpa1_spu); 

   printf("Spawning thread:  %d\n", i); 

   t_tinfo.spe_num = i; 

   (void)spe_context_run(spe, &entry, 0, t_info.ptr, NULL, NULL); 

   (void)spe_context_detroy(spe); 

 } 

  

  

  // file tpa1_spu.c 

  

 main(unsigned long long id, unsigned long long spe_num) 

 { 

  int i; 

  

  for( i=0; i<spe_num*3; i++ ) 

    sim_printf("SPE#: %lld, Count: %d\n", spe_num, i); 

 } 

SPU2: CP0, 863(740), 17800 

clear performance info. 

SPU2: CP30, 0(0), 1 

start recording performance info. 

SPE#: 25296904, Count: 0 

SPE#: 25296904, Count: 1 

SPE#: 25296904, Count: 2 

SPE#: 25296904, Count: 3 

SPE#: 25296904, Count: 4 

SPE#: 25296904, Count: 5 

SPU2: CP31, 118(103), 400 

stop recording performance info. 

Figure 45. Profile checkpoint output for SPE 2
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Emitters 

In addition to the basic cycle-count and summary statistics provided by its profile 

checkpoints and triggers, the simulator also supports a user-extensible 

event-analysis system, called emitters. 

The emitters, selected on the GUI screen (Figure 30 on page 127), de-couple 

performance event-collection from performance analysis tools. The emitter 

event-analysis system has two primary functions: 

v   Event Data Production — During simulation, the simulator can identify a wide 

variety of architectural and programmatic events that influence system and 

software performance. Using configuration commands, you can request the 

simulator to emit records for a specific set of events into a circular, shared 

memory buffer. Reader programs attach to the shared memory buffer to 

consume these event records. Examples of emitter events include instruction 

execution, memory-reference addresses, and cache hits and misses. 

v   Event Processing — There are one or more readers that analyze event records 

from this buffer. The readers typically compute performance measurements and 

statistics, visualize system and application behavior, and capture traces for 

post-processing. The simulator is prepackaged with a set of prebuilt sample 

emitter readers, and users can develop and customize their own emitter readers.

Figure  46 on page 148 shows the emitter selections available by clicking the 

Emitters button on the GUI screen. 

Figure 47 on page 148 shows the emitter architecture. Emitters can be used in any 

simulator mode. The writer toggle buttons in the GUI are used to enable or disable 

production of the associated event to the circular buffer. An emitter reader 

program is needed to receive the events from the circular buffer using the emitter 

reader API. 

The emitter framework is meant for programmers who wish to conduct 

performance analyses or capture traces by developing custom reader programs. 
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The types of events that can be tracked are described in: 

 /opt/ibm/systemsim-cell/include/emitter/emitter_data_t.h 

The categories of events are: 

  

Figure 46. Emitters

  

Figure 47. Emitter architecture
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v   Begin/end markers (Header, Footer) 

v   PPU and SPU instructions 

v   Cache hits or misses 

v   Process/thread state (create, resume, kill, and so forth) 

v   Translation Lookaside Buffer (TLB), Segment Lookaside Buffer (SLB), 

Effective-to-Real Address Translation (ERAT) operations 

v   Device operations (disk) 

v   Annotations 

v   Transactions

SPU performance and semantics 

The simulator collects several statistics related to SPU performance. 

Table 35 lists the performance statistics that are available in the public SDK. 

 Table 35. Simulator Performance Statistics for the SPU 

Statistic Name  Meaning 

performance_inst_count Instruction count (profile checkpoint sensitive), 

including and not including no-ops. 

performance_cycle_count Cycle count (profile checkpoint sensitive). 

branch_taken Count of branch instructions taken. 

branch_not_taken Count of branch instructions not taken. 

hint_instructions Count of branch hint instructions. 

hint_instruction_hits Number of times a hint instruction predicted 

correctly. 

ls_contention Number of cycles in which local store load/store 

instructions prevented prefetch. 

sbi_contention Number of cycles in which the Synergistic Bus 

Interface (SBI) DMA operations prevented SPU 

local store access. 

single_cycle Number of cycles in which only one pipeline 

executed an instruction. 

dual_cycle Number of cycles in which both pipelines 

executed an instruction. 

sp_issue_block Number of cycles in which dual-issue was  

prevented, due to an SP-class instruction not 

being available to issue. 

dp_issue_block Number of cycles in which dual-issue was  

prevented, due to a DP-class instruction not being 

available to issue. 

cross_issue_cycle Number of cycles in which issue pipe{0,1} sent an 

instruction to the opposite issue pipe{1, 0}. 

nop_inst_count Number of NOP  instructions executed (NOP,  

LNOP,  HBR, and HBC).  

src0_dep_cycle Number of cycles in which dual-issue was  

prevented, due to operand dependencies between 

the two  instructions that were ready to issue 

simultaneously. 
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Table 35. Simulator Performance Statistics for the SPU (continued) 

Statistic Name  Meaning 

nop_cycle Number of cycles in which a NOP  was  executed 

in either pipeline. 

branch_stall_cycles Number of cycles stalled due to branch miss. 

prefetch_miss_stall_cycles Number of cycles instruction issue stalled due to 

prefetch miss. 

pipe_dep_stall_cycles Number of cycles instruction issue stalled, due to 

source operand dependencies on target operands 

in any execution pipeline. 

pipe_busy_cycles Number of cycles all execution pipelines were  

expected to be busy processing in-flight 

instructions (unaffected by flush). 

fp_resource_conflict_stall_cycles Number of cycles stalled due to floating-point 

unit resource conflict. 

hint_stall_cycles Number of cycles stalled due to waiting for hint 

target. 

siss_stall_cycles Number of cycles stalled due to structural 

execution pipe dependencies. 

channel_stall_cycles Number of cycles stalled waiting for a channel 

operation to complete. 

XXX_inst_count (see below) Number of XXX  instructions executed. 

XXX_dep_stall_cycles (see below) Number of cycles stalled due to a source operand 

dependency on a target operand of an in-flight 

instruction in the XXX  execution pipeline. 

XXX_iss_stall_cycles (see below) Number of cycles stalled due to a structural 

dependency on an XXX class instruction. 

XXX_busy_cycle (see below) Total cycles the XXX  execution pipeline was  

expected to be busy processing in-flight 

instructions (unaffected by flush). 

Where XXX  (above) is one of: 

FX2 SPX fixed-point unit (fixed [FX] class) instructions. 

SHUF  SFS shuffle and quad-rotate fixed-point unit 

(shuffle [SH] class) instructions. 

FX3 SFX 4-cycle fixed-point unit (word rotate and shift 

[WS] class) instructions. 

LS SLS load and store unit (load and store [LS] class) 

instructions. 

BR SCN  branch and control unit and sequencer 

(branch resolution [BR] class) instructions. 

SPR SSC Channel and DMA unit (channel interface 

[CH]  class) instructions. 

LNOP  Odd  pipeline (load no operation [LNOP] class) 

no-ops. 

NOP Even pipeline (NOP  class) no-ops. 

FXB SFP byte operations (byte operations [BO] class) 

instructions. 

FP6 SFP FPU single-precision (single-precision 

floating-point [SP] class) instructions. 
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Table 35. Simulator Performance Statistics for the SPU (continued) 

Statistic Name  Meaning 

FP7 SFP integer (floating-point integer [FI] class) 

instructions. 

FPD SFP FPU double-precision (double-precision 

floating-point [DP] class) instructions. 
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Notices  

This information was developed for products and services offered in the U.S.A. 

IBM® may not offer the products, services, or features discussed in this document 

in other countries. Consult your local IBM representative for information on the 

products and services currently available in your area. Any reference to an IBM 

product, program, or service is not intended to state or imply that only that IBM 

product, program, or service may be used. Any functionally equivalent product, 

program, or service that does not infringe any IBM intellectual property right may 

be used instead. However, it is the user’s responsibility to evaluate and verify the 

operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter 

described in this document. The furnishing of this document does not grant you 

any license to these patents. You can send license inquiries, in writing, to: 

IBM Director of Licensing 

IBM Corporation 

North Castle Drive 

Armonk, NY  10504-1785 

U.S.A. 

For license inquiries regarding double-byte (DBCS) information, contact the IBM 

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation 

Licensing 2-31 Roppongi 3-chome, Minato-ku 

Tokyo 106-0032, Japan 

The following paragraph does not apply to the United Kingdom or any other 

country where such provisions are inconsistent with local law: 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS 

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER 

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS 

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or 

implied warranties in certain transactions, therefore, this statement may not apply 

to you. 

This information could include technical inaccuracies or typographical errors. 

Changes are periodically made to the information herein; these changes will be 

incorporated in new editions of the publication. IBM may make improvements 

and/or changes in the product(s) and/or the program(s) described in this 

publication at any time without notice. 

Any references in this information to non-IBM Web sites are provided for 

convenience only and do not in any manner serve as an endorsement of those Web 

sites. The materials at those Web sites are not part of the materials for this IBM 

product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it 

believes appropriate without incurring any obligation to you. 
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Licensees of this program who wish to have information about it for the purpose 

of enabling: (i) the exchange of information between independently created 

programs and other programs (including this one) and (ii) the mutual use of the 

information which has been exchanged, should contact:

IBM Corporation 

Software Interoperability Coordinator, Department 49XA 

3605 Highway 52 N 

Rochester, MN 55901 

U.S.A. 

Such information may be available, subject to appropriate terms and conditions, 

including in some cases, payment of a fee. 

The licensed program described in this information and all licensed material 

available for it are provided by IBM under terms of the IBM Customer Agreement, 

IBM International Program License Agreement, or any equivalent agreement 

between us. 

Any performance data contained herein was determined in a controlled 

environment. Therefore, the results obtained in other operating environments may 

vary significantly. Some measurements may have been made on development-level 

systems and there is no guarantee that these measurements will be the same on 

generally available systems. Furthermore, some measurements may have been 

estimated through extrapolation. Actual results may vary. Users of this document 

should verify the applicable data for their specific environment. 

Information concerning non-IBM products was obtained from the suppliers of 

those products, their published announcements or other publicly available sources. 

IBM has not tested those products and cannot confirm the accuracy of 

performance, compatibility or any other claims related to non-IBM products. 

Questions on the capabilities of non-IBM products should be addressed to the 

suppliers of those products. 

All statements regarding IBM’s future direction or intent are subject to change or 

withdrawal without notice, and represent goals and objectives only. 

All IBM prices shown are IBM’s suggested retail prices, are current and are subject 

to change without notice. Dealer prices may vary. 

This information is for planning purposes only. The information herein is subject to 

change before the products described become available. 

This information contains examples of data and reports used in daily business 

operations. To illustrate them as completely as possible, the examples include the 

names of individuals, companies, brands, and products. All of these names are 

fictitious and any similarity to the names and addresses used by an actual business 

enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 

This information contains sample application programs in source language, which 

illustrate programming techniques on various operating platforms. You may copy, 

modify, and distribute these sample programs in any form without payment to 

IBM, for the purposes of developing, using, marketing or distributing application 

programs conforming to the application programming interface for the operating 
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platform for which the sample programs are written. These examples have not 

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or 

imply reliability, serviceability, or function of these programs. 

If you are viewing this information softcopy, the photographs and color 

illustrations may not appear. 

Edition notices 

© Copyright International Business Machines Corporation, Sony Computer 

Entertainment Incorporated, Toshiba Corporation 2006, 2007. All rights reserved. 

U.S. Government Users Restricted Rights — Use, duplication, or disclosure 

restricted by GSA ADP Schedule Contract with IBM Corp. 
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Glossary  

ABI 

Application Binary Interface. This is the standard 

that a program follows to ensure that code 

generated by different compilers (and perhaps 

linking with various, third-party libraries) will 

run correctly on the Cell Broadband Engine. The 

ABI defines data types, register use, calling 

conventions, object formats. 

AOS 

Array of structures. A method of organizing 

related data values. Also called vector-across 

form. See also SOA. 

API 

Application Program Interface. 

ATO  

Atomic Unit. Part of an SPE’s MFC. It is used to 

synchronize with other processor units. 

atomic access 

A bus access that attempts to be part of an atomic 

operation. 

atomic operation 

A set of operations, such as read-write, that are 

performed as an uninterrupted unit. 

BIC 

Bus Interface Controller. Part of the Cell 

Broadband Engine Interface (BEI) to I/O. 

BIF 

Cell Broadband Engine Interface. The EIB’s 

internal communication protocol. It supports 

coherent interconnection to other Cell Broadband 

Engines and BIF-compliant I/O devices, such as 

memory subsystems, switches, and bridge chips. 

See also IOIF. 

BIU 

Bus Interface Unit. Part of the PPE’s interface to 

the EIB. 

branch hint 

A type of branch instruction that provides a hint 

of the address of the branch instruction and the 

address of the target instruction. Hints are coded 

by the programmer or inserted by the compiler. 

The branch is assumed taken to the target. Hints 

are used in place of branch prediction in the SPU. 

built-ins 

A type of C and C++ programming language 

intrinsic that “built in” to the compiler. 

B 

Byte. 

cache 

High-speed memory close to a processor. A cache 

usually contains recently-accessed data or 

instructions, but certain cache-control instructions 

can lock, evict, or otherwise modify the caching 

of data or instructions. 

caching-inhibited 

A memory update policy in which the cache is 

bypassed, and the load or store is performed to or 

from main memory. 

CBEA 

Cell Broadband Engine Architecture. The Cell 

Broadband Engine is one implementation of the 

Cell Broadband Engine Architecture. 
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Cell Broadband Engine Linux 

task 

A task running on the PPE and SPE. Each such 

task has one or more Linux threads and some 

number of SPE threads. All the Linux threads 

within the task share the task’s resources, 

including access to the SPE threads. 

Cell Broadband Engine program 

A PPE program with one or more embedded SPE 

programs. 

channel 

Channels are unidirectional, function-specific 

registers or queues. They are the primary means 

of communication between an SPE’s SPU and its 

MFC, which in turn mediates communication 

with the PPE, other SPEs, and other devices. 

These other devices use MMIO registers in the 

destination SPE to transfer information on the 

channel interface of that destination SPE. 

Specific channels have read or write properties, 

and blocking or nonblocking properties. Software 

on the SPU uses channel commands to enqueue 

DMA  commands, query DMA  and processor 

status, perform MFC  synchronization, access 

auxiliary resources such as the decrementer 

(timer), and perform interprocessor-
communication via mailboxes and 

signal-notification. 

CL 

The class-ID parameter in an MFC  command. 

coherence 

Memory and cache coherence. The correct 

ordering of stores to a memory address, and the 

enforcement of any required cache write-backs 

during accesses to that memory address. Cache 

coherence is implemented by a hardware snoop 

(or inquire) method, which compares the memory 

addresses of a load request with all cached copies 

of the data at that address. If a cache contains a 

modified copy of the requested data, the modified 

data is written back to memory before the 

pending load request is serviced. 

control plane 

Software or hardware that manages the operation 

of data-plane software or hardware, by allocating 

resources, updating tables, handling errors, and 

so forth. See also data-plane. 

cycle 

Unless otherwise specified, one tick of the PPE 

clock. 

data plane 

Software or hardware that operates on a stream 

or other large body of data and is managed by 

control-plane software or hardware. See also 

control-plane. 

decrementer 

A register that counts down each time an event 

occurs. Each SPU contains dedicated 32-bit 

decrementers for scheduling or performance 

monitoring, by the program or by the SPU itself. 

D-ERAT  

Data ERAT. 

DMA 

Direct Memory Access. A technique for using a 

special-purpose controller to generate the source 

and destination addresses for a memory or I/O 

transfer. 

DMAC 

Direct Memory Access Controller. A controller 

that performs DMA transfers. 

DMA command 

A type of MFC  command that transfers or 

controls the transfer of a memory location 

containing data or instructions. See also MFC  

command. 

DMA list 

A sequence of transfer elements (or list entries) 

that, together with an initiating DMA-list 

command, specifies a sequence of DMA  transfers 

between a single area of LS and discontinuous 
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areas in main storage. Such lists are stored in an 

SPE’s LS, and the sequence of transfers is initiated 

with a DMA-list command such as getl or putl. 

DMA-list commands can only be issued by 

programs running on an SPE, but the PPE or 

other devices can create and store the lists in an 

SPE’s LS. DMA  lists can be used to implement 

scatter-gather functions between main storage and 

the LS. 

DMA-list command 

A type of MFC  command that initiates a sequence 

of DMA  transfers specified by a DMA  list stored 

in an SPE’s LS. See also DMA list. 

DMA queue 

A set of two queues for holding DMA-transfer 

commands. The SPE’s queue has 16 entries. The 

PPE’s queue has four entries (two plus an 

additional two for the L2 cache) for 

SPE-requested DMA  commands, and eight entries 

for PPE-requested DMA  commands. 

dual-issue 

Issuing two instructions at once, under certain 

conditions. See also fetch group. 

EA 

Effective address. 

ECC 

Error-Correcting Code. 

effective address 

An address generated or used by a program to 

reference memory. A memory-management unit 

translates an effective address (EA) to a virtual 

address (VA), which it then translates to a real 

address (RA) that accesses real (physical) memory. 

The maximum size of the effective-address space 

is 2⁶⁴ bytes. 

EIB 

Element Interconnect Bus. The on-chip coherent 

bus that handles communication between the 

PPE, SPEs, memory, and I/O devices (or a second 

Cell Broadband Engine). The EIB is organized as 

four unidirectional data rings (two clockwise and 

two counterclockwise). 

ELF 

Executable and Linking Format. The standard 

object format for many UNIX operating systems, 

including Linux. Originally defined by AT&T and 

placed in public domain. Compilers generate ELF 

files. Linkers link to files with ELF files in 

libraries. Systems run ELF files. 

ERAT  

Effective-to-Real Address Translation, or a buffer 

or table that contains such translations, or a table 

entry that contains such a translation. 

even pipeline 

Part of an SPE’s dual-issue execution pipeline. 

Also referred to as pipeline 0. 

exception 

An error, unusual condition, or external signal 

that may alter a status bit and will cause a 

corresponding interrupt, if the interrupt is 

enabled. See also interrupt. 

fence 

An option for a barrier ordering command that 

causes the processor to wait for completion of all 

MFC commands before starting any commands 

queued after the fence command. It does not 

apply to these immediate commands: getllar, 

putllc, and putlluc. 

fetch group 

A doubleword-aligned instruction pair. Dual-issue 

occurs when a fetch group has two instructions 

that are ready to issue, and when the first 

instruction can be issued on the even pipeline and 

the second instruction can be issued on the odd 

pipeline. 
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FIFO 

First In First Out. Refers to one way elements in a 

queue are processed. It is analogous to “people 

standing in line.” 

flat register 

An architecture with only one register file, in 

which all types of operands are stored. Also 

called a unified register file. By contrast, 

conventional register architectures have separate 

sets of special-purpose registers for such things as 

scalar operands, floating-point operands, vectors, 

branch-and-link values, conditions, and so forth. 

The SPEs have a flat register architecture. The 

PPE has a conventional register architecture. 

FlexIO 

Rambus FlexIO bus, a high performance I/O bus. 

FPU 

Floating-point unit. 

FXU 

In the PPE, the fixed-point integer unit. In the 

SPU, the fixed-point exception unit. 

gdb 

GNU debugger. A modified version of gdb, 

ppu-gdb, starts a Cell Broadband Engine 

program. The PPE component runs first and uses 

system calls, hidden by the SPU programming 

library, to move the SPU component of the Cell 

Broadband Engine program into the local store of 

the SPU and start it running. 

generic intrinsics 

C and C++ language extensions that map to one 

or more specific intrinsics. (See also intrinsic.) All 

generic SPU intrinsics are prefaced by the string 

spu_. For example, the generic intrinsic that 

implements the stop assembly instruction is 

named spu_stop. 

guarded 

Prevented from responding to speculative loads 

and instruction fetches. The operating system 

typically implements guarding, for example, on 

all I/O devices. 

hypervisor 

A control (or virtualization) layer between 

hardware and the operating system. It allocates 

resources, reserves resources, and protects 

resources among (for example) sets of SPEs that 

may be running under different operating 

systems. 

The Cell Broadband Engine has three operating 

modes: user, supervisor and hypervisor. The 

hypervisor performs a meta-supervisor role that 

allows multiple independent supervisors’ 

software to run on the same hardware platform. 

For example, the hypervisor allows both a 

real-time operating system and a traditional 

operating system to run on a single PPE. The PPE 

can then operate a subset of the SPEs in the Cell 

Broadband Engine with the real-time operating 

system, while the other SPEs run under the 

traditional operating system. 

IEEE 754 

The IEEE 754 floating-point standard. A standard 

written by the Institute of Electrical and 

Electronics Engineers that defines operations and 

representations of binary floating-point arithmetic. 

I-ERAT  

Instruction ERAT. 

imprecise exception 

A synchronous exception that does not adhere to 

the precise exception model. In the Cell 

Broadband Engine, single-precision floating-point 

operations generate imprecise exceptions. See also 

precise exception. 

instruction latency 

The total number of clock cycles necessary to 

execute an instruction and produce the results of 

that instruction. 
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in-order 

In program order. The PPE and SPEs execute 

instructions in-order; that is, they do not 

rearrange them (out-of-order). 

interrupt 

A change in machine state in response to an 

exception. See also exception. 

intrinsic 

A C-language command, in the form of a function 

call, that is a convenient substitute for one or 

more inline assembly-language instructions. 

Intrinsics make the underlying ISA accessible 

from the C and C++ programming languages. 

IOC 

I/O Interface Controller. 

I/O device 

Input/output device. From software’s viewpoint, 

I/O devices exist as memory-mapped registers 

that are accessed in main-storage space by 

load/store instructions. The operating system 

typically configures access to I/O devices as 

caching-inhibited and guarded. 

IOIF 

Cell Broadband Engine I/O Interface. The EIB’s 

noncoherent protocol for interconnection to I/O 

devices. See also BIF. 

JSRE 

Joint Software Reference Environment. An 

organization of the Cell Broadband Engine 

developers pursuing the development of reference 

software and standards for the Cell Broadband 

Engine. 

JTAG  

Joint Test Action Group. A test-access port defined 

by the IEEE 1149 standard. 

KB 

Kilobyte. 

L1 

Level-1 cache memory. The closest cache to a 

processor, measured in access time. 

L2 

Level-2 cache memory. The second-closest cache 

to a processor, measured in access time. An L2 

cache is typically larger than an L1 cache. 

LA 

An LS address of a DMA list. It is used as a 

parameter in an MFC command. 

latency 

The time between when a function (or 

instruction) is called and when it returns. 

Programmers often optimize code so that 

functions return as quickly as possible; this is 

referred to as the low-latency approach to 

optimization. Low-latency designs often leave the 

processor data-starved, and performance can 

suffer. 

libspe.a 

An SPU-thread runtime management library. 

lnop 

A NOP in an SPU’s odd pipeline. It can be 

inserted in code to align for dual issue of 

subsequent instructions. 

local store 

The 256-KB local store (LS) associated with each 

SPE. It holds both instructions and data. 

loop unrolling 

A programming optimization that increases the 

step of a loop, and duplicates the expressions 

within a loop to reflect the increase in the step. 

This can improve instruction scheduling and 

memory access time. 

LS 

See local store. 
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LSA 

Local Store Address. An address in the LS of an 

SPU, by which programs running in the SPU and 

DMA  transfers managed by the MFC access the 

LS. 

list element 

See transfer element and DMA list. 

Linux thread 

A thread running on the PPE in the Linux 

operating-system environment. 

mailbox 

A queue in an SPE’s MFC for exchanging 32-bit 

messages between the SPE and the PPE or other 

devices. Two mailboxes (the SPU Write Outbound 

Mailbox and SPU Write Outbound Interrupt 

Mailbox) are provided for sending messages from 

the SPE. One mailbox (the SPU Read Inbound 

Mailbox) is provided for sending messages to the 

SPE. 

main memory 

See main storage. 

main storage 

The effective-address (EA) space. It consists 

physically of real memory (whatever is external to 

the memory-interface controller, including both 

volatile and nonvolatile memory), SPU LSs, 

memory-mapped registers and arrays, 

memory-mapped I/O devices (all I/O is 

memory-mapped), and pages of virtual memory 

that reside on disk. It does not include caches or 

execution-unit register files. See also local store. 

makefile 

A descriptive file used by the make command in 

which the user specifies: (a) target program or 

library, (b) rules about how the target is to be 

built, (c) dependencies which, if updated, require 

that the target be rebuilt. 

MB 

Megabyte. 

memory channel 

An interface to external memory chips. The Cell 

Broadband Engine supports two Rambus Extreme 

Data Rate (XDR) memory channels. 

memory-mapped 

Mapped into the Cell Broadband Engine’s 

addressable-memory space. Registers, SPE local 

stores (LSs), I/O devices, and other readable or 

writable storage can be memory-mapped. 

Privileged software does the mapping. 

method stub 

A small piece of code used to stand in for some 

other code. 

MFC 

Memory Flow Controller. It is part of an SPE and 

provides two main functions: moves data via 

DMA  between the SPE’s local store (LS) and main 

storage, and synchronizes the SPU with the rest 

of the processing units in the system. 

MFC proxy commands 

MFC commands issued using the MMIO 

interface. 

MIC 

Memory Interface Controller. The Cell Broadband 

Engine’s MIC  supports two memory channels. 

MMIO 

Memory-Mapped Input/Output. See also 

memory-mapped. 

MMU 

Memory Management Unit. A functional unit that 

translates between effective addresses (EAs) used 

by programs and real addresses (RAs) used by 

physical memory. The MMU also provides 

protection mechanisms and other functions. 

M:N thread model 

A programming model in which M threads are 

distributed over N processor elements. 
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MPI 

Message Passing Interface. 

MSR 

Machine State Register. 

MT 

Multithreading. See multithreading. 

multithreading 

Simultaneous execution of more than one 

program thread. It is implemented by sharing one 

software process and set of execution resources 

but duplicating the architectural state (registers, 

program counter, flags, and so forth) of each 

thread. 

NaN 

Not-a-Number. A special string of bits encoded 

according to the IEEE 754 Floating-Point 

Standard. A NaN is the proper result for certain 

arithmetic operations; for example, 0/0 = NaN. 

There are two types of NaNs, quiet NaNs and 

signaling NaNs. Only the signaling NaN raises a 

floating-point exception when it is generated. 

NCU 

Non-Cacheable Unit. 

odd pipeline 

Part of an SPE’s dual-issue execution pipeline. 

Also referred to as pipeline 1. 

OpenMP 

An API that supports multiplatform, 

shared-memory parallel programming. 

overlay 

SPU code that is dynamically loaded and 

executed by a running SPU program. 

page table 

A table that maps virtual addresses (VAs) to real 

addresses (RA) and contains related protection 

parameters and other information about memory 

locations. 

PC 

Personal Computer. 

performance simulation 

Simulation by the IBM Full System Simulator for 

the Cell Broadband Engine in which both the 

functional behavior of operations and the time 

required to perform the operations is simulated. 

Also called cycle-accurate simulation. 

pervasive logic 

Logic that provides power management, thermal 

management, clock control, software-performance 

monitoring, trace analysis, and so forth. 

pipelining 

A technique that breaks operations, such as 

instruction processing or bus transactions, into 

smaller stages so that a subsequent stage in the 

pipeline can begin before the previous stage has 

completed. 

PMD 

Power Management and Debug. 

POSIX 

Portable Operating System Interface. 

PowerPC 970 

A 64-bit microprocessor from IBM in the PowerPC 

family. It supports both the PowerPC and 

Vector/SIMD Multimedia Extension instruction 

sets. 

PowerPC Architecture 

A computer architecture that is based on the third 

generation of RISC processors. The PowerPC 

architecture was developed jointly by Apple, 

Motorola, and IBM. 
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PPE 

PowerPC Processor Element. The general-purpose 

processor in the Cell Broadband Engine. 

PPSS 

PowerPC Processor Storage Subsystem. Part of 

the PPE. It operates at half the frequency of the 

PPU and includes an L2 cache and Bus Interface 

Unit (BIU). 

PPU 

PowerPC Processor Unit. The part of the PPE that 

includes the execution units, memory-
management unit, and L1 cache. 

precise exception 

An exception for which the pipeline can be 

stopped, so instructions that preceded the faulting 

instruction can complete, and subsequent 

instructions can be flushed and redispatched after 

exception handling has completed. 

preferred slot 

The left-most word (bytes 0, 1, 2, and 3) of a 

128-bit register in an SPE. The SIMD element in 

which scalar values are naturally maintained. 

privileged mode 

Also known as supervisor mode. The permission 

level of operating system instructions. The 

instructions are described in PowerPC Architecture, 

Book III and are required of software that accesses 

system-critical resources. 

problem state 

The permission level of user instructions. The 

instructions are described in PowerPC Architecture, 

Books I and II and are required of software that 

implements application programs. 

PTE 

Page Table Entry. See page table. 

QoS 

Quality of Service. It usually relates to a 

guarantee of minimum bandwidth for streaming 

applications. 

RA 

Real Address. See real address. 

real address 

An address for physical storage, which includes 

physical memory, the PPE’s L1 and L2 caches, 

and the SPE’s local stores (LSs) if the operating 

system has mapped the LSs to the real-address 

space. The maximum size of the real-address 

space is 2⁴² bytes. 

scalar 

An instruction operand characterized by a single 

value. 

scarf hint 

A performance hint for DMA put operations. The 

hint is intended to allow another processor or 

device, such as the PPE, to capture the data into 

its cache as the data is transferred to storage. 

SCN 

SPU Control Unit. A unit in the SPU that handles 

branches and program control. 

SDK 

Software Development Kit. Sample software for 

the Cell Broadband Engine that includes the 

Linux operating system. 

semi-pipelined 

A processor is semi-pipelined if it fetches the next 

instruction while decoding and executing the 

current instruction. 

SFP 

SPU Floating-Point Unit. It handles 

single-precision and double-precision 

floating-point operations. 
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SFS 

SPU Odd Fixed-Point Unit. It handles shuffle 

operations. 

SFX 

SPU Even Fixed-Point Unit. It handles arithmetic, 

logical, and shift operations. 

signal 

Information sent on a signal-notification channel. 

These channels are inbound (to an SPE) registers. 

They can be used by the PPE or other processor 

to send information to an SPE. Each SPE has two 

32-bit signal-notification registers, each of which 

has a corresponding memory-mapped I/O 

(MMIO) register into which the signal-notification 

data is written by the sending processor. Unlike 

mailboxes, they can be configured for either 

one-to-one or many-to-one signalling. 

These signals are unrelated to UNIX signals. See 

also channel and mailbox. 

signal notification 

See signal. 

SIMD 

Single Instruction Multiple Data. Processing in 

which a single instruction operates on multiple 

data elements that make up a vector data-type. 

Also known as vector processing. This style of 

programming implements data-level parallelism. 

SIMDize 

Transform scaler code to vector code. 

single-ported 

Single-ported memory allows only one access at a 

time. 

SLB 

Segment Lookaside Buffer. It is used to map an 

effective address (EA) to a virtual address (VA). 

SLS 

SPU Load and Store Unit. It handles loads, stores, 

and branch hints, and it includes the SPE’s local 

store (LS). 

SMM 

Synergistic Memory Management Unit. It 

translates EAs to RAs in an SPU. 

snoop 

To compare an address on a bus with a tag in a 

cache, in order to detect operations that violate 

memory coherency. Also called inquire. 

SOA 

Structure of arrays. A method of organizing 

related data values. Also called parallel-array 

form. See also AOS. 

SPE 

Synergistic Processor Element. It includes an SPU, 

an MFC, and an LS. 

specific intrinsic 

A type of C and C++ language extension that 

maps one-to-one with a single SPU assembly 

instruction. All SPU specific intrinsics are named 

by prefacing the SPU assembly instruction with 

si_. 

SPE thread 

(a) A thread running on an SPE. Each such thread 

has its own 128 x 128-bit register file, program 

counter, and MFC Command Queues, and it can 

communicate with other execution units (or with 

effective-address memory through the MFC 

channel interface). (b) A thread scheduled and run 

on an SPE. A program has one or more SPE 

threads. Each thread has its own SPU local store 

(LS), register file, program counter, and MFC 

command queues. 

SPI 

Serial Peripheral Interface. Connects to pervasive 

logic elements. 
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splat 

To replicate, as when a single scalar value is 

replicated across all elements of an SIMD vector. 

SPR 

Special-Purpose Register. 

SPU 

Synergistic Processor Unit. The part of an SPE 

that executes instructions from its local store (LS). 

SPU ISA 

SPU Instruction Set Architecture. An SIMD 

instruction set executed in SPEs that is similar to 

the Vector/SIMD Multimedia Extension 

instruction set executed by the PPE. 

spulet 

A standalone SPU program that is managed by a 

PPE executive. 

SSC 

SPU Channel and DMA  Unit. It handles all input 

and output functions for an SPU. 

SSE 

Single SIMD Extensions. An Intel instruction set. 

sticky bit 

A bit that is set by hardware and remains set 

until cleared by software. 

stub 

See method stub. 

supervisor mode 

See privileged mode. 

software-managed memory 

An SPE’s local store (LS), which is filled from 

main memory using software-initiated DMA 

transfers. Although most processors reduce 

latency to memory by using caches, an SPE uses 

its DMA-filled LS. This approach provides a high 

degree of control for real-time programming. 

However, this approach is advantageous only if 

the DMA  transfer-size is sufficiently large and the 

DMA  command is issued well before the data is 

needed, because the latency and instruction 

overhead associated with DMA  transfers exceeds 

the latency of servicing a cache miss. 

synchronization 

The order in which storage accesses are 

performed. 

system storage 

All program-addressable memory in a system, 

including main storage (main memory), the PPE’s 

L1 and L2 caches, and the SPE’s local store (LS). 

tag group 

A group of DMA commands. Each DMA 

command is tagged with a 5-bit tag group 

identifier. Software can use this identifier to check 

or wait on the completion of all queued 

commands in one or more tag groups. All DMA 

commands except getllar, putllc, and putlluc are 

associated with a Tag Group. 

Tcl  

Tool Command Language. An interpreted script 

language used to develop GUIs, application 

prototypes, Common Gateway Interface (CGI) 

scripts, and other scripts. 

TG 

A tag-group ID parameter in an MFC command. 

thread 

A sequence of instructions executed within the 

global context (shared memory space and other 

global resources) of a process that has created 

(spawned) the thread. Multiple threads (including 

multiple instances of the same sequence of 

instructions) can run simultaneously, if each 

thread has its own architectural state (registers, 

program counter, flags, and other program-visible 

state). 

Each SPE can support only a single thread at any 

one time. The multiple SPEs can simultaneously 

support multiple threads. The PPE supports two 
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threads at any one time, without the need for 

software to create the threads. The PPE does this 

by duplicating architectural state. 

throughput 

The number of instructions completed per cycle. 

A high-throughput application design seeks to 

keep pipelines full. To improve throughput, 

functions may need to do nontrivial amounts of 

work and operate with good locality of data 

reference. 

TKM 

Token Management Unit. Part of the Element 

Interconnect Bus (EIB) that software can program 

to regulate the rate at which particular devices are 

allowed to make EIB command requests. 

TLB 

Translation Lookaside Buffer. An on-chip cache 

that translates virtual addresses (VAs) to real 

addresses (RAs). A TLB caches page-table entries 

for the most recently accessed pages, thereby 

eliminating the necessity to access the page table 

from memory during load/store operations. 

transfer element 

See DMA  list. 

TS 

The transfer-size parameter in an MFC command. 

unified register file 

A register file in which all data types—integer, 

single-precision and double- floating-point, 

logicals, bytes, and others—use the same register 

file. The SPEs (but not the PPE) have unified 

register files. 

user mode 

The mode in which problem state software runs. 

See also problem state. 

VA  

Virtual Address. 

vector 

An instruction operand containing a set of data 

elements packed into a one-dimensional array. 

The elements can be fixed-point or floating-point 

values. Most Vector/SIMD Multimedia Extension 

and SPU SIMD instructions operate on vector 

operands. Vectors are also called SIMD operands or 

packed operands. 

Vector/SIMD 

The SIMD instruction set of the PowerPC 

Architecture, supported on the PPE. 

virtual address 

An address to the virtual-memory space, which is 

much larger than the physical address space and 

includes pages stored on disk. It is translated 

from an effective address (EA) by a segmentation 

mechanism and used by the paging mechanism to 

obtain the real address (RA). The maximum size 

of the virtual-address space is 2⁶⁵ bytes. 

virtual memory 

The address space created using the memory 

management facilities of a processor. 

virtual mode 

The mode in which virtual-address translation is 

enabled. 

VPN 

Virtual Page Number. The number of the page in 

virtual memory. 

VXU 

Vector/SIMD Multimedia Extension unit. 

word 

Four bytes. 

workload 

A set of code samples in the SDK that 

characterizes the performance of the architecture, 

algorithms, libraries, tools, and compilers. 
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writeback flag 

A flag written by an SPE to main storage that 

notifies the PPE of a specific event. 

XDR 

Rambus XDR DRAM memory technology. 

XIO 

A Rambus XDR Extreme Data Rate I/O (XIO) 

memory channel. 

xlc 

The IBM optimizing C compiler. 
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