
Performance Analysis for PDF Files with Transparency
Dave Eberly
dave.eberly@artifex.com
February 16, 2010

This report is about performance issues with PDF files that use transparency. A list of files was generated
by Ray Johnston. Each file in the list was processed using the command line

gswin32c -r300 -q -sDEVICE=ppmraw -o nul: -Z: -dLastPage=1 <filename>

The transparency was then ignored using the command line

gswin32c -r300 -q -sDEVICE=ppmraw -o nul: -Z: -dLastPage=1 -d NOTRANSPARENCY <filename>

The ratio of time drawn with transparency to time drawn without transparency was computed. The spread-
sheet pdf trans performance.xls contains the timings, sorted by column A that contains the ratio.

The source code was compiled using Microsoft Visual Studio 2005 and profiled on an Intel PC using Intel’s
Parallel Amplifier for timing. Additional information about problems at the assembly language level was
obtained using Intel’s VTune. The results might vary slightly for different compilers and different CPUs,
but the conclusions are generally the same.

1

A sample PDF that illustrates most of the performance bottlenecks is Bug688778.pdf. Figure 1 shows the
summary of hotspots.

Figure 1. The summary of hotspots for Bug688778.pdf.

2

Figure 2 shows an expanded tree control that indicates the call stacks leading to the hotspot.

Figure 2. The call stacks of hotspots for Bug688778.pdf.

3

The top eight functions tend to show up in many of the profiles of the PDF files. The performance problems
are classified as data cache misses, per-pixel function call overhead, byte-channel processing overhead, and
memory clearing. There is also a performance issue with conversion from RGB or CMYK to gray scale, but
that is easily remedied.

1 Data Cache Misses

The main bottleneck is data cache misses when converting between planar format and chunky format. In the
profile of Figure 1, these occur in the calls to functions pdf14 compose group, pdf14 mark fill rectangle,
and gx build blended image row.

The function pdf14 compose group has lines of code such as the following, all occuring in the i-loops within
the double loop that processes all pixels.

/* conversion from planar to chunky */
for (i = 0; i < n_chan; ++i)
{

tos_pixel[i] = tos_ptr[x + i * tos_planestride];
nos_pixel[i] = nos_ptr[x + i * nos_planestride];

}

/* conversion from chunky to planar */
for (i = 0; i < n_chan; ++i)
{

nos_ptr[x + i * nos_planestride] = nos_pixel[i];
}

When the strides are large, the memory fetches for tos ptr and nos ptr cause cache misses, which leads to
a lot of stalls waiting for cache to be loaded from main memory.

In pdf14 mark fill rectangle, similar code occurs

/* conversion from planar to chunky */
for (k = 0; k < n_chan; ++k)
{

dst[k] = dst_ptr[k * planestride];
}

/* conversion from chunky to planar */
for (k = 0; k < n_chan; ++k)
{

dst_ptr[k * planestride] = dst[k];
}

And in gx build blended image row, there are lines of the form

comp = buf_ptr[x + planestride * comp_num];

4

In all cases, the large strides cause a lot of data cache misses. The recommended action is to avoid storing
data in planar format and using only the chunky format for cache coherency.

2 Per-Pixel Function Call Overhead

The work performed inside the double xy-loop when processing image data is referred to as per-pixel costs.
Minimizing the per-pixel costs will lead to better performance. The art pdf * functions compute the output
pixel values given a set of inputs. The inputs contain information that leads to selection of the correct pixel
drawing code. Moreover, the selection sometimes involves calling other art pdf * functions. For example,
art pdf composite group 8 calls the function art pdf composite pixel alpha 8 which in turn has the
potential to call art blend pixel 8. This latter function contains a switch statement with 17 cases.

The function call overhead and selection code is relatively large, thus causing the art pdf * funtions to show
up in the list of top offenders for computation time. The recommend action is to factor these functions into
smaller lightweight functions and to move the selection code outside the double loop. This is much the way
that pixel shaders are managed when running on a GPU. In fact, such a factorization will make it easier to
integrate GPU support into the product.

The function security check cookie is specific to Microsoft Visual Studio. This is code inserted to detect
buffer overruns in local arrays in functions. The two art pdf * functions have such arrays, which causes
the code injection. The buffer overrun detection is enabled by default (option \GS), but can be turned
off. However, it is probably better to avoid having the local arrays in the first place (if possible). In my
experiments with pdf14 compose group, I had written a pixel shader that was called for a specific data set
and did not have the local array. The function overhead was reduced greatly.

3 Byte-Channel Processing Overhead

The i-loops in pdf14 compose group (and elsewhere) are designed to be general, handling whatever number
of channels the incoming images might have. However, processing byte channels one at a time incurs the
cost of shifting and masking by the CPU to extract the correct 8-bit quantity from a 32-bit value.

For the common case of four channels, it is better to process all four channels in parallel, a prerequisite
being the avoidance of conversions from planar format to chunky format. In the case of additive color, data
is copied from tos ptr to tos pixel. The pointers are typecast as 32-bit integer types and the copy is a
single 32-bit copy. In the case of subtractive color, where the first three channels must be subtracted from
255, the parallel subtraction is accomplished by

tos_pixel32bit[i] = 0x00FFFFFF ^ tos_ptr32bit[i];

for a little-endian machine. This maps (c0, c1, c2, c3) to (255 − c0, 255 − c1, 255 − c2, c3). The mask for big
endian is 0xFFFFFF00. Experiments showed that this has a significant impact on the performance.

The function image render color also shows up on several profiles. Its performance problem is also a result
of byte-channel processing. The following lines of code are problematic and cause a “blocked store forward”
and a “partial register stall”. These are both expensive penalties.

5

next.v[0] = psrc[0];
next.v[1] = psrc[1];
next.v[2] = psrc[2];
psrc += 3;
if (posture != image_skewed && next.all[0] == run.all[0])

The data type color samples is a union with field v an array of bytes and with field all an array of integers,
which leads to the problem. The compiler tries to optimize the register loading. The address psrc is loaded
into register EAX. The assembly generated for the three accesses of the v field involves loading psrc[] values
(from EAX) into the partial registers BL, CL, and DL. The assembly code for the if-line has a comparison
of posture to image skewed whose result is tested later in the assembly. There are copies of BL, CL, and
DL to the stack locations for next.v[], completing the assignments next.v[*] = psrc[*]. Assembly code
then occurs to set up for the comparison of next.all[0] to run.all[0]. The first instruction loads the
address next into the ESI register, which causes the stall because of the three preceding accesses to the
partial registers (which involve next). The remaining code: EAX is incremented by 3, so a copy from EAX
back to the stack location for psrc occurs. The comparison result for posture and image skewed is then
tested to see whether to jump. run.all[0] is compared to ESI (contains next.all[0]) to see whether to
jump.

Using four comparisons

(next.v[0] == run.v[0] && next.v[1] == run.v[1] && ...)

avoids the penalty, but then the costs are in copying BL, CL, and DL to next immediately after BL, CL,
and DL are loaded. The following also avoids the penalty (code for little endian):

next.all[0] = (*(bits32*)psrc & 0x00FFFFFF) | (next.all[0] & 0xFF000000);
psrc += 3;
if (posture != image_skewed && next.all[0] == run.all[0])

with some expense in updating next.all[0], but the operations do not involve partial registers. This
performed the best of the three cases. It is not clear that there is an optimal solution for this example, but
the idea is that the byte-channel processing is problematic.

4 Memory Clearing

The fastzero I function is called when there is a memset(*,0,*) call. The assembly shows that the zeroing
is implemented using MMX instructions (for speed). The function shows up on the profile only because the
memory clearing occurs many times. In particular, memory is cleared on each call to pdf14 ctx new and to
pdf14 push transparency group. It is not clear to me whether the memory clears are need (I suspect they
are). The only alternative that I can think of is related to fast depth-buffer clears, but it is not clear that
such methods apply here.

6

5 Conversion of Colors to Gray Scale

Sometimes Smask Luminosity Mapping shows up on the profile. It is not one of the top offenders, but
once the planar-chunky conversions are eliminated, this function has the opportunity to be noticeable in the
profile. One place where the performance is an issue is

float temp = (0.30 * src[x + mask_R_offset] +
0.59 * src[x + mask_G_offset] +
0.11 * src[x + mask_B_offset]);

temp = temp * (1.0 / 255.0);
dstptr[x] = float_color_to_byte_color(temp);

The src[] values are byte-valued, so the result temp is guaranteed to be in the interval [0, 255]. The mapping
of temp to [0, 1] occurs and then the float color to byte color macro clamps the value to [0, 1], followed
by a multiplication by 255. Firstly, the floating-point operations are relatively expensive. Secondly, the
clamping requires floating-point comparisons, which are also relatively expensive.

An alternative is to use integer arithmetic.

/* Avoid floating-point arithmetic using the following
approximations for the color weights:

5033165/16777216 = 0.300000011
9898557/16777216 = 0.589999973
1845494/16777216 = 0.110000014

*/
unsigned int r = (unsigned int)src[x + mask_R_offset];
unsigned int g = (unsigned int)src[x + mask_G_offset];
unsigned int b = (unsigned int)src[x + mask_B_offset];
unsigned int result = (5033165*r + 9898557*g + 1845494*b) >> 24;
dstptr[x] = (byte)result;

Although fast, sometimes the result is off by 1 (in either direction). Of the 2563 possible combinations of
(r, g, b), 75100 are off by 1 (0.4% of the cases). The boundary cases are important to get right. It is the case
that (0, 0, 0) is mapped to 0 and (255, 255, 255) is mapped to 255.

The other place where the performance is an issue is

float temp = (0.30 * (0xff - src[x + mask_C_offset]) +
0.59 * (0xff - src[x + mask_M_offset]) +
0.11 * (0xff - src[x + mask_Y_offset])) *

(0xff - src[x + mask_K_offset]);
temp = temp * (1.0 / 65025.0);
dstptr[x] = float_color_to_byte_color(temp);

Using the same rational approximations to the coefficients, some arithmetic leads to the following fast code.

unsigned int c = (unsigned int)src[x + mask_C_offset];

7

unsigned int m = (unsigned int)src[x + mask_M_offset];
unsigned int y = (unsigned int)src[x + mask_Y_offset];
unsigned int k = (unsigned int)src[x + mask_K_offset];
unsigned int tmp0 = (4278190080 - (5033165*c + 9898557*m + 1845494*y)) >> 24;
unsigned int tmp1 = 16777216 - 65793*k;
unsigned int result = (tmp0*tmp1) >> 24;
dstptr[x] = (byte)result;

The results are also off by 1 (in either direction), but for a greater fraction of the cases. Of the 2564

possibilities, 1029544184 are off by 1 (24% of the cases). The boundary cases are correct: (0, 0, 0, 0) is
mapped to 255 and (255, 255, 255, 255) is mapped to zero.

In both suggested code fragments, the integer arithmetic is designed so that there is no overflow.

8

