An Introduction to the NAG SMP Library

Edward Smyth

1/10/2009

Experts in numerical algorithms and HPC services

Overview

- Overview of SMP parallelism
- Description of SMP Library
- What algorithms have been parallelised?
- Future directions
- Performance issues

SMP = Symmetric MultiProcessing

Often with multi-core processors...

SMP Parallelism

Multi-threaded Parallelism (Parallelism-on-demand)

Parallelism carried out in distinct parallel regions

SMP Parallelism: Strong Points

Dynamic Load balancing

- Amounts of work to be done on each processor can be adjusted during execution
- Closely linked to a dynamic view of data

Dynamic Data view

- □ Data can be 'redistributed' on-the-fly
- Redistribution through different patterns of data access
- Portability
- Modularity
- Good programming model

SMP Parallelism: Dynamic View of Data

Computation Stage 3

SMP Parallelism: Some Weaker Points

- Not very suitable for heterogeneous parallelism
- Not very suitable for complex applications
- Not easy to generate efficient code
- Non-deterministic results
 - Applies to least significant parts of solution
 - □ Parallel random number generators
 - May be disconcerting to some users
 - □ Effects on ill-conditioned problems may be dramatic

SMP Parallelism: Explicit Multi-Threading

- Call to system routines
 - Code differs significantly from original serial version
- No universal standard different vendors may use different mechanisms
 - □ POSIX threads
 - Windows threads
- Difficult to write
- Difficult to maintain

SMP Parallelism: Compiler Directives

- Instruction to compiler to instrument the code with appropriate threading
- Portable to variety of SMP systems
- Ignored by compilers on serial systems
- Code executed not code written (one layer of software in between)
- Easier to write and maintain
- Identifiable by a sentinel, a special sequence of characters in a comment statement

SMP Parallelism: Directives v Multi-Threading

	Compiler Directives	Explicit Threads
Portable to/from serial	Yes	No
Portable to other SMPs	Yes	No
Easy to code	Yes	No
Easy to maintain	Possibly	No

OpenMP: Introduction

- Portable, Shared Memory MultiProcessing API
 - □ Fortran 77 & Fortran 90
 - □ C & C++
 - Multi-vendor Support, for Both UNIX/Linux and Windows
- Standardizes Fine Grained (Loop) Parallelism
- Also Supports Coarse Grained Algorithms

OpenMP: Architecture

SMP Mechanisms in OpenMP

- Fork-join construct: PARALLEL
- Data attributes definition: SHARED, PRIVATE
- Global Operations: REDUCTION
- Work Sharing Constructs
 - Distribution of Loops: DO
 - □ Distribution of blocks of code: SECTION, TASKS

SMP Mechanisms in OpenMP

Synchronisation

- □ Processors wait until everyone calls: BARRIER
- □ Sub-groups of processors synch: via locks
- □ One processor at a time: CRITICAL
- Only one processor executes: SINGLE, MASTER

Runtime library calls to interrogate system

- □ How many threads are there?
- □ Which one am !?

User control at runtime via environment variables

□ Number of threads: OMP_NUM_THREADS

OpenMP: Parallel DO loop

OpenMP: Directives Binding

Example: Dot Product

```
C$OMP PARALLEL
C$OMP& SHARED (N,DOT,X,Y)
C$OMP& PRIVATE (I,DOTL)
  DOTI = 0.0D0
C$OMP DO
  DO 1 I=1,N
    DOTL = DOTL + X(I)*Y(I)
 1 CONTINUE
C$OMP END DO NOWAIT
C$OMP CRITICAL
  DOT = DOT + DOTL
C$OMP END CRITICAL
C$OMP END PARALLEL
```

```
C$OMP PARALLEL DO
C$OMP& SHARED (N,X,Y)
C$OMP& PRIVATE (I)
C$OMP& REDUCTION (+:DOT)
DO 1 I=1,N
DOT = DOT + X(I)*Y(I)
1 CONTINUE
C$OMP END PARALLEL DO
```

```
C$OMP PARALLEL DO

C$OMP& SHARED (N,DOT,X,Y)

C$OMP& PRIVATE (I)

DO 1 I=1,N

C$OMP ATOMIC

DOT = DOT + X(I)*Y(I)

1 CONTINUE

C$OMP END PARALLEL DO
```


NAG SMP Library

- Based on standard NAG Fortran Library
 - designed to better exploit SMP architecture
 - □ Current version Mark 21, soon we will release Mark 22
- Identical interfaces to standard Fortran Library
 - just re-link the application
 - easy access to parallelism for non-specialists
 - user is shielded from details of parallelism
 - □ assists rapid migration from serial code
 - □ can be used along with user's own parallelism
 - □ for expert users
- Interoperable
 - □ call NAG SMP Library routines from other languages

NAG Library Functionality

- Root Finding
- Summation of Series
- Quadrature
- Ordinary Differential Equations
- Partial Differential Equations
- Numerical Differentiation
- Integral Equations
- Mesh Generation
- Interpolation
- Curve and Surface Fitting
- Optimisation
- Approximations of Special Functions

- Dense Linear Algebra
- Sparse Linear Algebra
- Correlation and Regression Analysis
- Multivariate Analysis of Variance
- Random Number Generators
- Univariate Estimation
- Nonparametric Statistics
- Smoothing in Statistics
- Contingency Table Analysis
- Survival Analysis
- Time Series Analysis
- Operations Research

NAG & vendor libraries (e.g. ACML, MKL)

Target systems

Multi-socket and/or multi-core SMP systems:

- □ AMD, Intel, IBM, SPARC processors
- □ Linux, Unix, Windows operating systems
- Standalone systems or within nodes of larger clusters or MPPs

Other possibilities:

- Cray or NEC vector
- Virtual Shared Memory over clusters in theory, but efficiency may be poor on many algorithms due to extreme NUMA nature of such configurations

Notable exceptions:

- □ IBM Cell?
- Sun Niagara I
- □ GPUs, FPGAs, etc

What to parallelise?

- Fundamental building blocks
 - □ Linear algebra and FFTs
 - □ Focus for first few releases
- Broaden out to different areas
 - Especially in new Mark 22
- Make potential for parallelism a key design criteria for future algorithms

Dense Linear Algebra: BLAS

- BLAS: Basic Linear Algebra Subprograms
 - □ BLAS1: vector-vector operations, e.g. dscal, ddot, daxpy
 - □ BLAS2: matrix-vector operations, e.g. dgemv, dtrsv
 - □ BLAS3: matrix-matrix operations, e.g. dgemm, dtrsm
- http://www.netlib.org/blas
- Optimised for cache-based architectures
- NAG SMP Library uses vendor library for fast BLAS
 - □ e.g. ACML, MKL, ESSL, Sunperf, Fujitsu SSL2, etc

DGEMM performance

Dense Linear Algebra: LAPACK

- LAPACK: Linear Algebra PACKage
 - matrix factorisations and solvers, e.g. LU, Cholesky, QR
 - eigensolvers
 - □ SVD and least-squares
- http://www.netlib.org/lapack
- Builds on top of BLAS
 - Gets performance from optimised BLAS
 - □ Strives to use BLAS3 as much as possible
- Successor to LINPACK and EISPACK
 - also successor to earlier NAG dense linear algebra

NAG & LAPACK

LU Factorisation: LAPACK Style

LU factorisation (DGETRF)

netlib DGETRF + ACML BLAS

LU factorisation (DGETRF)

netlib DGETRF + ACML BLAS

SMP DGETRF + ACML BLAS

S.V.D. (DBDSQR)

Exploiting SMP parallelism (1)

Core-math routines (LAPACK, FFTs)

- We aim to give best combination of vendor library and NAG routines
- □ Choice varies from platform to platform
 - □ NAG SMP Library version may be faster on some platforms
 - If not, we recommend you just use the relevant vendor library
 - In particular, NAG works with AMD on ACML, hence all NAG
 SMP LAPACK routines are available in ACML
- NAG FFT routines provide a portable interface to different underlying vendor FFT routines
 - No BLAS-equivalent standard for FFT interfaces

Exploiting SMP parallelism (2)

- NAG routines which use core-math routines
 - Exploit parallelism in underlying BLAS, LAPACK and FFT routines where possible
 - Development programme includes renovation of existing routines as well as adding new functionality
- Following on from (1), best choice of NAG Fortran Library vs NAG SMP Library varies from platform to platform

G03AAF: Principal Component Analysis

C05NCF: Non-linear equation solver

Exploiting SMP parallelism (3)

- NAG-specific routines parallelised with OpenMP
 - □ Focus of future NAG SMP Library development
 - Seeking to broaden scope of parallelism to different parts of the library
 - □ to a wide variety of algorithmic areas
 - □ to routines that do not use BLAS, LAPACK or FFTs

Exploiting SMP parallelism (3)

- Routines parallelised in Mark 22 in the areas of:
 - Sparse direct and iterative solvers

Parallelised in previous release

- Sparse eigenproblems
- Random Number Generators
- Interpolation
- Curve and Surface Fitting
- Correlation and Regression Analysis
- Multivariate statistics
- □ Time Series Analysis
- □ Financial Option Pricing

E01TGF/E01THF: Interpolation

G13EAF: Kalman filter (1 iteration)

G02AAF: Nearest-correlation matrix

Future algorithms

- Potential for parallelism is now a key criteria for selecting future algorithms
- Example: Numerical Optimisation
 - Current algorithms were written for optimal serial performance, and are not suitable for parallelism
 - Currently working on a Parallel Swarm Optimisation algorithm
 - □ Stochastic method
 - Poor performance on one thread but scales extremely well, thus
 PSO will be a complement, not replacement, for existing routines

Performance considerations

- Performance and scalability depends upon
 - □ Nature of algorithm
 - □ Problem size(s) and other parameters
 - Hardware design
 - □ OS, compiler and load on system
- Maximum number of threads may not be optimal
 - Important to benchmark frequently used problems on your system
 - Consult NAG for advice if required

Example 1: Sparse iterative solvers

- Problem: Iterative solver may not converge, or may converge very slowly
 - Runtime proportional to number of iterations
- Preconditioners can help reduce number of iterations required for convergence
 - at the cost of increased memory requirements in many cases
- Should we choose preconditioner parameters to minimise the number of iterations of the solver?

Example 1: Sparse iterative solvers

- Not necessarily!
- Need to consider cost of preconditioner
- In NAG SMP Library
 - □ Iterative solvers have been parallelised
 - Preconditioners are still serial
- On multiple processors:
 - turning down preconditioner, so that proportionally more time is spent in parallel solvers, may be beneficial
 - choice of parameters depends on nature of sparse matrix,
 system design and number of threads

Example 2: System issues

- Comparing two quad-socket Opteron systems
 - □ 4 x Single core, 1.8 GHz processors
 - □ 4 x Dual core, 2.2 GHz processors
- Linux OS
- PGI compiler
- Note: LAPACK code different from netlib source:
 - □ Same algorithm
 - Optimised, and parallelised with OpenMP

Opteron: Reduction to Tridiag (DSYTRD)

Where did the performance go???

- Q: Is multi-core to blame?
- A: No, machines had different OS (and kernel)
 - □ Single-core was SuSE SLES 8 (2.4.x kernel)
 - □ Dual-core was SuSE 9.3 (2.6.x kernel)
- Q: What if we use a 2.6.x kernel on single-core?
- A: Same effect as on dual-core with 2.6.x

Opteron: Reduction to Tridiag (DSYTRD)

Single core: 1.8 GHz

Dual core: 2.2 GHz

AMD OPTERON™ PROCESSOR-BASED 4P SERVER

DIRECT CONNECT ARCHITECTURE

numactl

- First: Check BIOS and kernel versions
- numactl controls NUMA policy for processes and memory, e.g. numactl -c 0,1,2,3 -i 0,1,2,3 program.exe
- Interleaving of memory across nodes vital
- DSYTRD in SMP library is memory-bandwidth hungry
- Thus better to use single core per socket, if possible

Opteron: Reduction to Tridiag (DSYTRD)

What about other systems?

• Questions:

- □ Windows?
- □ Solaris?
- □ Intel systems, e.g. new QuickPath Interconnect?
- □ SGI Altix?
- □ IBM POWER4/5 MCM?

Answer:

- □ YMMV! (Your Mileage May Vary)
- □ But be aware of this issue

Summary

- SMP systems now the norm
 - □ in large part due to multi-core chips
- NAG SMP Library provides an easy-to-use option for exploiting SMP hardware
 - □ Identical interfaces to standard NAG Fortran Library
 - □ Interoperable with other languages
 - Works with vendor core-math library to get best performance on dense linear algebra and FFT routines
 - Increasing number of NAG-specific routines parallelised
 - Potential for parallelism key criteria for future routines
- Mark 22 available in Q4 2009

