
An Introduction to the NAG SMP Library

Edward Smyth

1/10/2009

Experts in numerical algorithms
and HPC services

1/10/2009

Overview

 Overview of SMP parallelism

 Description of SMP Library

 What algorithms have been parallelised?

2

 What algorithms have been parallelised?

 Future directions

 Performance issues

SMP = Symmetric MultiProcessing

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

Single memory
visible to all
processors.

Memory must
be cache-
coherent.

Memory can be
physically partitioned

(NUMA systems)

3

Interconnect Subsystem

(NUMA systems)

Often with multi-core processors…

Cache Cache Cache Cache

Memory

Core Core Core CoreCore CoreCore Core

Single, cache-
coherent

memory visible
to all cores on
all processors.

4

Interconnect Subsystem

SMP Parallelism

Multi-threaded Parallelism (Parallelism-on-demand)

Parallel Region

•Parallel execution
•Serial Interfaces
•Details of parallelism
are hidden outside the
parallel region

5

Destroy threadsSpawn threads

Parallelism carried out in distinct parallel regions

Serial execution Serial execution

SMP Parallelism: Strong Points

 Dynamic Load balancing

 Amounts of work to be done on each processor can be
adjusted during execution

 Closely linked to a dynamic view of data

 Dynamic Data view

Data can be ‘redistributed’ on-the-fly

6

 Data can be ‘redistributed’ on-the-fly

 Redistribution through different patterns of data
access

 Portability

 Modularity

 Good programming model

SMP Parallelism: Dynamic View of Data
Computation Stage 1Computation Stage 2Computation Stage 3

Data

7

Processor 1

Processor 2

Processor 3

Processor 4

SMP Parallelism: Some Weaker Points

 Not very suitable for heterogeneous parallelism

 Not very suitable for complex applications

 Not easy to generate efficient code

 Non-deterministic results

Applies to least significant parts of solution

8

 Applies to least significant parts of solution

 Parallel random number generators

 May be disconcerting to some users

 Effects on ill-conditioned problems may be dramatic

SMP Parallelism: Explicit Multi-Threading

 Call to system routines

 Code differs significantly from original serial version

 No universal standard – different vendors may use
different mechanisms

9

different mechanisms

 POSIX threads

 Windows threads

 Difficult to write

 Difficult to maintain

SMP Parallelism: Compiler Directives

 Instruction to compiler to instrument the code
with appropriate threading

 Portable to variety of SMP systems

 Ignored by compilers on serial systems

 Code executed not code written (one layer of

10

 Code executed not code written (one layer of
software in between)

 Easier to write and maintain

 Identifiable by a sentinel, a special sequence of
characters in a comment statement

SMP Parallelism: Directives v Multi-Threading

Compiler
Directives

Explicit
Threads

Portable to/from serial Yes No

Portable to other SMPs Yes No

11

Portable to other SMPs Yes No

Easy to code Yes No

Easy to maintain Possibly No

OpenMP: Introduction

 Portable, Shared Memory MultiProcessing API

 Fortran 77 & Fortran 90

12

 Fortran 77 & Fortran 90

 C & C++

 Multi-vendor Support, for Both UNIX/Linux and
Windows

 Standardizes Fine Grained (Loop) Parallelism

 Also Supports Coarse Grained Algorithms

OpenMP: Architecture

Application User

Compiler

Directives

Environment
Variables

13

Runtime Library

Threads in Operating System

SMP Mechanisms in OpenMP

 Fork-join construct: PARALLEL

 Data attributes definition: SHARED, PRIVATE

 Global Operations: REDUCTION

14

Global Operations: REDUCTION

 Work Sharing Constructs

 Distribution of Loops: DO

 Distribution of blocks of code: SECTION, TASKS

SMP Mechanisms in OpenMP

 Synchronisation

 Processors wait until everyone calls: BARRIER

 Sub-groups of processors synch: via locks

 One processor at a time: CRITICAL

 Only one processor executes: SINGLE, MASTER

 Runtime library calls to interrogate system

15

 Runtime library calls to interrogate system

 How many threads are there?

 Which one am I?

 User control at runtime via environment variables

 Number of threads: OMP_NUM_THREADS

OpenMP: Parallel DO loop

C$OMP PARALLEL

C$OMP& SHARED (M,N)

C$OMP& PRIVATE (I,J)

.

DO 10 I = 1, M

.

C$OMP DO

DO 11 J = 1, N

.

All threads
execute
same code

J=1 J=4 J=7

M
as

te
r

th
re

ad

All threads execute
exactly same code

Generate team
of threads

Threads execute
same code but with
different iterations

16

.

.

.

11 CONTINUE

.

10 CONTINUE

.

C$OMP END PARALLEL

Threads
execute
different
iterations

All threads
execute
same code

J=2

J=3

J=5

J=6

J=8

J=9

M
as

te
r

th
re

ad

All threads execute
exactly same code

Destroy team
of threads

different iterations

Barrier

OpenMP: Directives Binding

17

Modules within the dynamic extent of the parallel construct

Module containing the parallel construct

Example: Dot Product

C$OMP PARALLEL

C$OMP& SHARED (N,DOT,X,Y)

C$OMP& PRIVATE (I,DOTL)

DOTL = 0.0D0

C$OMP DO

DO 1 I=1,N

DOTL = DOTL + X(I)*Y(I)

1 CONTINUE

C$OMP PARALLEL DO

C$OMP& SHARED (N,X,Y)

C$OMP& PRIVATE (I)

C$OMP& REDUCTION (+:DOT)

DO 1 I=1,N

DOT = DOT + X(I)*Y(I)

1 CONTINUE

C$OMP END PARALLEL DO

18

C$OMP END DO NOWAIT

C$OMP CRITICAL

DOT = DOT + DOTL

C$OMP END CRITICAL

C$OMP END PARALLEL

C$OMP PARALLEL DO

C$OMP& SHARED (N,DOT,X,Y)

C$OMP& PRIVATE (I)

DO 1 I=1,N

C$OMP ATOMIC

DOT = DOT + X(I)*Y(I)

1 CONTINUE

C$OMP END PARALLEL DO

NAG SMP Library

 Based on standard NAG Fortran Library

 designed to better exploit SMP architecture

 Current version Mark 21, soon we will release Mark 22

 Identical interfaces to standard Fortran Library

 just re-link the application

 easy access to parallelism for non-specialists

19

 easy access to parallelism for non-specialists
 user is shielded from details of parallelism

 assists rapid migration from serial code

 can be used along with user’s own parallelism
 for expert users

 Interoperable

 call NAG SMP Library routines from other languages

NAG Library Functionality

• Root Finding

• Summation of Series

• Quadrature

• Ordinary Differential Equations

• Partial Differential Equations

• Numerical Differentiation

• Integral Equations

• Dense Linear Algebra

• Sparse Linear Algebra

• Correlation and Regression
Analysis

• Multivariate Analysis of
Variance

• Random Number Generators

20

• Integral Equations

• Mesh Generation

• Interpolation

• Curve and Surface Fitting

• Optimisation

• Approximations of Special
Functions

• Random Number Generators

• Univariate Estimation

• Nonparametric Statistics

• Smoothing in Statistics

• Contingency Table Analysis

• Survival Analysis

• Time Series Analysis

• Operations Research

NAG & vendor libraries (e.g. ACML, MKL)

C
o

m
p

ile
rs

e
tc

NAG Libraries

User
application

21

Hardware

C
o

m
p

ile
rs

e
tc

Vendor Libraries

Target systems

 Multi-socket and/or multi-core SMP systems:
 AMD, Intel, IBM, SPARC processors

 Linux, Unix, Windows operating systems

 Standalone systems or within nodes of larger clusters or MPPs

 Other possibilities:
 Cray or NEC vector

22

 Virtual Shared Memory over clusters in theory, but efficiency may be
poor on many algorithms due to extreme NUMA nature of such
configurations

 Notable exceptions:
 IBM Cell?

 Sun Niagara I

 GPUs, FPGAs, etc

What to parallelise?

 Fundamental building blocks

 Linear algebra and FFTs

 Focus for first few releases

 Broaden out to different areas

23

 Broaden out to different areas

 Especially in new Mark 22

 Make potential for parallelism a key design criteria
for future algorithms

Dense Linear Algebra: BLAS

 BLAS: Basic Linear Algebra Subprograms

 BLAS1: vector-vector operations, e.g. dscal, ddot, daxpy

 BLAS2: matrix-vector operations, e.g. dgemv, dtrsv

 BLAS3: matrix-matrix operations, e.g. dgemm, dtrsm



24

 http://www.netlib.org/blas

 Optimised for cache-based architectures

 NAG SMP Library uses vendor library for fast BLAS

 e.g. ACML, MKL, ESSL, Sunperf, Fujitsu SSL2, etc

25000

30000

35000

40000

45000

1

2

DGEMM performance

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

25

0

5000

10000

15000

20000

25000

1000 2000 4000 6000 8000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

ACML DGEMM (M=N=K)

Dense Linear Algebra: LAPACK

 LAPACK: Linear Algebra PACKage

 matrix factorisations and solvers, e.g. LU, Cholesky, QR

 eigensolvers

 SVD and least-squares

 http://www.netlib.org/lapack

26

 Builds on top of BLAS

 Gets performance from optimised BLAS

 Strives to use BLAS3 as much as possible

 Successor to LINPACK and EISPACK

 also successor to earlier NAG dense linear algebra

NAG & LAPACK

27

LU Factorisation: LAPACK Style

Pivot Block

Active
submatrix

Already
Factorised

U Factor

Permute the
Rows

Solve the
triangular
system

U Factor

28

L Factor

Update the
Trailing
Submatrix

15000

20000

25000

30000

35000

40000

1

2

4

LU factorisation (DGETRF)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

29

0

5000

10000

15000

1000 2000 4000 8000 10000 12000 1000 2000 4000 8000 10000 12000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

netlib DGETRF + ACML BLAS

15000

20000

25000

30000

35000

40000

1

2

4

LU factorisation (DGETRF)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

30

0

5000

10000

15000

1000 2000 4000 8000 10000 12000 1000 2000 4000 8000 10000 12000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

SMP DGETRF + ACML BLASnetlib DGETRF + ACML BLAS

6000

8000

10000

12000

1

2

S.V.D. (DBDSQR)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

31

0

2000

4000

6000

1000 2000 4000 1000 2000 4000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

SMP DBDSQR+ ACML BLASnetlib DBDSQR + ACML BLAS

Exploiting SMP parallelism (1)

 Core-math routines (LAPACK, FFTs)
 We aim to give best combination of vendor library and

NAG routines

 Choice varies from platform to platform
 NAG SMP Library version may be faster on some platforms

 If not, we recommend you just use the relevant vendor

32

 If not, we recommend you just use the relevant vendor
library

 In particular, NAG works with AMD on ACML, hence all NAG
SMP LAPACK routines are available in ACML

 NAG FFT routines provide a portable interface to different
underlying vendor FFT routines
 No BLAS-equivalent standard for FFT interfaces

Exploiting SMP parallelism (2)

 NAG routines which use core-math routines
 Exploit parallelism in underlying BLAS, LAPACK and FFT

routines where possible

 Development programme includes renovation of existing
routines as well as adding new functionality

33

routines as well as adding new functionality

 Following on from (1), best choice of NAG Fortran
Library vs NAG SMP Library varies from platform to
platform

80

100

120

140

G03AAF: Principal Component Analysis

T
im

e
(s

e
c

s
)

AMD Barcelona 2.0 GHz, N=10000, M=2000

34

0

20

40

60

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

100

120

140

160

180 Fortran Library Mark 21 + MKL

Fortran Library Mark 22 + MKL

QR Factorisation in MKL

C05NCF: Non-linear equation solver

T
im

e
(s

e
c

s
)

Intel Xeon E5310 1.6 GHz, N=4000

35

0

20

40

60

80

100

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

Exploiting SMP parallelism (3)

 NAG-specific routines parallelised with
OpenMP
 Focus of future NAG SMP Library development

 Seeking to broaden scope of parallelism to different parts
of the library

36

Seeking to broaden scope of parallelism to different parts
of the library
 to a wide variety of algorithmic areas

 to routines that do not use BLAS, LAPACK or FFTs

Exploiting SMP parallelism (3)

 Routines parallelised in Mark 22 in the areas of:
 Sparse direct and iterative solvers

 Sparse eigenproblems

 Random Number Generators

 Interpolation

Curve and Surface Fitting

Parallelised in
previous release

37

 Curve and Surface Fitting

 Correlation and Regression Analysis

 Multivariate statistics

 Time Series Analysis

 Financial Option Pricing

25

30

35

40

45

50

E01THF: evaluate interpolant at given points

E01TGF: generate 3D interpolant

E01TGF/E01THF: Interpolation

T
im

e
(s

e
c

s
)

Intel Xeon E5310 1.6 GHz, N=100,000

38

0

5

10

15

20

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

120

140

160

180

200

220

G13EAF: Kalman filter (1 iteration)

T
im

e
(s

e
c

s
)

AMD Barcelona 2.0 GHz, N,M,L=1000

39

0

20

40

60

80

100

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

20000

25000

30000

Fortran Library + MKL

SMP Library + MKL

G02AAF: Nearest-correlation matrix

T
im

e
(s

e
c

s
)

Intel Xeon E5405 2.0 GHz,
N=10,000

40

0

5000

10000

15000

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

Future algorithms

 Potential for parallelism is now a key criteria for
selecting future algorithms

 Example: Numerical Optimisation

 Current algorithms were written for optimal serial
performance, and are not suitable for parallelism

41

performance, and are not suitable for parallelism

 Currently working on a Parallel Swarm Optimisation
algorithm
 Stochastic method

 Poor performance on one thread but scales extremely well, thus
PSO will be a complement, not replacement, for existing routines

Performance considerations

 Performance and scalability depends upon
 Nature of algorithm

 Problem size(s) and other parameters

 Hardware design

 OS, compiler and load on system

42

OS, compiler and load on system

 Maximum number of threads may not be
optimal
 Important to benchmark frequently used problems on

your system

 Consult NAG for advice if required

Example 1: Sparse iterative solvers

 Problem: Iterative solver may not converge, or may
converge very slowly

 Runtime proportional to number of iterations

 Preconditioners can help reduce number of
iterations required for convergence

43

iterations required for convergence

 at the cost of increased memory requirements in many
cases

 Should we choose preconditioner parameters to
minimise the number of iterations of the solver?

Example 1: Sparse iterative solvers

 Not necessarily!

 Need to consider cost of preconditioner

 In NAG SMP Library

 Iterative solvers have been parallelised

 Preconditioners are still serial

44

 Preconditioners are still serial

 On multiple processors:

 turning down preconditioner, so that proportionally more
time is spent in parallel solvers, may be beneficial

 choice of parameters depends on nature of sparse matrix,
system design and number of threads

Example 2: System issues

 Comparing two quad-socket Opteron systems

 4 x Single core, 1.8 GHz processors

 4 x Dual core, 2.2 GHz processors

 Linux OS

 PGI compiler

45

 PGI compiler

 Note: LAPACK code different from netlib source:

 Same algorithm

 Optimised, and parallelised with OpenMP

8000

10000

12000

1

2

Opteron: Reduction to Tridiag (DSYTRD)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s) NCPU

46

0

2000

4000

6000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

4

6

8

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

Dual core: 2.2 GHzSingle core: 1.8 GHz

Where did the performance go???

 Q: Is multi-core to blame?

 A: No, machines had different OS (and kernel)

 Single-core was SuSE SLES 8 (2.4.x kernel)

 Dual-core was SuSE 9.3 (2.6.x kernel)

47

 Dual-core was SuSE 9.3 (2.6.x kernel)

 Q: What if we use a 2.6.x kernel on single-core?

 A: Same effect as on dual-core with 2.6.x

8000

10000

12000

1

2

Opteron: Reduction to Tridiag (DSYTRD)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s) NCPU

2.4 kernel 2.6 kernel 2.6 kernel

48

0

2000

4000

6000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

4

6

8

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

Dual core: 2.2 GHzSingle core: 1.8 GHz

49

numactl

 First: Check BIOS and kernel versions

 numactl controls NUMA policy for processes and memory, e.g.
numactl –c 0,1,2,3 –i 0,1,2,3 program.exe

 Interleaving of memory across nodes vital

50

 Interleaving of memory across nodes vital

 DSYTRD in SMP library is memory-bandwidth hungry

 Thus better to use single core per socket, if possible

8000

10000

12000

1

2

Opteron: Reduction to Tridiag (DSYTRD)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s) NCPU

2.6: numactl –c 0,1,2,3 –i 0,1,2,3
2.6: Default

2.6: numactl –c 2,3 –i 2,3

51

0

2000

4000

6000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

2

4

6

8

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

Dual core: 2.2 GHz

What about other systems?

 Questions:

 Windows?

 Solaris?

 Intel systems, e.g. new QuickPath Interconnect?

 SGI Altix?

 IBM POWER4/5 MCM?

52

 IBM POWER4/5 MCM?

 Answer:

 YMMV! (Your Mileage May Vary)

 But be aware of this issue

Summary

 SMP systems now the norm
 in large part due to multi-core chips

 NAG SMP Library provides an easy-to-use option for
exploiting SMP hardware
 Identical interfaces to standard NAG Fortran Library

Interoperable with other languages

53

 Interoperable with other languages

 Works with vendor core-math library to get best
performance on dense linear algebra and FFT routines

 Increasing number of NAG-specific routines parallelised

 Potential for parallelism key criteria for future routines

 Mark 22 available in Q4 2009

