
An Introduction to the NAG SMP Library

Edward Smyth

1/10/2009

Experts in numerical algorithms
and HPC services

1/10/2009

Overview

 Overview of SMP parallelism

 Description of SMP Library

 What algorithms have been parallelised?

2

 What algorithms have been parallelised?

 Future directions

 Performance issues

SMP = Symmetric MultiProcessing

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

Single memory
visible to all
processors.

Memory must
be cache-
coherent.

Memory can be
physically partitioned

(NUMA systems)

3

Interconnect Subsystem

(NUMA systems)

Often with multi-core processors…

Cache Cache Cache Cache

Memory

Core Core Core CoreCore CoreCore Core

Single, cache-
coherent

memory visible
to all cores on
all processors.

4

Interconnect Subsystem

SMP Parallelism

Multi-threaded Parallelism (Parallelism-on-demand)

Parallel Region

•Parallel execution
•Serial Interfaces
•Details of parallelism
are hidden outside the
parallel region

5

Destroy threadsSpawn threads

Parallelism carried out in distinct parallel regions

Serial execution Serial execution

SMP Parallelism: Strong Points

 Dynamic Load balancing

 Amounts of work to be done on each processor can be
adjusted during execution

 Closely linked to a dynamic view of data

 Dynamic Data view

Data can be ‘redistributed’ on-the-fly

6

 Data can be ‘redistributed’ on-the-fly

 Redistribution through different patterns of data
access

 Portability

 Modularity

 Good programming model

SMP Parallelism: Dynamic View of Data
Computation Stage 1Computation Stage 2Computation Stage 3

Data

7

Processor 1

Processor 2

Processor 3

Processor 4

SMP Parallelism: Some Weaker Points

 Not very suitable for heterogeneous parallelism

 Not very suitable for complex applications

 Not easy to generate efficient code

 Non-deterministic results

Applies to least significant parts of solution

8

 Applies to least significant parts of solution

 Parallel random number generators

 May be disconcerting to some users

 Effects on ill-conditioned problems may be dramatic

SMP Parallelism: Explicit Multi-Threading

 Call to system routines

 Code differs significantly from original serial version

 No universal standard – different vendors may use
different mechanisms

9

different mechanisms

 POSIX threads

 Windows threads

 Difficult to write

 Difficult to maintain

SMP Parallelism: Compiler Directives

 Instruction to compiler to instrument the code
with appropriate threading

 Portable to variety of SMP systems

 Ignored by compilers on serial systems

 Code executed not code written (one layer of

10

 Code executed not code written (one layer of
software in between)

 Easier to write and maintain

 Identifiable by a sentinel, a special sequence of
characters in a comment statement

SMP Parallelism: Directives v Multi-Threading

Compiler
Directives

Explicit
Threads

Portable to/from serial Yes No

Portable to other SMPs Yes No

11

Portable to other SMPs Yes No

Easy to code Yes No

Easy to maintain Possibly No

OpenMP: Introduction

 Portable, Shared Memory MultiProcessing API

 Fortran 77 & Fortran 90

12

 Fortran 77 & Fortran 90

 C & C++

 Multi-vendor Support, for Both UNIX/Linux and
Windows

 Standardizes Fine Grained (Loop) Parallelism

 Also Supports Coarse Grained Algorithms

OpenMP: Architecture

Application User

Compiler

Directives

Environment
Variables

13

Runtime Library

Threads in Operating System

SMP Mechanisms in OpenMP

 Fork-join construct: PARALLEL

 Data attributes definition: SHARED, PRIVATE

 Global Operations: REDUCTION

14

Global Operations: REDUCTION

 Work Sharing Constructs

 Distribution of Loops: DO

 Distribution of blocks of code: SECTION, TASKS

SMP Mechanisms in OpenMP

 Synchronisation

 Processors wait until everyone calls: BARRIER

 Sub-groups of processors synch: via locks

 One processor at a time: CRITICAL

 Only one processor executes: SINGLE, MASTER

 Runtime library calls to interrogate system

15

 Runtime library calls to interrogate system

 How many threads are there?

 Which one am I?

 User control at runtime via environment variables

 Number of threads: OMP_NUM_THREADS

OpenMP: Parallel DO loop

C$OMP PARALLEL

C$OMP& SHARED (M,N)

C$OMP& PRIVATE (I,J)

.

DO 10 I = 1, M

.

C$OMP DO

DO 11 J = 1, N

.

All threads
execute
same code

J=1 J=4 J=7

M
as

te
r

th
re

ad

All threads execute
exactly same code

Generate team
of threads

Threads execute
same code but with
different iterations

16

.

.

.

11 CONTINUE

.

10 CONTINUE

.

C$OMP END PARALLEL

Threads
execute
different
iterations

All threads
execute
same code

J=2

J=3

J=5

J=6

J=8

J=9

M
as

te
r

th
re

ad

All threads execute
exactly same code

Destroy team
of threads

different iterations

Barrier

OpenMP: Directives Binding

17

Modules within the dynamic extent of the parallel construct

Module containing the parallel construct

Example: Dot Product

C$OMP PARALLEL

C$OMP& SHARED (N,DOT,X,Y)

C$OMP& PRIVATE (I,DOTL)

DOTL = 0.0D0

C$OMP DO

DO 1 I=1,N

DOTL = DOTL + X(I)*Y(I)

1 CONTINUE

C$OMP PARALLEL DO

C$OMP& SHARED (N,X,Y)

C$OMP& PRIVATE (I)

C$OMP& REDUCTION (+:DOT)

DO 1 I=1,N

DOT = DOT + X(I)*Y(I)

1 CONTINUE

C$OMP END PARALLEL DO

18

C$OMP END DO NOWAIT

C$OMP CRITICAL

DOT = DOT + DOTL

C$OMP END CRITICAL

C$OMP END PARALLEL

C$OMP PARALLEL DO

C$OMP& SHARED (N,DOT,X,Y)

C$OMP& PRIVATE (I)

DO 1 I=1,N

C$OMP ATOMIC

DOT = DOT + X(I)*Y(I)

1 CONTINUE

C$OMP END PARALLEL DO

NAG SMP Library

 Based on standard NAG Fortran Library

 designed to better exploit SMP architecture

 Current version Mark 21, soon we will release Mark 22

 Identical interfaces to standard Fortran Library

 just re-link the application

 easy access to parallelism for non-specialists

19

 easy access to parallelism for non-specialists
 user is shielded from details of parallelism

 assists rapid migration from serial code

 can be used along with user’s own parallelism
 for expert users

 Interoperable

 call NAG SMP Library routines from other languages

NAG Library Functionality

• Root Finding

• Summation of Series

• Quadrature

• Ordinary Differential Equations

• Partial Differential Equations

• Numerical Differentiation

• Integral Equations

• Dense Linear Algebra

• Sparse Linear Algebra

• Correlation and Regression
Analysis

• Multivariate Analysis of
Variance

• Random Number Generators

20

• Integral Equations

• Mesh Generation

• Interpolation

• Curve and Surface Fitting

• Optimisation

• Approximations of Special
Functions

• Random Number Generators

• Univariate Estimation

• Nonparametric Statistics

• Smoothing in Statistics

• Contingency Table Analysis

• Survival Analysis

• Time Series Analysis

• Operations Research

NAG & vendor libraries (e.g. ACML, MKL)

C
o

m
p

ile
rs

e
tc

NAG Libraries

User
application

21

Hardware

C
o

m
p

ile
rs

e
tc

Vendor Libraries

Target systems

 Multi-socket and/or multi-core SMP systems:
 AMD, Intel, IBM, SPARC processors

 Linux, Unix, Windows operating systems

 Standalone systems or within nodes of larger clusters or MPPs

 Other possibilities:
 Cray or NEC vector

22

 Virtual Shared Memory over clusters in theory, but efficiency may be
poor on many algorithms due to extreme NUMA nature of such
configurations

 Notable exceptions:
 IBM Cell?

 Sun Niagara I

 GPUs, FPGAs, etc

What to parallelise?

 Fundamental building blocks

 Linear algebra and FFTs

 Focus for first few releases

 Broaden out to different areas

23

 Broaden out to different areas

 Especially in new Mark 22

 Make potential for parallelism a key design criteria
for future algorithms

Dense Linear Algebra: BLAS

 BLAS: Basic Linear Algebra Subprograms

 BLAS1: vector-vector operations, e.g. dscal, ddot, daxpy

 BLAS2: matrix-vector operations, e.g. dgemv, dtrsv

 BLAS3: matrix-matrix operations, e.g. dgemm, dtrsm

24

 http://www.netlib.org/blas

 Optimised for cache-based architectures

 NAG SMP Library uses vendor library for fast BLAS

 e.g. ACML, MKL, ESSL, Sunperf, Fujitsu SSL2, etc

25000

30000

35000

40000

45000

1

2

DGEMM performance

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

25

0

5000

10000

15000

20000

25000

1000 2000 4000 6000 8000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

ACML DGEMM (M=N=K)

Dense Linear Algebra: LAPACK

 LAPACK: Linear Algebra PACKage

 matrix factorisations and solvers, e.g. LU, Cholesky, QR

 eigensolvers

 SVD and least-squares

 http://www.netlib.org/lapack

26

 Builds on top of BLAS

 Gets performance from optimised BLAS

 Strives to use BLAS3 as much as possible

 Successor to LINPACK and EISPACK

 also successor to earlier NAG dense linear algebra

NAG & LAPACK

27

LU Factorisation: LAPACK Style

Pivot Block

Active
submatrix

Already
Factorised

U Factor

Permute the
Rows

Solve the
triangular
system

U Factor

28

L Factor

Update the
Trailing
Submatrix

15000

20000

25000

30000

35000

40000

1

2

4

LU factorisation (DGETRF)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

29

0

5000

10000

15000

1000 2000 4000 8000 10000 12000 1000 2000 4000 8000 10000 12000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

netlib DGETRF + ACML BLAS

15000

20000

25000

30000

35000

40000

1

2

4

LU factorisation (DGETRF)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

30

0

5000

10000

15000

1000 2000 4000 8000 10000 12000 1000 2000 4000 8000 10000 12000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

SMP DGETRF + ACML BLASnetlib DGETRF + ACML BLAS

6000

8000

10000

12000

1

2

S.V.D. (DBDSQR)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

NCPU

31

0

2000

4000

6000

1000 2000 4000 1000 2000 4000

4

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

SMP DBDSQR+ ACML BLASnetlib DBDSQR + ACML BLAS

Exploiting SMP parallelism (1)

 Core-math routines (LAPACK, FFTs)
 We aim to give best combination of vendor library and

NAG routines

 Choice varies from platform to platform
 NAG SMP Library version may be faster on some platforms

 If not, we recommend you just use the relevant vendor

32

 If not, we recommend you just use the relevant vendor
library

 In particular, NAG works with AMD on ACML, hence all NAG
SMP LAPACK routines are available in ACML

 NAG FFT routines provide a portable interface to different
underlying vendor FFT routines
 No BLAS-equivalent standard for FFT interfaces

Exploiting SMP parallelism (2)

 NAG routines which use core-math routines
 Exploit parallelism in underlying BLAS, LAPACK and FFT

routines where possible

 Development programme includes renovation of existing
routines as well as adding new functionality

33

routines as well as adding new functionality

 Following on from (1), best choice of NAG Fortran
Library vs NAG SMP Library varies from platform to
platform

80

100

120

140

G03AAF: Principal Component Analysis

T
im

e
(s

e
c

s
)

AMD Barcelona 2.0 GHz, N=10000, M=2000

34

0

20

40

60

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

100

120

140

160

180 Fortran Library Mark 21 + MKL

Fortran Library Mark 22 + MKL

QR Factorisation in MKL

C05NCF: Non-linear equation solver

T
im

e
(s

e
c

s
)

Intel Xeon E5310 1.6 GHz, N=4000

35

0

20

40

60

80

100

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

Exploiting SMP parallelism (3)

 NAG-specific routines parallelised with
OpenMP
 Focus of future NAG SMP Library development

 Seeking to broaden scope of parallelism to different parts
of the library

36

Seeking to broaden scope of parallelism to different parts
of the library
 to a wide variety of algorithmic areas

 to routines that do not use BLAS, LAPACK or FFTs

Exploiting SMP parallelism (3)

 Routines parallelised in Mark 22 in the areas of:
 Sparse direct and iterative solvers

 Sparse eigenproblems

 Random Number Generators

 Interpolation

Curve and Surface Fitting

Parallelised in
previous release

37

 Curve and Surface Fitting

 Correlation and Regression Analysis

 Multivariate statistics

 Time Series Analysis

 Financial Option Pricing

25

30

35

40

45

50

E01THF: evaluate interpolant at given points

E01TGF: generate 3D interpolant

E01TGF/E01THF: Interpolation

T
im

e
(s

e
c

s
)

Intel Xeon E5310 1.6 GHz, N=100,000

38

0

5

10

15

20

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

120

140

160

180

200

220

G13EAF: Kalman filter (1 iteration)

T
im

e
(s

e
c

s
)

AMD Barcelona 2.0 GHz, N,M,L=1000

39

0

20

40

60

80

100

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

20000

25000

30000

Fortran Library + MKL

SMP Library + MKL

G02AAF: Nearest-correlation matrix

T
im

e
(s

e
c

s
)

Intel Xeon E5405 2.0 GHz,
N=10,000

40

0

5000

10000

15000

1 2 4 8

T
im

e
(s

e
c

s
)

Number of cores

Future algorithms

 Potential for parallelism is now a key criteria for
selecting future algorithms

 Example: Numerical Optimisation

 Current algorithms were written for optimal serial
performance, and are not suitable for parallelism

41

performance, and are not suitable for parallelism

 Currently working on a Parallel Swarm Optimisation
algorithm
 Stochastic method

 Poor performance on one thread but scales extremely well, thus
PSO will be a complement, not replacement, for existing routines

Performance considerations

 Performance and scalability depends upon
 Nature of algorithm

 Problem size(s) and other parameters

 Hardware design

 OS, compiler and load on system

42

OS, compiler and load on system

 Maximum number of threads may not be
optimal
 Important to benchmark frequently used problems on

your system

 Consult NAG for advice if required

Example 1: Sparse iterative solvers

 Problem: Iterative solver may not converge, or may
converge very slowly

 Runtime proportional to number of iterations

 Preconditioners can help reduce number of
iterations required for convergence

43

iterations required for convergence

 at the cost of increased memory requirements in many
cases

 Should we choose preconditioner parameters to
minimise the number of iterations of the solver?

Example 1: Sparse iterative solvers

 Not necessarily!

 Need to consider cost of preconditioner

 In NAG SMP Library

 Iterative solvers have been parallelised

 Preconditioners are still serial

44

 Preconditioners are still serial

 On multiple processors:

 turning down preconditioner, so that proportionally more
time is spent in parallel solvers, may be beneficial

 choice of parameters depends on nature of sparse matrix,
system design and number of threads

Example 2: System issues

 Comparing two quad-socket Opteron systems

 4 x Single core, 1.8 GHz processors

 4 x Dual core, 2.2 GHz processors

 Linux OS

 PGI compiler

45

 PGI compiler

 Note: LAPACK code different from netlib source:

 Same algorithm

 Optimised, and parallelised with OpenMP

8000

10000

12000

1

2

Opteron: Reduction to Tridiag (DSYTRD)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s) NCPU

46

0

2000

4000

6000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

4

6

8

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

Dual core: 2.2 GHzSingle core: 1.8 GHz

Where did the performance go???

 Q: Is multi-core to blame?

 A: No, machines had different OS (and kernel)

 Single-core was SuSE SLES 8 (2.4.x kernel)

 Dual-core was SuSE 9.3 (2.6.x kernel)

47

 Dual-core was SuSE 9.3 (2.6.x kernel)

 Q: What if we use a 2.6.x kernel on single-core?

 A: Same effect as on dual-core with 2.6.x

8000

10000

12000

1

2

Opteron: Reduction to Tridiag (DSYTRD)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s) NCPU

2.4 kernel 2.6 kernel 2.6 kernel

48

0

2000

4000

6000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

4

6

8

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

Dual core: 2.2 GHzSingle core: 1.8 GHz

49

numactl

 First: Check BIOS and kernel versions

 numactl controls NUMA policy for processes and memory, e.g.
numactl –c 0,1,2,3 –i 0,1,2,3 program.exe

 Interleaving of memory across nodes vital

50

 Interleaving of memory across nodes vital

 DSYTRD in SMP library is memory-bandwidth hungry

 Thus better to use single core per socket, if possible

8000

10000

12000

1

2

Opteron: Reduction to Tridiag (DSYTRD)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s) NCPU

2.6: numactl –c 0,1,2,3 –i 0,1,2,3
2.6: Default

2.6: numactl –c 2,3 –i 2,3

51

0

2000

4000

6000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

2

4

6

8

Problem size (N)

P
er

fo
rm

a
n

ce
(M

fl
o

p
s)

Dual core: 2.2 GHz

What about other systems?

 Questions:

 Windows?

 Solaris?

 Intel systems, e.g. new QuickPath Interconnect?

 SGI Altix?

 IBM POWER4/5 MCM?

52

 IBM POWER4/5 MCM?

 Answer:

 YMMV! (Your Mileage May Vary)

 But be aware of this issue

Summary

 SMP systems now the norm
 in large part due to multi-core chips

 NAG SMP Library provides an easy-to-use option for
exploiting SMP hardware
 Identical interfaces to standard NAG Fortran Library

Interoperable with other languages

53

 Interoperable with other languages

 Works with vendor core-math library to get best
performance on dense linear algebra and FFT routines

 Increasing number of NAG-specific routines parallelised

 Potential for parallelism key criteria for future routines

 Mark 22 available in Q4 2009

