An Introduction to the NAG SMP Library

Edward Smyth

1/10/2009

\;' | a Experts in numerical algorithms
and HPC services

e 'u.._h'.'ln. L v e il

Overview

® QOverview of SMP parallelism

® Description of SMP Library

® What algorithms have been parallelised?
" Future directions

® Performance issues

nag

SMP = Symmetric MultiProcessing

Single memory
visible to all

processors.
Memory must
be cache-

CPU coherent.
[

R |

Memory can be
physically partitioned
(NUMA systems)

Interconnect Subsystem

nag

Often with multi-core processors...

Single, cache-
coherent
memory visible
to all cores on

Interconnect Subsystem

nag

SMP Parallelism

Multi-threaded Parallelism (Parallelism-on-demand)

*Parallel execution
*Serial Interfaces
*Details of parallelism
are hidden outside the
parallel region

Parallel Region

SEEEEEEEEENENENEEEEN,

[4 L}
Spawn threads = - Destroy threads

. .] []
SEIE] SR % N Serial execution

..IIIIIIIIIIIIIIIIIII“

Parallelism carried out in distinct parallel regions

nag

SMP Parallelism: Strong Points

®" Dynamic Load balancing

o Amounts of work to be done on each processor can be
adjusted during execution

o Closely linked to a dynamic view of data

" Dynamic Data view
o Data can be ‘redistributed” on-the-fly

o Redistribution through different patterns of data
access

" Portability
" Modularity
® Good programming model

nag

SMP Parallelism: Dynamic View of Data

Computation Stage 3

Data

B Processor 1 B Processor 3

Processor 2 B Processor4

nag

SMP Parallelism: Some Weaker Points

" Not very suitable for heterogeneous parallelism
® Not very suitable for complex applications
® Not easy to generate efficient code

" Non-deterministic results
o Applies to least significant parts of solution
o Parallel random number generators
o May be disconcerting to some users
o Effects on ill-conditioned problems may be dramatic

nag

SMP Parallelism: Explicit Multi-Threading

® Call to system routines

o Code differs significantly from original serial version

®" No universal standard — different vendors may use
different mechanisms

o POSIX threads
o Windows threads

® Difficult to write

® Difficult to maintain

nag

SMP Parallelism: Compiler Directives

" |nstruction to compiler to instrument the code
with appropriate threading

® Portable to variety of SMP systems
" |gnored by compilers on serial systems

® Code executed not code written (one layer of
software in between)

® Fasier to write and maintain

® |dentifiable by a sentinel, a special sequence of
characters in a comment statement

nag

10

SMP Parallelism: Directives v Multi-Threading

Nag

Compiler Explicit

Directives Threads
Portable to/from serial Yes No
Portable to other SMPs Y es No
Easy to code Yes No
Easy to maintain Possibly No

11

OpenMP: Introduction

® Portable, Shared Memory MultiProcessing API
o Fortran 77 & Fortran 90

o C&C++
o Multi-vendor Support, for Both UNIX/Linux and
Windows

® Standardizes Fine Grained (Loop) Parallelism
® Also Supports Coarse Grained Algorithms

nag® 12

OpenMP: Architecture

nag

Application User
T =
Compiler Environment
Directives Variables

Threads in Operating System

13

SMP Mechanisms in OpenMP

nag

Fork-join construct: PARALLEL
Data attributes definition: SHARED, PRIVATE
Global Operations: REDUCTION

Work Sharing Constructs

o Distribution of Loops: DO
o Distribution of blocks of code: SECTION, TASKS

14

SMP Mechanisms in OpenMP

® Synchronisation
o Processors wait until everyone calls: BARRIER
o Sub-groups of processors synch: via locks
o One processor at a time: CRITICAL
o Only one processor executes: SINGLE, MASTER

® Runtime library calls to interrogate system
o How many threads are there?
o Which oneam I?

® User control at runtime via environment variables
o Number of threads: OMP_NUM_THREADS

nag

15

OpenMP: Parallel DO loop

Generate team
of threads

All threads execute
exactly same code

C$OMP PARALLEL
C$OMP& SHARED (M,N)
.+ C$OMP& PRIVATE (1,)

Allthreads| |

execute DO101=1, M
same code

l C$OMP DO
A DO11J=1,N

Threads execute
same code but with
different iterations

Threads
execute | | v

different
iterations

Master thread

\ 4
AT e .
10 CONTINUE All threads execute
All threads exactly same code
execute | 0 T g
same code C$OMP END PARALLEL
A 4

Destroy team
of threads

16

nag

OpenMP: Directives Binding

nag

AN

PN

AN

- <— Module containing the parallel construct

- <+<— Modules within the dynamic extent of the parallel construct

Example: Dot Product

C$OMP PARALLEL
C$OMP& SHARED (N,DOT,X,Y)
C$OMP& PRIVATE (I,DOTL)

DOTL = 0.0D0
C$OMP DO

DO 1 1=1,N

DOTL = DOTL + X(I)*Y(l)
1 CONTINUE

C$OMP END DO NOWAIT
C$OMP CRITICAL

DOT = DOT + DOTL
C$OMP END CRITICAL
C$OMP END PARALLEL

C$OMP PARALLEL DO
C$OMP& SHARED (N,X,Y)
C$OMP& PRIVATE (1)
C$OMP& REDUCTION (+:DOT)
DO 1 1=1,N
DOT = DOT + X(I)*Y(I)
1 CONTINUE

C$OMP END PARALLEL DO

nag

C$OMP PARALLEL DO
C$OMP& SHARED (N,DOT,X,Y)
C$OMP& PRIVATE (1)
DO 1 1=1,N
C$OMP ATOMIC
DOT = DOT + X(I)*Y(I)
1 CONTINUE
C$OMP END PARALLEL DO

18

NAG SMP Library

® Based on standard NAG Fortran Library
o designed to better exploit SMP architecture
o Current version Mark 21, soon we will release Mark 22

® |dentical interfaces to standard Fortran Library
o just re-link the application
o easy access to parallelism for non-specialists

o user is shielded from details of parallelism
o assists rapid migration from serial code

o can be used along with user’s own parallelism

o for expert users

" |nteroperable

o call NAG SMP Library routines from other languages

nag

19

NAG Library Functionality

* Root Finding * Dense Linear Algebra

« Summation of Series » Sparse Linear Algebra

* Quadrature » Correlation and Regression
e Ordinary Differential Equations Analysis

e Partial Differential Equations * Multivariate Analysis of

Variance
« Random Number Generators
e Univariate Estimation
* Nonparametric Statistics
* Smoothing in Statistics

* Numerical Differentiation
 Integral Equations
* Mesh Generation
 Interpolation
 Curve and Surface Fitting . _
. Optimisation . Cont.mgency Ta.ble Analysis
« Approximations of Special * survival Analysis

Functions » Time Series Analysis

* Operations Research

nag .

NAG & vendor libraries (e.g. ACML, MKL)

nag

21

Target systems

= Multi-socket and/or multi-core SMP systems:
o AMD, Intel, IBM, SPARC processors
o Linux, Unix, Windows operating systems
o Standalone systems or within nodes of larger clusters or MPPs

= QOther possibilities:
o Cray or NEC vector
o Virtual Shared Memory over clusters in theory, but efficiency may be
poor on many algorithms due to extreme NUMA nature of such
configurations
= Notable exceptions:
o IBM Cell?
o Sun Niagara |
o GPUs, FPGAs, etc

nag .

What to parallelise?

" Fundamental building blocks
o Linear algebra and FFTs
o Focus for first few releases

® Broaden out to different areas

o Especially in new Mark 22

" Make potential for parallelism a key design criteria
for future algorithms

nag

23

Dense Linear Algebra: BLAS

® BLAS: Basic Linear Algebra Subprograms
o BLAS1: vector-vector operations, e.g. dscal, ddot, daxpy
o BLAS2: matrix-vector operations, e.g. dgemv, dtrsv
o BLAS3: matrix-matrix operations, e.g. dgemm, dtrsm

" http://www.netlib.org/blas
® Optimised for cache-based architectures

® NAG SMP Library uses vendor library for fast BLAS
o e.g. ACML, MKL, ESSL, Sunperf, Fujitsu SSL2, etc

nag

24

DGEMM performance

45000

40000

w
a
o
o
o

30000

25000

20000

Performance (Mflops)

15000
10000

5000

nag

1000

2000

4000 6000

Problem size (N)

CPU

ACML DGEMM (M=N=K)

8000

g1

m2

04

25

Dense Linear Algebra: LAPACK

® | APACK: Linear Algebra PACKage

o matrix factorisations and solvers, e.g. LU, Cholesky, QR
o eigensolvers
o SVD and least-squares

" http://www.netlib.org/lapack
® Builds on top of BLAS

o Gets performance from optimised BLAS
o Strives to use BLAS3 as much as possible

® Successor to LINPACK and EISPACK

o also successor to earlier NAG dense linear algebra

nag

26

NAG & LAPACK

L A P A CK
L-A P-A C-K
L AP A -C-K
L-A P -A -C K
L A-P-A C K
L-A-P A C-K
Users’ Guide

Third Edition

J. Du Crogz, S. Hammarling,

reqn, Z. Bai, C. Bi

Andera b Blackford, J. Dem
J. Du Croz, A)Greenbaum(S. Hammarling,)=k

SOFTWARE -ENVIRONMENTS - TODOLS

nag 2

LU Factorisation: LAPACK Style

Active

submatrix

nag

LU factorisation (DGETRF)

40000
35000
30000
25000
20000
15000

10000

Performance (Mflops)

5000

1000 2000 4000 8000 10000 12000 1000 2000 4000 8000 10000 12000

Problem size (N)

netlib DGETRF + ACML BLAS

nag

NCPU

o1

|2

04

29

LU factorisation (DGETRF)

40000
35000
30000
25000
20000
15000

10000

Performance (Mflops)

5000

0

p—

|

—
| ‘
| i

— 1 o
'p.r NN
BERN

|

1000 2000 4000 8000 10000 12000

I

= 0 O L

BRR B

1000 2000 4000 8000 10000 12000

Problem size (N)

netlib DGETRF + ACML BLAS

nag

SMPDGETRF + ACML BLAS

NCPU

o1

|2

04

30

S.V.D. (DBDSQR)

12000

10000

8000

6000

4000

Performance (Mflops)

2000

1000 2000 4000

Problem size (N)

netlib DBDSQR + ACML BLAS

1000 2000 4000

SMPDBDSQR+ ACML BLAS

NCPU

g1

B2

04

nag

31

Exploiting SMP parallelism (1)

= Core-math routines (LAPACK, FFTs)

o We aim to give best combination of vendor library and
NAG routines

o Choice varies from platform to platform

o NAG SMP Library version may be faster on some platforms

o If not, we recommend you just use the relevant vendor
library

o In particular, NAG works with AMD on ACML, hence all NAG
SMP LAPACK routines are available in ACML

o NAG FFT routines provide a portable interface to different
underlying vendor FFT routines

o No BLAS-equivalent standard for FFT interfaces

nag .

Exploiting SMP parallelism (2)

= NAG routines which use core-math routines

o Exploit parallelism in underlying BLAS, LAPACK and FFT
routines where possible

o Development programme includes renovation of existing
routines as well as adding new functionality
®" Following on from (1), best choice of NAG Fortran
Library vs NAG SMP Library varies from platform to
platform

nag

33

GO3AAF: Principal Component Analysis

140

120 -

100 A

Time (secs)

N b
o o

o

nag

(0]
o

2]
o

AMD Barcelona 2.0 GHz, N=10000, M=2000

1 2 4 8

Number of cores

34

CO5NCF: Non-linear equation solver

Intel Xeon E5310 1.6 GHz, N=4000

180 B Fortran Library Mark 21 + MKL

B Fortran Library Mark 22 + MKL
160 0O QR Factorisation in MKL

140

120

100

Time (secs)

80

60

40

20

1 2 4 8

Number of cores

35

Exploiting SMP parallelism (3)

= NAG-specific routines parallelised with
OpenMP
o Focus of future NAG SMP Library development

o Seeking to broaden scope of parallelism to different parts
of the library
o to a wide variety of algorithmic areas
o to routines that do not use BLAS, LAPACK or FFTs

nag y

Exploiting SMP parallelism (3)

® Routines parallelised in Mark 22 in the areas of:

O

o o o o o o o O

nag

Sparse direct and iterative solvers

Parallelised in
previous release

Sparse eigenproblems
Random Number Generators
Interpolation

Curve and Surface Fitting
Correlation and Regression Analysis
Multivariate statistics

Time Series Analysis

Financial Option Pricing

37

EO1TGF/EO1THF: Interpolation

Intel Xeon E5310 1.6 GHz, N=100,000
B EQO1THF: evaluate interpolant at given points
OEOL1TGF: generate 3D interpolant

Time (secs)

1 2 4 8

Number of cores

38

G13EAF: Kalman filter (1 iteration)

220

200

180

160

140

120

100

Time (secs)

80
60
40

20

nag

AMD Barcelona 2.0 GHz, N,M,L=1000

;Ilt

Number of cores

39

GO2AAF: Nearest-correlation matrix

Intel Xeon E5405 2.0 GHz,

N=10,000 @ Fortran Library + MKL
B SMP Library + MKL

30000

25000

20000

15000

Time (secs)

10000

5000

1 2 4 8
Number of cores

nag

40

Future algorithms

® Potential for parallelism is now a key criteria for
selecting future algorithms

® Example: Numerical Optimisation

o Current algorithms were written for optimal serial
performance, and are not suitable for parallelism

o Currently working on a Parallel Swarm Optimisation
algorithm
o Stochastic method

o Poor performance on one thread but scales extremely well, thus
PSO will be a complement, not replacement, for existing routines

nag

41

Performance considerations

= Performance and scalability depends upon
o Nature of algorithm
o Problem size(s) and other parameters
o Hardware design
o OS, compiler and load on system

= Maximum number of threads may not be
optimal
o Important to benchmark frequently used problems on
your system

o Consult NAG for advice if required

nag

42

Example 1: Sparse iterative solvers

" Problem: Iterative solver may not converge, or may
converge very slowly

o Runtime proportional to number of iterations

® Preconditioners can help reduce number of
iterations required for convergence

o at the cost of increased memory requirements in many
cases

® Should we choose preconditioner parameters to
minimise the number of iterations of the solver?

nag .

Example 1: Sparse iterative solvers

" Not necessarily!
" Need to consider cost of preconditioner
" |n NAG SMP Library

o Iterative solvers have been parallelised

0 Preconditioners are still serial

" On multiple processors:

o turning down preconditioner, so that proportionally more
time is spent in parallel solvers, may be beneficial

o choice of parameters depends on nature of sparse matrix,
system design and number of threads

nag

44

Example 2: System issues

® Comparing two quad-socket Opteron systems
o 4 x Single core, 1.8 GHz processors
o 4 x Dual core, 2.2 GHz processors

" |Linux OS
" PGl compiler
" Note: LAPACK code different from netlib source:

o Same algorithm
o Optimised, and parallelised with OpenMP

nag

45

Opteron: Reduction to Tridiag (DSYTRD)

12000
»
O 10000 NCPU
o
b o1
= 8000 o
g 6000 06
-
5 48
O 4000
O
(ol

2000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Problem size (N)
Single core: 1.8 GHz Dual core: 2.2 GHz

nag

Where did the performance go???

® Q:Is multi-core to blame?

" A: No, machines had different OS (and kernel)
o Single-core was SuSE SLES 8 (2.4.x kernel)
o Dual-core was SuSE 9.3 (2.6.x kernel)

® Q: What if we use a 2.6.x kernel on single-core?
" A: Same effect as on dual-core with 2.6.x

nag .

Opteron: Reduction to Tridiag (DSYTRD)

12000

10000

8000

6000

4000

Performance (Mflops)

2000

0

2.4 kerndl

B BB B

1000 2000 3000 4000 5000

2.6 kerndl

2.6 kerndl

Tir

BEE

1000 2000 3000 4000 5000

gy M
L

1000 2000 3000 4000 5000

Problem size (N)

Single core: 1.8 GHz

Duadl core: 2.2 GHz

nag

NCPU

o1

m2
04
06
m3g

48

AMD OPTERON™ PROCESSOR-BASED 4P SERVER

HyperTransport™ technology Memory capacity scales with
buses erable glueless expansion . numbers of proessors
for up to B-way servers e (I

AMD
Saame Opteron™
Processor

DDR2

DDR2

Separate memory and
VO pathe elimirete —= |(f
rriost bus contention

Processors are directly
connected o processors;
cores are connected on die

HyperTransport link
) -=— has ample bandwidth
for VO devices

HF=rerre cee, |]
R bridge’ SATA — W

!

[
hub?

PCEX" PCI Express®

- ——= Mamory traffic
S Y
- — e P eraffic

IDE, USE,
LPC, Etc.

nag

numactl

® First: Check BIOS and kernel versions

" numactl controls NUMA policy for processes and memory, e.g.
numactl—-c 0,1,2,3-i 0,1,2,3 program.exe

" |nterleaving of memory across nodes vital
= DSYTRD in SMP library is memory-bandwidth hungry

®" Thus better to use single core per socket, if possible

nag ,

Opteron: Reduction to Tridiag (DSYTRD)

2.6: numactl € 0,1,2,3-4 0,1,2,3
| | b

2.6: numactl 2,34 2,3

| 2.6: Default

12000

& 10000
% NCPU
— o1
8000
=
Y N
o 6000 04
c
®
E 06
§ 4000 ms
o)
o
2000

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Problem size (N)

Duadl core: 2.2 GHz

nag ;s

What about other systems?

® Questions:
o Windows?
o Solaris?

o Intel systems, e.g. new QuickPath Interconnect?
o SGI Altix?
o IBM POWER4/5 MCM?

" Answer:

o YMMV! (Your Mileage May Vary)
o But be aware of this issue

nag

52

Summary

® SMP systems now the norm
o in large part due to multi-core chips

® NAG SMP Library provides an easy-to-use option for
exploiting SMP hardware
o Identical interfaces to standard NAG Fortran Library
o Interoperable with other languages

o Works with vendor core-math library to get best
performance on dense linear algebra and FFT routines

o Increasing number of NAG-specific routines parallelised
o Potential for parallelism key criteria for future routines

® Mark 22 available in Q4 2009

nag ;s

