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CHAPTER I

MENTAL REPRESENTATIONS FOR MUSIC

1.1 Introduction: Overview

The problem of how the human brain perceives and represents complex, temporally
structured sequences of events is central to cognitive science. The basic questions of
temporal sequence processing recur throughout the study of human activity, in domains as
diverse as language, vision, and motor coordination. Understanding how temporal
sequences may be coded as patterns of activation in artificial neural networks has emerged
as a central issue. This dissertation addresses two questions that are important in
understanding the representation of structured sequences. The first regards the acquisition
and representation of structural relationships among events, important in representing
sequences with long distance temporal dependencies, and in learning structured systems of
communication. The second regards the representation of temporal relationships among
events, that is important in recognizing and representing sequences independent of
presentation rate, while retaining sensitivity to relative timing relationships. These two

issues are intimately related, and this dissertation addresses the nature of this relationship.

Music provides a domain that is in many ways ideal for the studying perception and
representation of complex temporal sequences. Music is a highly structured form of
communication requiring knowledge that is shared among composers, performers, and
listeners. Unlike other forms of communication, music is an activity in which

communication appears to take place without explicit referential semantic content. Thus
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music provides a domain in which to study issues of temporal sequence processing without
positing a great deal of extra-musical knowledge. At the same time music provides a rich
source of data, generated by a natural human activity, in which complex sequential and

temporal relationships abound.

Accounts of mental representation for musical structure often emphasize the
importance of structural relationships among sequence elements. For example, in a
particular musical context, certain events may be perceived as relatively important, while
others are perceived as mere elaborations of more important events (Lerdahl, & Jackendoff,
1983; Schenker, 1979), comparable to prosodic structure in language. Knowledge of
sequence structure figures prominently in accounts of how people learn musical style
systems, and how people recognize musical variation. Depending on the musical
dimension(s) under consideration the nature of the description varies, but each relies on
some abstract system of knowledge representing underlying sequential regularities.
Knowledge for creating structural descriptions may be innate, or it may reflect the
statistical regularities of a particular musical culture or style (e.g. Knopoff & Hutchinson,

1978; Palmer & Krumhansl, 1990; Mozer, 1994).

Often accounts of musical structure emphasize the dynamic, or time-varying aspect
of music perception and cognition, focusing on the ability of listeners to anticipate
upcoming events from what has gone before. Sequential accounts of musical expectancy
focus on what events a listener expects to occur, and are often expressed in terms of learned
probability relationships that describe the statistical regularities of sequences (e.g.
Bharucha & P. Todd, 1991; Meyer, 1956; Mozer, 1994). Temporal accounts of expectancy

focus explicitly on the question of when listeners expect events to occur (e.g. Jones, 1981b;
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Large & Kolen, in press). This distinction will prove useful in understanding the temporal
sequence processing properties of artificial neural networks. Sequence processing systems
must deal with the serial ordering of future events using knowledge of sequential structure.
Temporal processing systems must cope with the question of when events are likely to

occur by exploiting knowledge of temporal structure.

One way to think about the problems of representing structure in music cognition is
according to the types of representational formalisms employed by theorists working on
different problems. Figure 1 shows one way to do this. At the bottom of Figure | is a
representation of an acoustic flow as a digital signal, a time-series of amplitudes describing
the musical surface. This formalism is useful for studying the perception of pitch, loudness,
and timbre. It is also useful for studying how listeners identify more-or-less discrete
musical events such as notes and chords within in the continuous acoustic flow. The next
representation abstracts away from the musical surface to describe music as a time-series
of discrete events with properties such as pitch, amplitude, timbre, and location in time.
This formalism, sometimes called piano-roll notation, is useful for studying the perception
of tonal and temporal relationships. The next level abstracts away from the musical surface
even further, illustrating ways of describing rhythmic relationships in a musical signal. One
is a representation in terms of groups, or chunks, providing a segmentation of the stimulus
into nested constituent structures. The second representation describes the onset of events
with respect to a metrical grid, making explicit relative time relationships among events.
Representation in terms of grouping and meter is necessary to create a familiar type of
musical representation, the musical score. Representations of temporal properties are

useful in understanding the acquisition and representation of abstract knowledge of musical
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style. Finally, the tree atop the musical score illustrates representation in terms of structural
relationships among events. Structural relationships may be expressed in terms of
grammars, schemata, or prototypes, for example. Such representations are useful for
characterizing musical style systems, and for understanding creative activities such as

musical composition, improvisation, and performance.

Abstract Relationships

o e o e Temporal Structure

Features a}ld Events

Acoustic Signal

Ampiitude

0 1 2 3 4 5 tlmi

Figure 1: Representational formalisms for music perception and cognition.
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Sometimes illustrations such as this are supposed to provide a flow chart of
information-processing stages in music perception, performance, and cognition. Read from
bottom to top, for example, Figure 1 could be interpreted as a stage model of music
perception; read from top to bottom, it could be interpreted as a stage model of music
performance. At this point in the understanding of the perception and representation of
musical sequences, it is perhaps wise to avoid such a strict interpretation. However, studies
in music cognition can often be described as attempts to understand the transformation of

one representation into another.

1.2 Method and Research Plan

1.2.1 Computing Mental Representations for Music

This dissertation describes two research projects that address separable, but closely related
problems. The first study models the acquisition and representation of structural
relationships among events in musical sequences, addressing issues of style acquisition and
musical variatidh. With respect to Figure |, the model takes as input a score-like
representation (rthythmic properties are known) and produces a structured description (top
of Figure 1). The second study models the perception and representation of temporal
relationships among events. With respect to Figure 1, the model takes as input a piano-roll

representation and produces a metrical grid (shown below the score in Figure 1).

The first model addresses the problem of producing structural descriptions for
musical sequences. A neural network encodes the rhythmic organization and pitch contents
of simple melodies. As the network learns to encode melodies, structurally more important

events dominate less important events, as described by reductionist theories of music
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(Lerdahl, & Jackendoff, 1983; Schenker, 1979). Reductionist theories posit that an
experienced listener assigns to a musical sequence a relative importance structure based on
previously acquired information: information that is not necessarily present in the
individual musical sequence. The network displays a form of learning, providing an
example of how listeners may acquire intuitive knowledge through passive exposure to
music that allows them to construct reduced memory representations for musical

sequences.

The connectionist network successfully captures structural relationships among
events by exploiting knowledge about relative timing relationships. This requires the type
of information about temporal structure made explicit by the metrical grid of Figure 1.
Metrical structure describes an important part of musical phenomenology, the sense of
alternating strong and weak beats that accompanies the experience of listening to music
(Lerdahl, & Jackendoff, 1983). The basic ability that affords the perception of metrical

structure is the ability to perceive the beat of a musical sequence.

The second model addresses the perception of temporal structure in musical
sequences, specifically the perception of beat and meter. This approach is inspired by
dynamic attending theory (Jones, 1976; Jones & Boltz, 1989). Dynamic attending theory
describes rhythm perception as a dynamic process in which the temporal organization of
rhythm synchronizes, or entrains, a listener’s attention. This dissertation describes an
entrainment model appropriate for modeling the perception of beat and meter in music. An
oscillator tracks the phase and period of periodic components of complex rhythmic
patterns, resulting in dynamical system model of beat perception. The self-organizing

response of a group of oscillators embodies the perception of metrical structure.



1.2.2 Empirical Measures of Model Performance

Computational modeling of cognitive phenomena can be quite valuable, but only if the
behavior of the model can be properly evaluated. Deciding how to judge the behavior of a
musical model may the most difficult issue facing computational modeling of musical
activity. The models presented in this dissertation will be evaluated with respect to a single
data set, collected in an empirical study of music performance (Large, Palmer, & Pollack,

1991; in press). In this study, musicians performed three melodies, and improvised a set of

variations on the melodies.

There is an important reason performance data provides a good test for these
computational models. Studies of music perception generally require simplifying
assumptions. For example, stimuli may be constructed and presented to conform to such
strict statistical controls that the stimuli to which subjects respond is not really music
(Butler, 1992). Alternatively, subjects respond to actual segments of music, but only broad
responses are measured such as judgements of similarity (Large, 1992; Serafine, Glassman,
& Overbeeke, 1989). I do not mean to underestimate the importance of such studies, or
suggest that sophisticated perceptual paradigms do not exist in music cognition. However,
the computer models presented in this dissertation provide detailed predictions regarding
perception. No small set of strictly perceptual studies can provide adequate tests of the
models’ behavior. The performance data collected, along with simple assumptions about

the nature of perceptual and cognitive processes, allowed adequate tests of behavior for

these simulations.
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To evaluate the model of musical structure, musicians' improvised variations were
analyzed to determine aspects of the pianists’ mental representations for these three
melodies. Improvisations were compared with predictions of structural importance based
on reductionist accounts. The evidence from improvisational music performance addresses
the validity of reductionist claims and their relationship to the problem of musical variation.
It also provides empirical data with which to compare the performance of the connectionist

mechanism for producing reduced memory representations.

To evaluate the model of beat perception, both melodic performances and
improvisations were analyzed to determine their timing properties, and then used as test
cases for the computer model. This analysis differs from previous studies of performance
timing in that it does not attempt to determine the significance of deviation from temporal
regularity common in musical performance (cf. Palmer, 1988). It assumes instead that the
basic job of the beat and meter perception is to track the temporal structure of performances
in spite of performance timing deviations (cf. Longuet-Higgins & Lee, 1982). The model

is evaluated with respect to its performance on this task.

1.3 General Relevance

1.3.1 Connectionist Temporal Sequence Processing

Within the artificial neural network community, a great deal of attention has focused upon
questions of temporal sequence processing. One issue researchers have addressed is the
ability of short term memory structures to adequately make sequence history available to
network processing. This is important in representing sequences in which relationships
among events span long temporal intervals and involve high-order statistics (de Vries &

Principe, 1992; Jordan, 1986; Wang & Arbib, 1993; for reviews see Mozer, 1993; Wang, in
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press a). Another issue regards the design of processing strategies and training algorithms
that make generalizations about sequence structure that are relevant in particular domains.
This is important, for example, in learning the structure of naturally or artificially generated
languages (e.g. de Vries & Principe, 1992; Giles, et. al. 1990; Kolen, 1994; Pollack, 1988;
Pollack, 1991; Cleeremens, Servan-Schreiber, & McClelland, 1989). These issues mainly
involve sequence structure. Time enters the picture, but in a limited way: as a constraint on

the maintenance of sequence history in short term memory.

An equally important set of questions regards how systems handle temporal
structure. One issue regards the design of systems that are rate-invariant while maintaining
sensitivity to relative timing relationships. Systems for processing music and speech, for
example, must process sequences independent of absolute presentation rate, yet maintain
sensitivity to certain relative time relationships. These issues are related to a problem
known as the quantization, or time-warping problem. The time-warping problem is the
problem of deciding what relative-time relationships should maintain, and what other

aspects of timing should be disregarded.

A third set of questions regards how temporal structure and sequence structure
- should interact in temporal sequence processing. Artificial neural networks, for example,
may be designed to exploit temporal structure. The work reported in this dissertation bears
directly upon these issues. The neural network model of Chapter IV, learns to represent
complex musical sequences. It makes musically and psychologically relevant
generalizations about sequence structure. It accomplishes this using a short term memory
design that exploits knowledge of temporal structure. The entrainment model of Chapters

VI-VIII proposes a way of providing such information about temporal structure, so that any
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neural network can exploit relative timing information for temporal sequence processing.
The relationship between the two models is discussed, and directions for future research are

suggested.

1.3.2 Speech

Music perception is interesting, in part because it is related to the perception of speech. For
example, the neural network model for learning musical sequence structure is closely
related to theories of prosody in natural language. The network’s representations of musical
sequences differentially weights musical events as described by reductionist theories of
music (Lerdahl, & Jackendoff, 1983; Schenker, 1979). Reductionist theories share a
common framework with rule systems for prosodic stress and prominence in speech
(Liberman 1975; 1977; Lerdahl, & Jackendoff, 1983; Selkirk, 1978; 1980). Thus, findings
of this simulation may be relevant to linguistic models. Design of this network may suggest

network designs for learning prominence relationships in spoken language.

There is also a close relationship between theories of metrical structure in music
theories of metrical structure in language (Lerdahl, & Jackendoff, 1983). Lerdahl and
Jackendoff, however, note an important difference between the notion of a regularly timed
metrical structure in music and the apparent flexibility of timing in natural language.
Regular timing (isochronic organization) has not been widely observed in natural language
either in the acoustic or in the articulatory domain, yet systematic deviation from isochrony
has been shown to reliably communicate linguistic information to listeners. This seemingly
paradoxical result has led some researchers to the conclusion that isochrony in ianguage but
is a perceptual phenomenon (Lehiste, 1977). One possible explanation is that certain units

of speech (syllables, stressed syllables, or mora) are approximately regularly timed, but
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variance in timing constraints introduced by segmental variation (production of different
syllables) masks this regularity (e.g. Fowler, 1983; Kelso, et. al,, 1985). Results presented
in Chapter III show that naturally performed music is not regularly timed either, at least not
in any easily measurable way. Nevertheless, the model of beat perception in music
(Chapters VI-VIII) finds temporal regularities, or perceptual isochrony, at multiple time
scales. This mechanism may be applicable to speech timing, and the final chapter presents

an example to suggest a way in which the model might be applied to speech.

1.3.3 Motor Coordination

There is a large body of theoretical and empirical work that relates to timing in musical
performance. Musical rhythms performed by skilled musicians show deviations from
timing regularity (as prescribed by the musical score) that are systematically related to the
musical intentions of performers (Sloboda, 1983; Clarke, 1985; Shaffer, Clarke & N. Todd,
1985; N. Todd, 1985; Palmer, 1988; Drake & Palmer, 1993). It is generally assumed that
listeners can respond to these perceptual cues and comprehend the intentions of performers,
thus deviation form ideal timing in musical performance communicates musical
information. This suggests a representation of musical timing in two parts, a canonical
motor program giving ideal durations (as found in a musical score), and a curve that
represents deviation from ideal timing (e.g. Clarke, 1993). In Chapter V, I define the
function of meter perception in complimentary terms — to reverse engineer a motor program
that would recreate the rhythm. This approach is consistent with Fowler’s (Fowler, 1990)

view that the object of auditory perception is the sound-producing source, not the sound

itself.
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Of broader interest to the motor coordination community is the issue of the
representation of motor program structure: hierarchically nested motor programs, vs. non-
linearly coupled oscillators. The experimental literature on motor coordination reveals
many activities, including rhythmic hand movements and cascade juggling, to be consistent
with mathematical laws governing coupled oscillations (e.g. Kelso & deGuzman, 1988;
Schmidt et. al., 1991; Treffner, & Turvey, 1993; for a review of recent models see Beek,
Peper, & van Wieringen, 1992). Shaffer (1981) has proposed that the performance of two-
handed polyrhythms in music may be described as the entrainment of clocks. However, this
issue remains unresolved. The model of meter perception that I propose is based on the
notion of non-linearly coupled oscillations. I will argue that the success of this model in the

perceptual domain also provides support for its use in the motor domain.

1.4 Outline of the Thesis

Chapter II provides a more detailed background of music cognition, focussing on two
issues that will be of concern in the modeling efforts of subsequent chapters: representation
of structural relationships and representation of temporal relationships among events in

musical sequences. Theoretical and empirical work pertinent to these topics is reviewed.

Chapter III describes the collection and analysis of a data set that will be central to
the material in following chapters. A study of musical performance and improvisation was
conducted in which musicians performed simple melodies from musical notation, and then
improvised variations on these melodies. The data will be used to evaluate the performance
of the models described in the following chapters. First improvisations are collected and
used to assess the structure of the performers’ mental representations for these melodies.

An analysis comparing improvised variations with the predictions of a reductionist theory
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(Lerdahl, & Jackendoff, 1983) provides support for the theory, and provides predictions to
test the computer simulation described in Chapter IV. Next, both performances and
improvisations are analyzed with respect to the timing of the performances. Methods of
Fourier analysis and auto-correlation are used to assess timing properties of the
performances, and then deviation from “ideal” timing is measured using a measure of
performance rubato. These materials will be used to test a model of beat perception in

Chapter VIII.

Chapter IV describes a connectionist model of structural representation for musical
melodies. Memory representations for musical sequences are modeled using recursive
distributed representations (Pollack, 1988; Pollack, 1990), a connectionist formalism that
allows the representation of symbolic data structures as patterns of activation in
connectionist networks. A computational experiment is described in which a neural
network is trained to produce recursive distributed representations for the three melodies
used in the improvisation study (Chapter II). An examination of the reduced descriptions
reveals that the representations differentially weight musical events, emphasizing some
aspects of the musical content over others. Thus, the network captures a theoretically
important type of structural relationship among sequence events. Results are compared
with the empirical study to address whether the network's differential weightings agree
with the relative importance of events inferred from the improvisational music
performances. Some of the material in Chapters Two and Three appear in (Large, Palmer,

& Pollack, in press).
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Chapter V begins a change in perspective. Results of the previous simulation are
assessed, and assumptions about temporal structure are made explicit. The distinction
between sequence processing and temporal processing is explored, and temporal sequence
processing architectures for music are reviewed with regard to this distinction. The chapter

then reviews previous approaches to analyzing temporal structure in music.

Chapter VI proposes an entrainment model of the process of tracking beats in
musical sequences that is appropriate for modeling aspects of human rhythm perception.
Chapter VII uses the entrainment model to derive a dynamical system model of beat
perception. Concepts from the theory of dynamical systems that play a role in the theory
are introduced. A state-space description is for the oscillator driven by a simple rhythmic
signal is provided, and the results of a resonance analysis are given. This analysis yields an
algorithm for simulating the behavior of the model, and it provides insight into how the
entrainment model may provide the basis for a theory of meter perception. Chapter VIII
describes tests of the model, showing how it is able to track beats in complex musical
rhythms (collected in Chapter III) and how systems may be composed to model the
perception of meter. Chapter IX describes the relationship between the two models, offers

insights into how the models relate to other fields, and offers some closing thoughts.



CHAPTER II

SEQUENCE STRUCTURE AND TEMPORAL STRUCTURE IN MUSIC

This chapter presents a background of music cognition issues that relate to the models to
be developed in subsequent chapters. First, perceptual grouping and recursive recoding, or
chunking, are considered from the perspective of music cognition. The representation of
abstract structural relationships among events is discussed and the role of temporal

" structure in musical representing sequences is considered.

2.1 Rhythmic Grouping

The concept of information recoding, first introduced by Miller (1956), suggested that
subjects presented with to-be-remembered sequences can reduce the amount of information
to be retained by recoding, or chunking, subsets of more than one item into a single memory
code. Researchers such as Estes (1972), Vitz and Todd (1969), and Garner and Gottwald
(Garner & Gottwald, 1968) argued that subjects assign codes to the subgroups of a
sequence to reduce demands on memory, and these codes can be recalled and decoded on
a later occasion to reconstruct the entire sequence. The principles proposed for grouping
elements to produce codes were often perceptual; for example, Vitz and Todd (1969)
suggested that runs of perceptually similar elements are cast into memory codes. In

auditory patterns, perceptual grouping principles referred to rhythm.

15
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The term rhythm refers to the sense of movement in time that characterizes the
experience of music (Apel, 1972). One aspect of the perception of rhythm is the perception
of the grouping of events (Cooper & Meyer, 1960; Lerdahl, & Jackendoff, 1983).
Phenomenal accent is the physical patterning of events in the musical stream such that
some seem stressed relative to others (Lerdahl, & Jackendoff, 1983). Perception of accent
influences the perception of grouping. A great deal of research has gone into identifying the
ways in which events can be accented, and in the effect of accent on the nature of the

grouping percepts (for reviews see Fraisse, 1982 and Handel, 1989).

Phenomenal accent can be conferred upon the events of an auditory sequence by the
manipulation of many possible physical variables including intensity, duration, and
frequency. Different patterns of accentuation produce different grouping percepts. For
example, if every second or third element of a sequence is accented by increasing its
intensity, then the sequence is perceived in groups of two or three, with the more intense
event perceived as beginning the group (Fraisse, 1956). Similarly, if every second or third
event is accented by increasing its duration, the sequence is perceived in groups of two or
three, with the lengthened element ending the groups (Woodrow, 1951). If the inter-onset
in interval (IOI) between every second or third element is lengthened, the sequence is again
perceived in groups of two or three, however in this case the perception of accent depends
on the length of the IOI (Povel, & Okkerman, 1981). Similarly, if an element of a sequence
is accented by following a large pitch leap, it is perceived as beginning a group (Jones,

1981a).
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In music these and other variables combine in complex ways to create grouping
percepts. Lerdahl and Jackendoff (Lerdahl, & Jackendoff, 1983) have proposed a
generative grammar to describe the perception of grouping in music. Their grammar is an
attempt to describe general conditions for auditory pattern perception that have greater
application than for music alone (Lerdahl, & Jackendoff, 1983). The theory describes a set
of well-formedness rules that specify how a piece may be recursively subdivided into
nested groups, or chunks. A set of preference rules attempts to summarize how physical
variables influence the perception of grouping in music. Figure 2 gives an example of a
rhythmic grouping for a simple melody. The lowest level groups correspond to the
measures of musical notation, however, in more complex examples this is not necessarily

the case.

Figure 2: A rhythmic grouping for Hush little baby.

Recently, N. Todd (1994) has proposed a multiscale model of rhythmic grouping,
based upon an analogy to visual edge detection. Using a direct temporal analog to the V2
operator for spatial edge detection (Marr & Hildreth, 1980; Marr, 1982) Todd’s system
simultaneously carries out auditory edge detection at muitiple time scales. The product of
the analysis is a single hierarchical structure whose terminal elements are the onsets of

individual events, capturing information about grouping structure and relative salience of
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events. The theory does not incorporate idiom-specific musical knowledge as does Lerdahl
& Jackendoff (1983), however it does account for many known facts about accent and

rhythmic grouping in a bottom-up fashion (N. Todd, 1994).

2.2 Patterns and Reductions

Grouping explains certain aspects of music perception and cognition. However, the
recoding view (the idea the perceptual groups correspond to memory codes) has been
criticized for its reliance on perceptual regularities. Grouping and recoding cannot explain
listeners' abilities to predict upcoming events in patterned sequences, or the ability to learn
cultural and stylistic regularities. To explain such phenomena most theorists rely on
structural descriptions of musical sequences. Depending on the musical dimension(s) under
consideration the nature of the description will vary, but each relies on some abstract
system of knowledge representing the underlying regularities of a particular musical style
or culture. Through experience with a musical style, listeners are thought to internalize
characteristic patterns of rhythm, melody, harmony, and so forth, which are used to
integrate and organize musical sequences. Krumhansl argues that listeners abstract and
internalize underlying regularities through experience with musical patterns. These
cognitive representations give rise to expectations and affect the stability of memory
(Krumhansl, 1979; Krumhansl, Bharucha, & Castellano, 1982). Jones (Jones, 1981a)
argues that listeners abstract and store “ideal prototypes” of musical styles, that lead to
musical expectations. Unexpected events in music create interest, but are more difficult to

recall (Jones, Boltz & Kidd, 1982).
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One set of theories applied to explain musical expectation and prediction are
pattern-formation theories. Pattern-formation theories emphasize individuals' use of
ordered vocabularies, or alphabets, and rules that apply to alphabetic properties. Several
researchers (Jones, 1974; Restle, 1970; Simon & Kotovsky, 1963) have proposed that
subjects abstract serial relations and, using rule-based transformations such as repeat,
transpose, complement, and reflection, generate cognitive data structures that capture
abstract relationships among events. The use of such transformations is thought to account
for subjects' abilities to represent and predict unfolding serial patterns. Simon & Sumner
(1968) extended serial pattern research to music, proposing that listening to music could be
modeled as a process of pattern induction and sequence extrapolation, using alphabets and

rule-based transformations such as same (repeat) and next (next element in the alphabet).

However, there are other types of musical phenomena that pattern-formation
theories cannot explain. One is the extraction of invariant identification in musical variation
(Large, Palmer, & Pollack, in press). This problem is interesting because the invariance of
musical identity that characterizes the listener's experience is perceived across a wide range
of differences in the surface content of the music (Dowling & Harwood, 1986; Lerdahl, &
Jackendoff, 1983; Schenker, 1979; Serafine, Glassman, & Overbeeke, 1989; Sloboda,
1985). The problem of musical variation is best illustrated by an example. Consider the
melodies of Figure 3. The melodies labeled A are the children's tunes Hush little baby (top),
and Mary had a little lamb (bottom). The melodies labeled B are improvisations on these
tunes, performed by pianists in an experiment described in Chapter III. Most listeners
readily identify the B melodies as “variations” of the A melodies: listeners believe that the

B melodies share an identity with the original melodies. However, one's listening to these
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examples or inspecting the musical notation will reveal that at the surface level these two

sequences differ along many dimensions, including pitch content, melodic contour, and

rhythm. Where is the similarity between these sequences?

Figure 3: Melodies and variations. Hush little baby (top), and Mary had a little
lamb (bottom), showing (A) subject melodies, and (B) improvised variations on
the subject melodies.

One possibility is that as listeners produce internal representations for musical
sequences, they implicitly evaluate the structural importance of events. Thus, certain events
may be more important than others in determining the relationships that listeners hear
between the melodies and variations of Figure 3. Evaluation of structural importance
allows listeners to create reduced descriptions of musical sequences that retain the gist of
the sequences while reducing demands on memory. Reductionist theories of music
comprehension (Deutsch & Feroe, 1981; Lerdahl, & Jackendoff, 1983; Schenker, 1979)
explain musical variation by positing a similarity of the underlying structures in related

melodies.
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One of the most comprehensive of the reductionist theories is Lerdahl and
Jackendoff's “Generative Theory of Tonal Music” (Lerdahl, & Jackendoff, 1983). The
theory takes as its goal the description of the musical intuitions of listeners experienced
with Western tonal music. This is accomplished using a combination of music-theoretic
analyses of which time-span segmentation and time-span reduction (illustrated in Figure 4)
are the most relevant for current purposes. In Section 2.1 Lerdahl and Jackendoff’s
(Lerdahl, & Jackendoff, 1983) theory of grouping structure was considered an approach to
perceptual grouping. Viewed as part of a larger theoretical framework, however, the
primary function of grouping structure is to identify temporal chunks that, in combination
with an analysis of metrical structure (described below), exhaustively segments a musical
sequence into rhythmic units called time-spans. The resulting time-span segmentation
captures aspects of the piece's rhythmic structure, providing a hierarchically nested
constituent structure description for the entire musical piece, shown by the brackets in

Figure 4.

A time-span segmentation forms the input to a time-span reduction analysis, which
organizes musical events into a structure that reflects a strict hierarchy of relative
importance. Within each time-span a single most important event, called the head of the
time-span, is identified. All other events in the time-span are heard as subordinate to this
event. The time-span reduction assigns relative importance to each event according to rules
that consider melodic, harmonic, temporal, and structural factors. Thus, time-span
reduction provides a unification of musical factors and predictions regarding which events
listeners will perceive to be most important. Figure 4 shows a time-span reduction; the top

musical staff shows the melody and the staves below show the heads for successively larger
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and larger time-spans. At each level, the less important event(s) of each time-span are
eliminated, and a “skeleton” of the melody emerges. The tree above the top musical staff
combines the information conveyed by the skeletal melodies with the information
conveyed by the time-span segmentation. Its branching structure emphasizes structural
relationships between levels of the reduction: that events of lesser importance are heard as
elaborations of the more important events. The tree also identifies the structural ending of
the musical passage, the cadence, shown as an ellipse “tying” together two branches of the

tree, as shown in Figure 4.
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Figure 4: Analysis of Hush little baby following Lerdahl & Jackendoff (Lerdahl,
& Jackendoff, 1983). The original melody is shown in musical notation and the
brackets below mark the time-span segmentation. Solid brackets describe the
contribution of grouping structure (Section 2.1); dotted brackets describe the
contribution of metrical structure (Section 2.3). The tree above the notated melody
is a time-span reduction. The lower staves show the dominant events for each level
of the time-span segmentation.
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Reductionist theories can be applied to explain the perception of musical variation.

Figure 5 compares the theoretical reduction of the original melody Hush little baby with a
reduction of the improvised variation on this melody (from Figure 3). At the third skeletal
level, the two reductions are identical. Lerdahl and Jackendoff's (1983) theory can be

applied to predict an intermediate level of mental representation at which structural

similarities are captured.

Figure 5: The first three levels of reduction for Hush little baby and its variation
(from Figure 3). The reductions are identical at the third level.

2.3 Dynamic Attending, Temporal Expectancy, and the Entrainment Hypothesis

Hierarchical descriptions of musical structure are important; however, listeners experience
music as temporal sequences. Understanding how musical sequences are comprehended in
time is a central issue in music cognition. Meyer (Meyer, 1956) proposed that expectation
is the key to understanding human response to music. Through artful patterning of the
acoustic environment, composers and performers evoke expectations in their listeners.
They skillfully manipulate these expectations, satisfying some and frustrating others, to
arouse both affective and intellectual responses. Meyer (Meyer, 1956) argued that this is
the property of musical experience that enables artistic communication. Many theories,

including structural theories described in the previous section, have dealt with the issue of
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expectation, each exploring various types of expectancy in music perception and cognition.
Simon and Sumner (Simon & Sumner, 1968) provide an analysis of music perception as a
sequence extrapolation task, one in which the listener attempts to predict what patterns will
follow based on analysis of the current pattern context. Narmour’s implication-realization
theory (Narmour, 1990) focuses on the innate (culture-independent) expectancies that arise
in response to the basic properties of individual melodic intervals and chains of melodic
intervals, as well as style-dependent knowledge. Lerdah! and Jackendoff’s (Lerdahl, &
Jackendoff, 1983) prolongational analysis describes the way music progresses from points

of relative tension to points of relative repose.

Because time is the primary medium of musical communication, however, musical
expectancy cannot be adequately characterized simply by considering what events a
listener expects to occur. One must also consider when a listener expects events to occur
(Jones, 1981b). In this regard, it useful to distinguish between sequential expectancy and
temporal expectancy (Large & Kolen, in press). Sequential expectancy requires prediction
of the sequential ordering of future events. Temporal expectancy requires anticipating when

future events are likely to occur, and requires knowledge of temporal structure.

Abstract knowledge of temporal structure has been shown to affect memory for
temporal information in auditory sequences. In one study, memory for pitch sequences was
found to be dependent on a perceived temporal frame. Pitch structures that coincided with
temporal structures enhanced recall, while pitch structures that conflicted with temporal
structures negatively affected recall (Deutsch, 1980). In a related finding, memory
confusions of temporal patterns in a discrimination task were found to be consistent with a

music-theoretic metrical structure hierarchy (Palmer & Krumhansl, 1990). Other studies
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have demonstrated similar memory constraints, by showing that the reproducibility of
rhythms is affected by the patterns of phenomenal accentuation in the to-be-reproduced
rhythm. The evidence suggests that sequences of events implying a metrical organization
are easier to memorize and reproduce than sequences lacking such organization (Essens &
Povel, 1985; Povel, & Essens, 1985). These and related findings are often cited as evidence
that listeners represent and/or remember rhythms in terms of metrical structure hierarchies.
Essens and Povel (Essens & Povel, 1985) have hypothesized that in perceiving a temporal
pattern, listeners induce an internal clock that is subsequently used as a measuring device
to code the structure of a temporal pattern. Rhythmic sequences are encoded in memory
with respect to this clock, so that patterns that correspond well with an induced clock

(metrical patterns) can be represented using simpler memory codes, and are therefore easier

to remember and reproduce.

Jones (Jones, 1976; Jones, 1987) and Jones & Boltz (Jones & Boltz, 1989) offer an
interpretation known as dynamic attending. They argue that the organization of perception,
attention, and memory is inherently rhythmical. Music (and other rhythmic stimuli)
entrains listeners’ perceptual rhythms, and these rhythms embody expectancies for when
in time future events are likely to occur. Expectancies in turn guide anticipatory pulses of
attention that facilitate perception of events that occur at expected points in time. Dynamic
attending is a theory of temporal expectancy that can be applied to the perception of music,

among other things.

One source of evidence for dynamic attending stems from studies that directly test
listener attention rather than listener memory. These studies show that temporal pattern

structure constrains the ability of subjects to attend to melodic sequences. For example,
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regularity of phenomenal accent placement has been shown to affect listeners’ abilities to
judge the temporal order of tones in a sequence (Jones, Kidd, Wetzel, 1981). Listeners are
also better able to identify pitch changes in sequences when these changes occur at points
of strong metrical accent (Jones, Boltz & Kidd, 1982). Additional evidence suggests that
listeners’ implicit knowledge of musical meter (beyond immediate sensory context)
contributes to the perception of temporal sequences. Listeners’ goodness-of-fit judgements
for events presented in metrical contexts were shown to be consistent with multi-leveled

metrical structure hierarchies (Palmer & Krumbhansl, 1990).

Dynamic attending is a complex theory. Part of this theory refers to the
synchronization of perceptual processes to temporally structured event sequences. I shall
call this the entrainment hypothesis. A source of evidence supporting perceptual
entrainment comes from psychophysical studies of time perception. The temporal structure
of auditory patterns affects humans’ abilities to perceive time. For inter-onset durations
corresponding roughly to musical time scales, it can be shown that the ability to detect
differences in temporal intervals approximately obeys Weber’s law (Getty, 1975; Halpern
& Darwin, 1982). That is, when subjects are asked to compare two intervals, the accuracy
of their time discrimination judgement is related to the base length of the interval they are
asked to judge. Adherence to Weber’s law breaks down under certain circumstances,
however. Temporal difference judgements improve as the number of reference intervals
increases (Schulze, 1989; Drake & Botte, 1993). It has also been shown that sensitivity to
time changes in sequences is best for metrically regular sequences (Yee, Holleran & Jones,

in press), and that sensitivity to tempo changes degrades with the regularity of the stimulus
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(Drake & Botte, 1993). Some researchers have suggested that these results indicate
perceptual synchronization of the listener to a perceived beat (e.g. Schulze, 1989; Yee,

Holleran & Jones, in press), supporting the entrainment hypothesis.

Theories of temporal structure gain complexity when applied to the musical case.
The music-theoretic notions relevant to the current discussion are beat and meter. Beat
refers to one of a series of perceived pulses marking (subjectively or perceptually) equal
units in the temporal continuum. Beat perception is established and supported by musical
events, however, once a sense of beat has been established, it continues in the mind of the
listener even after the event train has ceased (Cooper & Meyer, 1960). The term tempo
refers to the frequency (beats per unit time) at which beats occur. The reciprocal measure,
beat period, refers to the span of time between consecutive beats. According to the
entrainment hypothesis, beat perception is a form of temporal expectancy — the perception
of beats corresponds to the expectation that events will occur at roughly equal intervals —
thus, a beat is the expectation of an event. This simple form of temporal expectancy enables

a more complex form of temporal expectancy, the perception of meter.

Simply defined, meter is the number of beats between (more or less) regularly
recurring phenomenal accents (Apel, 1972; Cooper & Meyer, 1960). Meter can be
described as the existence of at least two periodicities in a sequence of events,
corresponding to separate levels of beats perceived on different time scales (Cooper &
Meyer, 1960; Yeston, 1976). Metrical organization usually exists on more than two time
scales (Cooper & Meyer, 1960; Lerdahl, & Jackendoff, 1983; Yeston, 1976). Lerdahl and
Jackendoff (1983) have proposed a construct that describes the temporal organization of a

piece at all relevant metrical levels, called a metrical structure. The metrical structure of a
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piece can be transcribed as a grid (Figure 6). According to this notation, each horizontal
row of dots represents a level of beats, and the relative spacing and alignment among dots
of adjacent levels captures the relationship between the periods and phases of adjacent
levels of beats. Metrical structure grids describe an important component of rhythmic
experience: the perception of regularly recurring strong and weak beats called metrical
accent (Lerdahl, & Jackendoff, 1983). Points of metrical accent are captured, using the
grid, as temporal locations where the beats of many levels coincide. Points where many

beats coincide are called strong beats; points where few beats coincide are called weak

beats.
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Figure 6: A metrical structure for Hush little baby.

Theories of meter perception describe an important aspect of rhythm perception. A
rhythm, with its pattern of phenomenal accent, is thought to function as a perceptual
“input” from which the listener may extrapolate a regular metrical pattern (Lerdahl, &
Jackendoff, 1983). Lerdahl and Jackendoff (1983) have proposed a generative theory of
meter perception expressed as two sets of rules. A set of well-formedness rules describes
legal metrical structures. These rules restrict metrical structures to strictly nested

hierarchies with beat-period ratios of either 2:1 or 3:1. Next, a set of preference rules
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describes which legal metrical structure an experienced listener would perceive for a given
rhythmic pattern. These rules are concerned mainly with the placement of strong beats, as

determined by the alignment of beats at adjacent levels in the metrical structure hierarchy.

The restriction to strictly nested beat period has certain advantages within the
context of Lerdahl and Jackendoff’s (Lerdahl, & Jackendoff, 1983) theory. For one thing,
it allows metrical structure analysis to act in concert with grouping structure to segment a
piece into nested time spans (see Section 2.2). However, this characterization of metrical
structure limits the scope of the theory (Lerdahl, & Jackendoff, 1983). Much non-Western
music, contemporary Western Art music, Jazz, and popular music makes use of dissonant
rhythmic structures (Yeston, 1976), known as polyrhythms (Figure 7). A polyrhythmic
relationship between two levels of beats is a relationship of beat-periods such that N beats
at one level occupy the same amount of time as M beats at the next level. Rational ratios

N:M, such that the integers N and M are relatively prime (3:2, 4:3, 5:4, and so forth),
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characterize polyrhythmic ratios. Hierarchical nestings do not adequately capture
polyrhythmic structures. It is more general to think of metrical structures as composed of

layers, or strata, of beats at different time scales (Yeston, 1976).
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Figure 7: Metric strata. Simple ratios imply grouping. Polyrhythmic ratios do not
imply grouping.

A limitation of current theories of meter is that they fall short of adequately
explaining perception. Theories of metrical structure, as discussed above, apply to musical
time as notated. It is well established, however, that musicians never perform rhythms in a
regular, or mechanical, fashion. Instead, performers produce sound patterns that reveal both
intentional and unintentional timing variability (Clarke, 1985; Drake & Palmer, 1993;
Palmer, 1988; Shaffer, Clarke & N. Todd, 1985; Sloboda, 1983; N. Todd, 1985). Current
theories of metrical structure do not explain how listeners are able to perceive meter in

rhythms that performers actually play (unless the performer is a computer).
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In summary, theories of metrical structure attempt to describe the perceived
temporal organization of rhythmic patterns. A metrical structure is composed of layers, or
strata, of beats that align with the onset of musical events. Theories of metrical structure
address issues related to the beat period ratio and the relative alignment between adjacent
levels of beats. Theories that require the layering of beats to describe a strictly nested
hierarchy, however, are limited in scope. To include the polyrhythmic structures common
in many forms of music, more complex relationships between adjacent levels must be
allowed. Finally, theories that do not deal with the issue of timing variability in music

performance, stop short of explaining the perception of metrical structure.



CHAPTER III

A STUDY OF MUSIC PERFORMANCE AND IMPROVISATION

This chapter describes an empirical study of the performance and improvisation of
melodies by skilled pianists. The data is analyzed for two purposes. First, the
improvisations are analyzed to determine the nature of structural relationships in
performers’ mental representations of three melodies. A measure of relative importance of
events for each melody is extracted based on the improvisations. These measures are
compared to the predictions of a reductionist theory (Lerdahl, & Jackendoff, 1983). In
Chapter IV, this data will be used to test a neural network that produces structured
descriptions for musical sequences. Second, performances and improvisations are analyzed
to determine the nature of the timing in these skilled performances. The performances are
analyzed to determine the amount of temporal structure that can be extracted using the
methods of Fourier analysis and auto-correlation. Systematic timing deviation, or rubato,
is analyzed by comparing performed event durations to ideal durations, determined from
scores of the melodies and transcriptions of the improvisations. In Chapter VIII this data

will be used to test a model of the perception of temporal structure in music.

3.1 Structural Relationships Among Sequence Events
The first analysis investigates the relative importance of events in performers’ mental
representations of three melodies. Empirical evidence supporting reductionist descriptions

of structural relationships among events has emerged in the literature. Previous studies

33
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have dealt primarily with perceptual phenomena (Palmer & Krumhansl, 1987a; 1987b;
Serafine, Glassman, & Overbeeke, 1989). The reductionist hypothesis also leads to
predictions concerning music performance. For example, in musical traditions that employ
improvisation, performers may identify the gist of a theme in terms of its structurally
important events and use techniques of variation to create coherent improvisations on that
theme (Johnson-Laird, 1991; Lerdahl, & Jackendoff, 1983; Pressing, 1988). Therefore, it
should be possible to identify the events of greater and lesser importance in a melody by
collecting improvisations on that melody and measuring the events that are retained across
improvisations. This rationale is used to identify structurally important events by asking
performers to improvise variations on a melody; the variations are examined for events

altered or retained from the original melody.

Several methods have been employed to elicit the structure of listeners' mental
representations for musical sequences. In one study (Palmer & Krumbhansl, 1987a; 1987b)
subjects were asked to listen to excerpts from a musical passage and rate how “good or
complete” a phrase each excerpt formed. The rating was taken as a measure of the relative
importance for the final event in each musical excerpt. Listeners' judgements of phrase
completion at various points in a musical passage correlated well with predictions of each
events' relative importance from time-span reductions (Palmer & Krumhansl, 1987a;
1987b; Lerdahl, & Jackendoff, 1983). The nature of the musical task, however, was
somewhat unnatural, because music is usually not presented in fragments. Additionally, the
application of this paradigm to longer musical works is problematic. In another study
listeners were asked to judge the similarity between related melodies (Serafine, Glassman,

& Overbeeke, 1989). Although this paradigm does not provide measures of importance for
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individual musical events, it does allow the assessment of reductionist claims within an
ecologically valid task. The similarity judgements among melodies corresponded to the
degree of relatedness predicted by a reductionist theory (Schenker, 1979), even when
radical surface differences existed (such as in the musical harmony). This agreement
increased with repeated hearings, indicating a significant role of learning in determining the

structure of listeners' mental representations (Serafine, Glassman, & Overbeeke, 1989).

The experiment reported here is based on a paradigm described earlier (Large,
Palmer, & Pollack, 1991). In this paradigm, musicians are presented with notated melodies
and are asked to improvise (create and perform) simple variations on them. Improvisation
in Western tonal music commonly requires a performer to identify some framework of
melodic and harmonic events, and apply procedures to create elaborations and variants on
them (Johnson-Laird, 1991; Steedman, 1982; also, see Pressing, 1988 for a review of
improvisational models). Thus, improvisation of variations allows musicians freedom to
determine which if any musical events should be retained from the original melody. This
paradigm addresses the reductionist account by measuring musicians' intuitions about a
particular melody within the context of a familiar task. This paradigm has an additional
advantage in that it allows for the collection of individual ratings of importance for each
event. Musical events viewed as structurally important should tend to be retained in
improvised variations. Events viewed as less important (i.e., events that function as
elaborations of important events) should be more likely to be replaced with different

elaborations.
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The relative importance of each pitch event in the original melody is measured by
counting the number of times it was retained in the same relative temporal location across
improvisations. Although this is a coarse measure of improvisation, it allows one to
generalize across many aspects specific to music performance (including dynamics,
phrasing, rubato, pedaling, etc.) and improvisation (including motific development,
stylistic elaboration, etc.), and concentrate instead on those factors that reflect reductionist

considerations.

The primary objective of this study was to extend findings (Large, Palmer, &
Pollack, 1991) that suggested that a musician's improvisations on a tune indicated an
underlying reduced representation of the melody. According to the application of the time-
span reduction hypothesis to improvisation, more important events (those retained across
multiple levels of the time-span reduction) should be more likely than unimportant events
to be retained in variations on a melody. Therefore, the number of individual pitch events
retained in the musicians' improvisations should correspond to the theoretical predictions

of structural reductions.

3.2 Temporal Structure in Music Performance and Improvisation

The second analysis investigates the nature of timing in the performance of three
melodies and in a set of improvised variations on these melodies. In Chapter VIII this data
will be used to test the entrainment hypothesis introduced in Chapter II. A great deal of
evidence supporting the entrainment hypothesis already exists in the empirical literature.
Some studies have dealt with primarily perceptual phenomena (e.g. Jones, Kidd, Wetzel,
1981; Schulze, 1989; Drake & Botte, 1993; Yee, Holleran & Jones, in press), and others

have investigated the ability of listeners to synchronize motor behavior with auditory
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rhythms (e.g. Fraisse, 1956; Povel, & Essens, 1985; Essens & Povel, 1985). However, most
studies have investigated responses to temporal patterns that are much simpler than those
found in musical performance. The synchronization hypothesis also leads to predictions
concerning the perception of complex temporal structures in skilled music performance.
Performers deviate from mechanical regularity, yet timing deviations rarely pose difficulty
for human listeners. It is possible to quantify the amount of deviation from timing regularity
by comparing the actual timing of performances and improvisations with ideal temporal
relationships, as found in scores or transcriptions of musical performances e.g. Bengtsson
& Gabrielsson, 1983, Palmer, 1988. This rationale is used to assess the amount of
perceptual flexibility that listeners must possess to successfully cope with temporal patterns

of the complexity of performed musical rhythms.

Performance timing has proved to be an especially fertile area of study in music
cognition, and the basic findings are consistent. Rhythms performed by skilled musicians
show deviations from timing regularity (as prescribed by the musical score) that are
systematically related to the musical intentions of performers (Drake & Palmer, 1993;
Clarke, 1985; Palmer, 1988; 1989; Shaffer, Clarke & N. Todd, 1985; Sloboda, 1983; N.
Todd, 1985). It is assumed that listeners respond to these perceptual cues and comprehend
the intentions of performers, so deviation from ideal timing in musical performance
communicates musical information. The assumption that listeners respond to timing
deviation entails that listeners are somehow able to recover the idealized timing of the
musical score. Precisely how listeners are able to do this remains a subject of debate.
Perceptual studies have investigated this ability, for example studies of time perception

have investigated listeners’ ability to detect small individual deviations from timing



38
regularity in carefully controlled temporal sequences (see Section 2.3 on page 24). These
studies offer a valuable source of information regarding time perception. Applicability to
musical sequences is limited, however, because of the rigorous controls employed in

stimulus construction.

Music performance and improvisation provide a potentially rich domain for the
study of time perception in complex sequences. Because performed musical sequences
contain systematic timing deviations, musical performance provides a complex and
ecologically valid source of data on time perception. The analyses reported here are based
on the observation that although actual inter-onset durations measured in skilled musical
performance are more-or-less out of time (as prescribed by the musical notation), listeners
perceive inter-onset durations in terms of ideal duration categories corresponding to the
quarter-notes, half-notes, measures, and so forth, of musical notation (Clarke, 1989;
Longuet-Higgins & Lee, 1982). Thus, the difference between notated and observed timing
relationships provides an accurate measure of the temporal deviations with which listeners

cope in the perception of complex musical passages.

The temporal structure of performances and improvisations is measured in three
ways. First, skilled analysts transcribe musical improvisations in standard musical notation
and agree upon the transcriptions. This provides a baseline measure of perceived temporal
structure (this step was not necessary for the performed melodies). Next, the techniques of
Fourier analysis and auto-correlation are used to compare the ideal temporal relationships
described by the notation with the actual timing observed in the performances. An

advantage of such methods is that they do not rely upon postulated mental processes, rather
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they examine “physical properties” of notated scores and performances (Brown, 1993).
Finally the amount of rubato in the performances was characterized as average deviation

from ideal timing, by comparing performed durations with scores and transcriptions.

One thing this data will not tell us is how listeners cope with timing deviation. The
goal of this analysis was to characterize a set of data that will be used to test the model of
beat perception described in Chapters VI and VIL In these chapters, beat perception is
modeled as a dynamical system in which an oscillator is non-linearly coupled to a rhythmic
driving stimulus. Rather than directly observing the trajectories of the dynamical system (as
would be done in perceptual studies) assumptions about what the trajectory should be will

allow use of this rich source of data to evaluate the trajectories observed in the computer

model.

3.2.1 Method

3.2.1.1 Subjects

Six skilled pianists from the Columbus, Ohio community participated in the
experiment. The pianists had a mean of 17 years (range of 12 to 30 years) of private
instruction, and a mean of 24 years (range of 15 to 32 years) of playing experience. All of
the pianists were comfortable with sight-reading and improvising. All were familiar with

the pieces used in this study.
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3.2.1.2 Materials
Three children's melodies (Mary had a little lamb, Baa baa black sheep, and Hush
little baby) were chosen as improvisational material that would be familiar (well-learned)
for most listeners of Western tonal music, to insure a well-established notion of relative
importance for each event and to avoid learning effects. Additionally, these pieces were

fairly unambiguous with regard to their time-span reductions.

3.2.1.3 Apparatus

Pianists performed on a computer-monitored Yamaha Disklavier acoustic upright
piano. Optical sensors and solenoids in the piano allowed precise recording and playback
without affecting the touch or sound of the acoustic instrument. The pitch, timing, and
hammer velocity values (correlated with intensity) for each note event were recorded and

analyzed on a computer.

3.2.1.4 Procedure

The following procedure was repeated for each piece. Pianists performed and
recorded the melody, as presented in musical notation, five times. These initial recordings
allowed each pianist to become acquainted with the improvisational material. With the
musical notation remaining in place, the pianists were then asked to play five “simple”
improvisations. The pianists were also asked to play five “more complex” improvisations,
which are not discussed here. All performances were of a single-line melody only; pianists
were instructed not to play harmonic accompaniment. All pianists indicated familiarity

with all of the musical pieces.
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3.3 Analysis #1: Mental Representation of Melodies

3.3.1 Coding Improvisations

Each improvisation was coded in terms of the number of events retained from the
original melody, to develop a measure of relative importance for each event. The following
procedure applied to the coding of each improvisation. First, the improvisation was
transcribed by two musically trained listeners, who agreed on the transcriptions. Next,
sections of the improvisation were matched to sections of the original. For most
improvisations this was straightforward; for two of the improvisations, sections that
repeated in the original melody (Baa baa black sheep) were rendered only once in the
improvisation, and these were doubled for purposes of analysis. Finally, individual events
of the improvisation were placed into correspondence with the original. If only the pitch
contents and rhythm changed (meter and mode remained the same), as in most of the
improvisations, this process was straightforward: events were placed into correspondence
by metrical position. For mode change (for example, the flatted third is substituted for the
major third in a major to minor mode shift), substitutions were counted as altered events.
For meter change, metrical structures were aligned according to the onsets of each measure
and half-measure, and events were then placed into correspondence by temporal location.
Those events whose pitch class was retained in the correspondence between original
melody and variation were coded as “hits” and received a score of 1; those events whose
pitch class was altered (or for whom no event corresponded in the improvisation) were
coded as “misses” and received a score of 0. For example, if a quarter note “C” were

replaced with four sixteenth notes “C-B-C-B” beginning at the same metrical location, the
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“C” would be coded as a hit. If, however, the “C” had been replaced with “B-C-B-C”, the
“C” would be coded as a miss. Thus, only deletions and substitutions of events in the

original melody affected the number of hits.

The number of hits for each pitch event in the original melody was summed across
the five improvisations for each performer. To rule out the possibility that events in the
original melody were altered at random, or that performers simply added events to create
improvisations, an analysis of variance (ANOVA) on performers' mean number of retained
events by event location was conducted for each melody. Each of the three ANOVAs
indicated a significant effect of event location (Melody 1: F(25,125) = 4.02, p < 0.01;
Melody 2: F(52, 260) = 6.64, p< 0.01; Melody 3: F(18, 90) = 7.76, p < 0.01). Thus,
performers were more likely to retain some melodic events than others across
improvisations. The factors influencing the number of retained events at each location were

further investigated in the following analyses.

3.3.2 Comparison with Theoretical Predictions

Theoretical reductions (Lerdahl, & Jackendoff, 1983; see Section 2.2 on page 18)
can be quantified, as shown in Figure 8; the numbers below the time-span segmentation
correspond to the relative importance of each event described by the time-span reduction
analysis. Each number is a count of the number of branch points passed in traversing the
tree from the root to the branch that projects in a straight line to the event, inclusive. For
instance, to calculate importance for the first note of the melody, count 1 for the root, 1 for
a left turn, 1 for a branch point passed, and 1 for a second left turn. This final branch projects
in a straight line to the event, and so counting stops. The branch leading to the first event of

a cadence is not counted as a branch point because it is considered structurally as “part of”
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the final event (Lerdahl, & Jackendoff, 1983). For example, to calculate importance for the
first note of measure three, count 1 for the root, 1 for a branch point passed, O for a left turn
(because this branch is tied), and 1 for a second left turn. According to this strategy, the
smaller the number, the more important is the corresponding event. Metrical accents also
make predictions of relative importance based on event location. These predictions can be
quantified by quantifying the level of beats that correspond to metrical predictions (the
numbers next to the metrical structure grid in Figure 8). The two measures are usually
correlated because time-span reduction is partially based on metrical accent, but the time-
span reduction adds information beyond metrical structure. Both quantifications of relative
importance and metrical accents (computed similarly to Palmer & Krumhansl, 1987a;
1987b), will be compared with the measures from improvisational music performance.
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Figure 8: Analysis of Hush little baby showing metrical structure, time-span
segmentation, and time-span reduction. The quantifications of relative importance
for each event are shown below the segmentation.
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Both metrical accent and time-span reduction make predictions about relative
importance based on event location. Correlations between improvisation measures and
both sets of theoretical predictions for each melody are summarized in Table 1. First, the
correlation between the number of pitch events retained and the quantified metrical accent
predictions for each event location were significant for each melody (p < 0.05).
Improvisation measures were next compared with predictions from the time-span reduction
analysis for each melody, obtained by quantifying the number of branch points passed in
the tree, from root to terminal branch, as shown in Figure 8. Correlations between the
number of pitch events retained and the quantified time-span reduction predictions were
also significant for each melody (p < 0.05).

Table 1:Squared correlation coefficients for theoretical predictions and improvisation-
based measures.

Melody 1: Melody 2: Melody 3:
(Mary) (Baa) (Hush)
Metrical Accent .63* .80* 78%
Predictions
Time-Span 16* J9* 67*
Predictions
Semi-Partial 42% .30% 21
(metrical accent removed)

*.p < 0.05

To insure the predictive power of the time-span reduction beyond metrical accent
(on which time-span reductions are partially based), the improvisation measures were

correlated with time-span reduction predictions after the effects of metrical accent were



45
partialled out. These semi-partial correlations, also shown in Table 1, were significant
(p<.05) for melodies 1 and 2, indicating that time-span reduction did contribute information
beyond metrical accent. The semi-partial correlation was not significant for melody 3
(p=.37), indicating that in this case correlation of improvisation measures with the time-

span reduction analysis was largely due to the effects of metrical accent.

3.4 Discussion

Musicians' improvisations of variations on simple melodies provided strong support for the
reductionist hypothesis. Performers tended to retain certain events in each melody, and
used improvisational techniques to create variations around those retained events. In
addition, the music performances agreed with reductionist predictions of which events
were relatively important in these simple melodies. Furthermore, the findings for two of the
three melodies indicate that musical factors specific to time-span reductions played an

important role in musicians’ improvisation of variations.

The relatively high contribution of metrical structure to the improvisations based
on the third melody (Hush little baby) may indicate a qualitative difference between the
performers' intuitions and the theoretical predictions for this piece. For example, the
improvisations often retained the first event of measure 1, an indicator of its relative
importance, disagreeing with the theoretical weighting of this event. This may be due to the
salience of the large initial pitch interval, or it may be a general primacy effect (making the
first few events more likely to be retained despite reductionist considerations). The
performances also disagreed with the predictions at the structural ending; all events in
measure 4 were retained relatively often. Alternatively, this could be accounted for as a

recency effect.
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These discrepancies emphasize the difficulty of providing a relative weighting for

a set of rules that determine the reductionist structure of mental representations. For
example, the particular order in which a subset of rules is applied can lead to different
weightings of constituents. However, the improvised performances do show general
agreement with the theoretical predictions of time-span reduction. This is the first
demonstration, to my knowledge, that the musical factors incorporated in the reductionist
theory (Lerdahl, & Jackendoff, 1983) can account for the structure of performers' mental

representations for musical improvisations.

3.5 Analysis #2: Performance and Improvisation Timing

3.5.1 Timing Analyses

This analysis considered both performances and improvisations for the first two
pianists. First, ideal performances were developed in which each inter-onset duration had
the precise relative duration prescribed by the musical score. For the performances this was
straightforward, since the pianists performed from musical notation. For the improvisations
ideal performances were derived from the transcriptions prepared in the previous analysis.
Absolute durations in the performances were calculated based on one quarter note equals

480 ms (2.08 Hz).

A Fourier analysis was performed on the ideal performances. A Fourier analysis is
a spectral analysis that yields a frequency representation of an input signal. For this
analysis, the input signal, s(£), to the discrete Fourier transform (DFT) was composed of
unit samples, s(f) = 1, at the onset of an events in the ideal performances, and s(r) = O at

all other times. Thus, onset impulses did not carry amplitude information. Representative
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analyses are shown in Figures 9 and 10. Figure 9 show the analysis of the ideal performance
of Mary had a little lamb and Figure 10 shows an analysis of an ideal (as transcribed)
improvisation on Hush little baby. The results of the Fourier analyses are shown in panels
(C). The analyses each show characteristic patterns, with peaks at locations that reflect the

metrical structures of the respective melodies.

In an attempt to improve the results of the analysis, the auto-correlation function of
the signal was calculated for each ideal performance, and the DFT of the auto-correlation
function was computed. The results are shown in panels (D) and (E) of Figures 9 and 10.
The auto-correlation function turns up peaks that reflect the metrical structure of the ideal
performances because more events occur at strong metrical locations (Brown, 1993;
Palmer & Krumbhansl, 1990). The resulting amplitude information improves the results of
Fourier analysis. The output of the DFT is smoothed, and the peaks that correspond to the

metrical structure are enhanced.
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Figure 9: Mary had a little lamb: (A) musical notation, (B) onsets times
prescribed by score, (C) discrete Fourier transform of B, (D) auto-correlation
function of B, (E) discrete Fourier transform of D.
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notation, (B) onsets time prescribed by score, (C) discrete Fourier transform of B,
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To assess the amount of temporal structure retained in the performances and
improvisations (including rubato), analyses were repeated using input signals derived from
the actual performances. Figure 11 shows the analysis of an actual performance of Mary
had a little lamb and Figure 12 shows an analysis of the actual improvisation on Hush little
baby, from which the transcription of Figure 10 was prepared. As determined from the
analyses described in the next section deviation from average tempo for these two melodies
were 5% and 15%, respectively. The figures show that a considerable amount of noise is
added to the Fourier spectrum, blurring characteristic patterns and making it difficult to

locate peaks corresponding to average frequencies.

The DFT of the auto-correlation function is better than the DFT of the raw signal,
but overall the results are still difficult to interpret. One reason for this difficulty can be seen
by 'comparing Figure 9, panel (D) with Figure 11, panel (D). The modal inter-onset duration
in this piece is the eighth note (240 ms in ideal performances) corresponding to the peak at
4.17 Hz in Figure 9. The average duration for an eighth note in the actual performance was
299 ms, a frequency of 3.34 Hz. Around this point in Figure 11, however, there are two
peaks. The existence of multiple spectral peaks may indicate that a more detailed
description of this performance would require higher dimensions. Another possibility is
that an additional periodicity in the signal has a frequency that is an integer muitiple of the
base frequency. In this case the signal may still be periodic in one dimension (C. E. Peper,

personal communication).
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Figure 11: Performance of Mary had a little lamb: (A) musical notation, (B) onset
times recorded in the performance, (C) discrete Fourier transform of B, (D) auto-
correlation function of B, (E) discrete Fourier transform of D.
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Figure 12: Improvisation on Hush little baby: (A) musical notation, (B) onset
times recorded in the performance, (C) discrete Fourier transform of B, (D) auto-
correlation function of B, (E) discrete Fourier transform of D.
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3.5.2 Rubato
One reason that previous analyses produced poor results for the actual performances was
the use of rubato by pianists. Rubato is deviation from temporal regularity, characterized
by the shortening and lengthening of inter-onset intervals called for by the musical score
(Palmer, 1988). As in previous studies of timing deviation (e.g. Bengtsson & Gabrielsson,
1983, Palmer, 1988) rubato was defined for each performed inter-onset duration as the
deviation from the average duration, based on average tempo for each performance. To

make comparisons across performances possible, deviations are expressed in percent.

To assess the amount and distribution of rubato among the performances a mean
timing deviation was calculated for each performance. This measure of deviation was then
averaged across the five performances of each melody or improvisation by each pianist. An
analysis of variance (ANOVA) on mean deviation by performance type (melody/variation),
subject, and tune was conducted. There was a significant main effect of performance type
(F(1,4) = 33.46, p < 0.01), indicating that, on average, more rubato was used in the
improvisation of variations than in the performance of the melodies from notation. Mean

rubato was 0.05 for notated melodies, and 0.10 for improvisations.

There was also a significant interaction between melody and subject (F(2, 8) =
13.89, p < 0.01), as shown in Figure 13. Pianist 1 performed the melodies and
improvisations for the first two tunes with little rubato, but for the third tune with high
rubato. Pianist 2 performed tune three with little rubato, and performed tunes one and two

with relatively high rubato. An addition, there was a significant three-way interaction



54
between performance type, tune and performer (F(2, 8) = 10.20, p <0.01) that is harder to
summarize. Overall, however, the results suggest that performers exercised a great deal of

control over the amount of deviation from ideal timing used in any given performance.

Deviation (%) Timing Deviation
0.18 v . . r

Pianist 1

Pianist 2

0.16
0.14

012}

0.1F

0.08

0.06 |

0.04

Hush Baa Mary

Figure 13: Bar plot showing a significant two-way interaction of subject and melody
in deviation from average tempo.

3.6 Discussion

Analyses of timing in the performance of notated melodies and the improvisation
of melodic variations shows complex temporal structure. Signals that reflected ideal
patterns of relative timing produced Fourier spectra and auto-correlation functions that
showed a great deal of structure. Fourier analysis and auto-correlation of the actual
performances and improvisations provided little information by comparison. The reason
for this discrepancy is that the input signals corresponding to the performance data are non-
stationary. Fourier analysis does a good job of identifying components of a signal whose
phases and periods are fixed, or stationary. One may even presume that a stochastic source

(i.e. a random variable with some probability distribution) governs deviations from a given
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fixed generator, and Fourier analysis will produce good results: if the phase and period of
the signal vary according to a fixed distribution there remains a central tendency for the
spectral analysis to identify. However, performed metrical rhythms differ from stationary
signals in that one cannot assume a fixed model of their generation. Neither can one assume

a stochastic source, because usually timing deviations are systematic and carry information

(e.g. Palmer, 1988).

Further analysis considered deviations from ideal patterns of timing for the
performed melodies and the improvised variations. The most reliable predictor of variance
was performance type, notated melody vs. improvisation. Although no attempt was made
to identify the source of the timing deviations in the improvisations, listening to the
improvisations reveals three possibilities. First, the pianists seem to have played the
improvisations more expressively than the notated melodies. Second, in certain
performances by both pianists, there are slight but audible pauses in which the performers
seem ;Z)_be deciding what to do play next. It is difficult to qualify this type of pause, except
as a deviation from timing regularity. Third, in two improvisations there are actual
mistakes: the pianist first played a wrong note and then either corrected himself, or paused
very briefly before continuing. It is more difficult to know what to do with this type of
timing variation. It is tempting to remove this data from analysis for several reasons. The
most obvious of these is that the analysts are essentially forced to guess what the performer
intended to play. Thus, part of the variance in these cases may be introduced by the analysis
process. I chose to retain this data mainly because such mistakes are a valuable source of
real-world performance noise in the data set. Although this complicates the interpretation

of statistical analyses, it is precisely the type of data on which to test robustness of proposed
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models (see Chapter VIII). These discrepancies and analytical difficulties emphasize not
only the challenge of explaining meter perception, it also emphasizes the difficulty of the

task that humans are faced with in perceiving the meter of live musical performances.



CHAPTER IV

COMPUTING REDUCED MEMORY REPRESENTATIONS

4.1 Connectionism and Reductionist Music Theory

This chapter describes a model of sequence representation that is sensitive to
structural relationships among events. More specifically, the model described here
computes the relative importance of events in a musical sequence, consistent with a
reductionist music theory (Lerdahl & Jackendoff, 1983). One difficulty with designing a
mechanism specifically based upon Lerdahl and Jackendoff's (1983) theory lies in the
specification of a relative weighting scheme for the set of rules that create reductions. A
scheme has not yet been proposed that will work for every musical context. For complex
musical pieces, one must enlist the aid of musical “common sense” in providing the proper
weighting of musical considerations. A second problem regards learning. Reductionist
theories assume that a great deal of musical knowledge is acquired as a result of experience
with the musical culture or style in question. Empirical evidence suggests that a
restructuring of mental representations for novel musical sequences may occur with as few
as five or six exposures to a sequence (Serafine, Glassman, & Overbeeke, 1989). However,
reductionist theories have not yet addressed the issue of how the musical knowledge

necessary for the production of reduced descriptions is acquired.
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An approach that offers a solution to these problems is the application of
connectionist models, which learn internal representations in response to the statistical
regularities of a training environment using general-purpose learning algorithms such as
back-propagation (Rumelhart, Hinton, & Williams, 1986). The solution for musical
variation offered by reductionist theories requires the representation of constituent
structure, however, and connectionist models have been notoriously weak at representing
constituent relationships such as those in language and music (Fodor & Pylyshyn, 1988).
One approach to this problem involves learning distributed representations for
compositional data structures using a recursive encoder network. This connectionist
architecture, known as Recursive Auto-Associative Memory (RAAM), has been used to
model the encoding of hierarchical structures found in linguistic syntax and logical

expressions (Chalmers, 1990; Chrisman, 1991; Pollack, 1988; 1990).

To produce a memory representation for a musical sequence with the RAAM
architecture, the sequence is first parsed to recover a compositional data structure that
captures the sequence's time-span segmentation. A RAAM network can then be trained to
produce a distributed representation for each time-span described by this structure. For
example, the sequence of musical events in Figure 14, “a b ¢”, may be represented as the
nested structure ((a b) (c null)). A compressor network is trained to combine a and b into a
vector R1, to combine c and null into a vector R2,and then to combine the vectors R1 and
R?2 into a vector R3. A reconstructor network is trained to decode the vectors produced by
the compressor into facsimiles (indicated by the symbol ') of the original sets of patterns.
In the example, the reconstructor decodes R3 into R1” and R2’, R1'into a' and b', and R2

into ¢' and null'. Thus, the vector R3 is a representation for ((a b) (c null)) because a
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reconstruction algorithm can be applied to R3 to retrieve a facsimile of the original
sequence. It is a distributed representation because it is realized as a pattern of activation.
It is a recursive distributed representation because its construction requires the network to
recursively process representations that it has produced. The representations are reduced
descriptions of musical sequences because the vector representation for an entire pattern is

equal in size to the vector representation of a single event.
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Figure 14: Encoding and decoding of a musical sequence by a RAAM network.
(A) Based on a vector representation for each event and a constituent structure
analysis, the compressor combines the group (a b) into a single vector, R1, (c null)
into the vector R2,and then combines (R1 R2) into the vector R3. (B) The
reconstructor decodes the vector R3 to produce (R1’ R2’). It then decodes R1’ to
produce the facsimile (a' b') and R2' into (c' null’).

The structures that the RAAM reconstructs are facsimiles of the original structures
because the construction of a recursive distributed representation is a data compression

process, which necessarily loses information. The network may reconstruct some events
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with lowered activation, and may fail to reconstruct other events entirely. The important
question regards which events will be reconstructed faithfully, and which will be lost or
altered in the compression/reconstruction process. If, in the compression/reconstruction
process, the network consistently loses information about less important events and retains
information about more important events (i.e. as predicted by the music-theoretic
analyses), then the network has also captured information that extends beyond pitch and
time-span segmentation. Can the network training procedure discover the relative

importance of events corresponding to metrical accent and time-span reduction?

If so, this supports the notion that reductions of musical sequences may be
computed by a memory coding mechanism whose purpose is to produce descriptions for
musical sequences that reduce demands on memory while retaining the gist of the
sequences. This implies that the culture- and style-specific musical knowledge necessary
for computing reductions is realized as a set of parameters (in a RAAM network, a set of
weights) in the coding mechanism. The acquisition of this set of parameters can be viewed

as the acquisition of the musical knowledge for computing reductions.

This view of reduced memory representations for musical sequences has several
advantages over other possible mechanisms. The vector representations produced by a
RAAM for melodic segments are reduced descriptions of the sequence, similar to the
“chunks” proposed by recoding theorists. However, the compressed representation for a
sequence is more than just a label or pointer to the contents of a structure (cf. Estes, 1973);
it actually is the description of its contents. Therefore, the numeric vectors produced by the
network potentially contain as much information as the cognitive structures proposed by

pattern-formation theories. Because the reduced descriptions are represented as vectors,



61
they are suitable for use with association, categorization, pattern-recognition and other
neural-style processing mechanisms (Chrisman, 1991). Such processing mechanisms

could, for example, be trained to perform sequence extrapolation tasks (Simon & Sumner,

1968).

This chapter describes two experiments with the Recursive Auto-Associative
Memory (RAAM) architecture for producing reduced memory descriptions of musical
sequences. RAAM networks are trained on a corpus of simple melodies and then tested in
two ways. First, the networks’ abilities to accurately compress and reconstruct a test set of
three tunes are examined. In the second experiment, the structure of the representations

produced by the network is also examined.

The network experiments have two goals. The first is to measure the performance
of the RAAM networks using a well-formedness test (Pollack, 1990). For a given input
melody, the compressor network creates a reduced description. The reconstructor network
is then applied to the reduced description to retrieve its constituents. If the reconstructed
sequence matches the input melody, either exactly or within some tolerance, then the
reduced description is considered to be well-formed. The well-formedness test can also be
used to measure the ability of RAAM networks to generalize, by testing the network's
performance on novel sequences. In this experiment, the performance of the network on a
test set of three melodies is examined: known, variant, and novel. The known melody is one
of the melodies presented to the networks during a training phase. Performance on this
melody establishes a baseline of the networks’ abilities to correctly encode melodies. The
variant melody is a variation of material presented to the networks in the training phase,

and the novel melody is a melodic sequence not related in any obvious way to the material
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presented in the training phase. If the networks generalize from the examples presented in
the training phase, then they should be able to produce well-formed reduced descriptions

for one or both of the variant and novel melodies as well as for the known melody.

An additional goal in the second experiment is to determine the structure of the
representations produced by the network. The network is provided with a time-span
segmentation for each melody. The question is: Will the network take advantage of this
information about temporal structure to preserve musical regularities that are
systematically related to this structure? RAAM networks learn a data compression
algorithm tailored to the statistical regularities of a training set. Thus, if the training set is
adequately representative of the statistical characteristics of simple Western tonal melodies,
the network should make use of this information, displaying significant levels of agreement

among network, theoretical, and empirical measures.

4.2 A RAAM Architecture for Music

RAAM uses a connectionist substrate of fully-connected feed-forward neural
networks to produce recursive distributed representations (Pollack, 1990). For example, to
encode binary trees with k-bit patterns as the terminal nodes, the RAAM compressor would
be a single-layer network with 2 k-unit input buffers and one k-unit output buffer. The
RAAM reconstructor would then be a single-layer network with one k-unit input buffer and
2 k-unit output buffers. The input and output buffers are required to be the same size
because the network is used recursively: the output of the network is fed back into the
network as input. During training, the compressor and reconstructor are treated as one
standard three-layer network (2k inputs, & hidden units, and 2k outputs) and trained using

an auto-associative form of back-propagation (Rumelhart, Hinton, & Williams, 1986;
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Cottrell et.al., 1988), in which the desired output values are simply the input values. To
create the individual training patterns for the network, the structures that make up the

training set are divided into groups (for example: (a b) or (R1 R2)).

Two issues arise in designing a RAAM network for encoding musical structure.
First is determination of a constituent structure for each musical sequence that will specify
how events are presented to the network input buffers. For these experiments, a time-span
segmentation (Lerdahl & Jackendoff, 1983, see Section 2.2 on page 18) of the melodies is
used. For the simple melodies used in this study, the time-spans at smaller constituent levels
(less than a measure) were “regular” (Lerdahl & Jackendoff, 1983); that is, they were
aligned with the locations of strong metrical beats. Therefore, the lower levels of time-span
segmentation were determined by the metrical structure. Grouping rules (Lerdahl &
Jackendoff, 1983) were used to determine time-span segments at constituent levels larger
than the single measure. Each encoding produced by the network is the representation of a
time-span (and its events) at some level in the time-span segmentation. Once an encoding
has been produced, temporal information is implicitly managed by the recursive structure
of the decoding process. As decoding proceeds, the output codes represent smaller and
smaller time-spans (at lower and lower levels), until, at the termination of the decoding
process, a single pitch event is output and the temporal location of that event is uniquely

determined.

Second, the representation of pitch events to be encoded by the RAAM must be
specified. The different pitches in each melody are represented as binary feature vectors (on
or off). A “local” representation of pitch class was used; 7 units represented the seven pitch

classes of the diatonic scale in Western tonal music. Two units were also added to represent
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melodic contour. One unit means 'up' from the previous event, the other means 'down’, and
turning both units off means no contour change. This representation nominally captures
octave equivalence and pitch height but makes no further assumptions regarding the
psychophysical components of pitch, as other connectionist researchers have done (cf.
Mozer, 1991). More sophisticated encoding strategies may prove useful for certain musical
applications (cf. Large, Palmer, & Pollack, 1991), but this study sought to reduce inductive

biases that would be introduced by more complex coding schemes.

Two modifications to the RAAM architecture are necessary to encode Western tonal
melodies such as those in the training set. First, existing applications of the RAAM
architecture have only accurately handled tree structures that are 4-5 levels deep. However,
the 25 training melodies used in this study contain constituent structure hierarchies 6-7
levels deep, which expand to more than 1000 individual training patterns. Previous
experiments found that this training set size outstrips the capacity of a RAAM network that
contains a reasonably small number of hidden units (Large, Palmer, & Pollack, 1991). A
method was adopted of scaling up the basic architecture by having one RAAM network
recursively encode lower levels of structure, and then passing the encodings it produces to
a second RAAM that encodes higher levels of structure. This method, known as modular
RAAM (Angeline & Pollack, 1990: Sperdutti. 1993). enables the construction of recursive
encoders that can handle trees with many hierarchical levels by using multiple networks
that each contain fewer hidden units. To use this strategy, a smallest possible time span was
identified, corresponding to the smallest duration value that occurred in the network
training set. Thus the training set consisted of balanced trees The lower RAAM network
was trained on a fixed number of nested levels, and the upper RAAM was trained on the

upper levels of the trees.
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The second modification addresses ternary groups common in Western tonal music;

binary branching structures are not sufficient to capture musical groupings that often
consist of three elements. To handle both pairs and triples, a network with three input
buffers might be created, only two of which would be used to encode binary segments.
However, this would lead to the situation shown in Figure 15A, in which a triple with a rest
in the middle is indistinguishable from a pair. Instead, a network with four input buffers can
encode both duple and triple segments and distinguish among them, as shown in
Figure 15B. Here buffer 1 corresponds to the first event of any group, buffer 3 corresponds
to the second event of a binary group, and buffers 2 and 4 correspond to the second and
third events, respectively, of a ternary group. To properly interpret the output of these
buffers at decoding, four extra units were added at the output. The network is trained to turn
on an output unit when the corresponding buffer's output is to be used; otherwise the

contents of the buffer are ignored, and trained with a don't-care condition (Jordan, 1986).

Figure 15: Buffering scheme for encoding either duple and triple grouping
structures. (A) Three buffers cannot discriminate between a group of two events
and a group of three events in which the middle event is a rest. (B) Four input
buffers can make the discrimination.
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4.3 Experiment 1: Balanced Tree Structures

4.3.1 Training

Twenty-five simple children's melodies were chosen as a training set because they
provided a simple, natural musical case for study. The tunes comprised eighteen unique
melodies; five of these eighteen melodies had variations in the training set. Each melody
was between 4 and 12 measures in length, with a time-signature of 2/4, 3/4, 4/4, 6/8, or 12/
8. The tunes provided constituent structures six to seven levels deep, in which either binary
or ternary groups appeared at each level. Although the pitch event representations required
only 9 bits (7 pitch class units and 2 contour units), 35 units were used, allowing 26 extra
“degrees of freedom” for the system to use in arranging its intermediate representations.
These extra dimensions of representation were set to 0.5 on input, and trained as don't-cares
(Jordan, 1986) on output. As described above, the two RAAM modules each required four
input buffers, and each resulting module had 140 input units, 35 hidden units, and 148

output units.

The first module was trained on the bottom 3 levels of the trees, such that the input
corresponded to metrical levels up to and including coding of the “tactus” level. The
representations that emerged from the lower RAAM (the output) corresponded to time-
spans with a length of one half-note for binary groups, or one dotted half-note for ternary
groups. The second module was trained on the upper 3 or 4 levels of the trees (depending
on tune length), corresponding to larger structural levels of the melodies. This division of
labor allowed the modular architecture to approximately balance the learning load between
the two modules, measured by the number of unique training patterns. The two modules

were trained simultaneously, with the bottom module's output providing the input for the
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top module. Rather than exposing the network to the entire training set of twenty-five
melodies, four melodies were chosen randomly from the training set and forward-
propagated in each training cycle; then error was back-propagated through the network (cf.
Cottrell & Tsung, 1991). This method allowed a faster running time for the large training
set. Because the length of the tunes in the training set (and therefore the number of
individual training patterns) varied for each cycle of backpropagation, the learning rate was
set to 0.7 divided by the number of training patterns seen on that cycle. Momentum was set
to 0.5 and weight decay to 0.0001. Training lasted for 1300 cycles, by which point the error

associated with the test set of melodies reached a minimum value.

4.3.2 Testing

In this experiment, performance was judged based on the well-formedness test,
which assessed the ability of the network to accurately compress and reconstruct each
melody. The network was tested on a set of three melodies: a known melody, a variant
melody, and a novel melody. These were the same three melodies used in the empirical
study of improvisation; the names used here denote the particular relationship of each
melody to the network training set. The known melody, Mary had a little lamb, occurred in
the training set. The network's performance on this melody is representative of the
network's performance on familiar (learned) melodies. The variant melody, Baa baa black
sheep, did not occur in the training set; however, four closely related variations of this
melody did occur in the training set. The local structure (duration patterns and melodic
contour of individual measures) of the variant melody was very similar to two training set
melodies, and the global structure (three 2-measure phrases with similar melodic and

harmonic implications) of the variant melody was similar to two other training set
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melodies. Performance on this melody indicates the ability of the network to account for
simple melodic variation, because the network was required to recombine familiar local
structures (individual measures) in novel global contexts (different melodies) that shared
structural features with known melodies. The novel melody, Hush little baby, did not occur
in the network training set, nor was it closely related to any of the melodies in the training
set. Network performance on this melody indicates the ability of the network to perform a
type of generalization different from that required for melodic variation: the ability to
represent novel musical sequences at local levels of structure, as well as the ability to

combine novel local structures in novel global contexts.

Each melody was reconstructed by the decoder network from the recursive
distributed representation produced by the compressor. Errors in the reconstructed melody
took the form of additions (the network reconstructed an event that was not present in the
original melody), deletions (the network failed to reconstruct an event that was present in
the original melody), and substitutions (the network reconstructed an event incorrectly in
the same position). An error measure was created based on the number of sixteenth-note
locations in each piece, because this was the smallest time-span in each segmentation.
There were 64 (16x4) sixteenth-note locations in the known melody, 96 (16x6) in the
variant melody, and 32 (8x4) in the novel melody. Given the coding scheme, the chance
estimate for percentage of events correct at each location is 1/16, or 6.25%, based on 16
possible outcomes: seven pitch classes times two contour changes (up or down) plus a

repeated pitch and a rest.
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As an approximate measure of the network's ability to correctly compress and
reconstruct constituent structures, average performance on the training set melodies was
calculated. Performance was measured at two points in the time-span segmentation for each
melody. First, the network's ability to compress and reconstruct time-span segments with
only three levels of recursive nesting — corresponding to a time-span of one half note for
binary groups — was examined. Network performance in reconstructing training set
melodies with three levels was 84%. Next, the network's ability to compress and
reconstruct time-span segments that correspdnded to entire melodies, with 6-7 levels of
recursive nesting, was examined. Here the network's performance was 57%. Thus, the
representations captured lower-level structures fairly well, whereas at global levels of

structure, the representations lost sequence details.

To better understand the network's performance, the reconstructions for the three
test melodies were examined in detail, shown in Figures 16, 17, and 18. The reconstruction

of the known melody shows network performance on melodies learned in the training set.
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Figure 16 shows reconstructions made from codes at each level of hierarchical nesting. At
the lower levels the reconstruction is nearly perfect, but at five to six levels of nesting, the

network has lost quite a bit of information.
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Figure 16: Network reconstructions of Mary had a little lamb in Experiment 1.



71

The reconstructions of the variant melody, shown in Figure 17, give an indication

of the network's performance on simple variations of learned melodies. Again, the

reconstructions produced at lower levels of nesting are accurate, while considerable

information loss occurs after several levels of recoding.
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Network reconstructions of Baa baa black sheep in Experiment 1.

Figure 17
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Finally, the reconstructions of the novel melody, Hush little baby, shown in Figure
18, give an indication of the network's performance on unlearned material. At lower levels,

the network shows some ability to generalize, but at higher levels network performance is

poor.
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Figure 18: Network reconstructions of Hush little baby in Experiment 1.

4.4 Experiment 2: Unbalanced Tree Structures

The problem with the network of Experiment 1 was that it did not do a good job of
representing the sequences at higher levels of recursive encoding. However, examination
of the reconstructions reveals a result that is encouraging — the events reconstructed
correctly by the network appear to be the more important events of these melodies. Thus
there may be information in the training set that the network can extract, allowing it to
identify structurally important elements. However, the network training strategy may be

preventing it from accurately reconstructing the sequences. One difficulty may be the use
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of empty time-spans at lower levels of nesting forcing the network to spend resources to

correctly reconstruct null events.

For the experiment, the training strategy and network architecture were adapted to
code unbalanced trees. Rather than creating fully balanced trees for each melody, trees were
constructed whose nesting levels corresponded only to those necessary for describing the
sequence. This strategy is more closely analogous to Lerdahl & Jackendoff’s (1983) time-
span segmentation theory. This form of training, however, requires that it be clear when to
terminate the decoding process (Pollack, 1990). This problem was addressed by adding an
extra unit to each RAAM module, trained as a terminal detector. The terminal detector
allows the network to determine a) when to pass a code from the higher-level RAAM
network module to the lower-level RAAM module during decoding, and b) when to
interpret a code produced by the bottom module as a pitch event. Knowing when to
terminate decoding is equivalent to determining the level of the time-span segmentation to
which a melodic event corresponds. This allows a more flexible strategy for coding time-
span segmentation trees, shown in Figure 19, allowing the network to concentrate its
resources where they are needed. However, it may also complicate the learning process,
since in this strategy, for example, a quarter-note “C” is no longer literally similar to two

eight-note “C”s in succession. The network will have to learn this for itself.
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A. Encoding (Compression)

Top RAAM:
Higher

Structural
Levels

Bottom RAAM:
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Figure 19: Simplified schematic of modular RAAM encoding used in experiment
2. (A) In the encoding diagram, time flows from left to right and bottom to top. (B)
In the decoding diagram, time flows from top to bottom and left to right. The
network determines when to stop decoding automatically.
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4.4.1 Training

The training materials and procedure from Experiment 1 were duplicated in

Experiment 2.

4.4.2 Testing

In this experiment, the network's performance was measured in two ways. First,
well-formedness tests assessed the ability of the network to accurately compress and
reconstruct each melody, and revealed the basic representational capacity of the network.
Second, tests of representational structure assessed the relative weighting of constituents
on an event-by-event basis, and revealed the nature of the representational strategy

developed by the network.

4.4.2.1 Tests of Well-Formedness.

As a comparative measure of the network's ability to correctly compress and
reconstruct constituent structures, average performance on the training set melodies was
again calculated. Performance at two points in the time-span segmentation was measured
for each melody. First, the network's ability to compress and reconstruct time-span
segments with only three levels of recursive nesting was examined. Network performance
in reconstructing training set melodies with three levels was 92%. Next, the network's
ability to compress and reconstruct time-span segments that corresponded to entire
melodies, with 6-7 levels of recursive nesting, was examined. Here the network's
performance was 71%. The representations captured lower-level structures more faithfully,
whereas at global levels of structure, the representation again began to lose sequence

details, although loss was not as severe as in Experiment 1.
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To better understand the network's performance, the reconstructions for the three

test melodies were again examined in detail, which are shown in Figure 20. The
reconstruction of the known melody refiects network performance on melodies learned in
the training set. The reduced descriptions produced by the lower-level RAAM module were
first examined (subsequences of events up to the level of half notes; lowest 3 levels of
hierarchical nesting). In this reconstruction, the network made a single error, adding an
event in the third measure, for a performance of 98%. Reconstruction at the whole tune
level (all 7 levels of hierarchical nesting) resulted in four errors, giving an overall
performance of 94% (60/64) for this melody, which was significantly better than chance
(binomial test, p <.01). This reconstruction was better than the average for training set

melodies, probably because two instances of this melody occurred in the training set.

The reconstruction of the variant melody gives an indication of the network's
performance on simple variations of learned melodies. The reconstruction produced by the
lower-level RAAM module for subsequences corresponding to half-notes (3 lowest levels
of hierarchical nesting) resulted in performance of 92% (88/96). The network successfully
learned the lower-level details because most of these surface features were present in the
training set. The network's reconstruction at the whole tune level (all 7 levels of nesting)
resulted in fifteen errors, for a performance of 84% (81/96), again significantly better than
chance (p <.01). The reconstruction of this melody at (only) the whole-tune level was the
same as its reconstruction of Twinkle twinkle little star, one of the four related melodies in
the training set, for which its performance was 98% (94/96 events). As Figure 20 shows,

the half-note level representations preserved local structure. The ability to exploit
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constituent structure, combined with the use of a recursive encoding strategy, allowed the
network to rely upon structural similarities at the whole-tune level, rather than melodic and

rhythmic features at lower levels, in determining the representation of this melody.
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Figure 20: Original melodies and network reconstructions: (A) Mary had a little
lamb (Known), (B) Baa baa black sheep (Variant), (C) Hush little baby (Novel).
Each melody was reconstructed from several codes (the half-note level RAAM),
and from a single code (the whole-tune level RAAM). X’s denotes failures in
network reconstructions.
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The reconstruction of the novel melody is representative of the RAAM's ability to
encode novel sequences. Again, the reduced descriptions produced by the lower-level
RAAM module were first examined for subsequences of the original melody by encoding
groups of events only up to the level of half-notes (3 levels of hierarchical nesting).
Figure 20 shows the reconstruction from the reduced descriptions for each half-note of the
tune. The lower-level reconstructions produced ten errors, for a success rate of 69% 22/
32), again significantly better than chance (p <.01). Seven of the ten errors occurred in the
third measure, and the other three measures of the tune were reconstructed rather faithfully.
At the whole tune level there were seventeen errors, for a performance of 47% (15/32),
which is significantly better than chance (p <.01), but overall, the reconstruction is poor
(there are only 19 events in the original tune). It is interesting that the rhythm was
reconstructed well (27/32, or 84%), but very few pitch events were reconstructed correctly
(3/19, or 16%). Thus the network's representation of this melody at the whole tune level
was not well-formed, and generalization to this novel sequence was better at the lower

levels of the hierarchy.

4.4.2.2 Tests of Representational Structure.

Given the network’s relative success at representing the sequences, the structure of
the distributed representations was analyzed to determine the relative contributions of
individual events. One method is to directly examine the representation vectors to
determine the function of individual hidden units. Little information can be retrieved from
recursive distributed representations of this size, however, because of their complexity

(Pollack, 1990).
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As an alternative approach, the “certainty” with which the network reconstructed

each event of the original sequence was measured by computing the distance between the
desired (d) and obtained (o) vector representations at each sequence location (i). This
analysis considered only those output units that represent pitch class (ignoring contour),
consistent with the analysis of the improvisations. To compensate for the fact that some
events were added and others deleted in the reconstructions, only the locations in the
reconstructions for which pitch vectors should have been output were considered. Thus,
only deletions and substitutions of events from the original melody affected this measure,
as in the empirical study (Chapter III). A similarity measure was defined,
sim(d,0) = 1- ( ﬁ" (d,.-o,.)z)/n, that ranged from O (most different) to 1 (identical), and

i=1

represented the probability that desired pitch events occupied the appropriate positions in
the original sequence, based on the network representation. Sequence locations at which
this measure was smallest were locations at which the network was most likely to make a
reconstruction error. These probabilities were then interpreted as predictions of relative

importance for each event in the distributed representation.

The probability measures of relative importance at the whole-tune level were
correlated with the musical improvisation data, as summarized in Table 2. The correlations
were large for the known (p < 0.10) and variant (p < 0.05) melodies. but not for the novel
melody. This was not surprising because the novel melody did not have a well-formed
distributed representation at the whole-tune level. However, when the novel melody was
reconstructed from the reduced descriptions corresponding to the half-note level of the tune
(shown on the bottom of Figure 20), the resulting correlation approached significance (p <

0.10).
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Table 2: Squared correlation coefficients for network reconstructions.

(metrical accent removed)

Known Variant Novel Novel
(Mary) (Baa) (Hush) (Hush)
Whole Tune | Whole Tune | Whole Tune | Half-Note
Improvisation Data 35% 64%* .10 40%*
(# events retained)
Metrical Accent 39%% S55%% 24 45%*
Predictions
Time-Span 39 64 25 S52%*
Predictions
Semi-Partial .14 35k 27 .29

*- p<0.10

** _p < 0.05

Next, the network measures of relative importance were compared with the

quantifications of theoretical predictions, as shown in Table 2. The correlations with time-

span reduction predictions were significant for the known and variant melodies and for the

measure-level reconstruction of the novel melody (p < 0.05) but not for the whole-tune-

level reconstruction of the novel melody. The correlations with metrical accent predictions

also were significant for each melody (p < 0.05). The network measure was correlated with

time-span reduction predictions after metrical accent was partialled out. The semi-partial

correlation was not significant for the known or novel melodies, but was significant for the

variant melody (p < 0.05), indicating some ability of the network to extract structure

beyond metrical accent.
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4.5 Discussion
Recursive  Auto-Associative Memory produced recursive distributed
representations for musical sequences. A general learning algorithm, backpropagation,
extracted sufficient information from a training set of 25 simple melodies to produce
reduced descriptions of known, variant, and novel sequences. The performance of both
networks was investigated using the RAAM well-formedness test. In each case, the
network failed to reconstruct some events, reconstructed other events incorrectly, and
occasionally added some that were not present in the original sequence. The second

network performed better, because it coded melodies as unbalanced trees.

The reconstructions of melodies produced by the second network were fairly
accurate, but did not retain all of the details. The network produced reduced memory
representations that preserved the important structural features of the sequences. However,
three sources of evidence suggested that the representations successfully captured the
major structural features of the melodies. First, the reconstructions were faithful to the
rhythm of the original melodies, even for the novel melody. Second, the network correctly
reconstructed most of the pitches in the original melodies. Third, the events on which the
network made reconstruction errors tended to be the less important events, as shown by the
correspondence of network predictions of relative importance with theoretical predictions

and improvisational data.

The network performed best on familiar (learned) melodies. The ability of the
network to generalize was also tested: to represent both a variant of a jearned melody and
a truly novel melody (one unrelated to the learned melodies). The performance of the

network in reconstructing the variant melody showed how the network handles simple



83
melodic variation. This melody shared local structure with training set melodies, and the
network's lower-level codes (up to the half-note level) preserved this structure. At a global
level, the compression/reconstruction process followed the attractor (a known path) for
another melody with which the variant shared global structure. The network also identified
the important pitch events in the variant, indicated by the fact that network measures of
relative importance for this melody correlated strongly with the time-span reduction
predictions. Comparison with the empirical data from improvisations supported the
conclusion that the network successfully identified events interpreted as major structural
features by musicians. Overall, these results demonstrate the ability of the network to

exhibit a limited but important form of generalization.

The findings for the novel melody indicated that the network still performed well at
lower levels of structure in handling unlearned sequences; it produced well-formed
memory representations for the three lowest levels of the constituent structure. At higher
levels of structure, however, the network failed to generalize, reproducing the correct
rhythm but incorrect pitches for this melody. This aspect of performance may be due to the
learning environment, which may not have provided a rich enough set of patterns at higher

levels of structure.

The information retained by the network in the compression/reconstruction process
agreed well with music-theoretic predictions of the relative importance of musical events.
The limited size of the training and test sets make it difficult to say precisely why the
agreement occurred; however, the time-span segmentation used as input to the network was
related to the music-theoretic predictions. The network used this information about

rhythmic structure, coded as position in a fixed input buffer, to learn representations that
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retained musically important events and major structural features. For instance, the network
may have learned metrical accent by weighting the first element of lower-level time-spans
(which aligned with strong beats) more heavily than others. The relative importance
predictions, however, were based on more complex rhythmic relationships. To learn
relative importance, the network may have learned other stylistic factors. For example, the
RAAM network may have learned that the last event in each sequence was predictable - it
was always the tonic. Thus, the network appears to have extracted some relationships
beyond metrical accent, and did so strictly on the basis of the regularities in the training set.
The network was forced to distill musical regularities such as these from the training set in
response to two opposing pressures: 1) to retain as much information about each sequence
as possible, and 2) to compress the information about each sequence into a pattern of

activation over a small number of units.

Finally, the psychological plausibility of this approach to creating reduced memory
representations for music was demonstrated. Certain events dominated the structure of the
reduced descriptions by virtue of the fact that they had the greatest probability of being
correctly reconstructed by the network. The events that dominated the network's reduced
descriptions were precisely those events most important in the mental representations for
these melodies measured by the musical improvisations and posited in the theoretical
reductionist predictions. These findings indicate that the RAAM coding mechanism
produced reduced descriptions for musical sequences that implicitly weighted events in
each sequence in terms of their relative structural importance. This is an important finding
because it supports the psychological plausibility of recursive distributed representations as

an approach to modelling human memory. Combined with the network's performance in
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reconstruction, these findings suggest that the reduced memory representations
successfully captured the structure of musical sequences in ways similar to the mental

representations underlying improvisational music performance.



CHAPTER V

SEQUENCE PROCESSING AND TEMPORAL PROCESSING

The RAAM network of the previous chapter did a good job of capturing the sequential
structure of musical melodies. It represented sequences with long distance dependencies. It
also generalized well enough to capture relative importance among musical events. The
network did this because of the way it exploited information about relative timing that was
available as input. However, this raises a difficult question: If timing in music is as flexible
as shown in Chapter III, how can such relative timing information be made available to a
sequence processing network? This chapter attempts to answer this question.First, it
proposes a distinction between sequence processing and temporal processing. Next, the
RAAM implementation is compared with other temporal sequence processing networks
with respect to the handling of sequential relationships and temporal relationships. It is
proposed that the processing of temporal structure may be a key factor in the performance
of real-time temporal sequence processing architectures. Finally, previous models of
temporal structure processing are reviewed and an entrainment model is proposed for

handling temporal relationships in the processing of temporal sequences.

5.1 Temporal Sequence Processing

A temporal sequence can be notated as: X = [A*® B2 C*®]. According to this notation,
each sequence element consists of a letter representing a sequence element, and a
superscript representing event duration. Within a particular domain such as music, specific

commitments must be made, for example letters may represent pitch events and the
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& Principe, 1992; Giles, et. al. 1990; Kolen, 1994; Pollack, 1991; Cleeremens, Servan-
Schreiber, & McClelland, 1989). Generalization is important in learning musical styles and
recognizing musical variation. Important questions regard the nature of the task

specification and the nature of the processing algorithm (Wang, in press a).

Less work has focused directly upon questions of temporal structure. An important
issue regards the design of systems that are rate-invariant while maintaining sensitivity to
relative timing relationships. Systems for processing music and speech, for example, must
process sequences independent of absolute presentation rate, yet maintain sensitivity to
certain interval time relationships. These issues are related to a problem known as the
quantization, or time-warping problem. This problem is difficult because there is a trade-
off between relative-time sensitivity and rate-invariance: To what relative-time
relationships should processing be sensitive, and to what other aspects of timing should
processing be invariant? Other questions regard how systems make use of relative timing
relationships and structures. This section compares RAAM with other temporal sequence
processing architectures, observing this distinction between sequence processing and

temporal processing.

5.1.1 Sequence Processing

This section explores a variety of temporal sequence processing architectures, and
discusses how each addresses the problems of sequence structure as defined above. Two
important issues are addressed. The first issue is the design of short term memory (STM).
Form, content, and adaptability of memory structures (Mozer, 1993) are discussed. The
discussion of STM structure suggest that many temporal sequence processing architectures

address the role of time in sequence processing in a limited way: time enters the picture as
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a constraint on the maintenance of sequence history in STM. The ability of each
architecture to make musically relevant generalizations is also evaluated. This review
concentrates on musical applications where possible, as a way of evaluating generalization
potential. The discussion of generalization show that temporal sequence processing
systems that incorporate the temporal structure of sequences directly into processing

generalize best in the musical domain.

One temporal sequence processing architecture studied extensively is the time
delay neural network, or TDNN (e.g. Elman & Zipser, 1988; Waibel, et. al. 1989; for
comprehensive reviews see Mozer, 1993; Wang, in press a). The TDNN takes its name
from the structure of its short-term memory: STM makes a subset of past events
simultaneously available for processing using a set of tapped-delay lines. Processing is
usually accomplished with a multi-layer perception trained with backpropagation. In the
design of STM care must be taken that there are enough lines with proper delays to provide
adequate context for the current task. In the simplest strategy, delay line structure is fixed,
imposing a strict upper limit on the number of items that can be held in STM at once, and
the N most recent inputs make up the contents of the memory. The RAAM network
discussed in the previous chapter is a type of delay line network. However, the RAAM
strategy for making use of delays was complex. The content of memory consisted not only
of past sequence elements but also of recoded chunks (see Figures 14 and 19), capturing
the sequence history in a more powerful way. The RAAM’s delay buffer held either a single
past sequence element or a chunk that captured a larger amount of sequence context. The
RAAM architecture also required the use of an external stack to handle intermediate results.

The RAAM implementation also made sophisticated assumptions regarding the handling
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of time (discussed in the next section). As already discussed, the RAAM generalized well

in the musical case, capturing psychologically relevant structural relationships among

sequence elements.

Another popular STM design strategy is the exponential trace memory, studied by
Jordan (Jordan, 1986), Mozer (Mozer, 1989) and Wang and Arbib (Wang & Arbib, 1990),
among others. In its simplest form, an exponential trace STM consists of a decaying trace
of past sequence elements. This STM design does not impose a fixed limit on the number
of past events that can affect the current processing as in the time-delay strategy. In practice,

however, the number of past events that affect processing is usually small.

The exponential trace STM has been widely studied in music processing with a
variety of different tasks and processing strategies. Many researchers, for example, have
explored musical structure using discrete-time recurrent networks trained with
backpropagation (Bharucha & P. Todd, 1991; Burr & Miyata, 1993; Mozer, 1991; Mozer,
1994; Narmour, 1990; P. Todd, 1991). The task of a recurrent network (RN) is usually to
predict events in a sequence, thus RN’s provide natural models of musical expectancy, and
can be used to generate musical sequences. One application tested the ability of a network
to model schematic and veridical expectancies for musical chord sequences representative
of Western music of the common practice era (Bharucha & P. Todd, 1991). Only short
sequences (about 7 chords) were tested, but the network was able to learn some of the
sequential regularities of Western harmony. P. Todd (1991) has used a similar network for

melody learning, providing a test of the approach for longer sequences. This network was
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evaluated as a means of algorithmic composition. P. Todd (1991) found that the network
was good at generating short musical lines, high in local structure, but lacking in global

organization.

A difficulty with this approach is that an exponential recency gradient limits the
ability of STM to adequately capture sequence context. STM loses information at a fixed
rate, and this poses the challenge of maintaining STM traces long enough to contribute
adequately to processing. Thus, exponential trace memory is an example of an approach
that considers time as a constraint on the maintenance of sequence history in STM. In
attempts to make recurrent networks more sensitive to global structure, augmented versions
of recurrent architectures have been proposed. Burr and Miyata (Burr & Miyata, 1993) and
Todd (P. Todd, 1991) have proposed that hierarchically cascaded recurrent networks might
solve this problem, by chunking shorter subsequences to maintain memories more

efficiently.

Mozer (1991; 1994) has applied a more powerful recurrent architecture to the
problem of learning musical sequences in a network called CONCERT. As the name
suggests, CONCERT was evaluated as a means of algorithmic composition. The
CONCERT architecture is similar to Elman’s (Elman, 1990) design. STM is implemented
as a form of exponential trace, however, the content of memory is a powerful
transformation of the input and state learned using the back-propagation through time
(BPTT) algorithm (Rumelhart, Hinton & Williams, 1986). Thus, the structure of STM is

adaptable and this network should in principle be capable of capturing arbitrary sequential
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and/or temporal relationships, including metrical structure, grouping structure, and even
time-span reduction. In practice, Mozer (Mozer, 1994) found that the network did a good

job of capturing local structure, but did not capture global structure well.

Mozer (1993; 1994) suggests that the inability of this architecture to capture global
context is due to a limitation of the BPTT training algorithm. Mozer (1994) attempted to
improve the performance of the network by providing the network with units that operated
at different time constants, to provide the training algorithm with a greater amount of
sequence history. Note that this approach also views time as a constraint on the
maintenance of sequence history in STM. This manipulation improved performance
somewhat, but it did not result in a significantly improved ability to capture global structure
(Mozer, 1994). Mozer (1993) suggests that such resuits signal a basic difficulty in using

sequential architectures to match transition probability distributions of very high order.

Another system based on exponential trace STM, using a different task and
processing strategy, was Gjerdingen’s (Gjerdingen, 1991; Gjerdingen, 1990) L’ART pour
I’art network. L’ART pour !’art was designed to test the capabilities of a class of self-
organizing networks based on adaptive resonance theory (Carpenter & Grossberg, 1987;
Grossberg, 1976) in the musical domain. Short-term memory patterns were distributed
representations of past input events, such as scale degree, contour, and inflection
(Gjerdingen, 1991). Patterns in STM were categorized by a second level of units and stored
in long-term memory as a pattern of synaptic strengths using a variant of Hebbian learning.
Gjerdingen (Gjerdingen, 1991) tested the ability of ART 2 networks to make musically
valid categorizations of the type of complex patterns that occur in passages of Mozart’s six

earliest compositions. With the simple exponential trace STM in place, the network tended
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to categorize incidental events as unique entities, preventing it from recognizing the types

of underlying similarity that would allow it to create musically relevant generalizations

(Gjerdingen, 1991).

Gjerdingen enhanced STM design by coding temporal relationships using five
metrically oscillating levels of attention (Gjerdingen, 1991); events occurring at metrically
important times were given increased activation in STM. This manipulation departs from
the idea of exponential trace memory. Time was not viewed only as a constraint on the
maintenance of sequence history in STM; relative time relationships were used to affect
sequence processing. Gjerdingen (1989) compared the two STM strategies — exponential
trace memory and metrically modulated exponential trace. The new network showed
substantial improvement in the way it handled passing tones and other subsidiary events.
The categorizations developed by the network were characterized as prototypes, or
schemata, corresponding to musical concepts such as galant cadence. The improved

network made musically valid categorizations, although only for short segments of musical

material.

Gjerdingen (Gjerdingen, 1991) and Page (Page, 1993) report attempts to scale up
these results to longer musical segments using hierarchically cascaded ART networks.
These efforts are based on more sophisticated paradigms including ART 3 (Carpenter &
Grossberg, 1990), masking fields (Cohen & Grossberg, 1987), and the SONNET 1

architecture (Nigrin, 1990), and have yielded promising results.

Wang and Arbib (Wang & Arbib, 1990; Wang & Arbib, 1993) have proposed
another approach to modeling the recognition and production of complex sequences.

Learning is based on a form of template matching using Hebbian learning. Wang and Arbib
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(Wang & Arbib, 1990; Wang & Arbib, 1993) showed that their recognition algorithm plus
either exponential trace or interference-based (discussed below) STM models can learn to
recognize any complex sequence, providing a solution to the problem of representational
adequacy in STM. Their approach to encoding context is based on anticipation. Each
recognition unit has an associated degree parameter. During learning, when a system’s
anticipated continuation of an input sequence is ambiguous (there is more than one possible
continuation), the degree parameters of the active recognition units are incremented, so that
they will detect longer contexts on the next training pass, and training continues until no .

ambiguities exist.

This approach has not yet been applied to music. However, the basic idea is similar
to Kohonen’s (Kohonen, 1984; Kohonen, et. al. 1991) dynamically expanding context
(Wang & Arbib, 1993), which has been applied to musical sequence generation with
interesting results. Mozer (Mozer, 1991) points out a potential problem with dynamically
expanding context as a general approach to music, however. A particular note, i, can not be
used to anticipate (or generate) a later note i+n, unless all intervening notes, i+1,..., i+n-1,
are also considered. Thus, on presentation of the training sequences [A B C] and [A D C]
the system would learn two unambiguous subsequences {B C] and [D C]. However, it
would not make the generalization [A-?-C], as might be appropriate in the musical domain.
This analysis suggests that the dynamically expanding context approach is not appropriate
for making generalizations concerning relative importance as, for example, the RAAM

network did.
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In summary, choice of STM model, processing, and training algorithm make
important differences in how networks learn musical sequences. Models based on
exponential trace STM designs can make musically valid generalizations, but have
difficulty scaling up to the representation of longer musical sequences. Other approaches
may recognize and generate individual sequences of arbitrary length and complexity (Wang
& Arbib, 1990; Wang & Arbib, 1993; Kohonen, et. al. 1991), yet fail to generalize in
musically appropriate ways. Alternate designs will be considered in the next section,
however, some preliminary conclusions can be drawn at this point. In many of the
approaches discussed above, time enters the picture only as a constraint on the maintenance
of sequence history in STM. This may be a limiting feature: such approaches focus on

sequence structure, minimizing or ignoring the importance of temporal structure, as defined

above.

An exception was Gijerdingen’s adaptation of the exponential trace design that
allowed temporal structure to affect processing. The introduction of metrically oscillating
levels of attention made all the difference in whether or not the system made the musical
generalizations of interest. Another exception was the RAAM network that made even
stronger assumptions about the effect of temporal structure on processing. The result was a
system that represented long, complex musical sequences and made musically relevant

generalizations.

5.1.2 Temporal Processing
This section examines how approaches to temporal sequence processing address the
temporal structure of musical sequences: How does each architecture deal with time? There

are three levels of assumptions that temporal sequence processing systems may make
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regarding time. These assumptions have to do with the meaning of ‘time’ in the model (the
quantity represented by the parameter ¢ in the model equations). First, time (f) may refer to
real-time. Real-time systems must face the quantization problem head-on. This is the case
in most speech processing systems, and some connectionist music processing systems.
Second, time (f) may refer to idealized, or categorical, temporal durations as would be
found in a musical score. Relative-time systems sidestep many difficult problems of
temporal processing, and assume that the quantization problem has been solved (perhaps
by preprocessing). This is the case in most connectionist music processing systems. Serial-
order systems abstract away time all together, and deal only with the ordering information

in a sequence of events.

5.1.2.1 Temporal Sequence Processing in Relative-Time

Most temporal sequence processing networks that have been applied in the musical domain
are relative-time systems (e.g. Large, Palmer, & Pollack, in press; Mozer, 1991; P. Todd,
1991). Time is represented using categorical durations, as would be found in a musical
score, making information about relative timing directly available to the network. Such
systems do not address the quantization problem; they tacitly assume that this difficult
problem is solved in preprocessing. There are several interesting questions that they may
address, however. What effect can/should information about relative duration have on
further processing of a musical sequence? Can the network learn to use temporal structure?

Can the network be designed to exploit temporal structure?

In one such study, a simple recurrent network (Elman, 1990) was trained on a
section of The Blue Danube Waltz (Narmour, 1990). The musical sequence was input to the
network as a sequence of events with pitch, accent, and duration properties. Thus, this

relative-time network used a nonuniform sampling rate, representing duration as simply
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another event property. Stevens and Wiles (Narmour, 1990) gauged the performance of the
network by comparing temporal and accent regularities extracted and represented in the
network with the statistical properties of these components in the training composition.
Expected frequencies of accent-duration pairs, such as quarter-note coupled with strong
accent, were compared with actual frequency of occurrence in the composition. A
canonical discriminant analysis of duration accent pairs by position in bar showed that the
hidden unit space was structured around inferred variables as well as around observable
variables. This would suggest that the network may have learned something about the meter

of the piece, but an analysis of whether or not meter was actually learned was not reported.

Gjerdingen (Gjerdingen, 1989) addressed the question of how prior knowledge of
metrical structure may be used within a neural network for categorizing musical phrase
types. Prior knowledge of metrical structure affected the way events were coded in STM.
The network studied was a real-time/relative-time hybrid. First events were coded in STM
using decaying activation based on event duration, and the network was trained at different
rates of presentation. Next temporal relationships were coded in STM using five metrically
oscillating levels of attention (Gjerdingen, 1989). Events occurring on strong beats (in the
metrical structure) were given increased activation levels on entry into STM. Comparison
of the two STM strategies — exponential trace vs. metrically modulated exponential trace —
revealed that the addition of information about relative timing relationships (metrical
structure) made all the difference in whether the network learned musically valid

categorizations for the input patterns (Gjerdingen, 1989).
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The RAAM networks reported in the previous chapter made use of temporal
structure to produce representations that captured two kinds of sequence structure. First, the
network represented the constituent structure of the musical sequences. It used knowledge
of temporal organization (time-span segmentation) to adapt its processing strategy at each
level, compressing and reconstructing groups of either two or three elements, to serve as an
efficient encoder of predetermined structure. This chunk-and-recode strategy allowed the
network to successfully represent long, complex musical sequences. Second, the reduced
descriptions captured an important form of structural relationship among sequence
elements, the relative importance of musical events. To accomplish this, the network used
prior knowledge of metrical structure to learn stylistic regularities known to be

systematically related to each element’s metrical position.

The network learned relative importance because each position in its input buffer
corresponded to a metrical grid location, and the network used a dedicated set of weights
for each position. This strategy made the network sensitive to relative timing relationships
in a unique way. Consider the coding of the two sequences X 1= [A*® B'*] and X2 = [A720
B240] as coded by the second RAAM network (see Section 4.4 on page 76, and Figure 19
on page 74). The temporal relationships correspond respectively to the relative timing
relationships of dotted eighth note followed by sixteenth note (the initial rhythmic figure of
Mary had a little lamb), and a dotted quarter note fellowed by an eighth note (the same
rhythmic figure slowed by one-half). The network input for the first figure is the tree (A
(NULL B)) and for the second figure is the same tree (A (NULL B)). It produces the same
code for both figures because the same weights are used, corresponding to the same relative

metrical grid locations. The (qualitative) difference in rate is only coded in relationship to
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the rest of the melody. A similar argument can be made for the fully balanced tree RAAM,
but in that case the codes are just similar, not exactly the same. RAAM learned metrical

accent and time-span reduction because it was able to exploit to relative time relationships.

5.1.2.2 Temporal Sequence Processing in Real-Time

In a relative-time system time delays are easy to think about. Consider the RAAM
network at the moment it recodes two consecutive quarter notes. At a point in time when
the network “fires,” input consists of a signal corresponding to the current pitch event, and
a signal corresponding to a previous pitch event delayed by a fixed, discrete amount of time.
Specification of such a system is simplified because ‘quarter note’ is a relative duration. In
a real-time system, however, the situation is more difficult. Consider the same situation, but
in real time, with a sampling rate of 1 ms, and an average quarter note duration of 480ms.
With a fixed, discrete time delay (e.g. Lang, Waibel, & Hinton, 1990), if the inter-onset-
interval (IOI) is equal to 479ms, when the new event enters memory and the network fires,
the previous input will not be available. This is an example of the quantization, or time-

warping problem.

Real-time systems must deal with the time-warping problem directly. One way to
deal with this problem is to not simply delay the signal corresponding to a previous event,
but to also convolve it with a broadening function (Tank & Hopfield, 1987). With respect
to the previous example, this would make the signal available to processing at a range of
times around 480ms, with the strongest response at precisely 480ms. Thus some deviation
in an average period of 480ms can be tolerated and the system will still behave adequately.
As discussed by de Vries and Principe (de Vries & Principe, 1992) and Mozer (Mozer,

1993) temporal convolution represents a general delay mechanism. From this point of view,
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for example, the impulse response of simple delay line is a delayed unit sample. The
impulse response of an exponential trace memory is (1-p,) u:. where —1<¢<1, an

exponentially decaying function.

Convolution with a broadening function has been applied with some success in
speech recognition (e.g. Tank & Hopfield, 1987). deVries and Principe (1992) characterize
such memories using two parameters, depth (delay time) and resolution (amount of
broadening). They propose the gamma neural model that provides efficiency benefits
compared with gaussian delay kernels, and includes both discrete delay kernels and
exponential kernels as special cases. Several researchers have also used periodic memory
kernels, and have addressed the problem of learning the parameters of memory kernels
during batch training (Unnikrishnan, Hopfield & Tank, 1991; Bodenhausen & Waibel,
1991; de Vries & Principe, 1992; Principe, de Vries, & de Oliveira, 1993). The difficulty
with these approaches is that, whether delays are hardwired or learned during batch
training, they remain fixed during sequence processing. Thus such memories may be

expected to show difficulties in processing musical sequences.

Given this new perspective on the temporal prccessing properties of delay kernels,
one might expect an exponential trace memory to have some robustness in the face of
timing deviation. For small changes in presentation rate, small changes in processing
results may be expected. McGraw, Montante, and Chalmers (McGraw, Montante &
Chalmers, 1991) tested this intuition in the musical case. They attempted to train various
recurrent networks as simple “beat detectors,” but found that a network trained to output
beats to one melody at three different tempos did not correctly respond to the same melody

played at a fourth, intermediate tempo. Thus in practice, recurrent networks have been



101
shown to generalize poorly to novel presentation rates, relying upon absolute rate
information to process temporal patterns. According to results such as this, one may expect
that a network trained to recognize a melody played at 80 beats per minute, for example,

may not recognize the same melody played at 90 beats per minute.

Cottrell, Nguyen, and Tsung (Cottrell, Nguyen, & Tsung, 1993) have attempted to
solve this problem with a strategy for rate invariant sequence recognition. They first trained
a recurrent network to predict a target input signal presented at some “normal” rate. A
typical recurrent network would track the target signal at this rate, but would lose the signal
at other rates. Cottrell et. al. augmented their network to control its own processing rate by
adapting time constants and processing delays. Using prediction error, the recurrent
network adapted its processing rate to match the rate of the current signal, much like a
phase-locked loop varies its internal frequency to match the phase of an incoming signal.
This approach worked well in the test domains in which it was applied. The drawback of

this approach is that it applies only to learned sequences.

Others have attempted to solve this problem in a recurrent network trained with the
real-time-recurrent learning (RTRL) algorithm (Anderson & Port, 1990; Cummins, Port,
McAuley, & Anderson 1993). The representations developed by the network were viewed
as trajectories through activation space sculpted by a chain of stable attractors. The training
procedure moved the locations of the attractors for pattern elements and the locations of
‘recognition regions’ so that learned patterns could be differentiated from distractors. After
training the network reliably recognized learned patterns at faster and slower rates of
presentation, and also at irregularly altered rates. Wang and Arbib (1993) have achieved a

more general result using an STM model based on interference: a unit’s input activation
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does not decay with time, but with the number of other items currently held in short term
memory. In this system the network is sensitive only to serial order information. Because
the networks are insensitive to temporal information, they cannot differentiate between
sequences based on relative timing information, and time is treated as serial order. Serial

order systems are of limited utility in the musical domain.

In summary, temporal sequence processing networks can deal with time in three
ways: as real-time, relative-time, or serial order. Real-time networks must deal with the
quantization problem, the problem of processing temporal sequences in a rate-invariant,
relative-time sensitive way. State-of-the-art real-time systems use STM structures based on
time-delays and broadening functions learned during batch training; during on-line
sequence processing STM structures remain fixed. Relative-time networks rely on the tacit
assumption that the quantization problem can be solved by other means. For example, a
separate system may adjust processing rate according to the rate of the incoming sequence
for learned sequences (Cottrell, Nguyen, & Tsung, 1993). Relative-time systems are useful
in investigating the way in which neural networks learn temporal structure or make use of
relative timing information. For instance, recurrent networks may be able to learn some
metrical relationships (Narmour, 1990). Other networks, such as Gjerdingen’s (Gjerdingen,
1989) and the RAAM network of the previous chapter exploit knowledge of metrical
structure. Networks that make use of metrical structure to organize short term memory
traces have shown the greatest ability to make musically and psychologically valid
generalizations. These results are consistent with the psychological results cited in

Section 2.3 and with dynamic attending theory (Jones, 1976; Jones & Boltz, 1989).
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5.1.2.3 From Real-Time to Relative Time

What would be most desirable is a system that works in real-time, and is sensitive
to both simple relative timing relationships and full blown metrical structures, as humans
are. Such a system would be rate-invariant, relative-time sensitive, and would make
musical generalizations, much as humans do. STM kernels with fixed depth and resolution
are a step in the right direction, but ultimately they will not do the job. As shown in Chapter
111, expressive timing deviations in musical performance and improvisation result in timing
structures that are far too flexible to yield to temporally static memory structures. On-line
adjustment of memory parameters (Cottrell, Nguyen, & Tsung, 1993) represents another
step in the right direction, but currently proposed strategies apply only to learned
sequences. What is needed is a strategy by which unlearned sequences can also be

processed efficiently.

Let us postulate an STM kernel function with a periodic impulse response. Three
parameters characterize this function: period, resolution, and decay. Let us further suppose
that this impulse response function is somehow able to automatically adjust its parameters
so that points of maximum output correspond to beats at some level in a metrical structure
grid; the parameters of this function automatically adjust on-line as performance tempo
increases or decreases. Because this hypothetical function has a period and phase
corresponding to a level of beats in a metrical structure grid, it will do a better job than a
fixed memory kernel of dealing with time-warping, and it can adjust parameters without
memorizing the sequence in advance. Several functions, corresponding to levels of beats in
a metrical structure grid, would embody knowledge of relative time relationships and

temporal structures. Based on such a mechanism one could expect results as good as
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Gjerdingen’s (Gjerdingen, 1989), the RAAM model’s, or perhaps even better, in a real-time
(as defined above) network. The next three chapters propose a way of doing precisely this:

a way of getting real-time networks to perform as well as relative-time networks.

Jones (1976), Jones & Boltz (1989), Gjerdingen (1989) and others have suggested
the presence in the brain of oscillatory assemblages of neurons that can entrain themselves
to periodic signals such as those found in musical rhythms. This suggestion presents one
possibility for creating an adaptive memory kernel. An oscillator (to be defined) entrains to
a pseudo-periodic component of a perceived input rhythm. The oscillator generates signals
(beats) corresponding to the phase, period, and variability of the rhythmic component that
it tracks, so that period, resolution, and decay of any memory kernel function can be
adjusted on-line. The unit ignores the content of the sequence (events), dealing only with
the rhythm (pattern of time). Therefore, the strategy works both for learned and unlearned
sequences. I will not implement any memory kernel models; rather I propose a method that
will enable a variety of possible STM designs that automatic.ally adapt to temporally
structured input signals. Furthermore, I make the strong claim only that this strategy works
for the particular types of temporal structure found in music (metrical structure). However,
I expect that this approach will work for speech recognition as well. In chapter IX, I address

the issue of speech recognition more directly.

Mine is not the first attempt to entrain a signal generator to complex rhythmic
sequence. This problem has been studied in the music-processing literature under the name

beat-tracking. The remainder of this chapter will focus on previous systems proposed for
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dealing exclusively with patterns of time (rhythms), focusing on the computation of
temporal structure in music. The following three chapters will propose an entrainment

model.

5.2 The Computation of Temporal Structure

Temporal structure plays an important role in the organization of human perception,
however, mechanisms for the perception of temporal structure are still poorly understood.
As demonstrated in Chapter 3, temporal deviation in musical performance limits the utility
of straightforward applications of well-understood signal processing methods such as
Fourier analysis and auto-correlation. Symbolic approaches relying on the parsing of
temporal patterns have been proposed (e.g. Jackendoff, 1992; Longuet-Higgins & Lee,
1982; Scarborough, Miller & Jones, 1992), but again due to temporal deviation, these
methods do not model the perception of meter in musical performance. Entrainment, or
synchronization to a perceived beat, may provide some answers. I will discuss several
models related to the perception of metrical structure, illustrating the problems entailed by

the design of entrainment mechanisms for the perception of complex musical rhythms.

5.2.1 Quantization and Time-Warping

Well-known signal processing and information processing techniques may be applied to
certain rhythms to recover metrical structure if presented with a stationary signal as input.
For this reason, quite a bit of work has been done with preprocessing rhythmic signals,
cleaning up messy timing data, so that techniques designed for stationary input may be
applied. Such approaches are usually referred to as quantization or time-warping
approaches. The most straightforward approach to quantization is to do it by hand. For

example, to prepare musical sequences for input to the neural network model described in



106
Chapter IV, a commercial music software package was used that allows the user to perform
quantization through an interactive process. The problem with the user-interaction

approach in this context is obvious, the user becomes a homunculus in the theory of

temporal sequence processing.

Desain and Honing (1991) developed a connectionist quantizer to automatically
“clean up” messy timing data in music so that the metrical structure may be inferred. From
their point of view, the relevant task is one of inferring from the inter-event time intervals
in the signal the ideal, or intended, inter-event intervals. Using a constraint-relaxation
technique the quantizer works on a window of intervals to adjust inter-event durations so
that every pair of durations in the window is adjusted toward an integer ratio, if it is already
close to one. The main advantage of this technique is the relatively weak assumptions made
about the nature of the input rhythm (integer time ratios are to be preserved). A
disadvantage is that even these relatively weak assumptions may be too strong to represent
a general solution. Divisive rhythms (for example, a group of two followed by a group of
three) are problematic for this approach (Desain & Honing, 1991). Although they do not
specifically address the issue, this approach would have similar problems with polyrhythms
common in music. A second disadvantage is that the algorithm is inefficient, and thus of
questionable utility for real-time analysis. A further disadvantage is that it works on a fixed-

size input window, whose size must be adjusted depending upon the nature of the input.

5.2.2 Structural Analysis Rhythmic Signals
One approach to the structural analysis of rhythmic signals involves the adaptation of signal
processing methods developed for stationary signals to the processing of non-stationary

input. Such approaches involve windowing the input, assuming that the signal is locally
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stationary within the input window. Such approaches have the additional advantage of
increased efficiency over considering the entire input signal at once. An example of such
an approach is narrowed auto-correlation (Brown, 1992; 1993; Brown & Puckette, 1989).
Narrowed auto-correlation has been successfully applied to the problem of determining the
meter of musical scores (Brown, 1993). This approach is successful because music is often
composed such that more events occur at strong metrical locations (Palmer & Krumbhansl,
1990). Musical scores, however, do not contain temporal deviations. Brown (1993) has
reported encouraging results in applying this method to a segment of one performance.
Further study is required to determine whether this approach is applicable in general to

musical performance.

One method of structural analysis proposed by several researchers (e.g. Longuet-
Higgins & Lee, 1982, Jackendoff, 1992) is to parse a rhythm according to a context-free
grammar. A set of rules is constructed that describes allowable temporal structures, and
well-known algorithms use the rules to identify the structure in the input. An advantage of
this approach is that the analysis implicitly performs structure recognition. A disadvantage
is that it applies only to musical scores, not to performed music. Also real-time parsing may
require either backtracking or simultaneous consideration of multiple alternative structures,
and both strategies hamper efficient processing. Finally, context-free parsing assumes
nested hierarchical structures, and thus cannot efficiently account for the perception of

polyrhythmic structure.

Scarborough, Miller, & Jones (Scarborough, Miller & Jones, 1992) have described
a model of meter perception called BeatNet, based on a parallel constraint satisfaction

paradigm. Conceptually, the BeatNet network is a one-dimensional array of idealized low-
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frequency oscillators with different beat-periods that operate to align their output “ticks”
with event onsets. Output of the system is a metrical grid of the style proposed by Lerdahl
and Jackendoff (Lerdahl, & Jackendoff, 1983). A metrical structure emerges from local
interactions between oscillators, rather than from the global effect of rule-based analysis.
An advantage of this approach is that it handles the problem of metrical preferences through
real time processing constraints, rather than by global evaluation of alternative constructs.
A disadvantage of this method is that it does not handle performance timing, because phase

and period of each oscillator is fixed.

5.2.3 Dynamic Processing of Input Rhythms

In some situations it is important to be able to process signals on-line, with only
local information. Such approaches are sometimes called beat-tracking approaches. The
idea of beat-tracking is to synchronize an internal signal generator (generating beats) with
a component periodicity of the input rhythm. Several approaches to the problem of beat-
tracking have been proposed (Allen & Dannenberg, 1989; Dannenberg, 1984; Dannenberg
& Mont-Reynaud, 1987; Longuet-Higgins, 1987; Rosenthal, 1992; Vercoe & Puckette,
1985). The length of the beat-period is adjusted throughout the rhythm as the performer
speeds up or slows down. Thus beat-tracking attempts to deal with non-stationary input
signals. For example, Dannenberg & Mont-Reynaud (1987) describe a history mechanism
that uses a weighted average of previous perceived tempos to compute current perceived
tempo. Allen & Dannenberg (1989) use a state description that includes phase and period,
and real-time beam search to allow the beat-tracker to consider several possible states at

once. A potential problem with each of these approaches is that symbolic implementation
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forces the algorithms to make discrete choices, requiring explicit (sometimes simultaneous)
consideration of muitiple alternatives. Such approaches may underestimate the dynamic

complexity of the beat-tracking task.

Longuet-Higgins (1987) proposed a hybrid method that combines beat-tracking
with metrical structure parsing to perform structural analysis of non-stationary input
signals. The program uses a static tolerance window, within which it will treat any event as
“on the beat.” Events which fall outside the window are interpreted as subdividing the beat
into groups of either two or three. This approach considers the tracking of individual levels
of beats with in the larger context of meter perception, and may result in improved
performance. A disadvantage of this approach is that it suffers from potential inefficiencies

of context-free parsing, including difficulty in accounting for polyrhythmic structures.

Several connectionists have proposed entrainment mechanisms for beat and meter
perception (Large & Kolen, 1993; in press; McAuley, 1993; 1994; Page, 1993). Page
(1993) proposes that a neural entrainment mechanism should operate analogously to a
phase-locked loop, an electronic circuit commonly used in communications applications.
Page (1993) recruits a netwérk of connectionist units into a neural implementation of a
standard phase-locked loop. The heart of the network is a gated pacemaker circuit
(Carpenter & Grossberg, 1983). Page implements a Type-II phase detector and a low-pass
filter using networks of connectionist units, to provide an error signal that controls
adjustments to phase and period in the gated pacemaker. However, there are several
problems associated with this approach, detailed in Page’s (1993) simulations. Most
importantly, Page’s (1993) design assumes that the input signal is periodic. This assumption

places limitations on the circuit’s ability to deal with the complex rhythmic structures of
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music. Because the phase-locked loop reacts to every input event, it cannot extract a
“component periodicity” from a complex rhythmic pattern. Page deals with this problem
by assuming that relevant periodicities are unambiguously marked in the signal via
phenomenal accent information. In music, however, phenomenal accent information is

often missing, ambiguous, or even misleading (e.g. syncopation).

An important research problem for entrainment approaches is to find an appropriate
type of oscillator for modeling musical beat. To illustrate the relevant issues, consider a
simple model that has been used as a model of single cell oscillation in the nervous system,
the integrate-and-fire oscillator (Glass & Mackey, 1988; Winfree, 1980). The simplest
formulation of the integrate-and-fire model is shown in Figure 21. Activation increases
(linearly) to a threshold, the unit fires, resets its activation to zero, and the process begins
again. As shown in Figure 21A, the unit spontaneously oscillates with a period determined
by the slope of the activation function and the height of the threshold. Figure 21B shows
the unit phase-locking to a discrete periodic stimulus. Each discrete stimulus event
temporarily lowers the unit’s threshold so that the oscillator may fire and reset earlier than
would otherwise be the case. Figure 21B also illustrates one problem with phase-locking
oscillators as models of musical beat. When the stimulus ceases, or when an onset is
missing, the oscillator immediately reverts to its original period, as though no stimulus had
ever been present. In other words, the oscillator has no memory of the previous rhythmic
context. Torras (1985) proposed a scheme for frequency locking in a different integrate-

and-fire model. In this formulation, an integrate-and-fire oscillator can adapt to the
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frequency of a stimulus by adapting its threshold. This situation is shown for the simpler
model in Figure 21C. McAuley (1993) proposed that a Kohonen map of Torras oscillators

could memorize, categorize, and reproduce musical rhythms.
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Figure 21: A periodic signal and the response of an integrate-and-fire oscillator.

Integrate-and-fire units have their own set of problems in the domain of meter
perception. For example, the discontinuity in the activation function constrains the
oscillator to adjust its period only by speeding up (McAuley, 1994). Large and Kolen
proposed a continuous model to avoid this problem and the problems exhibited by phase-

locked loop models (Large & Xolen, 1993; in press). The model presented in the following
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chapters is an extension of that proposal. McAuley (1994) recently compared the
performance of four different oscillatory units including two integrate-and-fire models,
Large and Kolen’s original model (Large & Kolen, 1993), and a simplification of that
model. McAuley (1994) prefers the simpler model. However, this simplification creates
problems similar to those found in phase-locked loop models; both require strong

assumptions about phenomenal accentuation to display appropriate behavior.

In summary, the difficulty of identifying metrical structure in real-world signals
arises from rhythmic complexity (missing and extraneous events), timing deviations, and
structural complexity (polyrhythms). Without these difficulties, metrical analysis could be
performed by any of the methods described above. A successful mechanism must be able
to “pick” pseudo-periodic components out of a complex rhythmic pattern in spite of
missing, ambiguous, or misleading information, and combine these components into

complex structures. The following chapters propose such a mechanism.



CHAPTER VI

SYNCHRONIZATION TO COMPLEX SIGNALS
The perception of beat and metrical structure is a fundamental cognitive/perceptual ability.
In humans, this ability enables apparently simple behaviors including tapping along with a
tune, and very complex behaviors including the ability of skilled musicians to coordinate
intricate motor programs with perceived musical rhythms. It may also enable more general
abilities such as rate-invariant temporal sequence recognition that maintains sensitivity to
relative time relationships. Synchronization with isochronous input signals is relatively
easy to achieve, however synchronization with complex signals can be quite difficult. This
chapter presents a model of synchronization that is appropriate for complex, temporally
structured signals, and is motivated from the perspective of music perception and

cognition. For reasons cited above, however, it may have wider applicability.

The difficulty of identifying temporal structure in complex signals such as music
arises from three sources. The first source of difficulty is the presence of systematic timing
deviations. In music, performers use temporal deviation, or rubato, to communicate
musical intentions. Such systematic deviations produce non-stationary input signals,
limiting the usefulness of analytical techniques designed for stationary signals, such as
Fourier analysis. The second source of difficulty is rhythmic complexity. In music, rhythmic
complexity refers to factors including amount of syncopation and number of different
duration values present in a rhythm. Thus, the “periodic components” of rhythms that

correspond to beats are not really periodic. Even in ideally timed rhythms there are missing

113
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events and extraneous events. The third source of difficulty is structural complexity. The
existence of polyrhythmic structure, in particular, limits the usefulness of approaches that
assume strict temporal nestings, such as context-free parsing. Without these difficulties,
metrical analysis could be performed by more traditional approaches. A successful
mechanism must be able to “pick” pseudo-periodic components out of complex rhythmic
patterns in spite of missing, ambiguous, or misleading information, and combine these

components into complex structures.

This chapter describes a mechanism for beat perception in complex, metrically
structured rhythms that addresses these difficulties. The mechanism works on-line with
local information. It possesses a memory for recent events, displays expectations for
upcoming events, and can handle missing events at those times. The mechanism can also
ignore events that should not affect its behavior. These properties are achieved by
synchronizing, or entraining, an oscillator to an incoming signal. The oscillator generates
output pulses with a given phase, period, and width. When an event occurs during an output
pulse, the oscillator will adjust its phase and/or period to align the output pulse with the
input event. The output pulse prevents intervening events from distracting the oscillator,
because the oscillator will ignore events that fall outside its output pulses. A system of
oscillators can be used to recover the metrical structure of input signals, with different

oscillators generating different levels of beats.

6.1 Definitions
Let the term rhythm refer to a time-series of events. Some rhythms display a form
of temporal organization called metrical structure (Essens & Povel, 1985; Lerdahl, &

Jackendoff, 1983). A metrically structured rhythm can be defined as a rhythm generated by
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a coordinated set of oscillatory event generators. The phases and periods of individual event
generators may vary, however certain temporal relationships between event generators
remain invariant over time. A metrical structure is a set of perceived relationships between
(assumed) event generators. The problem of metrical structure is to identify and track the
components of a rhythmic signal corresponding to individual event generators, and to
identify and track relationships (relative phases and periods) of the event generators, in real
time. One way to think of this perceptual task is as the recovery of a (motor) program

structure that would recreate the rhythm — a program built of oscillatory event generators.

According to this perspective, metrically structured rhythms are composed of
several not-quite-periodic components, each corresponding to the output of an individual
event generator. These not-quite-periodic components are called pseudo-periodic event
trains. Bach event train corresponds to the output of one event generator over time. An
event train is pseudo-periodic because it arises from a non-stationary source - the phase and
period of its generator may change. When one taps one’s foot to music, one is tracking a
single pseudo-periodic event train in the musical rhythm. The brain is synchronizing an
internal event generator to a perceived external event generator. Internally generated
events correspond to a level of perceived beats, as defined in the Chapter II. Metrical
structures can be defined as relative phase and period relationships between these internally

generated levels of beats.
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6.1.1 Synchronization and Entrainment
Events can be represented in an input signal as discrete impulses, (7). Figure 22
shows a series of impulses, corresponding to note events in an improvised melody,
collected on a computer-monitored piano (see Chapter III). In Figure 22, s(f) = 1 when an
event occurs, and s(f) = O at other times. In general, s(f) may take on any value, and it is

sometimes useful to let the value of s(f) carry information such as amplitude.
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Figure 22: An input signal to the oscillator model

Beats (internally generated events) can be modeled using an oscillator that
generates events at some specific point in its cycle. Oscillations repeat after some specific
interval of time, called the period, p , of the oscillation. Phase at time 0 <f<p can be
defined as ¢(f) = é According to this definition, phase lies between 0 and 1. Two
oscillations are synchronized when they regularly come into phase, or begin their cycles
together. A process by which two or more oscillations achieve synchronization is called
entrainment. Entrainment occurs because a coupling between two or more oscillations
causes them to synchronize. Coupling allows a signal (the driver) to perturb an oscillator

(the driven) by altering its phase, its period, or both.
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The approach is as follows. External event generators cause signal impulses at the
beginning some cycles, but not necessarily all cycles. It may not be possible to tell from
impulse amplitudes how many events an impulse corresponds to. The rhythmic input signal
serves as a driver, and impulses in the signal perturb both the phase and the period of a
driven oscillator, causing changes to the oscillator’s behavior. The oscillator adjusts its
phase and period only at certain times during its cycle, isolating a single event train in the

incoming rhythm. The oscillator generates events that correspond to beats.

6.2 The Oscillator Model

6.2.1 Output Events

The oscillator generates events periodically, and when driven by an input signal
adjusts its phase and period so output events track the phase and period of a single pseudo-
periodic event train in the rhythm. Two kinds of output events can be defined, discrete and
continuous, and these are useful for different purposes. Discrete events are impulses, and
can be generated as follows. Let 7 be time and ¢, be the time of next expected event. When
t = t, expected event time 7, is reset in anticipation of the next event, ¢t <t + p. At this
time the oscillator generates a discrete event. These discrete events correspond to the
music-theoretic notion of beat described in Chapter II. The continuous events are called
output pulses. An output pulse is like a beat except that is has a width, an extent in time.
Let the phase of the signal generator at time ¢, be defined as:

t—t

o) = -f- (Eqn 1)

Then an output pulse may be defined as:
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o(f) = 1+ tanhy(cos2nd() - 1) (Eqn 2)

where 7 is a parameter called output gain.

Figure 2 shows an output pulse, in the absence of input, as a function of time.
Amplitude is maximum ( o(f) = 1) at the beginning of each cycle (i.e. when ¢t = t),
quickly falls to zero for the body of the cycle, then begins to rise again to a maximum as
the cycle comes to a close. Amplitude is only non-zero for a relatively small portion of the
cycle. The output pulse defines a temporal receptive field for the oscillator, a region of
temporal “expectancy”. The oscillator entrains to the signal by adjusting its phase and
period only in response to signal impulses that occur within this receptive field; it ignores
impulses that occur outside of this field (when o(f) = 0). This allows the oscillator to
identify and track a single event train in a complex signal, while ignoring irrelevant

information.
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The parameter 7, the output gain, determines the size of the receptive field. When

v is small, (Figure 2A), the receptive field is wide and the oscillator will tolerate a relatively

large amount of variability in the input signal. When v is large, (Figure 2B), the region is

narrow and the unit will tolerate relatively little variability in the signal.
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Figure 23: Output pulses (temporal receptive fields) for two different values of 1.
(A) T = 0.10, (B) T = 0.05. T measures the width of the temporal receptive field.

In order to deal with non-stationary signals efficiently, the oscillator adjusts the size

of its receptive field as it entrains to the signal (described below). Once the oscillator has

entrained, the value of y acts as a measure of the variability in the target event train.

Because this measure is somewhat difficult to interpret, I introduce a second, related

measure, called T. T measures the width of the temporal receptive field as the distance

between the points of inflection on the curve (corresponding to relative extrema in the first

derivative, and zero-crossings in the second derivative). T is related to y as follows:
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L]

T= cos2nt—1°

(Eqn 3)

In this equation, ® is a constant that can be determined tobe ® = —0.416. In what

follows, I refer to 7 rather than to 7.

6.2.2 Phase-tracking and Period-tracking

In order to track an input signal, the oscillator must adjust its phase and period in
response to input impulses. To accomplish this, two types of behavior must be specified,
phase-tracking and period-tracking. These behaviors can be specified by formulating delta
rules that describe the amount of adjustment to the phase and/or period in response to an

impulse. Phase-tracking behavior can be implemented with the following rule:

At =1 1s(t)%t sechz'y (cos2nd(f) — 1) sin27wwd(s), (Eqn 4)

where 1, is a parameter called coupling strength. Figure 24 shows the shape of this curve,

summarizing the effect of the delta rule in response to an input impulse. This curve is

related to the first derivative of Equation 2 with respect to time, ;i?. The relative extrema

correspond to points of inflection on the output pulse curve. T measures the amount of

deviation from ¢, (as a percentage of the current period) that the oscillator will tolerate, and

still adjust its phase and period to efficiently track the event train. The rule can also be
thought of as a modified gradient descent rule, minimizing an error function that describes
the difference between when impulses are expected and when they actually occur (Large &

Kolen, in press). The presence of s(¢) in this formula ensures that adjustments to phase will

occur only when a signal impulse is present (s(#) > 0). An impulse that occurs within the
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oscillator’s temporal receptive field, but before ¢ causes a negative phase shift, because

At <0. An impulse after 7, causes a positive phase shift, because Az, >0. Thus, this

delta-rule provides a non-linear coupling term implementing phase-coupled entrainment.

Phase-tracking is most efficient when |z —f <T. When, |¢,~| > the adjustment to ¢, is
less than would be necessary to phase-lock the output pulses to the signal impulses. If |~

is large enough, the unit will ignore the impulse. If |z, > for several cycles, the

oscillator will lose the signal.
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Figure 24: The effect delta rules for phase and period given in Equations (3) and
(4) for two different values of T, (A) T = 0.10, (B) T = 0.05. This figure illustrates
how 7 gives the amount of variability that the unit will tolerate input signal.
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Period-tracking behavior may be achieved by noting that the difference between
expected and observed period is the same as the difference between expected and observed
impulse times (assuming the oscillator was in phase in the last cycle). Therefore, the same

delta rule can be used, with the introduction of a new coupling term, 1,:

Ap = nzs(t)z"-L’t sech?y(cos2md(t) - 1) sin2m(s). (Eqn 5)

The use of a separate coupling term allows independent adjustment of the phase-
and period-tracking behaviors. Aside from this difference, the rules are identical. Again, the
presence of s(?) in this formula ensures that the delta rule will have a non-zero value only
when a signal impuise occurs. Figure 24 also shows the shape of this curve, summarizing
the effect of the delta rule in relation to the output pulse. An impulse that occurs within the
oscillator’s receptive field, but before ¢, causes a negative adjustment to period, because
Ap < 0. Animpulse after ¢, causes a positive adjustment to period, because Ap >0. Thus,
this delta rule provides a non-linear coupling term implementing period-coupled
entrainment. As above, period-tracking is most efficient when |¢,—1| <7, and if |z,—1] is

large enough, the oscillator will ignore the impulse.

6.2.3 Tracking Variability

It is useful for the oscillator to adjust the size of its temporal receptive field. This
allows the unit to adapt to the amount of variability in the input signal. To do this, it is
necessary to create one more delta rule, a rule that adjusts t. By adjusting T the oscillator
effectively estimates variability in the phase and period of the target event train. Thus it can

adapt its temporal receptive field to efficiently track different types of signals. To



123
accomplish this behavior, T is limited to a fixed range between T . and T_ by
introducing the control parameter , which is related to T according to the following

equation:

T=1 ax+0.5 (T

m

-1 _ ) (1+tanhQ) . (Eqn 6)

min max

Figure 25 shows this relationship.

a1 23 2 2

Q

Figure 25: The relationship between Q and T, according to Equation 6.

A delta rule can then be defined to adjust Q:

AQ = n3s(t) sechz'y (cos2nd(t) — 1) (cos2md(t) + 2y (o)1) sin221t¢(t)) . (Eqn7)

2

This delta rule is related to the second derivative of Equation 2 with respect to time, Z—to.

Figure 26 shows the shape of this curve, summarizing the effect of the rule. The zero-
crossings correspond to the relative extrema of the phase- and period-tracking delta rules,

giving this rule the power to adapt the oscillator’s tracking behavior according to the
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variability of the input signal. An impulse that occurs when |t~ < T causes the oscillator’s

temporal receptive field to shrink, because it is doing a good job of predicting the input. An
impulse that occurs just outside this region will cause the temporal receptive field to grow,

because the oscillator came close to predicting the impulse, but is attempting too precise a

prediction. If |¢,—1| is large enough, the this rule will ignore the impulse. Because impulses

may not occur in every cycle, Q decays toward O each time the unit generates an output

event. Thus, if there is no event in the oscillator’s current cycle, T will increase, widening

the temporal receptive field.
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Figure 26: The effect of the delta rule for variability (t) given in Equation 7 for
two different values of T. (A) T = 0.10. (B) T = 0.05. The y-axis gives A€

values, and 7 is calculated from Q according to Equation 6.
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6.2.3.1 Confidence
Finally, it is useful for the oscillator to adjust the amplitude of its output pulses,
providing an internal measure of performance. Confidence, ¢, can then be used to measure
the success of the oscillator in finding pseudo-periodic event train in the input signal. There
are a number of possible ways to do this. The most straightforward of these is to let
confidence, c, be inversely related to variability, T. Thus, as variability in the input signal
shrinks, confidence grows. When confidence is calculated this way, no extra delta rule is
needed; ¢ can be limited to a fixed range between c,,;, and c,,,,, and modulated according
to the value of Q. One way to do this is given by the following equation, and this
relationship is shown in Figure 27, for c,,;, = —1 and ¢, = 1. Output may be defined

max

to grow in amplitude with c.

c = c,m-n-i-O.S (cmax—cmin) (1+ tanhQ). (Eqn 8)
Cl ]
0.5t
2 -2 2 2
Q
-o/st
1l

Figure 27: A possible relationship between Q and c, according to Equation 8.
This provides a measure of performance.
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6.3 Oscillator Behavior
Figure 28 shows the behavior of an oscillator defined according the above
equations, with initial conditions p =700ms and ¢, = 0. The oscillator was exposed to input
impulses with a period of 660ms, shown in Panel (A). Model parameters were n, = 1.0,

=002, 1

max

n, =03,m, =03, 7. = 050, ¢,,;, = —1 and ¢, ., = 1. The figure
shows several aspect of the oscillator’s behavior. Panel (B) shows the output pulses. In
response to input, the oscillator adjusts its phase and period so that it becomes synchronized
to the stimulus within a few cycles. As it synchronizes, output pulses shrink in width and
grow in amplitude. Panel (C) gives more detail about this process. Observed cycle times of
the oscillator are graphed with a solid line, capturing the combined effect of phase-tracking
and period-tracking (Equations 4 and 5). Observed cycle times quickly adapt to the input
cycle time of 660ms. The dotted line in panel (C) shows intrinsic period, p, capturing the
effect of the period tracking rule (Equation 5). The intrinsic period adapts more gradually
than actual cycle time. Panel (D) shows the value of 7T, the amount of variability the
oscillator will tolerate in the phase and period of the input signal, as a percentage of the
current period. When the stimulus is removed, the oscillator continues with a period of

660ms. The oscillation at this new period may be said to embody an “expectation” for

events at these particular future times
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Figure 28: Single unit tracking a periodic signal: (A) input signal, (B) oscillator
output pulses, (C) oscillator period, (D) T.
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6.3.1 Compound Units
Finally, in the examples that follow (Chapter VIII), each single unit is implemented
using two oscillators operating in a tight, winner-take-all interaction. This arrangement is
referred to as a compound unit. One oscillator, the shadow unit, is constrained to have the
same period as the other, the control unit, but to remain exactly 180 degrees out of phase.
The unit with the greatest confidence at any given time is defined to be the control unit. The
control unit controls phase and period adjustments and produces output pulses. However,
both units (shadow and control) actively adjust €, controlling T, variability, and c,
confidence. If at any time the shadow unit’s confidence grows greater than that of the
control unit, the two oscillators switch roles: the shadow becomes the control, and the
control becomes the shadow. The observed behavior of a compound unit in this situation is
a sudden 180 degree phase shift. This phase shift corresponds to a gestait perceptual shift
in the perception of the input signal - events that were perceived as out of phase with the
unit are suddenly perceived as in phase. Figure 28 demonstrates a situation in which a
gestalt perceptual shift may occur, t = 3600ms. Panel (D) in this figure graphs confidence
of the control unit as a solid line, and confidence of the shadow unit as a dashed line. The
gestalt perceptual shift happens when the two curves intersect. It also observable as a drop

in cycle time, effective for a single cycle. Intrinsic period is not affected.
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6.4 Discussion
The oscillator synchronizes output pulses to a pseudo-periodic train of discrete impulses
marking event onsets. Each output pulse instantiates a temporal receptive field for the
oscillatory unit — a window of time during which the unit “expects” an impulse. The unit
responds to impulses that occur within this field by adjusting its phase and period, and
ignores stimulus pulses that occur outside this field. The oscillator adjusts the width of its
receptive field to entrain efficiently. The oscillator entrains 1:1 to a simple periodic event
train. A metrical structure, however, consists of levels of beats with different periods. The

following chapters address this and related issues.

The approach provides a method for analyzing a complex rhythmic pattern as a set
of pseudo-periodic components, or event trains. I have described the model as a single
abstract oscillator, in order to focus attention on the adequacy of the proposal for modeling
the human response to musical rhythm. This approach could be implemented in several
ways. It is also possible to modify the delta rules slightly to handle markers that are not
discrete impulses, but have shape and extent in time. It is important that the phase and
period are tracked in such a way that only those events that fall within a temporal receptive

field affect the behavior of the unit.



CHAPTER VI

MODELING BEAT PERCEPTION AS A DYNAMICAL SYSTEM

The preceding chapter presented two dynamical systems, an event generator and an
oscillator, and a way of coupling the two systems together, a set of delta rules. Examples of
the behavior of the coupled system showed that the oscillator can entrain to a stationary
signal whose period is close to its initial period. In the general case analysis of such a
system may be quite complex, because the input signal may not be periodic, or its period
may not be near the oscillator’s initial period. The oscillator was designed to entrain to an
event train in a complex, temporally structured input signal; however, it remains to be seen
how the oscillator will behave in such a situation. The first step toward understanding the
behavior of the coupled system is to make a geometric model of the states of the system.
That is the goal of this chapter. This chapter will develop a dynamical system model of beat
perception for the special case of an isochronous input signal. Development of this model
will also have a useful side-effect: an efficient algorithm for simulating the behavior of a

coupled system in the general case.

7.1 The Sine Circle Map

If two self-sustaining oscillators are physically separate, such that the behavior of one is not
influenced by the behavior of the other, they are called uncoupled (Abraham & Shaw,
1992). The state space of each oscillator can be reduced to its limit cycle, a circle in the
plane, and the state of each oscillator can be summarized by an angle identifying a position

on the limit cycle. The combined state of the two oscillators may then be described as a pair
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of phases, ¢, and ¢, yielding a single state space for the combined system. The state space

is the cross-product of the two limit-cycles, topologically equivalent to the surface of a

torus as illustrated in Figure 30.
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Figure 30: The state space for a system of two oscillators, a torus. A position on
the surface of the torus describes a the combined system as a pair of phases.

The trajectory of a point in this state space, corresponding to the phase of each

oscillator, winds around the torus. The two components of the trajectory correspond to ¢ ,,

winding around the major axis (the “doughnut hole™) and ¢,, winding around the minor

axis (the “waist”) of the torus (Abraham & Shaw, 1992). If the two oscillators are p:q phase-

locked, then as ¢, winds p times around the torus its trajectory will be intersected at the

same point every q cycles of ¢ ,. If the trajectory closes on itself after an integer number of

cycles, then the two processes are synchronized, as defined above; the combined motion is
periodic. If the trajectory fails to close on itself there is phase drift, and the motion is called

quasi-periodic; the resulting trajectory will eventually cover the complete surface of the

torus (Abraham & Shaw, 1992).
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A more interesting case is given when the behavior of one process (A, called the
“driver”) affects the other (B, called the “driven oscillator”), such as might be caused by a
slight mechanical connection between two oscillators. Now the two oscillators are coupled,
and may become synchronized by a process called entrainment. Entrainment occurs
because coupling allows A to perturb B by altering its phase, its intrinsic period, or both.
The torus is also the state-space for the coupled system. Coupling means that the phase
portrait is perturbed by the addition of small vectors at each point in this state space

(Abraham & Shaw, 1992).

The effect of coupling may be understood by examining the trajectory of the

combined system on the torus. To simplify the description, one can slice the torus at the
position given by ¢, = 0, taking a Poincare’ section of the state space. This technique is
analogous to observing the phase of the driver with a strobe that lights up just as the driven
oscillator passes ¢, = 0, sampling the phase of the driver only at those times. The
Poincare’ section corresponds to a finite-difference equation, a one-dimensional discrete-
time map in the form of a circle, called a Poincare’ map, or simply a circle map. This
difference equation describes the phase of the driver at which the driven oscillator will fire

on the next cycle. The circle map provides a way to calculate the long term behavior of a

system of coupled oscillators.

Consider the following mapping:

0y = ¢i+§+bsin (2nd,) . (Eqn 9)
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This equation is a model circle map, called the sine circle map, that describes the dynamics
of a system of two oscillators, a driving and a driven oscillator. The parameter g is the
period of the driving oscillator, p is the period of the driven oscillator, and bsin (27¢,) is
a non-linear coupling term that describes the perturbations delivered to the period of the

driven oscillator by coupling to the driver. ¢, is the phase of the driving oscillator at which

the driven oscillator fires on iteration i. Figure 30 graphs this finite difference equation for
p/q = % ,and b = 0. When b =0 (no coupling), the behavior of the system is summarized

by the ratio p/q, the so-called “bare-winding-number”. For example,if p = 2 and ¢ = 3,

the driven oscillator fires three time as the driver fires twice.
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Figure 31: A graph of the finite difference equation given by Equation 9 for
p/q = g,andb = 0.

3
As coupling strength, b, increases, another ratio, N:M, the so-called “dressed
winding number”, describes the long-term behavior of the system. In the dressed winding

number, N is the period of the driven oscillator under the influence of coupling, and M is
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the period of the driver. If the coupling strength is high enough, even as p/q is perturbed
away from 1/2, the system will still lock in a 1:2 relationship, because each time the driven

oscillator fires, its phase is perturbed slightly by the coupling to the driving oscillator (Glass

& Mackey, 1988).

This locking behavior is highly structured. The dynamics of coupled systems like

the sine circle map can be summarized in a regime diagram. Equation 32A shows a regime

diagram for the sine circle map. The x-axis is the bare winding number, p/q, and the y-axis

is coupling strength, b. The regime diagram identifies stable phase-locked states, also
called attractors, mode locks, or resonances (Schroeder, 1991), for particular coupling
strengths and driven/driver period ratios. The parameter regions that correspond to stable
phase-locked states are known as Arnol’d tongues (Glass & Mackey, 1988; Schroeder,
1991). Each “tongue” is labeled with a ratio corresponding to its locking mode. The width
of each tongue reflects the stability of the corresponding mode lock for a given coupling
strength, i.e. its sensitivity to noise in the p/g ratio. Equation 32 shows that, for a fixed
coupling strength, 1:1 entrainment is more stable than 1:2 entrainment, which is more
stable than 2:3 entrainment, and so forth. Depending upon the coupling strength, it can be

shown that entrainment is possible at any frequency ratio, N:M where N and M are

relatively prime integers (Glass & Mackey, 1988).

The regime diagram is not arbitrarily organized. Its structure can be summarized by
a mathematical construct known as the Farey tree (Equation 32B). The Farey tree
enumerates all rational ratios according to the stability of the corresponding mode lock in
the coupled system. Its branching structure corresponds the structure of the Arnol’d

tongues of the sine circle map, as well as to known bifurcation routes in other mathematical
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and natural systems (Schroeder, 1991). Regime diagrams and Farey tree have been used to
model and predict biological and psychological phenomena (Glass & Mackey, 1988;
Treffner, & Turvey, 1993; Schmidt, Shaw, & Turvey, 1993; Beek, Peper, & van Wieringen,

1992).
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Figure 32: An Arnol’d tongues diagram (A) and the Farey tree (B).
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7.2 Adapting the Circle Map
The beauty of the techniques described in the preceding section is that any two dynamical
systems may be combined into a single system by taking the Cartesian product of their state
spaces (Abraham & Shaw, 1992). The combined system can then be studied using the
geometric techniques introduced above to arrive at a global understanding of the effect of
coupling on observed behavior. The preceding chapter presented two dynamical systems,
an event generator and an oscillator, and a way of coupling the two systems together, a set
of delta rules. In the general case analysis of this combined system is quite complex,
because the event generator will not be a periodic process. Thus the simple toroidal state-
space (as described above) is not adequate. In this section, I assume that the event generator
is periodic — an assumption that will provide a start at understanding the behavior of the
oscillator model. A dynamical system on the torus will be derived as a geometric model of
beat perception in this simplified case. I will use regime diagrams to study the behavior of
the coupled system. This analysis will be useful in understanding how the unit will respond
to any periodic driving stimulus, whether that stimulus arises from an external signal, or
from the output of another oscillator in a network. Thus, the analysis will provide insight
into several key aspects of the model. This simplified analysis will also have a useful side-
effect: an efficient algorithm for simulating the behavior of the system, not only for the
simplified case, but also in the general case. I will then discuss adapting state-spaces and

extending regime diagram analyses to the study of more complex rhythms.



138
7.2.1 Phase-Coupling
In the model of musical beat proposed in the previous chapter, the driver is a rhythmic
pattern. Impulses in the signal perturb both the phase and the period of the driven oscillator
through the action of delta rules. The delta rules provide a non-linear coupling that allow
the signal impulses to affect the behavior of the oscillator. The oscillator adjusts its phase
and period only at certain points its cycle, isolating individual event trains in the incoming

signal.

Because of the simplifying assumption that the input signal is periodic, most of the
assumptions about state spaces and trajectories from the previous section hold for this new
coupled system. The heart of this analysis will be the formulation of a new circle map, a
finite difference equation that summarizes the phase-tracking behavior of the oscillator in

response to a periodic input signal. The basic form of the difference equation will be the

same as that of the sine circle map,

041 = b+ L +AO). (Eqn 10)
Iteration of this equation will allow study of the long-term behavior of the coupled system.
The task is to determine the coupling term, f(¢j) for this equation. The coupling term is

derived from Equation 3 (pg. 86), the delta rule implementing phase-tracking.

In the sine circle map, ¢, is the phase of the driver at which the driven oscillator
fires. However, for this new system a difficulty arises. If we strobe the driver when the
driven oscillator fires, we may see nothing at all, because the only times at which s(#) >0
are when there is an impulse in the input signal. This is because Equation 4 ensures that the

value of Az, will only be non-zero only when an impulse occurs in the signal. Therefore,
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the circle map must be adapted to suit current purposes. According to Equation 3, ¢(f) is

the phase of the driven oscillator at which an impulse occurs in the signal. This is the
quantity upon which the amount of adjustment is based. So to develop a circle map
describing the behavior of this model, the driven oscillator is strobed by impulses in the

driving signal.

Assume a signal generator with period g, that generates a driving signal (a discrete
series of impulses). Let T; be the times at which the driver fires and let ¢; be the times at
which the driven oscillator fires, equivalent to the series of ¢ ’s generated by the oscillator
of the previous chapter. Let ¢j be the phase of the driven oscillator at which the driver fires.

When ;<T;<t;, |, the phase of the driven oscillator at time T; (the j’h signal impulse) is

given by Equation 11. This situations is shown in Figure 33.

i+ 1
9, = ] 7 (Eqn 11)
time 7; —
i T; Tii Aty g time Ty, —

livl
(after)

-g— At calculated here

Time

Figure 33: Stimulus impulse times, oscillator expected onset times and phase
tracking delta rule. Solid lines show the situation up to time T}, dotted lines show the

situation after time T}: the impulse causes a change in driven oscillator cycle length.
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Equation 3 can be rewritten to give the change to the next expected time (At; )

after the onset of the j impulse:

n,p
At = 2—11:sechzy(c0321t¢j-— 1) sin2m,. (Eqn 12)

Now, substituting into Equation | relevant values of the variables (¢ = TJ s b= i

from Figure 33), the phase of the driven oscillator at which the next impulse will occur is:

Tip— U HAL )
p

¢j+| = (Eqn 13)

Now, because the driver is periodic, TJ i1 = TJ + g, and Equation 13 can be rewritten as:

Ti—t; tq-At

Q1 = I
At;
q i+1
=¢.+=- Eqn 14
%*y " (Eqn 14)
and this gives the necessary solution:

o —¢+q—nlsech2( cos2md. — ) sin27o (Eqn 15
1l T Y ;ﬁ ycos q)_,' Y)Sm j qn )

There is an important difference between this circle map and the sine circle map.

Equation 15 is really an approximation. One cannot calculate the actual phases at which the

driver fires between i and i+ until after the i+ /%' firing of the driven oscillator, because in
fact p may change every time the driver fires — because the firing of the driver alters the
phase, and thus the period on that cycle. However, this circle map is appropriate for two

reasons. First, is an accurate portrayal of the operation of the system, because this
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approximate phase is the measurement of phase upon which the delta rule for phase-
tracking is based. Second, as the coupled system converges on a stable limit cycle, the error

in Equation 15 approaches 0.

There is an also important similarity between this circle map and the sine circle

map. Equation 15 has an important special case when y = 0. In this case,

sech? (Ycos21tq)j—y) = 1 and Equation 15 is the same as Equation 9, with the roles of
driver and driven reversed. In a sense Equation 15 can be thought of as an extension of the
sine circle map. An examination of the Arnol’d tongue diagram corresponding Equation 15

for values of Y > 0 (Figure 34, below) reveals the nature of this extension.

Rather than solving Equation 15 to analytically determine the boundaries of mode-

locked states (as in Figure 32A), this difference equation is repeatedly iterated for different
initial values of ¢/p and |, looking for limit cycles. This allows calculation of the number
of cycles required for the system to converge. This information is useful because in actual
cases the behavior of interest corresponds to the dynamical system’s transients, not to its
limit behavior. Thus, this information helps in understanding real-time performance. For
each of the following regime diagrams, I assume that the driver and the driven oscillator

initially fire together, so ¢, = 0.

Iteration of Equation 15 yields the regime diagrams of Figures 34, 35, and 36. These

figures show stable resonance modes for rational ratios, ¢/p such that p <8. Darker

regions correspond to regions of faster convergence. Each individual picture corresponds
to a different value of . Figure 34, the regime diagram for the coupled system with y = 0,

shows the relationship between this circle map and the sine circle map (compare Figure 34
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with Figure 32). Figures 35 and 36 show entrainment zones for T = 0.10 and T = 0.05,

respectively. As the diagrams show, the effect of shrinking T (increasing 7Y), thereby

shrinking the oscillator’s temporal receptive field. Zones of 0:1 and 1:1 entrainment shrink,
allowing widening of the regions corresponding to more complex ratios. This allows the

oscillator to acquire stable phase-locks in complex ratios with the input signal more easily.
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Figure 34: An empirical regime diagram for the phase-coupled model with y = 0.
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Figure 35: An empirical regime diagram for the phase-coupled model with
T = 0.10.
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7.2.2 Period-Coupling
In phase-coupled systems, the period of the driven oscillator is altered because its phase is
perturbed in every cycle. When the effect of the driving signal is removed, even for one
cycle, the driven oscillator reverts to its intrinsic period. When the driver returns, a number
of cycles may be required to reestablish phase lock. As discussed in previous chapters, this
behavior is insufficient for modeling musical beat: the oscillator model must also identify
and remember the beat period. The oscillator of Chapter VI does this with a period-tracking
delta rule that allows the driving signal to perturb the intrinsic period of the driven
oscillator. The period-tracking oscillator can model musical beat because when the driving
signal is removed, the oscillator continues at the driver’s frequency, “expecting” the
driver’s eventual return. The dynamical system for modeling beat perception is not simply

phase-coupled, it is also period-coupled.

Regime diagrams for the period-coupled system can also be developed by adding

the following equation to the model:

Py = pj+n2sech2(ycoszn¢j—y) sin2m¢;. (Eqn 16)
Equation 16 is derived from Equation 5, the period-coupling deita rule. Figures 37, 38, and
39 show resonance tongues for the phase- and period-coupled system for y=0, T = 0.10,
and T = 0.05, respectively. For easy comparison with Figures 34, 35, and 36, Equation 16
was added to the model with m, fixed at a value of 0.02, again varying 7, (from

Equation 15) along the y-axis. The entrainment regions for the phase- and period-coupled

system are larger than the corresponding regions for the simpler phase-coupled system.
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Period-tracking causes a widening of the resonance tongues. Therefore, not only does
period-tracking act as a sort of memory, as described in the Chapter VI, but it also enhances

the stability of the oscillator’s response in the presence of timing deviations.
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Figure 38: An empirical regime diagram for the period-coupled model, with
T = 0.10.
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Figure 39: An empirical regime diagram for the period-coupled model with
T = 0.05.
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7.3 An Efficient Algorithm
To create a state-space for studying the coupled system, it was necessary to assume
that driver was periodic. This was so that the state of the driver could be reduced to a circle
and a toroidal state-space constructed for the coupled system. However, the difference
equations derived for the circle map are actually quite general; only in actually calculating

(pj was it assumed that the driving signal was periodic. The driven osciliator was strobed

whenever there was an impulse in the input signal. Therefore, as a side benefit of deriving
the finite difference equations, an algorithm for calculating the oscillator’s behavior has
been created. Assuming that signal impulses and changes to the unit’s parameters are
discrete, this output of this algorithm is a time series that captures the unit’s behavior in

response to any signal, no matter how complex.

In this algorithm, line 4 is really just a version of Equation 12, and line 5 is really
just Equation 15. Lines 6 - 8 implement a adjustment to y by means of Q and <. The factor
s(f) can be added to the one or more of the delta rules if it is used to carry amplitude
information. The algorithm as presented here, however, assumes that s(f) = 1 for every

impulse, so its presence in the formula is redundant. This algorithm outputs discrete signals,
or beats, in lines 10 - i4. The floating point operations inside the first conditional are
executed only when a signal impulse is present, and inside the second conditional when the
oscillator fires. Hence this is an efficient algorithm, realizable in software in real time.
Running time is linear in the number of signal impulses, with constant determined by the

period of the oscillator.
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for ¢t from 0 to end-of-signal (1)
if (s(t)>0) then (2)
t-t,
¢=— (3)
t, tx+nl%sechzy(c032n¢—l) sin2md (4)
p(—-p+n22%-tsech2'y(c0321t¢—l) sin2nd (5)

Qe Q+n3sechzy(cos2n¢— 1) (cos2md + 2ytanhy (cos2m¢p — 1) sin221t¢) 16)

T Tpae T 0.5(T; =T, (1 + tanhQ) (7)
)

Y& cosamT—1 (8)
endif; (9)
if (t=t¢t,) then (10)

t et +D (11)

decay Q (12)

generate a beat ; (13)
endif; (14)

endfor; (15)

7.4 Discussion

In this chapter a dynamical system model of beat perception was developed. To create the
model of the coupled system, it was assumed that the input signal consisted of isochronous
impulses. In fact, this assumption can be relaxed somewhat. For example, a finite-length
input signal could be looped, and loop time equated with cycle time. This is similar to
assumptions made for computing Fourier transforms for finite length signals (Oppeheim &

Schafer, 1975). The driven oscillator can be strobed by signal impulses to develop a circle
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map, because impulse times and phases are known in advance. While such circle maps and
their associated regime diagrams can be interesting and useful, the next chapter will take a

different approach.

The interesting behavior of this dynamical system is not its limit behavior, but its
transient behavior. This is because music is not usually composed of precisely the same
rhythm looped indefinitely; it is composed of rhythms that change. Development of this
model yielded an efficient algorithm for simulating the behavior of the coupled system in
this general case. To study the transient behavior of this coupled system, it is not necessary
to calculate relative phase, but to simply calculate future firing times of the driven
oscillator. The next chapter will use this method to study the transient behavior of dynmical
systems that are created by coupling one or more oscillators to complex, temporally

structured input signals.



CHAPTER VIII

SOME EXPERIMENTS WITH THE OSCILLATOR MODEL

Chapter VII studied the dynamical system that was created by coupling the oscillator of
Chapter VI to an isochronous input signal. The behavior of the oscillator under the
influence of coupling was interesting. The regime diagrams of Figures 34 through 39
showed complex responses to isochronous stimulation at different frequencies. Those
diagrams, however, describe behavior that is simple by comparison with oscillators driven
by complex musical rhythms. Rather than creating a regime diagram for each dynamical
system created by coupling an oscillator to a musical rhythm, transient responses are
evaluated here by examining times series corresponding to the response of individual
oscillators to complex rhythmic patterns. Regime diagrams make predictions about the
limit behavior of such systems, but the behavior most useful for the processing of temporal
sequences is found in transient responses. These will allow study of how the oscillators

respond to music-like signals in real-time.

This chapter describes two experiments. In the first experiment, systems are created
by driving an oscillator with musical rhythms collected in the study of improvisational
performance, reported in Chapter III. Melodies pose a good test for entrainment models,
because they usually contain more rhythmic complexity than multi-voiced music. Bass
lines and harmonic accompaniment, for example, are often metrically regular, providing
more regular cues for entrainment than melodies. The driving signals are derived from

performances, and contain systematic timing deviations. The goal of this experiment was

154
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to determine how well an oscillator can track an individual event train in an input signal,
coping simultaneously with rhythmic complexity and systematic timing deviation. First
performances of notated melodies and then performances of improvised variations are

studied.

In the second experiment, stationary signals of varying levels of structural
complexity (nested rhythms and polyrhythms) were used to drive a system of oscillators.
The goal of this experiment was to determine whether it is possible to use a group of
oscillators to identify metric relationships in music-like stimuli. Rhythmic complexity and
temporal deviation were controlled for and the ability to identify metric relationships was
studied in isolation. Both hierarchically nested structures (2:1 and 3:1) and polyrhythmic

structures (3:2 and 4:3) were considered.

8.1 Performed Musical Rhythms

In this experiment, performances of notated melodies and performances of
improvised variations were studied separately, because they differed qualitatively in level
of rhythmic complexity, and they differed significantly in the magnitude of timing
deviations present. Performances of notated melodies provided a controlled level of
rhythmic complexity. Each melody contained three intended duration categories: sixteenth
note, eighth note, and quarter note. This makes it easy to see how the oscillator deals with
distractor events and missing event onsets. Improvised variations were rhythmically quite
complex, making use of syncopation, and up to seven levels of intended duration categories
(according to the transcriptions). These performances contain more distractors and missing
events, providing difficult test cases for entrainment. Both types of performance contained

timing deviations, making the task of tracking a single event train a challenging one.
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A single compound unit (described in Figure 6.3.1) attempted to track a single
pseudo-periodic event train in the performances. The response of the oscillator was
intended to model the perception of beats at some level in a metrical structure grid. For each
performance, the modal inter-onset interval (I10]) category was determined from the score

or transcription, and chosen as the target event train. The unit was initialized such that

¢ = 0 at the start of the performance, and p was equal to the initial IOI of the target event

train for that performance. The oscillator did not have to cope with finding initial phase or

period.

Figure 40 gives an example of the oscillator’s behavior as it tracks a performance
of Baa baa black sheep. The first panel (A) provides a notated version of the melody
(transcriptions of improvisations do not include grace notes or other ornaments) and a
single row of dots from a metrical structure grid marking the target event train. Notes that
are not marked by dots are to be ignored by the oscillator; dots that do not correspond to
notes mark times when events are “missing” from the target event train. Panel (B) shows
both input and output of the oscillator. The dashed lines show impulses in the input signal

(marking event onset times), and solid lines show when the oscillator outputs beats (¢ = £,).
These two lines overlap when a target event is performed at precisely the time predicted by

the oscillator, that is, at phase zero, ¢(f) = 0, of the driven oscillator. Amplitude of the

oscillator output is controlled by confidence, ¢, providing a way for the oscillator to

measure its own performance (Section 6.2.3.1 on page 125).
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Figure 40: An oscillator tracking the rhythm of Baa baa black sheep (rubato =
0.05, |¢| =0.08; R =0.34, p <0.05).
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Panels (C) and (D) each show the tempo curve for the performance as a solid line.

This curve was derived by extracting the target event train from the performance and
graphing IOI's for the target .events. This curve gives the 10I’s to which the oscillator
should respond. Panel (C) also shows the oscillator’s intrinsic period, adjusted by the
period-tracking delta rule throughout the performance as a dotted line. For this
performance, beginning at the initial tempo, the unit effectively calculates a local average
tempo, following performance tempo as the performer speeds up and slows down, based
only on eighth note onset times. Panel (D) shows actual observed cycle times of the
oscillator using a dotted line. Observed cycle time takes into account not only the intrinsic
period of the oscillator, but also the phase as it is adjusted by the phase-tracking delta rule
in each cycle. Thus, this curve represents the combined effect of the two delta rules given
by Equation 4 and Equation 5. Cycle time tracks the performance times much more closely
than period alone. The last panel (D) shows 7, the size of the oscillator’s temporal receptive
field, given as a percentage of oscillator period. At its lowest point in this performance, the
value of T is about 0.05. The curve is jagged, because each time the oscillator fires, the
value of Q (Equation 7) decays toward zero. The value of T and oscillator confidence (the

amplitude of the output beats) are inversely related. T determines which onsets the

oscillator will ignore.

Rather than examining the time series for each of the 60 performances, the
oscillator’s overall performance can be examined by computing summary statistics. The
statistics will provide a measure of how well the oscillator performs on average, and they
will help identify situations in which oscillator performance breaks down. Performance at
tracking events is measured as accuracy in predicting target onset times throughout a

performance. Phase of the driven oscillator at which target events occur is the appropriate
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numerical measure of performance at this task. This measure is consistent with the
dynamical system model of beat perception defined in the Chapter VII, that is, events in the
signal act as strobes of the driven oscillator. Also, this number provides a measure of

performance that can be compared with the measure of rubato collected in the initial study

of Chapter III.

In Chapter III, rubato was defined for each performed inter-onset interval as the
deviation from the average IOI for each IOI category in each performance. Comparison of
oscillator performance with the rubato measure can be thought of as comparing the
oscillator’s performance on the prediction tack with a simple default strategy. Given a
target event occurring at time ¢, predict that the next target event will occur at time ¢+ m,
where m is the mean IOI for the target event train in the current performance. This is not a
realistic strategy for predicting target event onset times, but it provides a baseline measure
of how well the oscillator might be expected to perform, given the amount of timing

deviation present in the performance.

To compare the measure of rubato with phase, the notion of phase must be modified
to create a measure of deviation from expected target event onset time. In the dynamical

system model, phase, ¢, was defined to vary from O to 1. For this study, a new measure of
phase, a), is defined that varies from -0.5 to 0.5. Zb< 0 when an event occurs earlier than

expected, a) >0 when an event occurs later than expected, and H)l can be used as a measure
of deviation from expected target event onset time (as a proportion of oscillator period). For

example, if the oscillator predicts a target event onset precisely, |E§)l = 0, whereas if a target

event occurs 180 degrees out of phase with the oscillator’s prediction (halfway through the
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oscillator’s period), |¢| = 0.5. This measure can be averaged over each performance and
compared with deviation from mean tempo, as a measure of the oscillator’s performance

on the tracking task. Thus, this measure is comparable with the rubato measure.

To assess the performance of the oscillator more carefully, a measure that evaluates
unit performance on an event-to-event basis (in real time) is also necessary. Observed
oscillator cycle times can be compared with actual performed IOI's, shown together in
panel (D). Correlations between cycle times and target IOI's measure how closely cycle
times track actual IOI’s in real time. Significant correlations show that the oscillator is

tracking near-optimally, while nonsignificant correlations indicate some difficulty.

Figure 40 showed an example of the oscillator tracking a notated performance well

(rubato = 0.05, I—ZEI = 0.08; R? = 0.34, p < 0.05). In the following analyses, summary
statistics will be used to tally cases in which the oscillator’s performance is roughly
comparable to performance in Figure 40. Difficult cases are then identified and examined
in detail to learn how performance breaks down, and under what circumstances. First
performances of notated melodies and then performances of improvised variations are

considered.

8.1.1 Performance of Notated Mclodics

In each of the notated melodies, there were three IOI categories, corresponding to sixteenth
note, eighth note, and quarter note durations. The modal duration category (eighth notes in
each melody) was chosen as the target to test oscillator performance. Sixteenth note IOI's
corresponded to distractor events, and quarter note IOI's corresponded to “missing” onsets

in the target event train.
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The unit was exposed to thirty melodies collected in the initial study - five

performances each of three melodies by the two pianists included in the timing analyses of

Chapter III. H>| was averaged over each performance, yielding m as a measure of the
oscillator’s performance in the tracking task. An analysis of variance (ANOVA) was
conducted with factors melody, pianist, and analysis type (rubato vs. phase). The ANOVA
showed a main effect of analysis type (F(1, 4) =27.73, p < 0.01), with mean rubato = 0.05,
and average phase = 0.06. This shows that for these performances, the oscillator did not

perform as well as the baseline strategy of predicting the next target event onset time based

on mean IOI for the target event train. This value of |Zb| , however, indicates that on average

the oscillator is tracking the target event trains well. The ANOVA also showed a significant
main effect of subject (F(1,4)=11.19, p < 0.05). To assess the performance of the oscillator
more carefully, observed oscillator cycle times were compared with actual performance
times. Correlations between oscillator cycle times and performed IOI's within each
performance were significant (p < 0.05) for 22 out of the 30 melodies. The eight cases in
which the correlations were not significant are cases in which the unit may be having
difficulty tracking the signal. These difficulties are examined by investigating two

representative cases.

8.1.1.1 Case |
Figure 41 is one such case, a performance of Hush little baby (rubato = 0.07,

H)l = 0.04; R? = 0.32, p = 0.29). In this case, there is a disparity between statistical

measures of performance. The low value of H)I shows that the oscillator is doing well

predicting event onsets, yet the correlation is not significant, indicating difficulty in point-

to-point behavior. The figure shows how this can happen. The tempo curve for the second
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half of the performance, shown in panels (C) and (D), reveals timing deviations that strictly
alternate: slower, faster, slower, faster. Panel (C) shows that the period tracking delta-rule
it is getting mixed signals, and the period curve remains basically flat. Panel (D) shows the
effect of this pattern on observed cycle times. Cycle times are always one step behind the
performed durations because changes to the oscillator’s phase in the current cycle affect
cycle time in the following cycle. In this case, timing deviations were “jagged,” so when
performed duration increased, cycle time decreased and vice-versa. Seven of the eight
difficult cases match the profile of this case. Correlations between cycle times and target
event IOI's were low, however average phase values were good showing that, as in this
case, the oscillator successfully tracked the target event trains, doing a good job of

predicting target event onsets.
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Figure 41: An oscillator tracking the rhythm of Hush little baby (rubato = 0.07,

o = 0.04;R?=0.32, p=0.29).
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8.1.1.2 Case 2

In 1 case out of 30 performances average phase was high and correlation was low,
(rubato = 0.07, |¢| = 0.20; R? = 0.39; p = 0.18), indicating true difficulty in tracking the

target events. The largest value that |i)| can assume is 0.5, when a target event onset occurs

at anti-phase with the oscillator’s pulses. Thus, this high value of average phase indicates
that the unit had some difficulty tracking the target event train. Figure 42 shows what the
difficulty was. At the end of the first half of the melody, the oscillator has done a good job
of estimating period (panel (C)), but the first note of the second half comes in at nearly anti-
phase from the oscillator pulses. For the next three cycles, the oscillator preserves this anti-
phase relationship with the target event train; this is the source of the high value for average
phase. On the third cycle, the oscillator performs a perceptual shift (a sudden 180 degree
change in phase, as described in Chapter VI). The perceptual shift can be seen as a dramatic
drop in observed cycle time in panel (D). After the shift, the oscillator successfully tracks

the remainder of the performance.

Timing deviations in which the performer enters out of phase from the output pulses
present a difficulty for the oscillator. The difficulty arises because target events occur at
times when the oscillator has decided to ignore event onsets. The unit is able to recover

because it can perform a perceptual shift. The value of T rises (due to Equation 8, also due
to decay of ), accompanied by a drop in confidence, allowing the shadow unit to take over

(see Section 6.3.1 on page 128). Thus, this case presents a difficult situation for the

oscillator, but one from which it can quickly and gracefully recover.
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Figure 42: An oscillator tracking the rhythm of Hush little baby (rubato = 0.07, H)I
=0.20; R2=0.39; p = 0.18).
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8.1.2 Performance of Improvised Variations
Next, the oscillator’s performance in tracking the improvised variations was examined. The
improvisations provided a more difficult situation than the performances of notated
melodies for two reasons. The rhythms of the improvisations were more complex than the
rhythms of the melodies, and the improvisations showed significantly greater timing

deviations than did the performed melodies.

The oscillator was exposed to thirty improvisations collected in the initial study —
five improvised variations on three melodies by two pianists. An analysis of variance
(ANOVA) was conducted with factors melody, pianist, and analysis type (rubato vs. phase).
The ANOVA showed no main effect of analysis type (F(1, 4) = 0.005, p = 0.947), with
mean rubato = 0.10, and average phase = 0.10. This result shows that for these
performances, the oscillator does as well as the baseline strategy. Thus, on average the
oscillator is tracking the target event trains well. The ANOVA also indicated a significant

interaction of melody and subject (F(2, 8) = 4.0, p < 0.05).

To assess the performance of the oscillator more carefully, observed oscillator cycle
times were compared with performed IOI’s. Correlations between oscillator cycle times
and performed IOI's were significant (p < 0.05) for 13 out of the 30 melodies. Out of the
17 nonsignificant results, seven melodies resembled Case 1 from the previous study, in

which there was some lag between observed cycle times and performed 10I's, yet the

oscillator tracked its target easily (H>| <0.10). This left 10 cases in which the unit had true

difficulty in tracking its targets. These cases fell into three groups, Pianist 1’s
improvisations on Mary had a little lamb (Case 3), Pianist 2’s improvisations on Hush little

baby (Case 4), and Pianist 2’s improvisations on Baa baa black sheep (Case J).
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8.1.2.1 Case 3

Pianist 1’s improvisations on Mary had a little lamb were performed in a freely

timed blues style. The first improvisation had the highest rubato score (rubato = 0.25),

highest average phase (|(~1>| = (.17), and the second worst correlation (R2=O.04, p=0.87).

The oscillator’s behavior in this case was representative of its performance on this group of

melodies, so it was chosen for further study.

The time series corresponding to the performance of the oscillator are shown in
Figure 43. The tempo curve indicates the presence of large timing deviations at several
points in the melody. Points of particular difficulty are around t = 3000ms, t= 8000ms, t=

16000ms, t= 18000ms, and t = 23000ms. At these points, T rises (correspondingly,

confidence drops) allowing the oscillator to continue to track the target in spite of the large
deviations. In three of these cases the compound unit responds to difficult timings with

perceptual shifts.

In spite of these difficulties, however, the figure shows that the oscillator did a good
job of tracking its target event train in this rhythm. Beats are output at approximately the
correct times throughout the piece ~ the oscillator is not lured away by the many distractor

events in this rhythmically complex performance. Another way to see this is to note that the

value of average phase (l&)l = 0.17) is lower than the rubato measure (0.25). Additionally,

oscillator confidence is high for large sections of the piece; by the oscillator’s internal

measure its performance is good.
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Figure 43: Oscillator tracking an improvisation on Mary had a little lamb (grace
o = 0.17, R%=0.04, p = 0.87).

notes are not transcribed; rubato = 0.25,
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8.1.2.2Case 4

The next challenge was posed by Pianist 2’ improvisations on Hush little baby.
These improvisations were the most varied of all the improvisations studied here and made
heavy use of rubato. The improvisation that proved the most difficult for the model to

handle, the third variation, was chosen for further study. This improvisation made the
greatest use of rubato and had the highest average phase, (rubato = 0.16), |Zl>| = 0.30) and

the second worst correlation (R?=0.04, p=0.22). These numbers suggest extreme difficulty

in tracking.

Figure 44 shows the actual time series corresponding to the performance of the
oscillator. Throughout this improvisation the performer makes use of the sort of “jagged”
rubato seen in Case 1, above. In the current case, however, the amount of rubato is so large
as to pose a serious difficulty for the model. The event at time t = 1800ms is very early
(almost anti-phase) the confidence of the unit decreases. By the downbeat of the second full
measure, a perceptual shift takes place. This situation repeats itself until nearly the end of
the performance. Toward the end the performer regulates the timing, and the unit finally

begins to pick up confidence.

In spite of these difficulties, the oscillator did track this performance, but in an odd
way. Beats are output at approximately the correct locations throughout the piece. The
oscillator’s confidence is consistently low, however, because there is so much temporal
deviation. This represents the limiting case for the model: beats are output in the more-or-
less correct locations, but the oscillator’s internal measure of performance is low. Thus, the

performance is limited for large, “jagged” timing deviations.
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Figure 44: Oscillator tracking an improvisation on Hush little baby (rubato = 0.25,
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8.1.2.3Case 5

The final challenge to the model was posed by Pianist 2’s improvisations on Baa
baa black sheep. Three of these five improvisations have moderately low correlation
scores. The most difficult case was given by the final improvisation. The final

improvisation had largest timing deviations, the highest average phase and a moderately

low correlation score (rubato =0.39, [¢| = 0.20; R%=0.20, p = 0.09). This improvisation is

different from the others, however, because of the source of the timing deviations: timing
errors. Timing errors were defined as situations in which the trained analysts were not
confident in the transcriptions they prepared; they thought they were forced to make
guesses about what the performers intended. According to this definition, performance
errors occurred in three of the improvised variations. As discussed in Chapter III, these data

were retained because they provide a valuable source of real-world noise in the test data.

The behavior of the model in response to this improvisation is shown in Figure 45.
Because this performance is so long and complex, only the final two-thirds of the
performance are shown, and no transcription was prepared for the figure. The large timing
deviations between t=18000 and t=20000ms, between t=23000 and t=24000ms, and again
between t=28000 and t=30000ms are timing errors. In the first and third errors, the

performer appeared to stumble over the complex ornaments he was improvising; the

second error was a pause.

In spite of these large deviations, the oscillator tracked this performance well.
Average phase was high due to temporal deviations, but correlation approaches
significance, indicating some success in point-to-point tracking. T increases and confidence

drops when deviations occur, but when the timing recovers the oscillator correctly picks up

the target event train, and confidence grows again.
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8.2 Discussion
These analyses suggest that the compound oscillator, coupled with complex, non-stationary
rhythms that arise from musical performance, may adequately model the perception of
musical beat. In 49 out of 60 cases, the oscillator tracked performed rhythms well. In 11
cases, difficulties were encountered. These difficulties were caused by large temporal
deviations, stemming from three sources: heavy use of rubato including ‘phase-shifts’
(Cases 2 and 3), jagged rubato curves from alternating shortened and lengthened durations
(Cases 1 and 4), and actual timing errors (Case 5). In every case but one (Case 4) the
oscillator still tracked adequately, outputting beats at appropriate times, although
sometimes with temporarily lowered confidence. In Case 4, the oscillator still output beats
at correct times, but with consistently lowered confidence. Jagged rubato forced the unit to
maintain a high value of T to track the performance, and because confidence was defined
to have an inverse relationship with T, the unit was not able to recognize that it was
outputting beats at the correct times. Overall, the oscillator performed very well in tracking
complex melodies with no information other than event onset times. Melodies may be the
most difficult case for an entrainment model, because they tend to provide fewer reliable

cues to entrainment than accompanied melodies.

8.3 The Perception of Metric Relationships

The next experiment investigated the usefulness of the oscillator in modeling the
perception of metrical relationships. The response of a system of oscillators to stationary
rhythms of varying levels of structural complexity (hierarchical and polyrhythmic metrical
structures) was examined using four input signals. Each signal was composed of two

isochronous event trains. Input amplitude corresponding to each event was arbitrarily set to
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1, and signals corresponding to the two events trains were summed. Thus, when input

events co-occurred amplitude was equal to 2. Figure 46 shows the four test signals in

schematic.
[ [ [ [ [ J [ ] [ ] [ [ [ [ J ® [ [ J
® ® . . . . ™ ° .
2:1 32
[ [ ] [ [ ] @ [ [ e © o o o o o o o
° ° ] . [ ) . ® ® )
31 4:3
Nested Rhythm Polyrhythm

Figure 46: Four test case for Experiment 1: two simple ratios, and two
polyrhythmic ratios.

A system of oscillators with different resting periods was used. Such systems are
useful for self-organizing metrical responses to rhythmic stimuli (Large & Kolen, in press).
The resting periods of the oscillators in the system were defined such that the system

spanned two octaves with two oscillators per octave, according to the relationship:

Piv1 = 2%. Next, each oscillator’s period range was limited by allowing the period of

each oscillator to decay back toward its resting period. The resting periods of the four

oscillators were 240ms, 339ms, 480ms, 720ms, respectively and the following parameters

were used for each oscillator n, = 1.0,m, = 02,1, = 0.3. Each oscillator responded

independently to the signal. Attime ¢ = 0 each oscillator had ¢ = O.
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The first rhythm was constructed using an inter-onset duration of 240ms for the first

event train and 480ms for the second event train, giving a simple 2:1 rhythm. Figure 47
shows the response of Units 1 and 3 (the two oscillators with the appropriate period ranges)

for this rhythm. As shown in the figure, the units’ response pattern mirrors the 2:1 pattern.
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Figure 47: Response of Oscillators 1 and 3 to a 2:1 rhythm.
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Next, a 3:1 pattern was constructed using inter-onset durations of 240ms and 720ms.

In this case Units 1 and 4 have the appropriate period ranges, and their response is shown

in Figure 48.
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Figure 48: Response of Oscillators 1 and 4 to a 3:1 rhythm.
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Next polyrhythms were tested. The first polyrhythm was constructed using inter-
onset durations of 240ms and 360ms, yielding a 3:2 pattern. Figure 49 shows the response

of Units 1 and 2.
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Figure 49: Response of Oscillators 1 and 2 to a 3:2 polyrhythm.
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Finally, a 4:3 polyrhythm was constructed using inter-onset durations of 240ms and
300ms. Figure 50 shows the response of Units 1 and 2, again displaying the appropriate

phase and period relationships.
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Figure 50: Response of Oscillators 1 and 2 to a 4:3 polyrhythm.

Figure 50 shows output strength for each oscillator, for each rhythm. This figure
shows that oscillators with inappropriate period ranges have lowered output confidence.
This simple system of units has correctly parsed these four structural relationships. The
figure also shows that the more complex the rhythm, the more difficult the lock is to acquire

between the rhythm and the responding oscillators.
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The results of this study confirm the implications of the regime diagram analysis of
Chapter VII. Appropriately constructed networks of oscillators can parse metrical
structures, not only for simple hierarchically nested structures, but also for more complex
polyrhythmic structures. The response of the system also suggests a type of perceptual
prediction made by the model: that more complex polyrhythms are less perceptually stable.
For example, this model predicts that time discrimination for polyrhythms may be more

difficult than for simple hierarchically structured rhythms (cf. Yee, Holleran, & Jones, in

press).

8.4 Discussion

Previous chapters introduced and developed a dynamical system model of beat
perception. The goal of this chapter has been to determine the suitability of the model for
explaining beat perception and meter perception in complex musical rhythms. Three types
of complexity found in music performances provided challenges to oscillator performance:
rhythmic complexity, timing deviation, and structural complexity. Two experiments

assessed the ability of the model to cope with these difficulties.

The first study addressed rhythmic complexity and timing deviation in music
performance, at two levels of difficulty: performances of simple melodies and more
temporally complex improvisations. At both levels the model performed well, tracking
beats with little difficulty. Melodies (single musical voices) are a difficult case for the
entrainment model, because they usually provide fewer cues for entrainment than
accompanied melodies. The results are also interesting because signal impulses did not
carry amplitude (accent) information; the markers of the oscillator’s target event train were
not distinguished from other impulses. Thus, entrainment can occur even when

phenomenal accent information is missing, ambiguous, or misleading.
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The second study dealt with the issue of structural complexity. A network of four

units was exposed to stationary rhythms of varying structural complexity, 2:1, 3:1, 3:2, and
4:3. The network demonstrated appropriate behavior for each rhythm. Co-occurrence of
events was represented in the input using amplitude information. Oscillators whose range
contained a periodicity of the input rhythm tracked the corresponding event train, and
confidence increased. Oscillators whose range did not include a periodicity of the input
rhythm decreased in confidence, turning themselves down or off. The system of oscillators
demonstrated the ability to entrain both to simple harmonic rhythms and to dissonant
polyrhythms. Entrainment modes corresponding polyrhythms were marked by longer-
lasting transients and lower oscillator confidence once entrainment was achieved. This
shows that when amplitude information is available an oscillator may use it to boost its
confidence. Such behavior can be exploited to allow a system of units to parse the meter of
complex signal. The oscillator can use amplitude information when it is available, although

it does not depend upon it for entrainment.

One difficulty arises in cases in which very large timing deviations require high
values of T so that the oscillator may track the target events adequately. The difficulty arises
because confidence, ¢, is inversely related to T, and the oscillator’s internal measure of
performance is low. In certain musical situations the resulting behavior may be
inappropriate. However, the relationship between T and ¢ seems appropriate given the
restricted context of the model (temporal relationships). Perhaps an oscillator such as this,
embedded in a larger temporal sequence processing context could contribute to appropriate
behavior. If the oscillator were coupled with a network making predictions about what

events were to occur, for example, performance at the sequence prediction task could be

used to boost the system’s internal measure of performance. This could be achieved by
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coupling this oscillator with a strategy for on-line adjustment of processing parameters for
learned sequences (e.g. Cottrell, Nguyen, & Tsung, 1993). The combined system would
show greater tolerance for timing deviations in learned compared to unlearned sequences.
This represents a more complex strategy than simply using amplitude information, but may

be useful in certain contexts.

In summary, these results strongly support this dynamical system model as one that
may have sufficient power to explain the perception of beat and meter in music
performance. The model can parse simple metrical structures, as well as polyrhythmic
structures. In addition, it can handle rhythmic complexities and temporal deviations
associated with musical performance and improvisation. The model does not fall into the
trap of phase-locked loop models, in which a subset of events must first be marked as
accented or stressed before entrainment can take place. The oscillator can flexibly
incorporate additional information (e.g. accent) to parse metrical structures, but it does not
depend on such information for its basic operation. Thus, this model may be suitable for
use in combination with other temporal sequence processing strategies to provide temporal
structure information that can be used to bootstrap learning of complex, temporally

structured sequences.



CHAPTER IX

IMPLICATIONS: MUSIC COGNITION AND BEYOND

The goal of this dissertation has been to understand how complex, temporally
structured sequences may be coded as patterns of activation in artificial neural networks.
The domain of the studies reported here was music, and simulation results were evaluated
with data from skilled music performance. Two questions were addressed. The first
question addressed the acquisition and representation of structural relationships among
sequence events. A model of sequence coding was proposed that captured relative
importance among sequence elements. The second question addressed the representation
of temporal relationships among events. A model of entrainment was proposed, from which
a dynamical system model of beat perception and a simple model of meter perception were

developed.

9.1 The Basic Findings

9.1.1 Computing Structural Descriptions for Musical Sequences

The model of structural relationships focused on computing reduced distributed
representations that captured a specific type of relationship among sequence elements, the
relative importance of events. Phenomena such as style acquisition and the recognition of
musical variation can be explained by positing such mechanisms. The reduced memory
descriptions computed for melodies resulted from encoding and decoding mechanisms that

compressed and reconstructed the musical sequences. These mechanisms led to reduced

183
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descriptions similar to those predicted by reductionist music theories. This type of memory
representation abstracts and summarizes sections of musical material, extracting what
Dowling and Harwood (1986) call the “gist” of a musical sequence. The reduced
representations are suitable for manipulation by other neural-style processing mechanisms,
and therefore may be useful for modeling musical activities such as expectation,
improvisation, and sequence recognition. A general learning algorithm (backpropagation)
provided an example of how the knowledge for computing reduced memory descriptions
may be extracted from a learning environment, addressing an important challenge to
reductionist theories. These findings support reductionist theories of music comprehension,
suggesting that the computation of musical reduction may not be an end in itself; rather, it

is a natural result of the construction of memory representations for musical sequences.

Agreement was found among evidence from improvisational music performance,
the model of reduced memory representations, and theoretical predictions regarding the
relative importance of musical events. These findings support the psychological
plausibility of reductionist theories of music comprehension. The fact that musical events
were weighted similarly in musicians' choices of events to retain in improvisations,
network encodings of the same melodies, and theoretical predictions of relative importance
suggests that recursive distributed representations capture relevant properties of humans'

mental representations for musical melodies.

9.1.2 Dynamic Representation of Temporal Structure
The model of the dynamic representation of temporal structure was based on a
simplification of the dynamic attending hypothesis (Jones, 1976), called the entrainment

hypothesis. The entrainment hypothesis proposes that a basic mechanism of time
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perception is entrainment of perceptual processes to pseudo-periodic components of
rhythmic patterns. An oscillator was proposed that synchronizes its behavior to rhythmic
patterns. The oscillator responds to event onsets that occur within a temporal receptive
field, and ignores stimulus pulses that occur outside this field, enabling it to isolate pseudo-
periodic components of complex rhythms. A number of such processes may be composed

to reverse-engineer the structure of motor programs to reconstruct perceived rhythms.

Based upon the oscillator model, a dynamical system was constructed to model beat
perception, revealing complex dynamics. The oscillator can mode-lock to a periodic
stimulus in any one of an infinite number of rational ratios. Tuning of the oscillator’s
temporal receptive field has the effect of adjusting the relative stability of various mode-
locking regions. Large temporal receptive fields result in a preference for simple ratios.
Finely tuned regions allow more complex ratios. These properties have important
implications for any theory of temporal structure that includes entrainment as a primary
component. Regime diagrams summarize the content of an entrainment theory regarding
the well-formedness of temporal structures. Simulation of oscillator responses to complex
polyrhythmic ratios, and to rhythmically complex, non-stationary rhythms derived from
musical performances showed the robustness of the entrainment approach to meter
perception. Unlike previous theoretical and computational approaches, this model is well-
suited to handling rhythmic complexity, timing deviation and structural complexity in real-
time. The success of the model, as tested so far, provides strong support for models of meter
perception and temporal expectancy that implicate entrainment as the basic mechanism for

the perception of temporal structure.
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9.1.3 Sequence Structure and Temporal Structure
The RAAM network model of sequence representation used knowledge of temporal
structure to efficiently encode of sequence structure. The network’s chunk-and-recode
strategy allowed it to successfully represent the long, complex sequences found in
melodies. In addition, reduced descriptions produced in this way captured an important
form of structural relationship among sequence elements, the relative importance of events.
Knowledge of temporal structure was exploited by the network to extract stylistic
regularities that are systematically related to relative timing relationships. The network
learned relative importance because each position in its input buffer corresponded to a
metrical grid location, and the network used a dedicated set of weights for each position.
This strategy made the network sensitive to relative timing relationships in a unique way.
The entrainment model provided a way to identify such structure in complex temporal

sequences.

9.2 General Significance

9.2.1 Connectionist Temporal Sequence Processing

The entrainment model of beat perception focused exclusively on temporal
processing issues, yet it was motivated from the point of view of temporal sequence
processing. This model, interpreted in light of the results of the neural network simulation,
suggests a way to build rate invariant temporal sequence processing networks. Current
connectionist approaches address this issue by using a system of short term memory delays
to explicitly capture temporal context (Lang, Waibel, & Hinton, 1990; Unnikrishnan,
Hopfield & Tank, 1991; Bodenhausen & Waibel, 1991; de Vries & Principe, 1992). Delays

may be hardwired or learned during batch training, but during processing they remain fixed.
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The problem with a fixed memory delay solution for music processing, however, is that
timing in music is too flexible. Musical signals display large, systematic deviation from
timing regularity. Cottrell, Nguyen, and Tsung (1993) have addressed this problem using a
recurrent network that controls its own processing rate by adapting time constants and
processing delays. The drawback of this approach is that it applies only to learned

sequences.

The oscillator responded flexibly and on-line to changes in presentation rate without
needing to memorize sequences in advance. This behavior was enabled by the fact that the
oscillator ignored the sequence content (events), dealing only with rhythm. Therefore, this
strategy is applicable both to learned and unlearned sequences. Such behavior might be
applied to adjust of neural network short term memory parameters on-line. Memory delays
implemented as resonance-based components, for example, could adapt to the rate of
rhythmic signals by tracking pseudo-periodic components of rhythmic sequences. Using
several oscillators, the actual structure of short term memory could adapt to reflect the
temporal organization (e.g. the metrical structure) of an incoming signal. Thus,
entrainment-based memories provide a novel approach to the problem of rate-invariance in

temporal sequence processing.

9.2.1.1 Oscillation and Synchronization in Dynamic Feature Binding Networks

Phase-locking phenomena have been of interest in the connectionist community for some
time, especially since the discovery of oscillations and synchronization behavior in the cat
visual cortex (Eckhorn, et. al., 1989; Gray, et. al., 1989). It has been proposed that the
oscillations of neurons in the cat visual cortex phase-lock to establish relations between

features in different parts of the visual field (Gray, et. al., 1989). It has further been
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suggested that the brain could be using synchronized oscillations as a general method of
solving the binding problem (von der Malsberg, & Schneider, 1986). Phase-locking may
add an extra degree of freedom to neural network models, so that several different entities

may be represented simultaneously using the same set of units, each by a different phase in

an oscillatory cycle.

The use of oscillation reported here differs from that proposed in the literature on
neural feature binding. First, work on neural feature binding focuses mainly on
synchronization among a population of oscillators (Wang, in press b). The current work
focuses upon the synchronization of internal perceptual processes with complex external
rhythms. Second, rather than using coupled oscillations to describe a neural strategy for
performing an implementation-level operation such as feature binding, the entrainment
model used synchronization to describe how the brain may execute the relatively high-level

cognitive functions of beat and meter perception.

The neural feature binding literature may offer insight into neural implementation
of the proposed mechanism, however. For example, a pair of units could produce the
oscillatory behavior of interest (e.g. Wang, 1993). McAuley (1993; 1994), who has also
proposed entrainment models for the perception of rhythm, has suggested that behavior
relevant to this task, including period-tracking, may be found at the single neuron level.
These possibilities are intriguing; however, I have proposed a functional approach, not an
implementation-level strategy. Therefore I assume that the abstract, functional oscillators

represent higher levels of abstraction than individual neurons. The behavior of the abstract
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oscillators may be plausibly regarded as the emergent behavior of a wide range of possible
brain structures from simple neuronal substructures to large networks of oscillatory

neurons.

9.2.2 Speech

The above discussion raises the possibility that the mechanisms proposed for music
processing may be applied to the processing other complex signals such as of speech.
Rhythmicity has been difficult to identify in natural language, but appears to exist
perceptually (Lehiste, 1977). There are two complexities in musical rhythm that bear upon
this problem. The first is the temporal deviation in music performance; the components of
musical rhythms change frequency. Thus strict timing does not usually exist in music either.
The second is rhythmic complexity, including syncopation. Ideally phenomenal accents in
music correspond to strong metrical locations, but interesting music is not usually
composed in this way. Stressed events are placed in weak metrical locations to create

interest.

Perceptual isochrony in language may be modeled much as beat perception in
music. Perhaps it could be modeled by the same dynamical system proposed here for beat
perception in music. As a preliminary test of this hypothesis I exposed two oscillators to a
time-series of impulses from a digitally sampled acoustic signal of read speech. The signal
was reduced to a series of impulses using a one-dimensional version of an edge-detection
algorithm that is common in computer vision applications (Marr & Hildreth, 1980, N.
Todd, 1994). The edge detection algorithm found the onset of events that corresponded to
syllables, marking some, but not all of the syllables in the spoken excerpt. The algorithm

identified mainly stressed syllables, but there were exceptions.
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Figure 52 shows the response of the oscillators to this input. Output amplitudes

show that the oscillators tracked two pseudo-periodic components confidently. The output
pulses provide the type of information necessary for time-warping in speech recognition.
They also provide information about systematic timing deviations, useful for syntactic and
semantic processing of the speech signal (Lehiste, 1977; Cutler & Mehler, 1992). When
one listens to this example, one is struck by the complex polyrhythms that can be heard
against the taps provided as the outputs of the oscillators. Although this little more than
anecdotal evidence, it presents intriguing possibilities for future work.This dynamical

system model may provide a novel method of measuring the periodic structure present in

the rhythm of speech.
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9.2.3 Motor Coordination
Many activities, including rhythmic hand movements, cascade juggling, and piano
performance are consistent with mathematical laws governing coupled oscillations (e.g.
Kelso & deGuzman, 1988; Schmidt et. al., 1991; Treffner, & Turvey, 1993; Shaffer, 1981;
for a review of models see Beek, Peper, & van Wieringen, 1992). Studies of motor control
often assume (even rely on the fact) that subject are able to synchronize with external
signals (e.g. Kelso & deGuzman, 1988), but mechanisms for learning and adaptation have
been less widely studied (but see Zanzone & Kelso, 1992). Thus, one difficulty with this
approach to motor control lies in explaining how perceptual systems cope with rhythmic

complexities in entraining to rhythmic signals.

The entrainment mode! addresses this problem. This approach treats the object of
meter perception as a motor program. An analysis of coupled oscillation uncovered
mathematical constraints on the perceptual model that are consistent with the motor
constraints posited in the coupled oscillator approach to motor control (Kelso &
deGuzman, 1988; Treffner, & Turvey, 1993; Beek, Peper, & van Wieringen, 1992). The
perceptual system may cope with rhythmic complexities by adjusting entrainment
parameters that, in effect, adjust the size and stability of mode locking regions seen in
regime diagrams (Chapter VII). These perceptual constraints provide an efficient way to
perform the task of reverse engineering motor programs through self-organization. Thus

this perceptual work supports coupled oscillator theories of motor coordination.
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9.3 Future Work
The approach to understanding structural descriptions for musical sequences
presented here has some limitations that highlight the need for further work. One regards
the choice of musical materials in the empirical studies of Chapter' IIL. For one thing, the |
use of musical materials as simple as these melodies leads to some difficulties in
interpreting the network findings. It is not clear whether the network's representational
capability at global structural levels was limited by the network architecture or by the
choice of training materials. In addition the relationship between metrical accent and time-
span reduction predictions of importance were not controlled; the restriction to a small set
of musical materials makes it difficult to determine how the network learns relative
importance independently of metrical accent or how one might model these structural
relationships in more complex forms of music. Thus, it is difficult to say precisely what
structural relationships the RAAM model is capable of learning. Further study might use
training and test melodies that control for interactions among structural relationships (cf.

de Vries & Principe, 1992).

Another possibility for further work concerns the design of neural network
architectures. One constraint of the RAAM architecture is the requirement of an external
stack control mechanism for handling intermediate results during encoding and decoding
(Pollack, 1988, 1990). In addition, the model requires a fixed-structure input buffer to
exploit temporal information, such as metrical structure. The entrainment model presents

the possibility that more flexible, self-organizing short term memory structures may be
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designed to make use of temporal structure in sequence processing. One possibility is that
recurrent network architectures might be adapted to exploit temporal information in a more

flexible way using entrainment based short term memory designs.

A primary goal of the oscillator model was to understand the implications of
entrainment for the perception of metrical structure. The oscillator’s ability to entrain to
signals regardless of the nature of events was emphasized. However, accent in music is
important for the perception of meter. The second experiment of Chapter VII suggested one
way accent could be incorporated into the model: as the amplitude of input pulses.
Amplitude may be used to increase oscillator confidence, allowing a group of units to parse
metrical structures. This is an interesting possibility; however, use of such a strategy would
require a theory of phenomenal accent. One possibility N. Todd’s (1994) rhythmogram
model. Using a direct temporal analog to the 2 operator for spatial edge detection (Marr
& Hildreth, 1980; Marr, 1982) Todd’s system simultaneously carries out auditory edge
detection at multiple time scales. The analysis yields onsets times and accent strength,

precisely the type of information needed to drive the oscillator model.

The second issue for the perception of musical meter is that of network
construction. I have concentrated on the behavior of individual units responding
independently to rhythmic patterns. One would expect individual units within a network to
interact, responding to the outputs of other units in the network. The important question is:
Could a stable response emerge from such a network subjected to a musical event
sequence? Analysis of the single oscillator case suggests that subsets of units in a loosely

coupled network could self-organize a coherent response to a rhythmic input signal. The
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interaction would instantiate metrical well-formedness constraints. The challenge facing
this approach is to determine the nature of the interactions. I leave the issue of network

construction unresolved, and regard this as an important area for future exploration.

Finally, discussion of the entrainment model emphasized applications to rate-
invariant temporal sequence processing. In a sequence processing context oscillator
performance may also improve. In some difficult situations, the oscillator was able to track
the rhythm of the input signal, but variability was so high that oscillator confidence (the
oscillator’s internal measure of performance) was low. Within a sequence processing
framework, predictions of what events are to occur might also be used to affect confidence.
Successful prediction of what is to occur next could help make up for high variability in
performance timing. A strategy such as Cottrell, Nguyen, and Tsung’s (1993), of adapting
processing rate according performance at sequence prediction, might be incorporated into
delta rules to affect phase and period adjustments. In this situation, learning would proceed
by a kind of bootstrapping: in an unfamiliar domain the oscillator would control the
sequence processing network, and sequences would be learned in conditions of normal
timing deviations. As knowledge of sequence structure was acquired, networks would learn

to tolerate even very large deviations for known sequences.

9.4 Closing Thoughts

Lashley (1951) identified the problem of serial order, ... the logical and orderly
arrangement of thought and action,” as a central problem for those who ultimately wish to
describe the phenomena of mind in terms of the mathematical and physical sciences.
Lashley realized that the problem was not merely one of sequence processing. The temporal

structure of human perception and action implies that the temporal structure of neural
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computation is extraordinarily complex (Lashley, 1951). In this regard, the study of music
is invaluable to the understanding of neural computation. Music forces us to deal with all
aspects of time: time is so fundamental to music that it cannot be conveniently and
convincingly abstracted away. It may even be that composers and performers shape the
temporal structure of music to reflect and to explore natural modes of temporal organization

in the human nervous system.

For inherently temporal tasks, such as perception and motor coordination,
resonance may provide a more useful metaphor than general-purpose computation (Gibson,
1966; 1979; Treffner & Turvey, 1993). According to this view, the brain is treated as a
special purpose device, capable of temporarily adapting its function to specific perception-
action situations (Kelso & deGuzman, 1988). In perception, the nervous system may adapt
endogenous modes of temporal organization to external rhythmic patterns, controlling
attention and memory (Jones, 1976). Other connectionists have noted the fundamental
consonance of such dynamical systems approaches with modern connectionist cognitive
modeling (e.g. van Gelder & Port, forthcoming). This dissertation is offered in an attempt
to bring the two closer together to overcome the limitations of current connectionist
models. I have found music perception to be a fertile testing ground for this approach. The
current proposal attempts to explain the mechanisms underlying temporal adaptation in the
human response to musical rhythms. I believe that this approach will lead to more robust

and parsimonious theories of temporal sequence processing in artificial neural networks.
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