
1

Ghostscript Color

Management

M. J. Vrhel, Ph.D.

Color Scientist

Artifex Software Inc.

Abstract

This document provides information on a redesign of color management within

Ghostscript. Due to its long history of development, Ghostscript’s color management has

been heavily based upon PostScript Color Management. The new design is focused upon

an ICC workflow, which is common today in the printing community. The new design

provides significant flexibility for customization by 3
rd

 parties including the ability to

interface to other color management modules. This document provides an overview of

the architecture as well as usage and developer information.

2

Introduction

This document covers the overall architecture of a new approach to ICC color

management within Ghostscript. The document is organized to first provide a higher

level overview of the new ICC flow as well as how to make use of the new architecture.

This is followed by details of the various functions and structures, which include the

information necessary to interface other color management modules to Ghostscript.

The overall motivation for this work is to modernize the color flow of Ghostscript and in

particular make it much easier for our customers to use their own color management

systems (CMS). Many RIP manufacturers have designed their own color management

systems to provide a marketing advantage over their competitors

Today, almost all print color management is performed using ICC profiles as opposed to

PostScript Color Management (PCM), which predates the ICC format. Ghostscript was

designed prior to the ICC format and likely even before there was much thought about

digital color management. At that point in time, color management was very much an art

with someone adjusting controls to achieve the proper output color. The current methods

used for performing device independent color in Ghostscript are computationally costly

due to the use of multiple transforms. This new color flow addresses that issue through

the use of linked transforms that can be readily applied to buffers of data.

Many customers wish to apply different color transformations depending upon if the

object being drawn is an image, a graphic or text. The common example is that it is

desirable to use pure black as opposed to composite black when drawing black text. In

addition, with an image, you likely will want to use a more perceptual based gamut

mapping method but with a graphic you likely want to use a more saturated method.

Given these many concerns, the requirements of the architecture are as follows:

 It must be easy to introduce a new CMS into the build of Ghostscript.

 There must be objects/methods to manage the ICC profiles and the linked

transforms.

 It must be possible to define all color spaces in terms of ICC profiles.

 It must be possible to have the CMS operate on buffers of data.

 Devices can communicate ICC profiles and have their ICC profile set.

 It must work with PostScript color management definitions.

 It must be possible to cache the linked transformations which define the mapping

from one color space to another so that we avoid having to recompute links when

we have frequently changing color spaces. In addition, it will be necessary to do

lazy linking of these mappings (e.g. only create a mapping when requested to

transform data)

3

 It must have the ability to incorporate the object type (e.g. image, graphic, text)

and rendering intent into the computation of the linked transform.

 It must be designed to operate efficiently in a multithreaded environment.

Figure 1 provides a graphical overview of the various components that make up the

architecture. The primary components are the ICC Manager, which maintains the

various default profiles, the Link Cache which stores recently used linked transforms, the

profiles contained in the root folder iccprofiles, which are used as default color spaces for

the output device and for undefined source colors in the document, and finally the color

management system (CMS), which is the external engine that provides and performs the

linked transformations (e.g. littleCMS).

In the typical flow, when a thread is ready to transform a buffer of data, it will request a

linked transform from the Link Cache. When requesting a link, it is necessary to provide

information to the CMS, which consists of a source color space, a destination color space,

an object state (e.g. text, graphic, or image) and a rendering type (e.g. perceptual,

saturation, colorimetric). The linked transform provides a mapping directly from the

source color space to the destination color space. If a linked transform for these settings

does not already exist in the Link Cache, a linked transform from the CMS will be

obtained (assuming there is sufficient memory -- if there is not sufficient memory then

the requesting thread will need to wait). Depending upon the CMS, it is possible that the

CMS may create a lazy linked object (i.e. create the real thing when it is asked to

transform data). At some point, a linked transform will be returned to the requesting

thread. The thread can then use this mapping to transform buffers of data through calls

directly to the CMS. Once the thread has completed its use of the link transform, it will

notify the Link Cache. The Link Cache will then be able to release the link when it needs

additional cache space due to other link requests.

4

Figure 1: Graphical overview of ICC architecture.

gsicc_init_buffer
gsicc_get_link

gsicc_release_link

gsicc_set_icc_directory
g sicc_set_profile

gsicc_init_device_profile
gsicc_set_gscs_profile
gsicc_get_gscs_profile

gsicc_profile_new
g sicc_get_profile_handle_buffer

Each thread could
have access to a

common ICC cache
or create its own

Graphics

Library

&

Interpreter

CMM

DeviceProfile.icc

NamedColor.icc

gscms_create
gscms_destroy
gscms_get_profile_handle_mem
gscms_release_profile
gscms_get_channel_count
gscms_get_link
gscms_get_link_proof
gscms_release_link
gscms_transform_color_buffer
gscms_transform_color
g scms_get_name2device_link
g scms_transform_named_color

gs_get_device_profile
gs_get_device_named_color_profile

gs_set_device_profile

d efault_gray.icc

default_rgb.icc

d efault_cmyk.icc

iccprofiles

User profile directory

gsicc_set_icc_directory
g sicc_set_profile
g sicc_init_device_profile

ICC Manager

Link Cache

Device Profile

Named Color Profile
Device Link Profile

DefaultGray Profile

DefaultRGB Profile

DefaultCMYK Profile

Proofing Profile

Device

Profile Cache

gs_set_device_named_color_profile

5

PDL Color Definitions and ICC Profiles

To help reduce confusion, it is worthwhile to clarify terminology. In particular the use of

the terms process color and device color need to be defined in the context of ICC profiles.

Both PDF and PostScript (PS) have a distinction between process colors and device

colors. Figures 3-10 provide an overview of how color is defined in various PDLs. As

seen in Figures 3 and 5, there is a conversion (e.g. via UCR/BG) from device colors to

process colors for PDF and PS. In an ICC work flow, the colors are transformed directly

from an input color space (often called the source space) to an output color space (often

called the destination space). The output color space defined by the device’s ICC profile

is a mapping to what PDF and PS define as the process color space of the device. In

other words, the “device color space” as defined by the device’s ICC profile IS the

process color space of PDF and PS. The ICC profile of the device is a mapping from a

CIE color space to the process color space AND from the process color space to a CIE

color space.

To understand this better, it may help to understand the method by which an ICC profile

is created. To create an ICC profile for a device, a chart is printed using its process

colors (e.g. CMYK). This chart is measured using a colorimeter or a spectrophotometer.

This provides the forward mapping from process colors to CIELAB values. The inverse

mapping (from CIELAB to process colors) is obtained by inverting this table usually

through a brute force search and extrapolation method. These mappings are both packed

into an ICC format, thereby defining mappings between the device “process colors” and

the CIE color space.

The remaining steps shown in Figures 3 and 5 consist of transfer functions and halftone

functions. It is possible to pack the transfer functions into the ICC profile or have them

externally defined as part of the Postscript or PDF file. It is up to the user to handle this

in their desired manner (i.e. they need to design their device ICC profile appropriately).

Halftoning of course occurs after color conversion as shown in Figure 3 and 5.

Usage

The code is currently available for checkout with SVN on a branch named icc_work of

the main trunk of Ghostscript. The specific URL is

http://svn.ghostscript.com/ghostscript/branches/icc_work

The branch is built in the same process by which the trunk of Ghostscript is built. See the

documentation at www.ghostscript.com for details.

http://svn.ghostscript.com/ghostscript/branches/icc_work
http://www.ghostscript.com/

6

The ICC branch introduces several new command line options that can be invoked for

complete color management control.

To define source colors that are not already colorimetrically defined in the source

document, the following command line options can be invoked.

-sDefaultGrayProfile=my_gray_profile.icc

-sDefaultRGBProfile=my_rgb_profile.icc

-sDefaultCMYKProfile=my_cmyk_profile.icc

In this case, for example, any source gray colors will be interpreted as being defined by

the ICC profile my_gray_profile.icc. If these profiles are not set, default ICC profiles

will be used to define undefined colors. These default profiles are contained in the root

folder directory iccprofiles and are named default_gray.icc, default_rgb.icc and

default_cmyk.icc. The profile default_gray.icc is defined to provide output along the

neutral axis with an sRGB linearization. The profile default_rgb.icc is the V2 sRGB ICC

profile and the profile default_cmyk.icc is a SWOP CMYK ICC profile.

In addition to being able to define undefined colors, it is possible to define the ICC

profile for the output device using

-sOutputICCProfile=my_device_profile.icc

A directory can be defined which will be searched to find the above defined ICC profiles.

This makes it easier for users who have their profiles contained in a single directory and

do not wish to append the full path name in the above command line options. The

directory is set using

-sICCProfilesDir=c:/my_icc_profiles/

Warnings will be emitted when running a debug version if problems occur with respect to

finding the ICC profiles and it is possible that the program may terminate.

There are additional optional settings that are currently under development. These

include

-sProofProfile=my_proof_profile.icc

-sNamedProfile=my_namedcolor_profile.icc

-sDeviceLinkProfile=my_link_profile.icc

Setting a proofing profile will make the color management system link multiple profiles

together to emulate the device defined by the proofing profile.

If a named color profile is set, then when named colors are encountered in the document

they will be mapped to the proper device values. Note that the code does not require that

7

an ICC profile be used for the named color profile. This is all customizable in the

interface code to the CMS. See the details regarding gscms_transform_named_color later

in the document

Finally, it will be possible to include a device link profile for other color work flows. For

example, this may be useful for devices that output raster content in a standard color

space such as SWOP or Fogra CMYK, but they wish to redirect this output to other

CMYK devices. While it is possible to handle such a flow in other manners (e.g. using a

proofing profile) this is a workflow that is not uncommon.

Finally, note that command line options for XPS and PCL are currently under design.

Overview of objects and methods

At this point, let us go into further detail of the architecture.

ICC Manager

The ICC Manager is a reference counted member variable to Ghostscript’s imager state.

Its functions are to:

 Store the required profile information to use for gray, RGB, and CMYK source

colors that are NOT colorimetrically defined in the source document. These

entries must always be set in the manager and are set to default values unless

defined by the command line interface.

 Store the required profile information for the output device.

 Store the optional profile information related to named colors (if set), the proofing

profile (if set) a final output link profile (if set).

 Store the directory be used to search for ICC profiles specified for the above

objects.

The manager is created when the imaging state object is created for the graphics library.

It is reference counted and allocated in garbage collected memory that is not stable with

graphic state restores.

The default gray, RGB and CMYK ICC color spaces as well as the device ICC color

space are defined immediately during the initialization of the graphics library. If no ICC

profiles are specified externally, then the ICC profiles that are contained in the root folder

iccprofiles will be used.

The ICC Manager is defined by the structure given below.

typedef struct gsicc_manager_s {

8

 cmm_profile_t *device_named; /* The named color profile for the device */

 cmm_profile_t *default_gray; /* Default gray profile for device gray */

 cmm_profile_t *default_rgb; /* Default RGB profile for device RGB */

 cmm_profile_t *default_cmyk; /* Default CMYK profile for device CMKY */

 cmm_profile_t *proof_profile; /* Profiling profile */

 cmm_profile_t *output_link; /* Output device Link profile */

 cmm_profile_t *device_profile; /* The actual profile for the device */

 char *profiledir; /* Directory used in searching for ICC profiles */

 uint namelen;

 gs_memory_t *memory;

 rc_header rc;

} gsicc_manager_t;

Operators that relate to the ICC Manager are contained in the file gsiccmanage.c/h and

include the following:

int gsicc_init_device_profile(gs_state * pgs, gx_device * dev);

This initializes the device_profile member variable based upon the properties of

the device. The device may have a profile defined in its

dev->color_info.icc_profile member variable. If it does not, then a default profile

will be assigned to the device.

int gsicc_set_profile(const gs_imager_state * pis, const char *pname, int namelen,

gsicc_profile_t defaulttype);

This is used to set all the other profile related member variables in the ICC

Manager. The member variable to set is specified by defaulttype.

void gsicc_set_icc_directory(const gs_imager_state *pis, const char* pname, int

namelen);

This is used to set the directory for finding the ICC profiles specified by

gsicc_set_profile.

gsicc_manager_t* gsicc_manager_new(gs_memory_t *memory);

 Creator for the ICC Manager.

cmm_profile_t* gsicc_profile_new(stream *s, gs_memory_t *memory, const char*

pname, int namelen);

9

Returns an ICC object given a stream pointer to the ICC content. The variables

pname and namelen provide the filename and name length of the stream if it was

created from a file. If it came from the source stream, pname may be NULL and

namelen would be zero.

int gsicc_set_gscs_profile(gs_color_space *pcs, cmm_profile_t *icc_profile,

gs_memory_t * mem);

Sets the member variable cmm_icc_profile_data of the gs_color_space object

(pointed to by pcs) to icc_profile.

 cmm_profile_t* gsicc_get_gscs_profile(gs_color_space *gs_colorspace,

gsicc_manager_t *icc_manager);

 Returns the cmm_icc_profile_data member variable of the gs_color_space object.

 gcmmhprofile_t gsicc_get_profile_handle_buffer(unsigned char *buffer);

 Returns the CMS handle to the ICC profile contained in the buffer.

Link Cache

The Link Cache is a reference counted member variable to Ghostscript’s imager state. Its

function is to maintain a list of recently used links that had been provided by the CMS.

Currently the cache is simply a linked list where each link has hash information that

defines the link in terms of the source ICC profile, the destination ICC profile, and the

rendering parameters. The Link Cache is allocated in stable GC memory.

Operators that relate to the Link Cache are contained in the file gsicccache.c/h and

include the following:

gsicc_link_cache_t* gsicc_cache_new(gs_memory_t *memory);

 Creator for the Link Cache.

void gsicc_init_buffer(gsicc_bufferdesc_t *buffer_desc, unsigned char num_chan,

 unsigned char bytes_per_chan, bool has_alpha, bool alpha_first,

 bool is_planar, int plane_stride, int row_stride, int num_rows, int

 pixels_per_row);

This is used to initialize a gsicc_bufferdesc_t object. Two of these objects are

used to describe the format of the buffers that are used in transforming color data.

gsicc_link_t* gsicc_get_link(gs_imager_state * pis, gs_color_space *input_colorspace,

 gs_color_space *output_colorspace,

 gsicc_rendering_param_t *rendering_params, gs_memory_t

10

 *memory, bool include_softproof);

This returns the link given the input color space, the output color space, and the

rendering intent. When the requester of the link is finished using the link, it

should release the link. When a link request is made, the Link Cache will use the

parameters to compute a hash code. This hash code is used to determine if there

is already a link transform that meets the needs of the request. If there is not a

link present, the Link Cache will obtain a new one from the CMS (assuming there

is sufficient memory) updating the cache.

The linked hash code is a unique code that identifies the link for an input color

space, an object type, a rendering intent and an output color space. The operation

that does the merging of these four pieces of information can easily be altered to

ignore object type and/or rendering intent if so desired.

Note, that the output color space can be different than the device space. This

occurs for example, when we have a transparency blending color space that is

different than the device color space.

void gsicc_release_link(gsicc_link_t *icclink);

 This is called to notify the cache that the requester for the link no longer needs it.

 The link is reference counted, so that the cache knows when it is able to destroy

 the link. The link is released through a call to the CMS.

CMS

Ghostscript interfaces to the CMS through a single file. The file gsicc_littlecms.c/h is a

reference interface between littleCMS and Ghostscript. If a new library is used (for

example, if littleCMS is replaced with Windows ICM on a Windows platform (giving

Windows color system (WCS) access on Vista or System 7)), the interface of these

functions will remain the same but internally they will need to be changed

Specifically, the functions are as follows:

void gscms_create(void **contextptr);

 This operation performs any initializations required for the CMS.

void gscms_destroy(void **contextptr);

 This operation performs any cleanup required for the CMS.

gcmmhprofile_t gscms_get_profile_handle_mem(unsigned char *buffer, unsigned int

input_size);

11

 This returns a profile handle for the profile contained in the specified buffer.

void gscms_release_profile(void *profile);

When a color space is removed or we are ending, this is used to have the CMS

release the profile handles it has created.

int gscms_get_channel_count(gcmmhprofile_t profile);

 Provides the number of colorants associated with the ICC profile.

gcmmhlink_t gscms_get_link(gcmmhprofile_t lcms_srchandle, gcmmhprofile_t

lcms_deshandle, gsicc_rendering_param_t

*rendering_params, gsicc_manager_t *icc_manager);

This is the function that obtains the linkhandle from the CMS. The call

gscms_get_link is usually called from the Link Cache. In the graphics library,

calls are made to obtain links using gsicc_get_link, since the link may already be

available. However, it is possible to use gscms_get_link to obtain linked

transforms outside the graphics library. For example, this may be useful in the

case of the XPS interpreter, where minor color management needs to occur to

properly handle gradient stops.

gcmmhlink_t gscms_get_link_proof(gcmmhprofile_t lcms_srchandle, gcmmhprofile_t

lcms_deshandle, gcmmhprofile_t

lcms_proofhandle, gsicc_rendering_param_t

*rendering_params, gsicc_manager_t

*icc_manager);

This function is similar to the above function but includes a proofing ICC profile.

If the proofing profile is defined, then the output should appear as if it were

printed on the device defined by the proofing profile.

void gscms_release_link(gsicc_link_t *icclink);

When a link is removed from the cache or we are ending, this is used to have the

CMS release the link handles it has created.

void gscms_transform_color_buffer(gsicc_link_t *icclink, gsicc_bufferdesc_t

*input_buff_desc, gsicc_bufferdesc_t

*output_buff_desc, void *inputbuffer, void

*outputbuffer);

This is the function through which all color transformations will occur if they are

to go through the CMS. This function will be called in the code anytime that we

are transforming color from the current graphic state color to the Output Device

12

color space or to the Blending Color Space, or out of the Blending color space to

the Color Space of the parent layer in the transparency stack. Note that if the

source hash code and the destination hash code are the same, the transformation

will not occur as the source and destination color spaces are identical. This

feature can be used to enable “device colors” to pass unmolested through the

color processing.

void gscms_transform_color(gsicc_link_t *icclink, void *inputcolor, void

*outputcolor, int num_bytes, void **contextptr);

This is a special case where we desire to transform a single color. While it would

be possible to use gscms_transform_color_buffer for this operation, single color

transformations are frequently required and it is possible that the CMS may have

special optimized code for this operation.

int gscms_transform_named_color(gsicc_link_t *icclink, float tint_value, const char*

 ColorName, gx_color_value device_values[]);

Get a device value for the named color. Since there exist named color ICC

profiles and littleCMS supports them, the code in gsicc_littlecms.c is designed to

use that format. However, it should be noted that this object need not be an ICC

named color profile but can be a proprietary type table. Some CMMs do not

support named color profiles. In that case, or if the named color is not found, the

caller should use an alternate tint transform or other method. If a proprietary

format (nonICC) is being used to define named colors, this operator and

gscms_get_name2device_link given below must be implemented with that

particular format. Note that we allow the passage of a tint value also. Currently

the ICC named color profile does not provide tint related information, only a

value for 100% coverage. It is provided here for use in proprietary methods,

which may be able to provide the desired effect. In gsicc_littlecms.c, a direct tint

operation will be applied to the returned device value.

void gscms_get_name2device_link(gsicc_link_t *icclink, gcmmhprofile_t

lcms_srchandle, gcmmhprofile_t lcms_deshandle,

gcmmhprofile_t lcms_proofhandle,

gsicc_rendering_param_t *rendering_params,

gsicc_manager_t *icc_manager);

This is the companion operator to gscms_transform_named_color in that it

provides the link transform that should be used when transforming named colors.

Again, the file gsicc_littlecms.c is designed to use ICC named color profiles.

Other formats can be easily implemented.

13

PDF and PS CIE color space handling

If a color space is a PDF or PostScript (PS) CIE color space type (other than ICC), these

color spaces will be converted to appropriate ICC objects. The hash code associated with

these objects will be based upon the PS or PDF objects as opposed to the created ICC

data. Procedural sampling will be performed for the procedures found in PS. Since the

blending color spaces are limited to ICC, device or CIE color spaces defined in PDF, the

transformation of all to an ICC type is straight forward. The conversion from these

spaces to ICC forms is contained in the file gsicc_create.c. Since this file is only needed

by the PS and PDF interpreter, it is contained in the psi subdirectory of Ghostscript’s

folder tree and is not needed for PCL or XPS builds. Performing this conversion, enables

the ICC based CMS full control over all color management. To avoid frequent

conversions due to frequent color space changes, these color spaces will be cached and

indexed related to their resource IDs. This is the profile cache item that is indicated in

Figure 1.

Note that if littleCMS is replaced, gsicc_create.c still requires icc34.h, since it uses the

type definitions in that file in creating the ICC profiles from the PS and PDF CIE color

spaces.

Device Interaction

From Figure 1, it is clear that the device can communicate to the graphics library its ICC

profiles. Depending upon the settings of the device (e.g. paper type, ink, driver settings)

it may provide a different profile as well as indicate a desired rendering intent. Unless

overridden by command line arguments, this information will be used to populate the

ICC manager’s Device Profile and Named Color Profile entries. Currently, this portion

of the architecture is under development.

DeviceN Color Spaces

In obtaining a link transform, if an input color space is DeviceN or Separation type, the

XPS is required to have an associated ICC profile. This is not the case with PDF. PDF

would have its tint transform and alternate space, which could be any of the CIE or

device color spaces which, are handled above. This would be the processing path for

handling PDF DeviceN colors if the output device does not understand the colorants

defined in the DeviceN color space.

For cases when the device does understand the spot colorants, the preferred handling of

DeviceN varies. Many prefer to color manage the CMYK components with a defined

CMYK profile, while the other spot colorants pass through unmolested. This will be the

default manner by which Ghostscript will handle DeviceN input colors. In other words,

if the device profile is set to a particular CMYK profile, and the output device is a

separation device, which can handle all spot colors, then the CMYK process colorants

will be color managed, but the other colorants will not be managed.

14

It should be noted that an ICC profile can define color spaces with up to 15 colorants.

For a device that has 15 or fewer colorants, it is possible to provide an ICC profile for

such a device. In this case, all the colorants will be color managed through the ICC

profile. For cases beyond 15, the device will be doing direct printing of the DeviceN

colors outside of the 15 colorants.

15

CIE XYZ Values

CalRGB

CalGray

Lab

ICCBased

Conversion
to internal

XYZ
values

DeviceRGB

DeviceCMYK

DeviceGray

Separation

DeviceN

Indexed

Pattern

DefaultRGB

DefaultCMYK

DefaultGray

Alternative
color

transform

Alternative
color

transform

Table lookup

Pattern
Dictionary

A,B,C

A

A,B,C

n components

R,G,B

C,M,Y,K

gray

tint

n components

index

pattern

Another 3 component space

Another 4 component space

Another 1 component space

Another color space

Another color space

Another color space

Another color space

Figure 2: PDF Color Specification

16

X,Y,Z

R,G,B

C,M,Y,K

gray

Device color values
(depending on
results of conversion)

R,G,B

C,M,Y,K

gray

tint

n components

Conversion
from CIE-based

to device
color space

Conversion
from input

device color
space to
device's

process color
model

Transfer
functions

(per
component)

Haltfones
(per

component)

Component(s)
of dev ice's
process

color model

Device's
process
colorant(s)

Any single
device
colorant

Any n
device
colorants

Figure 3: PDF Color Rendering

17

CIE XYZ Values

CIEBasedABC

CIEBasedA

CIEBasedDEF

CIEBasedDEFG

Conversion
to internal

XYZ
values

DeviceRGB

DeviceCMYK

DeviceGray

Separation

DeviceN

Indexed

Pattern

UseCIEColor
true

Alternative
color

transform

Alternative
color

transform

Table lookup

Pattern
Dictionary

A,B,C

A

D,E,F

D,E,F,G

R,G,B

C,M,Y,K

gray

tint

n components

index

pattern

Another (CIE-based) space

Another color space

Another color space

Another color space

Another color space

UseCIEColor
true

UseCIEColor
true

Another (CIE-based) space

Another (CIE-based) space

HSB to RGB
Conversion

H,S,B

Figure 4: PostScript Color Specification

18

X,Y,Z

R,G,B

C,M,Y,K

gray

Device color values
(depending on
contents of CRD)

R,G,B

C,M,Y,K

gray

tint

n components

CIE-based
color

rendering
dictionary

Conversion
from input

device color
space to
device's

process color
model

Transfer
functions

(per
component)

Haltfones
(per

component)

Component(s)
of dev ice's
process

color model

Device's
process
colorant(s)

Any single
device
colorant

Any n
device
colorants

setcolorrendering

setundercolorremoval

setblackgeneration

sethalftone

settransfer
setcolortransfer

sethalftone
setscreen
setcolorscreen

Figure 5: PostScript Color Rendering

19

Vector color

definitions sRGB

scRGB

#(AA)RRGGBB

sc#(AlphaFloat),RedFloat,GreenFloat,BlueFloat Associate color
with scRGB profile

Associate color
with sRGB profile

If 3 channels,
associate with
sRGB. If more,
associate first
four channels
with SWOP CMYK
and ignore
additional

Associate color
with sRGB
or SWOP CMYK

N-Channel
Context
Color

ICC Profile
Given?

Associate color
with specified
ICC profile

Yes

No

Figure 6: XPS Vector Color Specification

Integer RGB
Integer Gray
Integer 3 channel

Associate color
with specified
ICC profile

Associate color
with sRGB profile

ICC Profile
given in
Image?

ICC Profile
given in

XML?

Associate color
with specified
ICC profileYes

Yes

No

No

Figure 7: XPS Integer RGB and Grayscale Image Color Specification

20

Float or
fixed point RGB

Associate color
with specified
ICC profile

Associate color
with scRGB profile

ICC Profile
given in
Image?

ICC Profile
given in

XML?

Associate color
with specified
ICC profileYes

Yes

No

No

Figure 8: XPS Float or fixedpoint RGB Image Color Specification

Integer CMYK
Integer N-Channel
(N > 3)

Associate color
with specified
ICC profile

Associate first
four (nonalpha) channels
with SWOP CMYK

ICC Profile
given in
Image?

ICC Profile
given in

XML?

Associate color
with specified
ICC profileYes

Yes

No

No

Figure 9: XPS CMYK and N-Channel (N>3) Image Color Specification

21

Color defined by
ICC profile

Is device
aware of all

named colors in
profile

clrt tags?

Yes

No

Are we
composing

in a transparency?

No

Are we
drawing

a gradient?

Were
stops defined
in color space

other than
interpolation

space?

Transform all stops
to space defined by
interpolation color
mode setting. Draw
gradient.

Yes

Transform colors to
ICC color space defined
by PageBlendColorSpace
PrintTicket Setting. Blend.

Yes

Depending upon PrintTicket
settings in PageDeviceColorSpaceProfileURI
and PageDeviceColorSpaceUsage,
transform colors to device space

This is a poorly
defined case in the XPS
specification. In particular,
for the cases when there
are gradients or transparency.
It is my conjecture that the
PageBlendColorSpace will
be ignored for this case, and
these colors will be treated
directly as device colors for the
appropriate channel.

Yes

No

No

Figure 10: XPS Rendering Side. Note that ALL colors are defined by an ICC color

space at this point.

