

Improving Database Performance
With

 AIX Concurrent I/O

A case study with Oracle9i Database on AIX 5L version 5.2

Authors: Sujatha Kashyap
Bret Olszewski
Richard Hendrickson

 {skashyap, breto, richhend}@us.ibm.com

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 1 of 12

1 Introduction
A new file system feature called "Concurrent
I/O" (CIO) was introduced in the Enhanced
Journaling File System (JFS2) in AIX 5L™
version 5.2.0.10, also known as maintenance
level 01 (announced May 27, 2003). This new
feature improves performance for many
environments, particularly commercial relational
databases. In many cases, the database
performance achieved using Concurrent I/O with
JFS2 is comparable to that obtained by using raw
logical volumes. This paper details the
implementation and operational characteristics of
Concurrent I/O, and presents the results of our
performance evaluation of Concurrent I/O with
Oracle9i Database.

The file system has long been the heart of
UNIX® storage management. Commands and
interfaces for manipulating and managing data
stored on files are commonly used throughout
the UNIX world by users of all skill levels.
Managing persistent data via such universally
understood mechanics is key to application
portability. File systems thus provide a very
useful and desirable abstraction for data storage.

As is often the case with any method of
abstraction, however, the use of file systems
results in some tradeoffs between performance
and ease of use. The fastest means of transferring
data between an application and permanent
storage media such as disks, is to directly access
more primitive interfaces such as raw logical
volumes. The use of files for data storage
involves overheads due to serialization, buffering
and data copying, which impact I/O performance.
Using raw logical volumes for I/O eliminates the
overheads of serialization and buffering, but also
requires a higher level of skill and training on the
part of the user since data management becomes
more application-specific. Also, while file
system commands do not require system
administrator privileges, commands for
manipulating raw logical volumes do. However,
due to its superior performance, database
applications have traditionally preferred to use
raw logical volumes for data storage, rather than
using file systems.

With the Concurrent I/O feature now available in
JFS2, database performance on file systems

rivals the performance achievable with raw
logical volumes.

2 Using File Systems for
Database Applications

For database applications, the superior
performance of raw logical volumes compared to
file systems arises from certain features of the
file system:

• The file buffer cache
• The per-file write lock, or inode lock
• The sync daemon

These file system features help ensure data
integrity, improve fault tolerance, and in fact
improve application performance in many cases.
However, these features often pose performance
bottlenecks for database applications. This
section explains the role of these features in a file
system, how they impact database performance,
and the options provided by JFS2 to help reduce
their performance impact.

2.1 File Buffer Cache
At the most basic level, a file is simply a
collection of bits stored on persistent media.
When a process wants to access data from a file,
the operating system brings the data into main
memory, where the process can examine it, alter
it, and then request that the data be saved to disk.
The operating system could read and write data
directly to and from the disk for each request, but
the response time and throughput would be poor
due to slow disk access times. The operating
system therefore attempts to minimize the
frequency of disk accesses by buffering data in
main memory, within a structure called the file
buffer cache. On a file read request, the file
system first attempts to read the requested data
from the buffer cache. If the data is not already
present in the buffer cache, it is read from disk
and cached in the buffer cache. Figures 1 and 2
show the sequence of actions that take place
when a read request is issued under this caching
policy.

Similarly, writes to a file are cached so that
future reads can be satisfied without
necessitating a disk access, and to reduce the
frequency of disk writes. The use of a file buffer
cache can be extremely effective when the cache
hit rate is high. It also enables the use of
sequential read-ahead and write-behind policies
to reduce the frequency of physical disk I/O’s.

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 2 of 12

Another benefit is in making file writes
asynchronous, since the application can continue
execution without waiting for the disk write to
complete. Figure 3 shows the sequence of
actions for a write request under cached I/O.

While the file buffer cache improves I/O
performance, it also consumes a significant
portion of system memory. AIX’s Enhanced JFS,
also known as JFS2, allows the system
administrator to control the maximum amount of
memory that can be used by the file system for
caching. JFS2 uses a certain percentage of real
memory for its file buffer cache, specified by the
maxclient% parameter. The value of max-
client% can be tuned via the vmo command. By
default it is set to 80, which implies that JFS2
can use up to 80% of real memory for its file
buffer cache. The range of acceptable values for
maxclient% is from 1 to 100. For example, the
following command will reduce the maximum
amount of memory that can be used for the file
buffer cache to 50% of real memory: vmo –o
maxclient%=50.

In contrast, raw logical volumes do not use a
system-level cache to cache application data, so
there is neither duplication nor double-copying
of data.

Figure 1: Reads under cached I/O – buffer cache hit

Figure 2: Reads under cached I/O - buffer cache miss

Figure 3: Writes under cached I/O

2.1.1 Direct I/O
Certain classes of applications derive no benefit
from the file buffer cache. Some technical
workloads, for instance, never reuse data due to
the sequential nature of their data accesses,
resulting in poor buffer cache hit rates.
Databases normally manage data caching at the
application level, so they do not need the file
system to implement this service for them. The
use of a file buffer cache results in undesirable
overheads in such cases, since data is first moved

from the disk to the file buffer cache and from
there to the application buffer. This “double-
copying” of data results in additional CPU
consumption. Also, the duplication of
application data within the file buffer cache
increases the amount of memory used for the
same data, making less memory available for the
application, and resulting in additional system
overheads due to memory management.

For applications that wish to bypass the
buffering of memory within the file system cache,

Application buffer Application

File buffer cache

Disk

1

4

5

2

1. Application issues write request
2. Kernel copies data from application buffer to file buffer

cache
3. Application continues execution, without waiting for disk

write
…….

4. Periodic flushing of dirty file buffer cache pages initiated
by syncd

5. Dirty pages written to disk

K
E
R
N
E
L

3

Application buffer Application

File buffer cache

Disk

1

2

3

4 5

6

1. Application issues a read request
2. Kernel looks for requested data in the file buffer cache
3. Requested data not present in file buffer cache
4. Kernel reads data from disk
5. Read data is cached in file buffer cache
6. Read data is copied from the file buffer cache to the

application buffer

K
E
R
N
E
L

Application buffer Application

File buffer cache

Disk

1

2 3

1. Application issues read request
2. Requested data found in file buffer cache
3. Requested data copied over to application buffer

K
E
R
N
E
L

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 3 of 12

Direct I/O is provided as an option in JFS2.
When Direct I/O is used for a file, data is
transferred directly from the disk to the
application buffer, without the use of the file
buffer cache. Figures 4 and 5 depict the sequence
of actions that occur for reads and writes under
Direct I/O.

Figure 4: Reads under Direct I/O

Figure 5: Writes under Direct I/O

2.1.1.1 Direct I/O Usage
Direct I/O can be used for a file either by
mounting the corresponding file system with the
mount –o dio option, or by opening the file with
the O_DIRECT flag specified in the open()
system call. When a file system is mounted with
the –o dio option, all files in the file system use
Direct I/O by default. Direct I/O can be restricted
to a subset of the files in a file system by placing
the files that require Direct I/O in a separate
subdirectory and using namefs to mount this

subdirectory over the file system. For example, if
a file system somefs contains some files that
prefer to use Direct I/O and others that do not,
we can create a subdirectory, subsomefs, in
which we place all the files that require Direct
I/O. We can mount somefs without specifying –o
dio, and then mount subsomefs as a namefs file
system with the –o dio option using the
command: mount –v namefs –o dio
/somefs/subsomefs /somefs.

The use of Direct I/O requires that certain
alignment and length restrictions be met by the
application’s I/O requests. Table 1 lists these
requirements for JFS2. Failure to meet these
requirements causes reads and writes to be done
using normal cached I/O, but after the data is
transferred to the application buffer, the cached
copy is discarded. File system read-ahead does
not occur for files that use Direct I/O.

To avoid consistency issues, if there are multiple
processes open a file and one or more processes
did not specify O_DIRECT while others did, the
file stays in the normal cached I/O mode.
Similarly, if the file is mapped in memory
through the shmat() or mmap() system calls, it
stays in normal cached mode. Once the last
conflicting, non-direct access is eliminated (by
using the close(), munmap(), or shmdt() system
calls), the file is moved into Direct I/O mode.
The change from caching mode to Direct I/O
mode can be expensive because all modified
pages in memory will have to be flushed to disk
at that point.

Table 1: JFS2 restrictions for Direct I/O

File system
format

Buffer
alignment

Buffer length
increment

JFS2 before
AIX 5.2
ML01

4K bytes 4K bytes

JFS2 as of
AIX 5.2
ML01

agblksize
specified at file
system
creation

agblksize
specified at file
system creation

2.1.1.2 Performance Considerations
Under Direct I/O

Direct I/O benefits applications by reducing CPU
consumption and eliminating the overhead of
copying data twice – first between the disk and
the file buffer cache, and then from the file

Application buffer Application

Disk

1

1. Application issues write request
2. Kernel initiates disk write
3. Application data written to disk
4. Application continues execution upon completion of disk

writes

K
E
R
N
E
L

4

2

3

Application buffer Application

Disk

1

2

3

1. Application issues read request
2. Kernel initiates disk read
3. Requested data transferred from disk to application

buffer

K
E
R
N
E
L

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 4 of 12

buffer cache to the application’s buffer. However,
several factors could impact application
performance when Direct I/O is used.

Every Direct I/O read causes a synchronous read
from disk, unlike the normal cached I/O policy
where the read may be satisfied from the file
buffer cache (refer Figures 2 and 5). This can
result in poor performance if the data was likely
to be in memory under the normal caching policy.

Direct I/O also bypasses JFS2 read-ahead. File
system read-ahead can provide a significant
performance boost for sequentially accessed files.
When read-ahead is employed, the operating
system tries to anticipate future need for pages of
a sequential file by observing the pattern in
which an application accesses the file. When the
application accesses two successive pages of the
file, the operating system assumes that the
program will continue to access the file
sequentially, and schedules additional sequential
reads of the file. These reads are overlapped with
application processing, and will make the data
available to the application sooner than if the
operating system had waited for the program to
access the next page before initiating the I/O.
The number of pages to be read ahead is
determined by two parameters:

• j2_minPageReadAhead
Number of pages read ahead when the
operating system first detects sequential
access. If the program continues to
access the file sequentially, the next
read-ahead is twice j2_minPageRead-
Ahead, the next for 4 times j2_min-
PageReadAhead, and so on until the
number of pages reaches j2_maxPa-
geReadAhead. Default value is 2.

• j2_maxPageReadAhead
Maximum number of pages the
operating system will read ahead in a
sequential file. Default value is 8.

These parameters are tunable, and can be set via
the ioo command.

Table 2 compares the performance of Direct I/O
versus cached I/O for three different read
scenarios. The file block size used in these
experiments was 4K bytes, and the default values
of j2_minPageReadAhead=2, and j2_maxPag-
eReadAhead=8 were used.

The first row in Table 2 corresponds to the case
where the application reads a 1MB file

sequentially, byte by byte. When Direct I/O is
used in this case, the alignment restrictions are
violated. Consequently, normal cached I/O is
used to read a 4K page into the file buffer cache,
the requested byte is copied from the file buffer
cache to the application buffer, and the 4K page
is discarded from the file buffer cache. This
results in a 4K page being read for every byte
requested by the application, while also incurring
the costs of double-copying of data. Cached I/O
in this case enjoys two advantages: the 4K page
that is brought into the file buffer cache when a
single byte is read can be re-used to return 4K
bytes of data to the application upon subsequent
read requests. Additionally, read-ahead would
occur with cached I/O, further reducing the
latency of future read requests.

The second row in Table 2 corresponds to the
case where a 1GB file is read sequentially in
4KB increments. Although this case satisfies the
alignment restrictions for Direct I/O, read-ahead
will not occur when Direct I/O is used. Cached
I/O again outperforms Direct I/O in this case due
to file system read-ahead. Note that the total
amount of data read in this case is the same for
both Direct and cached I/O (although cached I/O
reads one additional page, due to read-ahead).

The third row in Table 2 corresponds to the case
where a 1GB file is read sequentially in 10MB
increments. Direct I/O significantly outperforms
cached I/O in this case for two reasons. First, the
overhead of double-copying is eliminated with
Direct I/O. Secondly, cached I/O does not see the
benefit of read-ahead in this case because at most
8 4K pages can be read ahead (since
j2_maxPageReadAhead=8), while the read
increment in this case is 2560 4K pages.

These examples show that applications do not
uniformly benefit from Direct I/O. However,
applications that see performance benefits when
using raw logical volumes for storage are likely
to benefit from the use of Direct I/O. Raw logical
volumes also impose alignment and length
restrictions on I/O – they require that the
application buffer be 512-byte aligned, and that
lengths be in 512-byte increments. Thus,
applications that use raw logical volumes for I/O
already implement these alignment and length
restrictions. By creating file systems with an
appropriate block size (e.g., by specifying
agblksize=512 at file system creation), such
applications can benefit from the use of Direct
I/O without any modification.

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 5 of 12

Table 2: Direct I/O vs. cached I/O performance

Cached I/O Direct I/O

Read
Increment Total File Size

Elapsed Time
(sec)

Total KB
Read Elapsed Time

Total KB
Read

1 byte 1 MB 1.59 1,036 185.27 4,194,320
4 KB 1 GB 21.18 1,045,982 104.31 1,045,986
10 MB 1 GB 20.59 1,048,592 6.81 1,048,596

2.2 Inode Locking
While an application views a file as a contiguous
stream of data, this is not actually how a file is
stored on disk. In reality, a file is stored as a set
of (possibly non-contiguous) blocks of data on
disk. Each file has a data structure associated
with it, called an inode.

The inode contains all the information necessary
for a process to access the file, such as file
ownership, access rights, file size, time of last
access or modification, and the location of the
file’s data on disk. Since a file’s data is spread
across disk blocks, the inode contains a “table of
contents” to help locate this data. It is important
to note the distinction between changing the
contents of an inode and changing the contents
of a file. The contents of a file only change on a
write operation. The contents of an inode change
when the contents of the corresponding file
change, or when its owner, permissions, or any
of the other information that is maintained as
part of the inode changes. Thus, changing the
contents of a file automatically implies a change
to the inode, whereas a change to the inode does
not imply that the contents of the file have
changed. Since multiple threads may attempt to
change the contents of an inode simultaneously,
this could result in an inconsistent state of the
inode. In order to avoid such race conditions, the
inode is protected by a lock, called the inode
lock. This lock is used for any access that could
result in a change to the contents of the inode,
preventing other processes from accessing the
inode while it is in a possibly inconsistent state.

When a file is accessed for reading, the contents
of the inode do not change, whereas writes to a
file do change the contents of the inode (and the
contents of the file). JFS2 uses a read-shared,
write-exclusive inode lock which allows multiple
readers to access the file simultaneously, but
requires that the lock be held in exclusive mode

when a write access is made. This means that
when the lock is held in write-exclusive mode by
a process, no other process may access the file
for either reads or writes. However, when the
lock is held in read-shared mode by a process,
other processes can concurrently read data from
the file. Figure 6 depicts the serialization
enforced by the inode lock in JFS2. In the figure,
threads 1 and 2 simultaneously read data from a
shared file. When thread 2 performs a write on
the file, it takes the inode lock in write-exclusive
mode, preventing thread 1 from performing reads
or writes on the file for the duration that thread 2
holds the lock.

Figure 6: Read-shared, write-exclusive inode locking
in JFS2

2.2.1 Concurrent I/O
The inode lock imposes write serialization at the
file level. Serializing write accesses ensures that
data inconsistencies due to overlapping writes do
not occur. Serializing reads with respect to
writes ensures that the application does not read
stale data. Sophisticated database applications

Read

Compute

Block

on read/
write

Read/
write

Read

Block on

write

Write

Compute

T
H
R
E
A
D
1

T
H
R
E
A
D
2

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 6 of 12

implement their own data serialization, usually at
a finer level of granularity than the file. Such
applications implement serialization mechanisms
at the application level to ensure that data
inconsistencies do not occur, and that stale data
is not read. Consequently, they do not need the
file system to implement this serialization for
them. The inode lock actually hinders
performance in such cases, by unnecessarily
serializing non-competing data accesses. For
such applications, AIX 5L v5.2 ML01 offers the
Concurrent I/O (CIO) option. Under Concurrent
I/O, multiple threads can simultaneously perform
reads and writes on a shared file. This option is
intended primarily for relational database
applications, most of which will operate under
Concurrent I/O without any modification.
Applications that do not enforce serialization for
accesses to shared files should not use
Concurrent I/O, as this could result in data
corruption due to competing accesses.

Figure 7: Inode serialization under Concurrent I/O on
JFS2

2.2.1.1 Concurrent I/O Usage
Concurrent I/O can be specified for a file either
through the mount command (mount –o cio), or
via the open() system call (by using O_CIO as
the OFlag parameter). When a file system is
mounted with the –o cio option, all files in the
file system use Concurrent I/O by default. Just as
with Direct I/O, Concurrent I/O can be restricted
to a subset of the files in the file system by
placing the files that use Concurrent I/O in a
separate subdirectory and using namefs to mount
this subdirectory over the file system. For

example, if a file system somefs contains some
files that prefer to use Concurrent I/O and others
that do not, we can create a subdirectory,
subsomefs containing all the files that use
Concurrent I/O. We can mount somefs without
the –o cio option, and then mount subsomefs as a
namefs file system with the –o cio option:
mount –v namefs –o cio /somefs/subsomefs
/somefs.

The use of Direct I/O is implicit with Concurrent
I/O, and files that use Concurrent I/O
automatically use the Direct I/O path. Thus,
applications using Concurrent I/O are subject to
the same alignment and length restrictions as
Direct I/O, specified in Table 1. As with Direct
I/O, if there are multiple outstanding opens to a
file and one or more of the calls did not specify
O_CIO, then Concurrent I/O is not enabled for
the file. Once the last conflicting access is
eliminated, the file begins to use Concurrent I/O.
Since Concurrent I/O implicitly uses Direct I/O,
it overrides the O_DIO flag for a file.

Under Concurrent I/O, the inode lock is acquired
in read-shared mode for both read and write
accesses. However, in situations where the
contents of the inode may change for reasons
other than a change to the contents of the file
(writes), the inode lock is acquired in write-
exclusive mode. One such situation occurs when
a file is extended or truncated. Extending a file
may require allocation of new disk blocks for the
file, and consequently requires an update to the
“table of contents” of the corresponding inode.
In this case, the read-shared inode lock is
upgraded to the write-exclusive mode for the
duration of the extend operation. Similarly, when
a file is truncated, allocated disk blocks might be
freed and the inode’s table of contents needs to
be updated. Upon completion of the extend or
truncate operation, the inode lock reverts to read-
shared mode. This is a very powerful feature,
since it allows files using Concurrent I/O to grow
or shrink in a manner that is transparent to the
application, without having to close or reopen
files after a resize. Figure 7 shows the behavior
of the inode lock under Concurrent I/O.

 Another situation that results in the inode lock
being acquired in write-exclusive mode is when
an I/O request on the file violates the alignment
or length restrictions of Direct I/O. Alignment
violations result in normal cached I/O being used
for the file, and the inode lock reverts to the

Write

Compute

Block

on read/
write

Read/
write

Read

Write

File
extend/
truncate

Write

T
H
R
E
A
D
1

T
H
R
E
A
D
2

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 7 of 12

read-shared, write-exclusive mode of operation
depicted in Figure 6.

2.2.1.2 Performance Considerations
under Concurrent I/O

Since Concurrent I/O implicitly invokes Direct
I/O, all the performance considerations for Direct
I/O mentioned in Section 2.1.1.2 hold for
Concurrent I/O as well. Thus, applications that
benefit from file system read-ahead, or have a
high file system buffer cache hit rate, would
probably see their performance deteriorate with
Concurrent I/O, just as it would with Direct I/O.
Concurrent I/O will also provide no benefit for
applications in which the vast majority of data
accesses are reads. In such environments, read-
shared, write-exclusive inode locking will
already provide most of the benefits of
Concurrent I/O.

Applications that use raw logical volumes for
data storage don’t encounter inode lock
contention since they don’t access files.

2.3 The Sync Daemon
The sync daemon (/usr/sbin/syncd) forces a write
of dirty (modified) pages in the file buffer cache
out to disk. By default, the sync daemon runs at
60-second intervals. On systems with large
amounts of memory and large numbers of pages
getting modified, this can result in high peaks of
I/O activity when the sync daemon runs.

Since Direct I/O bypasses the file buffer cache
and directly writes data to disk, the use of Direct
I/O results in a reduction in the number of dirty
pages that need to be flushed by the sync daemon.
The same holds true for raw logical volumes.

3 Performance Test
Environment

In order to evaluate Concurrent I/O performance,
we measured the throughput of an online
transaction processing (OLTP) workload under
different database storage configurations. We
used Oracle9i Database for this study. This
workload uses a client/server model, where a
client system drives the database server with a
mix of transactions intended to simulate a user
environment. Database throughput was measured

in terms of the number of transactions completed
per second (tps) at the client. The client also
measured the response time characteristics of the
transactions executed by the database server. We
measured the performance of our workload
under three different configurations for database
storage:
� Raw logical volumes
� JFS2 filesystems with Direct I/O
� JFS2 filesystems with Concurrent I/O

The workload was update intensive, and
consisted of a mix of transaction types on
multiple tables. The system configuration used
in these tests is specified in Table 3.

Table 3: System configuration

Attribute Value
System Type pSeries™ 680
Number of CPUs 4
Processor Type RS64-IV
Processor Clock Speed 600 MHz
System Memory 48 GB
O.S. Level AIX 5L version 5.2,

64-bit kernel
Database Oracle9i Database

release 2
v9.2.0.1 (64-bit)

Database size 500 GB
Configured Disks >400 SSA

The OLTP workload consists of a ramp-up phase,
followed by the steady-state phase, and ending
with a brief ramp-down phase. On our
measurement configuration, the steady state
performance was reached within about five
minutes of execution. The performance
measurement interval lasts about thirty minutes
after reaching steady state.

Database performance benchmarks typically use
raw logical volumes for database storage. Raw
logical volumes do not suffer from the overheads
described in section 2 for file systems, and
usually provide the best performance for
database applications. We measured the
performance of raw logical volumes to serve as
the performance goal to be attained when
database storage is done on file systems.

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 8 of 12

Table 4: Comparison of storage configurations

Raw LV configuration JFS2 configuration
Total no. of LVs Total no. of disks Total no. of files Total no. of disks

193 420 51 420

3.1 Raw Logical Volume
Configuration

The physical configuration for the OLTP run
with raw logical volumes was designed to reduce
I/O wait to as near to zero as possible. The
objective was to maximize throughput and
minimize I/O bottlenecks by spreading data
across multiple logical volumes and disks. In all,
193 raw logical volumes were used in this
configuration.

All of the raw logical volumes (LVs) were
created in volume groups defined in 32MB
partitions with the exception of the LVs for the
database logs, which were defined in 128MB
partitions. Previous exercises using this
workload have shown that I/O disk performance
is best when raw LVs are spanned (without
striping) on the outer edge of the disks.

For the database logs, SSA RAID-5 arrays were
created consisting of 4 physical disks (pdisk) for
each logical disk (hdisk). The LVs and redo log
files were 20GB in size, so as to eliminate log
switches during the OLTP run. Unlike the other
LVs, the LVs for the redo log files were striped
across the two logical hdisks, with a stripe size of
128K.

3.2 JFS2 File System Configuration
As previously mentioned, Direct I/O (DIO)
eliminates the overheads associated with the file
buffer cache. However, the write-exclusive inode
lock continues to pose a performance bottleneck
with Direct I/O. In order to minimize the effects
of spinning on the inode lock, file system based
database applications tend to maximize the
number of files in their configuration in order to
increase the number of concurrent writes in
progress. In previous experiments involving
JFS2 file systems with the Direct I/O option, we
usually created as many file systems as the
number of raw logical volumes used in the raw
LV configuration. However, using a large
number of files increases the complexity of
database administration. A smaller number of
files results in a more easily manageable
configuration from a database administrator’s
perspective.

For this study, we chose to limit the number of
files to a manageable number, rather than
matching the number of raw logical volumes.
This choice eliminated a direct one to one
performance comparison between raw and JFS2
physical layouts and implied a potential
performance loss due to the use of very large
data files. In addition, we treaded on
performance waters by striping the JFS2
volumes on raw devices, as opposed to the
traditionally preferred method of spanning
volumes on raw devices. However, as the very
positive JFS2 results show, as long as the
number of disks remains the same, DBAs can
consolidate raw LVs into JFS2 LVs without
risking loss in performance.

For the Concurrent I/O run, the filesystems were
mounted with the –o cio mount option, and for
the Direct I/O run, they were mounted with the –
o dio option. We used a file system block size
(agblksize) of 4KB. In general, the file system
block size used should match the database block
size, in order to satisfy Direct I/O alignment
restrictions. For the measurements reported in
this section, the database transaction logs (redo
logs) were stored on raw logical volumes. Using
file systems for the redo logs, with
agblksize=512 bytes, resulted in about a 4%
reduction in throughput. Using agblksize>512
bytes results in much worse performance, as this
violates the Direct I/O alignment restrictions that
need to be satisfied in order for Concurrent I/O
to be used for the file. Database control and
configuration files, which are frequently
accessed but do not usually satisfy Direct I/O
alignment constraints, would exhibit better
performance under cached I/O rather than Direct
or Concurrent I/O.

The thread scheduling policy used in our
experiments was the default SCHED_OTHER
policy.

The OLTP workload measured in our
experiments used asynchronous I/O for writing
database buffers to disk. Asynchronous I/O (AIO)
in JFS2 is handled by kernel processes (kprocs),
called aioservers. AIO requests from the
application are queued into an AIO queue. An

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 9 of 12

aioserver picks requests off the AIO queue one
at a time, and is unable to process any more
requests until I/O has completed for the request it
is currently servicing.

Thus, the number of aioservers in the system
limits the number of asynchronous I/O
operations that can be in progress simultaneously.
The maximum number of aioservers that can be
created is controlled by the maxservers attribute,
which has a default value of 10 per processor.
For our experiments, we used a maxservers
value of 400 per processor.

4 Performance Test Results
In this section, we compare various performance
metrics for each of the three storage
configurations measured. For ease of comparison,
this data is presented through a series of graphs.
For each graph, we present relevant observations
to help explain the depicted behavior. In the
graphs presented in this section, DIO stands for
Direct I/O, and CIO for Concurrent I/O.

4.1 Throughput
Table 5 lists the average throughput and response
times for each storage configuration, measured
over the steady-state interval of each benchmark
run. While the database throughput with Direct
I/O was 70% lower than with raw LVs, the
throughput with Concurrent I/O was only 8%
lower than the raw LV case. As our graphs will
corroborate, the poor Direct I/O performance can
be largely attributed to severe lock contention for
the inode locks. The Direct I/O performance
could have been improved by using a larger
number of files, such as by creating one file per
disk, as this would have reduced inode lock
contention.
Figure 8 plots the throughput measured at 30-
second intervals over the duration of the run. The
two dotted vertical lines demarcate the ramp-up,
steady-state and ramp-down phases of the runs.
The difference in performance between
Concurrent I/O and raw LVs stems from two
factors. The first is simply the additional
pathlength due to I/O requests having to go
through the file system path. The second factor
has to do with the way asynchronous I/O is
handled through a file system, as opposed to
when raw LVs are used. Since the AIO server
threads are kernel threads, a context switch
occurs for each AIO request to a file. On the
other hand, AIO requests to raw logical volumes

use a “fast path” to the logical volume manager
that avoids the use of AIO server threads.

Table 5: Average throughput and response times

Configuration

Avg
Throughput

(tps)

Avg
Response

Time
(sec)

Raw LVs 710.19 0.06
Direct I/O 219.69 0.12
Concurrent I/O 652.12 0.07

Apart from this difference in performance, the
behavior of the Concurrent I/O run is remarkably
similar to the raw LV run. Both exhibit very low
variation in throughput once steady-state is
reached. The slight variation in throughput is
merely because of normal load variations in the
benchmark. The Direct I/O run displays wide
variations in throughput, which is symptomatic
of severe lock contention.

4.2 Disk I/O
Figure 9 shows the disk I/O rates for each of our
runs. The I/O rate stays fairly constant
throughout the run, and mirrors the throughputs
presented in Figure 8. This is expected, since the
amount of I/O per transaction is constant, so a
lower throughput number would also correspond
to a lower I/O rate. It is interesting to note that
file system journaling does not appear to increase
the disk I/O rate in the file system runs. This is
because of the OLTP workload behavior. Files
are created and populated when the database is
created. The run only uses pre-initialized files,
and there is virtually no file creation, deletion,
allocation or truncation during the run. Thus,
there is little journaling during the runs.

The disk farm used in our experimental setup did
not pose a bottleneck in any of our runs. Figure
10 plots the highest disk utilization for any disk
within each 30-second measurement interval,
over the duration of the benchmark run. As
shown in the graph, the highest disk utilization
by any disk at any point did not exceed 70%
during any of our runs. CPU usage statistics
showed no I/O wait times in any of our runs.

4.3 CPU Usage
CPU usage statistics are a commonly used metric
for discussing system performance. We used the
AIX vmstat command to collect CPU usage
statistics at 30-second intervals for the entire

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 10 of 12

duration of each run. The vmstat command
breaks down CPU usage into four components:
%user, %system, %idle, and %wait. %user is the
percentage of CPU time spent executing user-
level instructions. %system is the percentage of
CPU time spent executing at the system
(supervisor) level. %idle is the percentage of
time that the CPU is available for additional
work. %wait is the percentage of time that the
CPU spends waiting for I/O to complete, with no
runnable processes.

Figures 11, 12 and 13 respectively show the
%user, %system and %idle times for each run, as
reported by vmstat. None of our benchmark runs
displayed any %wait time. The high CPU
utilization (%user + %system ≈ 100%) is typical
of the OLTP benchmark, as there is little or no
disk I/O wait.

The Concurrent I/O run has a higher %system
and lower %user than the raw LV run because of
the additional context switches due to traversing
down the file system path for I/O, and due to the
use of AIO server threads for servicing AIO
requests. This results in a greater amount of
work being done at the system level. As such,
the OLTP workload is not system-intensive.
Neither the Concurrent I/O nor the raw LV runs
show any idle time, whereas the Direct I/O run
shows a high percentage of idle time. This, again,
is indicative of severe lock contention in the
Direct I/O run.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50 55
Elapsed Time (minutes)

tp
s

RawLV DIO CIO

DIO

CIO

RawLV

Figure 8: Benchmark throughput over run duration.
Higher tps indicates better performance.

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35 40 45 50 55
Elapsed Time (minutes)

K
b

p
s

Raw DIO CIO

DIO

CIO

RawLV

Figure 9: Disk I/O throughput (in kilobytes of data
transferred per second) over run duration.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

%
 d

is
k

u
ti

liz
at

io
n

Raw DIO CIO

DIO

CIO

RawLV

Figure 10: Highest disk utilization over run duration.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

%
u

se
r

RawLV DIO CIO

RawLV

CIO

DIO

Figure 11: %user over run duration

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 11 of 12

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

%
sy

st
em

RawLV DIO CIO

CIO

DIO

RawLV

Figure 12: %system over run duration

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55
Elapsed time (minutes)

%
id

le

RawLV DIO CIO

DIO

RawLVCIO

Figure 13: %idle over run duration.

4.4 Lock Statistics
The study of the locking behavior exhibited by
the three storage models reveals the most
information about their performance
characteristics. The lock statistics reported here
were gathered using the AIX trace facility. The
traces were gathered over a five-second interval
during the steady state phase of each run.

To better understand the locking statistics
presented here, a brief explanation of the AIX 5L
v5.2 locking process is in order. When a thread
first attempts to acquire a lock and fails, it may
spin around the lock for at most maxspin number
of times. The variable maxspin can be set via the
AIX schedo command. For our runs, we used the
default maxspin value of 16384. If the thread
fails to acquire the lock after maxspin attempts, it
goes into wait state and is undispatched. When
the lock is released by the owning thread, it
wakes up one or more of the threads waiting to
acquire that lock, and the cycle repeats itself.
Heavy lock contention thus manifests itself as

through a large number of threads going into the
wait state, or blocking, while trying to acquire
the lock.

Figure 14 plots the number of blocks per second
for the most contended lock classes in our tests,
i.e., the number of times any thread was driven
into wait state while waiting for a lock during the
measurement interval, divided by the
measurement interval. By “lock class”, we mean
all the locks that fall under the same functional
category. For example, the lock class “SSA”
includes all the different locks used for
serializing accesses to SSA devices.

0

200

400

600

800

1000

AIOQ inode SSA

B
lo

ck
s/

se
co

n
d

CIO
DIO
Raw

.

Figure 14: Blocks/second for major lock classes

The three major lock classes observed in our
traces were:

• AIOQ lock – serializes insertion and
removal of AIO requests from the AIO
queues.

• Inode lock – the per-file write-
exclusive lock used by the file system to
serialize write accesses to a file. This
lock is not taken in Concurrent I/O,
except under the conditions listed in
Section 2.2.1.1.

• SSA lock – used for serializing accesses
to an SSA device. Each device has its
own lock.

As seen in Figure 14, the Direct I/O run shows
excessive amounts of blocking due to the inode
lock, which results in a lot of context switching.
Since a large number of threads went into the
wait state in the Direct I/O run, there was a
significant amount of CPU idle time when there
were no runnable threads, resulting in lower

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 12 of 12

throughput. The Concurrent I/O and raw LV runs
do not acquire write-exclusive inode locks.

5 Conclusion
The performance experiments described in this
paper show that using JFS2 Concurrent I/O for
databases results in performance comparable to
that achieved through the use of raw logical
volumes for database storage, while providing
greater flexibility and ease of administration. The
throughput of the database application under
Concurrent I/O was three times the throughput
achieved with Direct I/O – a 200% improvement
- and lagged the performance on raw logical
volumes by only 8%. We have also shown that
the performance equivalence between
Concurrent I/O and raw logical volumes holds at
a detailed level, with many system metrics
showing remarkably similar behavior in both
cases.
Thus, Concurrent I/O combines all the
performance advantages of using raw logical
volumes, while greatly simplifying the task of
database administration. This makes Concurrent
I/O a very attractive option for database storage.

© Copyright IBM Corporation 2003

IBM Corporation
Marketing Communications
Server Group
Route 100
Somers, New York 10589

Produced in the United States of America
05-03
All Rights Reserved

This publication was developed for products and/or
services offered in the United States. IBM may not offer
the products, features, or services discussed in this
publication in other countries. The information may be
subject to change without notice. Consult your local
IBM business contact for information on the products,
features and services available in your area.

This equipment is subject to FCC rules. It will comply
with the appropriate FCC rules before final delivery to
the buyer.

IBM hardware products are manufactured from new
parts, or new and used parts. Regardless, our warranty
terms apply.

All statements regarding IBM’s future direction and
intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

Information concerning non-IBM products was obtained
from the suppliers of these products.
Questions on the capabilities of the non-IBM products
should be addressed with the suppliers.

All performance information was determined in a
controlled environment. Actual results may vary.
Performance information is provided “AS IS” and no
warranties or guarantees are expressed or implied by
IBM.

IBM, the IBM logo, AIX, AIX 5L, pSeries are trademarks
or registered trademarks of International Business
Machines Corporation in the United States or other
countries or both.

UNIX is a registered trademark of The Open Group in
the United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

The IBM home page on the Internet can be found at
http://www.ibm.com

The pSeries home page on the Internet can be found at
http://www.ibm.com/servers/eserver/pseries/

http://www.ibm.com
http://www.ibm.com/servers/eserver/pseries/

