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1 Introduction 
A new file system feature called "Concurrent 
I/O" (CIO) was introduced in the Enhanced 
Journaling File System (JFS2) in AIX 5L™ 
version 5.2.0.10, also known as maintenance 
level 01 (announced May 27, 2003). This new 
feature improves performance for many 
environments, particularly commercial relational 
databases. In many cases, the database 
performance achieved using Concurrent I/O with 
JFS2 is comparable to that obtained by using raw 
logical volumes. This paper details the 
implementation and operational characteristics of 
Concurrent I/O, and presents the results of our 
performance evaluation of Concurrent I/O with 
Oracle9i Database. 
 
The file system has long been the heart of 
UNIX® storage management. Commands and 
interfaces for manipulating and managing data 
stored on files are commonly used throughout 
the UNIX world by users of all skill levels. 
Managing persistent data via such universally 
understood mechanics is key to application 
portability. File systems thus provide a very 
useful and desirable abstraction for data storage.  
 
As is often the case with any method of 
abstraction, however, the use of file systems 
results in some tradeoffs between performance 
and ease of use. The fastest means of transferring 
data between an application and permanent 
storage media such as disks, is to directly access 
more primitive interfaces such as raw logical 
volumes. The use of files for data storage 
involves overheads due to serialization, buffering 
and data copying, which impact I/O performance. 
Using raw logical volumes for I/O eliminates the  
overheads of serialization and buffering, but also 
requires a higher level of skill and training on the 
part of the user since data management becomes 
more application-specific. Also, while file 
system commands do not require system 
administrator privileges, commands for 
manipulating raw logical volumes do. However, 
due to its superior performance, database 
applications have traditionally preferred to use 
raw logical volumes for data storage, rather than 
using file systems.  
 
With the Concurrent I/O feature now available in 
JFS2, database performance on file systems 

rivals the performance achievable with raw 
logical volumes. 

2 Using File Systems for 
Database Applications 

For database applications, the superior 
performance of raw logical volumes compared to 
file systems arises from certain features of the 
file system: 

•  The file buffer cache 
•  The per-file write lock, or inode lock 
•  The sync daemon 

These file system features help ensure data 
integrity, improve fault tolerance, and in fact 
improve application performance in many cases. 
However, these features often pose performance 
bottlenecks for database applications. This 
section explains the role of these features in a file 
system, how they impact database performance, 
and the options provided by JFS2 to help reduce 
their performance impact. 

2.1 File Buffer Cache 
At the most basic level, a file is simply a 
collection of bits stored on persistent media. 
When a process wants to access data from a file, 
the operating system brings the data into main 
memory, where the process can examine it, alter 
it, and then request that the data be saved to disk. 
The operating system could read and write data 
directly to and from the disk for each request, but 
the response time and throughput would be poor 
due to slow disk access times. The operating 
system therefore attempts to minimize the 
frequency of disk accesses by buffering data in 
main memory, within a structure called the file 
buffer cache. On a file read request, the file 
system first attempts to read the requested data 
from the buffer cache. If the data is not already 
present in the buffer cache, it is read from disk 
and cached in the buffer cache. Figures 1 and 2 
show the sequence of actions that take place 
when a read request is issued under this caching 
policy.   
 
Similarly, writes to a file are cached so that 
future reads can be satisfied without 
necessitating a disk access, and to reduce the 
frequency of disk writes. The use of a file buffer 
cache can be extremely effective when the cache 
hit rate is high. It also enables the use of 
sequential read-ahead and write-behind policies 
to reduce the frequency of physical disk I/O’s. 
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Another benefit is in making file writes 
asynchronous, since the application can continue 
execution without waiting for the disk write to 
complete. Figure 3 shows the sequence of 
actions for a write request under cached I/O. 
 
While the file buffer cache improves I/O 
performance, it also consumes a significant 
portion of system memory. AIX’s Enhanced JFS, 
also known as JFS2, allows the system 
administrator to control the maximum amount of 
memory that can be used by the file system for 
caching. JFS2 uses a certain percentage of real 
memory for its file buffer cache, specified by the 
maxclient% parameter. The value of max-
client% can be tuned via the vmo command. By 
default it is set to 80, which implies that JFS2 
can use up to 80% of real memory for its file 
buffer cache. The range of acceptable values for 
maxclient% is from 1 to 100. For example, the 
following command will reduce the maximum 
amount of memory that can be used for the file 
buffer cache to 50% of real memory: vmo –o 
maxclient%=50. 
 
In contrast, raw logical volumes do not use a 
system-level cache to cache application data, so 
there is neither duplication nor double-copying 
of data. 
 

 

Figure 1: Reads under cached I/O – buffer cache hit 

 

Figure 2: Reads under cached I/O - buffer cache miss 

 

 
Figure 3: Writes under cached I/O 

2.1.1 Direct I/O  
Certain classes of applications derive no benefit 
from the file buffer cache. Some technical 
workloads, for instance, never reuse data due to 
the sequential nature of their data accesses, 
resulting in poor buffer cache hit rates. 
Databases normally manage data caching at the 
application level, so they do not need the file 
system to implement this service for them. The 
use of a file buffer cache results in undesirable 
overheads in such cases, since data is first moved 

from the disk to the file buffer cache and from 
there to the application buffer. This “double-
copying” of data results in additional CPU 
consumption. Also, the duplication of 
application data within the file buffer cache 
increases the amount of memory used for the 
same data, making less memory available for the 
application, and resulting in additional system 
overheads due to memory management.   
 
For applications that wish to bypass the 
buffering of memory within the file system cache, 
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Direct I/O is provided as an option in JFS2. 
When Direct I/O is used for a file, data is 
transferred directly from the disk to the 
application buffer, without the use of the file 
buffer cache. Figures 4 and 5 depict the sequence 
of actions that occur for reads and writes under 
Direct I/O. 
 

 
Figure 4: Reads under Direct I/O 

 

 
Figure 5: Writes under Direct I/O 

2.1.1.1 Direct I/O Usage 
Direct I/O can be used for a file either by 
mounting the corresponding file system with the 
mount –o dio option, or by opening the file with 
the O_DIRECT flag specified in the open() 
system call. When a file system is mounted with 
the –o dio option, all files in the file system use 
Direct I/O by default. Direct I/O can be restricted 
to a subset of the files in a file system by placing 
the files that require Direct I/O in a separate 
subdirectory and using namefs to mount this 

subdirectory over the file system. For example, if 
a file system somefs contains some files that 
prefer to use Direct I/O and others that do not, 
we can create a subdirectory, subsomefs, in 
which we place all the files that require Direct 
I/O. We can mount somefs without specifying –o 
dio, and then mount subsomefs as a namefs file 
system with the –o dio option using the 
command: mount –v namefs –o dio 
/somefs/subsomefs /somefs. 
 
The use of Direct I/O requires that certain 
alignment and length restrictions be met by the 
application’s I/O requests. Table 1 lists these 
requirements for JFS2. Failure to meet these 
requirements causes reads and writes to be done 
using normal cached I/O, but after the data is 
transferred to the application buffer, the cached 
copy is discarded. File system read-ahead does 
not occur for files that use Direct I/O. 
 
To avoid consistency issues, if there are multiple 
processes open a file and one or more processes 
did not specify O_DIRECT while others did, the 
file stays in the normal cached I/O mode. 
Similarly, if the file is mapped in memory 
through the shmat() or mmap() system calls, it 
stays in normal cached mode. Once the last 
conflicting, non-direct access is eliminated (by 
using the close(), munmap(), or shmdt() system 
calls), the file is moved into Direct I/O mode. 
The change from caching mode to Direct I/O 
mode can be expensive because all modified 
pages in memory will have to be flushed to disk 
at that point. 
 

Table 1: JFS2 restrictions for Direct I/O 

File system 
format 

Buffer 
alignment 

Buffer length 
increment 

JFS2 before 
AIX 5.2 
ML01 

4K bytes 4K bytes 

JFS2 as of 
AIX 5.2 
ML01  

agblksize 
specified at file 
system 
creation  

agblksize 
specified at file 
system creation 

 

2.1.1.2 Performance Considerations 
Under Direct I/O 

Direct I/O benefits applications by reducing CPU 
consumption and eliminating the overhead of 
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buffer cache to the application’s buffer. However, 
several factors could impact application 
performance when Direct I/O is used.  
 
Every Direct I/O read causes a synchronous read 
from disk, unlike the normal cached I/O policy 
where the read may be satisfied from the file 
buffer cache (refer Figures 2 and 5). This can 
result in poor performance if the data was likely 
to be in memory under the normal caching policy.  
 
Direct I/O also bypasses JFS2 read-ahead. File 
system read-ahead can provide a significant 
performance boost for sequentially accessed files. 
When read-ahead is employed, the operating 
system tries to anticipate future need for pages of 
a sequential file by observing the pattern in 
which an application accesses the file. When the 
application accesses two successive pages of the 
file, the operating system assumes that the 
program will continue to access the file 
sequentially, and schedules additional sequential 
reads of the file. These reads are overlapped with 
application  processing, and will make the data 
available to the application sooner than if the 
operating system had waited for the program to 
access the next page before initiating the I/O. 
The number of pages to be read ahead is 
determined by two parameters: 

•  j2_minPageReadAhead   
Number of pages read ahead when the 
operating system first detects sequential 
access. If the program continues to 
access the file sequentially, the next 
read-ahead is twice j2_minPageRead-
Ahead, the next for 4 times j2_min-
PageReadAhead, and so on until the 
number of pages reaches j2_maxPa-
geReadAhead. Default value is 2. 

•  j2_maxPageReadAhead   
Maximum number of pages the 
operating system will read ahead in a 
sequential file.  Default value is 8. 

 
These parameters are tunable, and can be set via 
the ioo command. 
 
Table 2 compares the performance of Direct I/O 
versus cached I/O for three different read 
scenarios. The file block size used in these 
experiments was 4K bytes, and the default values 
of j2_minPageReadAhead=2, and j2_maxPag-
eReadAhead=8 were used. 
 
The first row in Table 2 corresponds to the case 
where the application reads a 1MB file 

sequentially, byte by byte. When Direct I/O is 
used in this case, the alignment restrictions are 
violated. Consequently, normal cached I/O is 
used to read a 4K page into the file buffer cache, 
the requested byte is copied from the file buffer 
cache to the application buffer, and the 4K page 
is discarded from the file buffer cache. This 
results in a 4K page being read for every byte 
requested by the application, while also incurring 
the costs of double-copying of data. Cached I/O 
in this case enjoys two advantages: the 4K page 
that is brought into the file buffer cache when a 
single byte is read can be re-used to return 4K 
bytes of data to the application upon subsequent 
read requests. Additionally, read-ahead would 
occur with cached I/O, further reducing the 
latency of future read requests. 
 
The second row in Table 2 corresponds to the 
case where a 1GB file is read sequentially in 
4KB increments. Although this case satisfies the 
alignment restrictions for Direct I/O, read-ahead 
will not occur when Direct I/O is used. Cached 
I/O again outperforms Direct I/O in this case due 
to file system read-ahead. Note that the total 
amount of data read in this case is the same for 
both Direct and cached I/O (although cached I/O 
reads one additional page, due to read-ahead).  
 
The third row in Table 2 corresponds to the case 
where a 1GB file is read sequentially in 10MB 
increments. Direct I/O significantly outperforms 
cached I/O in this case for two reasons. First, the 
overhead of double-copying is eliminated with 
Direct I/O. Secondly, cached I/O does not see the 
benefit of read-ahead in this case because at most 
8 4K pages can be read ahead (since 
j2_maxPageReadAhead=8), while the read 
increment in this case is 2560 4K pages.  
 
These examples show that applications do not 
uniformly benefit from Direct I/O. However, 
applications that see performance benefits when 
using raw logical volumes for storage are likely 
to benefit from the use of Direct I/O. Raw logical 
volumes also impose alignment and length 
restrictions on I/O – they require that the 
application buffer be 512-byte aligned, and that 
lengths be in 512-byte increments. Thus, 
applications that use raw logical volumes for I/O 
already implement these alignment and length 
restrictions. By creating file systems with an 
appropriate block size (e.g., by specifying 
agblksize=512 at file system creation), such 
applications can benefit from the use of Direct 
I/O without any modification.  
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Table 2: Direct I/O vs. cached I/O performance 

Cached I/O Direct I/O 

Read 
Increment Total File Size 

Elapsed Time 
(sec) 

Total KB 
Read Elapsed Time 

Total KB 
Read 

1 byte 1 MB 1.59 1,036 185.27 4,194,320 
4 KB 1 GB 21.18 1,045,982 104.31 1,045,986 
10 MB 1 GB 20.59 1,048,592 6.81 1,048,596 

2.2 Inode Locking 
While an application views a file as a contiguous 
stream of data, this is not actually how a file is 
stored on disk. In reality, a file is stored as a set 
of (possibly non-contiguous) blocks of data on 
disk. Each file has a data structure associated 
with it, called an inode.  
 
The inode contains all the information necessary 
for a process to access the file, such as file 
ownership, access rights, file size, time of last 
access or modification, and the location of the 
file’s data on disk. Since a file’s data is spread 
across disk blocks, the inode contains a “table of 
contents” to help locate this data. It is important 
to note the distinction between changing the 
contents of an inode and changing the contents 
of a file. The contents of a file only change on a 
write operation. The contents of an inode change 
when the contents of the corresponding file 
change, or when its owner, permissions, or any 
of the other information that is maintained as 
part of the inode changes. Thus, changing the 
contents of a file automatically implies a change 
to the inode, whereas a change to the inode does 
not imply that the contents of the file have 
changed. Since multiple threads may attempt to 
change the contents of an inode simultaneously, 
this could result in an inconsistent state of the 
inode. In order to avoid such race conditions, the 
inode is protected by a lock, called the inode 
lock. This lock is used for any access that could 
result in a change to the contents of the inode, 
preventing other processes from accessing the 
inode while it is in a possibly inconsistent state.  
 
When a file is accessed for reading, the contents 
of the inode do not change, whereas writes to a 
file do change the contents of the inode (and the 
contents of the file). JFS2 uses a read-shared, 
write-exclusive inode lock which allows multiple 
readers to access the file simultaneously, but 
requires that the lock be held in exclusive mode 

when a write access is made. This means that 
when the lock is held in write-exclusive mode by  
a process, no other process may access the file 
for either reads or writes. However, when the 
lock is held in read-shared mode by a process, 
other processes can concurrently read data from 
the file. Figure 6 depicts the serialization 
enforced by the inode lock in JFS2. In the figure, 
threads 1 and 2 simultaneously read data from a 
shared file. When thread 2 performs a write on 
the file, it takes the inode lock in write-exclusive 
mode, preventing thread 1 from performing reads 
or writes on the file for the duration that thread 2 
holds the lock. 
 

 
Figure 6: Read-shared, write-exclusive inode locking 
in JFS2 

2.2.1 Concurrent I/O  
The inode lock imposes write serialization at the 
file level. Serializing write accesses ensures that 
data inconsistencies due to overlapping writes do 
not occur.  Serializing reads with respect to 
writes ensures that the application does not read 
stale data. Sophisticated database applications 

 
 
 

Read 

 
Compute 

 
Block 

on read/ 
write 

 
Read/ 
write 

 
Read 

 
 
Block on 

write 

 
 
 

Write 

 
Compute 

T 
H 
R 
E 
A 
D 
1 

T 
H 
R 
E 
A 
D 
2 



AIX CIO Implementation and Performance 

 
wpAIXcio052703.doc                                                                                                Page 6 of 12 

implement their own data serialization, usually at 
a finer level of granularity than the file. Such 
applications implement serialization mechanisms 
at the application level to ensure that data 
inconsistencies do not occur, and that stale data 
is not read. Consequently, they do not need the 
file system to implement this serialization for 
them. The inode lock actually hinders 
performance in such cases, by unnecessarily 
serializing non-competing data accesses. For 
such applications, AIX 5L v5.2 ML01 offers the 
Concurrent I/O (CIO) option. Under Concurrent 
I/O, multiple threads can simultaneously perform 
reads and writes on a shared file. This option is 
intended primarily for relational database 
applications, most of which will operate under 
Concurrent I/O without any modification.  
Applications that do not enforce serialization for 
accesses to shared files should not use 
Concurrent I/O, as this could result in data 
corruption due to competing accesses.  

 

Figure 7: Inode serialization under Concurrent I/O on 
JFS2 

2.2.1.1 Concurrent I/O Usage 
Concurrent I/O can be specified for a file either 
through the mount command (mount –o cio), or 
via the open() system call (by using O_CIO as 
the OFlag parameter). When a file system is  
mounted with the –o cio option, all files in the 
file system use Concurrent I/O by default. Just as 
with Direct I/O, Concurrent I/O can be restricted 
to a subset of the files in the file system by 
placing the files that use Concurrent I/O in a 
separate subdirectory and using namefs to mount 
this subdirectory over the file system. For 

example, if a file system somefs contains some 
files that prefer to use Concurrent I/O and others 
that do not, we can create a subdirectory, 
subsomefs containing all the files that use 
Concurrent I/O. We can mount somefs without 
the –o cio option, and then mount subsomefs as a 
namefs file system with the –o cio option:  
mount –v namefs –o cio /somefs/subsomefs 
/somefs. 
 
The use of Direct I/O is implicit with Concurrent 
I/O, and files that use Concurrent I/O 
automatically use the Direct I/O path. Thus, 
applications using Concurrent  I/O are subject to 
the same alignment and length restrictions as 
Direct I/O, specified in Table 1.  As with Direct 
I/O, if there are multiple outstanding opens to a 
file and one or more of the calls did not specify 
O_CIO, then Concurrent I/O is not enabled for 
the file. Once the last conflicting access is 
eliminated, the file begins to use Concurrent I/O. 
Since Concurrent I/O implicitly uses Direct I/O, 
it overrides the O_DIO flag for a file.  
 
Under Concurrent I/O, the inode lock is acquired 
in read-shared mode for both read and write 
accesses. However, in situations where the 
contents of the inode may change for reasons 
other than a change to the contents of the file 
(writes), the inode lock is acquired in write-
exclusive mode. One such situation occurs when 
a file is extended or truncated. Extending a file 
may require allocation of new disk blocks for the 
file, and consequently requires an update to the 
“table of contents” of the corresponding inode. 
In this case, the read-shared inode lock is 
upgraded to the write-exclusive mode for the 
duration of the extend operation. Similarly, when 
a file is truncated, allocated disk blocks might be 
freed and the inode’s table of contents needs to 
be updated. Upon completion of the extend or 
truncate operation, the inode lock reverts to read-
shared mode. This is a very powerful feature, 
since it allows files using Concurrent I/O to grow 
or shrink in a manner that is transparent to the 
application, without having to close or reopen 
files after a resize. Figure 7 shows the behavior 
of the inode lock under Concurrent I/O.  
 
 Another situation that results in the inode lock 
being acquired in write-exclusive mode is when 
an I/O request on the file violates the alignment 
or length restrictions of Direct I/O. Alignment 
violations result in normal cached I/O being used 
for the file, and the inode lock reverts to the 
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read-shared, write-exclusive mode of operation 
depicted in Figure 6. 

2.2.1.2 Performance Considerations 
under Concurrent I/O 

Since Concurrent I/O implicitly invokes Direct 
I/O, all the performance considerations for Direct 
I/O mentioned in Section 2.1.1.2 hold for 
Concurrent I/O as well. Thus, applications that 
benefit from file system read-ahead, or have a 
high file system buffer cache hit rate, would 
probably see their performance deteriorate with 
Concurrent I/O, just as it would with Direct I/O. 
Concurrent I/O will also provide no benefit for 
applications in which the vast majority of data 
accesses are reads. In such environments, read-
shared, write-exclusive inode locking will 
already provide most of the benefits of 
Concurrent I/O.  
 
Applications that use raw logical volumes for 
data storage don’t encounter inode lock 
contention since they don’t access files. 

2.3 The Sync Daemon 
The sync daemon (/usr/sbin/syncd) forces a write 
of dirty (modified) pages in the file buffer cache 
out to disk. By default, the sync daemon runs at 
60-second intervals. On systems with large 
amounts of memory and large numbers of pages 
getting modified, this can result in high peaks of 
I/O activity when the sync daemon runs.   
 
Since Direct I/O bypasses the file buffer cache 
and directly writes data to disk, the use of Direct 
I/O results in a reduction in the number of dirty 
pages that need to be flushed by the sync daemon. 
The same holds true for raw logical volumes. 

3 Performance Test 
Environment 

In order to evaluate Concurrent I/O performance, 
we measured the throughput of an online 
transaction processing (OLTP) workload under 
different database storage configurations. We 
used Oracle9i Database for this study. This 
workload uses a client/server model, where a 
client system drives the database server with a 
mix of transactions intended to simulate a user 
environment. Database throughput was measured 

in terms of the number of transactions completed 
per second (tps) at the client. The client also 
measured the response time characteristics of the 
transactions executed by the database server. We 
measured the performance of our workload 
under three different configurations for database 
storage: 
� Raw logical volumes 
� JFS2 filesystems with Direct I/O 
� JFS2 filesystems with Concurrent I/O 
 
The workload was update intensive, and 
consisted of a mix of transaction types on 
multiple tables.  The system configuration used 
in these tests is specified in Table 3. 

Table 3: System configuration 

Attribute Value 
System Type pSeries™ 680 
Number of CPUs 4 
Processor Type RS64-IV 
Processor Clock Speed 600 MHz 
System Memory 48 GB 
O.S. Level AIX 5L version 5.2, 

64-bit kernel 
Database  Oracle9i Database 

release 2 
v9.2.0.1 (64-bit) 

Database size 500 GB 
Configured Disks >400 SSA 

 
The OLTP workload consists of a ramp-up phase, 
followed by the steady-state phase, and ending 
with a brief ramp-down phase. On our 
measurement configuration, the steady state 
performance was reached within about five 
minutes of execution. The performance 
measurement interval lasts about thirty minutes 
after reaching steady state. 
 
Database performance benchmarks typically use 
raw logical volumes for database storage. Raw 
logical volumes do not suffer from the overheads 
described in section 2 for file systems, and 
usually provide the best performance for 
database applications. We measured the 
performance of raw logical volumes to serve as 
the performance goal to be attained when 
database storage is done on file systems. 
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Table 4: Comparison of storage configurations 

Raw LV configuration JFS2 configuration 
Total no. of LVs Total no. of disks Total no. of files Total no. of disks 

193 420 51 420 

3.1 Raw Logical Volume 
Configuration 

The physical configuration for the OLTP run 
with raw logical volumes was designed to reduce 
I/O wait to as near to zero as possible. The 
objective was to maximize throughput and 
minimize I/O bottlenecks by spreading data 
across multiple logical volumes and disks. In all, 
193 raw logical volumes were used in this 
configuration. 
 
All of the raw logical volumes (LVs) were 
created in volume groups defined in 32MB 
partitions with the exception of the LVs for the 
database logs, which were defined in 128MB 
partitions. Previous exercises using this 
workload have shown that I/O disk performance 
is best when raw LVs are spanned (without 
striping) on the outer edge of the disks. 
 
For the database logs, SSA RAID-5 arrays were 
created consisting of 4 physical disks (pdisk) for 
each logical disk (hdisk).  The LVs and redo log 
files were 20GB in size, so as to eliminate log 
switches during the OLTP run. Unlike the other 
LVs, the LVs for the redo log files were striped 
across the two logical hdisks, with a stripe size of 
128K. 

3.2 JFS2 File System Configuration 
As previously mentioned, Direct I/O (DIO) 
eliminates the overheads associated with the file 
buffer cache. However, the write-exclusive inode 
lock continues to pose a performance bottleneck 
with Direct I/O. In order to minimize the effects 
of spinning on the inode lock, file system based 
database applications tend to maximize the 
number of files in their configuration in order to 
increase the number of concurrent writes in 
progress. In previous experiments involving 
JFS2 file systems with the Direct I/O option, we 
usually created as many file systems as the 
number of raw logical volumes used in the raw 
LV configuration. However, using a large 
number of files increases the complexity of 
database administration. A smaller number of 
files results in a more easily manageable 
configuration from a database administrator’s 
perspective.  

 
For this study, we chose to limit the number of 
files to a manageable number, rather than 
matching the number of raw logical volumes. 
This choice eliminated a direct one to one 
performance comparison between raw and JFS2 
physical layouts and implied a potential 
performance loss due to the use of very large 
data files. In addition, we treaded on 
performance waters by striping the JFS2 
volumes on raw devices, as opposed to the 
traditionally preferred method of spanning 
volumes on raw devices. However, as the very 
positive JFS2 results show, as long as the 
number of disks remains the same, DBAs can 
consolidate raw LVs into JFS2 LVs without 
risking loss in performance. 
 
For the Concurrent I/O run, the filesystems were 
mounted with the –o cio mount option, and for 
the Direct I/O run, they were mounted with the –
o dio option. We used a file system block size 
(agblksize) of 4KB. In general, the file system 
block size used should match the database block 
size, in order to satisfy Direct I/O alignment 
restrictions. For the measurements reported in 
this section, the database transaction logs (redo 
logs) were stored on raw logical volumes. Using 
file systems for the redo logs, with 
agblksize=512 bytes, resulted in about a 4% 
reduction in throughput. Using agblksize>512 
bytes results in much worse performance, as this 
violates the Direct I/O alignment restrictions that 
need to be satisfied in order for Concurrent I/O 
to be used for the file. Database control and 
configuration files, which are frequently 
accessed but do not usually satisfy Direct I/O 
alignment constraints, would exhibit better 
performance under cached I/O rather than Direct 
or Concurrent I/O.  
 
The thread scheduling policy used in our 
experiments was the default SCHED_OTHER 
policy. 
 
The OLTP workload measured in our 
experiments used asynchronous I/O for writing 
database buffers to disk. Asynchronous I/O (AIO) 
in JFS2 is handled by kernel processes (kprocs), 
called aioservers. AIO requests from the 
application are queued into an AIO queue. An 
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aioserver picks requests off the AIO queue one 
at a time, and is unable to process any more 
requests until I/O has completed for the request it 
is currently servicing.  
 
Thus, the number of aioservers in the system 
limits the number of asynchronous I/O 
operations that can be in progress simultaneously. 
The maximum number of aioservers that can be 
created is controlled by the maxservers attribute, 
which has a default value of 10 per processor. 
For our experiments, we used a maxservers 
value of 400 per processor. 

4 Performance Test Results 
In this section, we compare various performance 
metrics for each of the three storage 
configurations measured. For ease of comparison, 
this data is presented through a series of graphs. 
For each graph, we present relevant observations 
to help explain the depicted behavior. In the 
graphs presented in this section, DIO stands for 
Direct I/O, and CIO for Concurrent I/O. 

4.1 Throughput 
Table 5 lists the average throughput and response 
times for each storage configuration, measured 
over the steady-state interval of each benchmark 
run. While the database throughput with Direct 
I/O was 70% lower than with raw LVs, the 
throughput with Concurrent I/O was only 8% 
lower than the raw LV case. As our graphs will 
corroborate, the poor Direct I/O performance can 
be largely attributed to severe lock contention for 
the inode locks. The Direct I/O performance 
could have been improved by using a larger 
number of files, such as by creating one file per 
disk, as this would have reduced inode lock 
contention. 
Figure 8 plots the throughput measured at 30-
second intervals over the duration of the run. The 
two dotted vertical lines demarcate the ramp-up, 
steady-state and ramp-down phases of the runs. 
The difference in performance between 
Concurrent I/O and raw LVs stems from two 
factors. The first is simply the additional 
pathlength due to I/O requests having to go 
through the file system path. The second factor 
has to do with the way asynchronous I/O is 
handled through a file system, as opposed to 
when raw LVs are used. Since the AIO server 
threads are kernel threads, a context switch 
occurs for each AIO request to a file. On the 
other hand, AIO requests to raw logical volumes 

use a “fast path” to the logical volume manager 
that avoids the use of AIO server threads.  
 

Table 5: Average throughput and response times 

Configuration 

Avg 
Throughput 

(tps) 

Avg 
Response 

Time 
(sec) 

Raw LVs 710.19   0.06 
Direct I/O 219.69 0.12 
Concurrent I/O 652.12 0.07 
 
Apart from this difference in performance, the 
behavior of the Concurrent I/O run is remarkably 
similar to the raw LV run. Both exhibit very low 
variation in throughput once steady-state is 
reached. The slight variation in throughput is 
merely because of normal load variations in the 
benchmark. The Direct I/O run displays wide 
variations in throughput, which is symptomatic 
of severe lock contention.  

4.2 Disk I/O  
Figure 9 shows the disk I/O rates for each of our 
runs. The I/O rate stays fairly constant 
throughout the run, and mirrors the throughputs 
presented in Figure 8. This is expected, since the 
amount of I/O per transaction is constant, so a 
lower throughput number would also correspond 
to a lower I/O rate. It is interesting to note that  
file system journaling does not appear to increase 
the disk I/O rate in the file system runs. This is 
because of the OLTP workload behavior. Files 
are created and populated when the database is 
created. The run only uses pre-initialized files, 
and there is virtually no file creation, deletion, 
allocation or truncation during the run. Thus, 
there is little journaling during the runs. 
 
The disk farm used in our experimental setup did 
not pose a bottleneck in any of our runs.  Figure 
10 plots the highest disk utilization for any disk 
within each 30-second measurement interval, 
over the duration of the benchmark run. As 
shown in the graph, the highest disk utilization 
by any disk at any point did not exceed 70% 
during any of our runs. CPU usage statistics 
showed no I/O wait times in any of our runs. 

4.3 CPU Usage 
CPU usage statistics are a commonly used metric 
for discussing system performance. We used the 
AIX vmstat command to collect CPU usage 
statistics at 30-second intervals for the entire 
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duration of each run. The vmstat command 
breaks down CPU usage into four components: 
%user, %system, %idle, and %wait. %user is the 
percentage of CPU time spent executing user-
level instructions. %system is the percentage of 
CPU time spent executing at the system 
(supervisor) level. %idle is the percentage of 
time that the CPU is available for additional 
work. %wait is the percentage of time that the 
CPU spends waiting for I/O to complete, with no 
runnable processes.  
 
Figures 11, 12 and 13 respectively show the 
%user, %system and %idle times for each run, as 
reported by vmstat. None of our benchmark runs 
displayed any %wait time. The high CPU 
utilization (%user + %system ≈ 100%) is typical 
of the OLTP benchmark, as there is little or no 
disk I/O wait. 
  
The Concurrent I/O run has a higher %system 
and lower %user than the raw LV run because of 
the additional context switches due to traversing 
down the file system path for I/O, and due to the 
use of AIO server threads for servicing AIO 
requests. This results in a greater amount of 
work being done at the system level. As such, 
the OLTP workload is not system-intensive. 
Neither the Concurrent I/O nor the raw LV runs 
show any idle time, whereas the Direct I/O run 
shows a high percentage of idle time. This, again, 
is indicative of severe lock contention in the 
Direct  I/O run.  
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Figure 8: Benchmark throughput over run duration. 
Higher tps indicates better performance.  
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Figure 9: Disk I/O throughput (in kilobytes of data 
transferred per second) over run duration.  
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Figure 10: Highest disk utilization over run duration.  
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Figure 11: %user over run duration 



AIX CIO Implementation and Performance 

 
wpAIXcio052703.doc                                                                                                Page 11 of 12 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

%
sy

st
em

RawLV DIO CIO

CIO

DIO

RawLV

 
Figure 12: %system over run duration 
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Figure 13: %idle over run duration.  

4.4 Lock Statistics 
The study of the locking behavior exhibited by 
the three storage models reveals the most 
information about their performance 
characteristics. The lock statistics reported here 
were gathered using the AIX trace facility. The 
traces were gathered over a five-second interval 
during the steady state phase of each run. 
 
To better understand the locking statistics 
presented here, a brief explanation of the AIX 5L 
v5.2 locking process is in order. When a thread 
first attempts to acquire a lock and fails, it may 
spin around the lock for at most maxspin number 
of times. The variable maxspin can be set via the 
AIX schedo command. For our runs, we used the 
default maxspin value of 16384. If the thread 
fails to acquire the lock after maxspin attempts, it 
goes into wait state and is undispatched. When 
the lock is released by the owning thread, it 
wakes up one or more of the threads waiting to 
acquire that lock, and the cycle repeats itself.  
Heavy lock contention thus manifests itself as 

through a large number of threads going into the 
wait state, or blocking, while trying to acquire 
the lock.   
 
Figure 14 plots the number of blocks per second 
for the most contended lock classes in our tests, 
i.e., the number of times any thread was driven 
into wait state while waiting for a lock during the 
measurement interval, divided by the 
measurement interval. By “lock class”, we mean 
all the locks that fall under the same functional 
category. For example, the lock class “SSA” 
includes all the different locks used for 
serializing accesses to SSA devices. 
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Figure 14: Blocks/second for major lock classes 

 
The three major lock classes observed in our 
traces were:  

•  AIOQ lock – serializes insertion and 
removal of AIO requests from the AIO 
queues.  

•  Inode lock – the per-file write-
exclusive lock used by the file system to 
serialize write accesses to a file. This 
lock is not taken in Concurrent I/O, 
except under the conditions listed in 
Section 2.2.1.1.  

•  SSA lock – used for serializing accesses 
to an SSA device. Each device has its 
own lock. 

As seen in Figure 14, the Direct I/O run shows 
excessive amounts of blocking due to the inode 
lock, which results in a lot of context switching. 
Since a large number of threads went into the 
wait state in the Direct I/O run, there was a 
significant amount of CPU idle time when there 
were no runnable threads, resulting in lower 
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throughput. The Concurrent I/O and raw LV runs 
do not acquire write-exclusive inode locks. 

5 Conclusion 
The performance experiments described in this 
paper show that using JFS2 Concurrent I/O for 
databases results in performance comparable to 
that achieved through the use of raw logical 
volumes for database storage, while providing 
greater flexibility and ease of administration. The 
throughput of the database application under 
Concurrent I/O was three times the throughput 
achieved with Direct I/O – a 200% improvement 
- and lagged the performance on raw logical 
volumes by only 8%. We have also shown that 
the performance equivalence between 
Concurrent I/O and raw logical volumes holds at 
a detailed level, with many system metrics 
showing remarkably similar behavior in both 
cases.  
Thus, Concurrent I/O combines all the 
performance advantages of using raw logical 
volumes, while greatly simplifying the task of 
database administration. This makes Concurrent 
I/O a very attractive option for database storage. 
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