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1 Introduction 

A new file system feature called "Concurrent 

I/O" (CIO) was introduced in the Enhanced 

Journaling File System (JFS2) in AIX 5L™ 

version 5.2.0.10, also known as maintenance 

level 01 (announced May 27, 2003). This new 

feature improves performance for many 

environments, particularly commercial relational 

databases. In many cases, the database 

performance achieved using Concurrent I/O with 

JFS2 is comparable to that obtained by using raw 

logical volumes. This paper details the 

implementation and operational characteristics of 

Concurrent I/O, and presents the results of our 

performance evaluation of Concurrent I/O with 

Oracle9i Database. 

 
The file system has long been the heart of 

UNIX® storage management. Commands and 

interfaces for manipulating and managing data 

stored on files are commonly used throughout 

the UNIX world by users of all skill levels. 

Managing persistent data via such universally 

understood mechanics is key to application 

portability. File systems thus provide a very 

useful and desirable abstraction for data storage.  

 

As is often the case with any method of 

abstraction, however, the use of file systems 
results in some tradeoffs between performance 

and ease of use. The fastest means of transferring 

data between an application and permanent 

storage media such as disks, is to directly access 

more primitive interfaces such as raw logical 

volumes. The use of files for data storage 

involves overheads due to serialization, buffering 

and data copying, which impact I/O performance. 

Using raw logical volumes for I/O eliminates the  

overheads of serialization and buffering, but also 

requires a higher level of skill and training on the 
part of the user since data management becomes 

more application-specific. Also, while file 

system commands do not require system 

administrator privileges, commands for 

manipulating raw logical volumes do. However, 

due to its superior performance, database 

applications have traditionally preferred to use 

raw logical volumes for data storage, rather than 

using file systems.  

 

With the Concurrent I/O feature now available in 

JFS2, database performance on file systems 

rivals the performance achievable with raw 

logical volumes. 

2 Using File Systems for 
Database Applications 

For database applications, the superior 

performance of raw logical volumes compared to 

file systems arises from certain features of the 

file system: 

• The file buffer cache 

• The per-file write lock, or inode lock 

• The sync daemon 

These file system features help ensure data 

integrity, improve fault tolerance, and in fact 

improve application performance in many cases. 

However, these features often pose performance 

bottlenecks for database applications. This 

section explains the role of these features in a file 

system, how they impact database performance, 

and the options provided by JFS2 to help reduce 
their performance impact. 

2.1 File Buffer Cache 

At the most basic level, a file is simply a 

collection of bits stored on persistent media. 
When a process wants to access data from a file, 

the operating system brings the data into main 

memory, where the process can examine it, alter 

it, and then request that the data be saved to disk. 

The operating system could read and write data 

directly to and from the disk for each request, but 

the response time and throughput would be poor 

due to slow disk access times. The operating 

system therefore attempts to minimize the 

frequency of disk accesses by buffering data in 

main memory, within a structure called the file 
buffer cache. On a file read request, the file 

system first attempts to read the requested data 

from the buffer cache. If the data is not already 

present in the buffer cache, it is read from disk 

and cached in the buffer cache. Figures 1 and 2 

show the sequence of actions that take place 

when a read request is issued under this caching 

policy.   

 

Similarly, writes to a file are cached so that 

future reads can be satisfied without 
necessitating a disk access, and to reduce the 

frequency of disk writes. The use of a file buffer 

cache can be extremely effective when the cache 

hit rate is high. It also enables the use of 

sequential read-ahead and write-behind policies 

to reduce the frequency of physical disk I/O’s. 
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Another benefit is in making file writes 

asynchronous, since the application can continue 

execution without waiting for the disk write to 

complete. Figure 3 shows the sequence of 

actions for a write request under cached I/O. 

 
While the file buffer cache improves I/O 

performance, it also consumes a significant 

portion of system memory. AIX’s Enhanced JFS, 

also known as JFS2, allows the system 

administrator to control the maximum amount of 

memory that can be used by the file system for 

caching. JFS2 uses a certain percentage of real 

memory for its file buffer cache, specified by the 

maxclient% parameter. The value of max-

client% can be tuned via the vmo command. By 

default it is set to 80, which implies that JFS2 

can use up to 80% of real memory for its file 
buffer cache. The range of acceptable values for 

maxclient% is from 1 to 100. For example, the 

following command will reduce the maximum 

amount of memory that can be used for the file 

buffer cache to 50% of real memory: vmo –o 

maxclient%=50. 

 

In contrast, raw logical volumes do not use a 

system-level cache to cache application data, so 

there is neither duplication nor double-copying 

of data. 
 

 

Figure 1: Reads under cached I/O – buffer cache hit 

 

Figure 2: Reads under cached I/O - buffer cache miss 

 

 

Figure 3: Writes under cached I/O 

2.1.1 Direct I/O  

Certain classes of applications derive no benefit 

from the file buffer cache. Some technical 

workloads, for instance, never reuse data due to 

the sequential nature of their data accesses, 

resulting in poor buffer cache hit rates. 

Databases normally manage data caching at the 

application level, so they do not need the file 
system to implement this service for them. The 

use of a file buffer cache results in undesirable 

overheads in such cases, since data is first moved 

from the disk to the file buffer cache and from 

there to the application buffer. This “double-

copying” of data results in additional CPU 

consumption. Also, the duplication of 

application data within the file buffer cache 

increases the amount of memory used for the 

same data, making less memory available for the 

application, and resulting in additional system 
overheads due to memory management.   

 

For applications that wish to bypass the 

buffering of memory within the file system cache, 
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Direct I/O is provided as an option in JFS2. 

When Direct I/O is used for a file, data is 

transferred directly from the disk to the 

application buffer, without the use of the file 

buffer cache. Figures 4 and 5 depict the sequence 

of actions that occur for reads and writes under 
Direct I/O. 

 

 

Figure 4: Reads under Direct I/O 

 

 

Figure 5: Writes under Direct I/O 

2.1.1.1 Direct I/O Usage 

Direct I/O can be used for a file either by 

mounting the corresponding file system with the 
mount –o dio option, or by opening the file with 

the O_DIRECT flag specified in the open() 

system call. When a file system is mounted with 

the –o dio option, all files in the file system use 

Direct I/O by default. Direct I/O can be restricted 

to a subset of the files in a file system by placing 

the files that require Direct I/O in a separate 

subdirectory and using namefs to mount this 

subdirectory over the file system. For example, if 

a file system somefs contains some files that 

prefer to use Direct I/O and others that do not, 

we can create a subdirectory, subsomefs, in 

which we place all the files that require Direct 

I/O. We can mount somefs without specifying –o 
dio, and then mount subsomefs as a namefs file 

system with the –o dio option using the 

command: mount –v namefs –o dio 

/somefs/subsomefs /somefs. 

 
The use of Direct I/O requires that certain 

alignment and length restrictions be met by the 
application’s I/O requests. Table 1 lists these 

requirements for JFS2. Failure to meet these 

requirements causes reads and writes to be done 

using normal cached I/O, but after the data is 

transferred to the application buffer, the cached 

copy is discarded. File system read-ahead does 

not occur for files that use Direct I/O. 

 

To avoid consistency issues, if there are multiple 

processes open a file and one or more processes 

did not specify O_DIRECT while others did, the 
file stays in the normal cached I/O mode. 

Similarly, if the file is mapped in memory 

through the shmat() or mmap() system calls, it 

stays in normal cached mode. Once the last 

conflicting, non-direct access is eliminated (by 

using the close(), munmap(), or shmdt() system 

calls), the file is moved into Direct I/O mode. 

The change from caching mode to Direct I/O 

mode can be expensive because all modified 

pages in memory will have to be flushed to disk 

at that point. 

 

Table 1: JFS2 restrictions for Direct I/O 

File system 
format 

Buffer 
alignment 

Buffer length 
increment 

JFS2 before 

AIX 5.2 

ML01 

4K bytes 4K bytes 

JFS2 as of 

AIX 5.2 

ML01  

agblksize 

specified at file 

system 

creation  

agblksize 

specified at file 

system creation 

 

2.1.1.2 Performance Considerations 
Under Direct I/O 

Direct I/O benefits applications by reducing CPU 

consumption and eliminating the overhead of 

copying data twice – first between the disk and 

the file buffer cache, and then from the file 
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buffer cache to the application’s buffer. However, 

several factors could impact application 

performance when Direct I/O is used.  

 

Every Direct I/O read causes a synchronous read 

from disk, unlike the normal cached I/O policy 
where the read may be satisfied from the file 

buffer cache (refer Figures 2 and 5). This can 

result in poor performance if the data was likely 

to be in memory under the normal caching policy.  

 

Direct I/O also bypasses JFS2 read-ahead. File 

system read-ahead can provide a significant 

performance boost for sequentially accessed files. 

When read-ahead is employed, the operating 

system tries to anticipate future need for pages of 

a sequential file by observing the pattern in 

which an application accesses the file. When the 
application accesses two successive pages of the 

file, the operating system assumes that the 

program will continue to access the file 

sequentially, and schedules additional sequential 
reads of the file. These reads are overlapped with 

application  processing, and will make the data 

available to the application sooner than if the 

operating system had waited for the program to 

access the next page before initiating the I/O. 

The number of pages to be read ahead is 

determined by two parameters: 
• j2_minPageReadAhead   

Number of pages read ahead when the 

operating system first detects sequential 

access. If the program continues to 

access the file sequentially, the next 

read-ahead is twice j2_minPageRead-

Ahead, the next for 4 times j2_min-

PageReadAhead, and so on until the 

number of pages reaches j2_maxPa-

geReadAhead. Default value is 2. 

• j2_maxPageReadAhead   
Maximum number of pages the 

operating system will read ahead in a 

sequential file.  Default value is 8. 

 

These parameters are tunable, and can be set via 

the ioo command. 

 
Table 2 compares the performance of Direct I/O 

versus cached I/O for three different read 

scenarios. The file block size used in these 

experiments was 4K bytes, and the default values 

of j2_minPageReadAhead=2, and j2_maxPag-

eReadAhead=8 were used. 

 

The first row in Table 2 corresponds to the case 

where the application reads a 1MB file 

sequentially, byte by byte. When Direct I/O is 

used in this case, the alignment restrictions are 

violated. Consequently, normal cached I/O is 

used to read a 4K page into the file buffer cache, 

the requested byte is copied from the file buffer 

cache to the application buffer, and the 4K page 
is discarded from the file buffer cache. This 

results in a 4K page being read for every byte 

requested by the application, while also incurring 

the costs of double-copying of data. Cached I/O 

in this case enjoys two advantages: the 4K page 

that is brought into the file buffer cache when a 

single byte is read can be re-used to return 4K 

bytes of data to the application upon subsequent 

read requests. Additionally, read-ahead would 

occur with cached I/O, further reducing the 

latency of future read requests. 

 
The second row in Table 2 corresponds to the 

case where a 1GB file is read sequentially in 

4KB increments. Although this case satisfies the 

alignment restrictions for Direct I/O, read-ahead 

will not occur when Direct I/O is used. Cached 

I/O again outperforms Direct I/O in this case due 

to file system read-ahead. Note that the total 

amount of data read in this case is the same for 

both Direct and cached I/O (although cached I/O 

reads one additional page, due to read-ahead).  

 
The third row in Table 2 corresponds to the case 

where a 1GB file is read sequentially in 10MB 

increments. Direct I/O significantly outperforms 

cached I/O in this case for two reasons. First, the 

overhead of double-copying is eliminated with 

Direct I/O. Secondly, cached I/O does not see the 

benefit of read-ahead in this case because at most 

8 4K pages can be read ahead (since 

j2_maxPageReadAhead=8), while the read 

increment in this case is 2560 4K pages.  

 

These examples show that applications do not 
uniformly benefit from Direct I/O. However, 

applications that see performance benefits when 

using raw logical volumes for storage are likely 

to benefit from the use of Direct I/O. Raw logical 

volumes also impose alignment and length 

restrictions on I/O – they require that the 

application buffer be 512-byte aligned, and that 

lengths be in 512-byte increments. Thus, 

applications that use raw logical volumes for I/O 

already implement these alignment and length 

restrictions. By creating file systems with an 
appropriate block size (e.g., by specifying 

agblksize=512 at file system creation), such 

applications can benefit from the use of Direct 

I/O without any modification.  



AIX CIO Implementation and Performance 

 
wpAIXcio052703.doc                                                                                                Page 5 of 12 

Table 2: Direct I/O vs. cached I/O performance 

Cached I/O Direct I/O 

Read 

Increment Total File Size 
Elapsed Time 

(sec) 

Total KB 

Read Elapsed Time 

Total KB 

Read 
1 byte 1 MB 1.59 1,036 185.27 4,194,320 

4 KB 1 GB 21.18 1,045,982 104.31 1,045,986 

10 MB 1 GB 20.59 1,048,592 6.81 1,048,596 

2.2 Inode Locking 

While an application views a file as a contiguous 

stream of data, this is not actually how a file is 

stored on disk. In reality, a file is stored as a set 

of (possibly non-contiguous) blocks of data on 

disk. Each file has a data structure associated 

with it, called an inode.  
 

The inode contains all the information necessary 

for a process to access the file, such as file 

ownership, access rights, file size, time of last 

access or modification, and the location of the 

file’s data on disk. Since a file’s data is spread 

across disk blocks, the inode contains a “table of 

contents” to help locate this data. It is important 

to note the distinction between changing the 

contents of an inode and changing the contents 

of a file. The contents of a file only change on a 
write operation. The contents of an inode change 

when the contents of the corresponding file 

change, or when its owner, permissions, or any 

of the other information that is maintained as 

part of the inode changes. Thus, changing the 

contents of a file automatically implies a change 

to the inode, whereas a change to the inode does 

not imply that the contents of the file have 

changed. Since multiple threads may attempt to 

change the contents of an inode simultaneously, 

this could result in an inconsistent state of the 

inode. In order to avoid such race conditions, the 
inode is protected by a lock, called the inode 

lock. This lock is used for any access that could 

result in a change to the contents of the inode, 

preventing other processes from accessing the 

inode while it is in a possibly inconsistent state.  

 

When a file is accessed for reading, the contents 

of the inode do not change, whereas writes to a 

file do change the contents of the inode (and the 

contents of the file). JFS2 uses a read-shared, 

write-exclusive inode lock which allows multiple 
readers to access the file simultaneously, but 

requires that the lock be held in exclusive mode 

when a write access is made. This means that 

when the lock is held in write-exclusive mode by  

a process, no other process may access the file 

for either reads or writes. However, when the 

lock is held in read-shared mode by a process, 

other processes can concurrently read data from 

the file. Figure 6 depicts the serialization 

enforced by the inode lock in JFS2. In the figure, 

threads 1 and 2 simultaneously read data from a 
shared file. When thread 2 performs a write on 

the file, it takes the inode lock in write-exclusive 

mode, preventing thread 1 from performing reads 

or writes on the file for the duration that thread 2 

holds the lock. 

 

 

Figure 6: Read-shared, write-exclusive inode locking 
in JFS2 

2.2.1 Concurrent I/O  

The inode lock imposes write serialization at the 

file level. Serializing write accesses ensures that 
data inconsistencies due to overlapping writes do 

not occur.  Serializing reads with respect to 

writes ensures that the application does not read 

stale data. Sophisticated database applications 
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implement their own data serialization, usually at 

a finer level of granularity than the file. Such 

applications implement serialization mechanisms 

at the application level to ensure that data 

inconsistencies do not occur, and that stale data 

is not read. Consequently, they do not need the 
file system to implement this serialization for 

them. The inode lock actually hinders 

performance in such cases, by unnecessarily 

serializing non-competing data accesses. For 

such applications, AIX 5L v5.2 ML01 offers the 

Concurrent I/O (CIO) option. Under Concurrent 

I/O, multiple threads can simultaneously perform 

reads and writes on a shared file. This option is 

intended primarily for relational database 

applications, most of which will operate under 

Concurrent I/O without any modification.  

Applications that do not enforce serialization for 
accesses to shared files should not use 

Concurrent I/O, as this could result in data 

corruption due to competing accesses.  

 

Figure 7: Inode serialization under Concurrent I/O on 
JFS2 

2.2.1.1 Concurrent I/O Usage 

Concurrent I/O can be specified for a file either 

through the mount command (mount –o cio), or 

via the open() system call (by using O_CIO as 

the OFlag parameter). When a file system is  

mounted with the –o cio option, all files in the 

file system use Concurrent I/O by default. Just as 
with Direct I/O, Concurrent I/O can be restricted 

to a subset of the files in the file system by 

placing the files that use Concurrent I/O in a 

separate subdirectory and using namefs to mount 

this subdirectory over the file system. For 

example, if a file system somefs contains some 

files that prefer to use Concurrent I/O and others 

that do not, we can create a subdirectory, 

subsomefs containing all the files that use 

Concurrent I/O. We can mount somefs without 

the –o cio option, and then mount subsomefs as a 
namefs file system with the –o cio option:  

mount –v namefs –o cio /somefs/subsomefs 
/somefs. 

 

The use of Direct I/O is implicit with Concurrent 

I/O, and files that use Concurrent I/O 

automatically use the Direct I/O path. Thus, 

applications using Concurrent  I/O are subject to 

the same alignment and length restrictions as 

Direct I/O, specified in Table 1.  As with Direct 

I/O, if there are multiple outstanding opens to a 

file and one or more of the calls did not specify 
O_CIO, then Concurrent I/O is not enabled for 

the file. Once the last conflicting access is 

eliminated, the file begins to use Concurrent I/O. 

Since Concurrent I/O implicitly uses Direct I/O, 

it overrides the O_DIO flag for a file.  

 

Under Concurrent I/O, the inode lock is acquired 

in read-shared mode for both read and write 

accesses. However, in situations where the 

contents of the inode may change for reasons 

other than a change to the contents of the file 
(writes), the inode lock is acquired in write-

exclusive mode. One such situation occurs when 

a file is extended or truncated. Extending a file 

may require allocation of new disk blocks for the 

file, and consequently requires an update to the 

“table of contents” of the corresponding inode. 

In this case, the read-shared inode lock is 

upgraded to the write-exclusive mode for the 

duration of the extend operation. Similarly, when 

a file is truncated, allocated disk blocks might be 

freed and the inode’s table of contents needs to 

be updated. Upon completion of the extend or 
truncate operation, the inode lock reverts to read-

shared mode. This is a very powerful feature, 

since it allows files using Concurrent I/O to grow 

or shrink in a manner that is transparent to the 

application, without having to close or reopen 

files after a resize. Figure 7 shows the behavior 

of the inode lock under Concurrent I/O.  

 

 Another situation that results in the inode lock 

being acquired in write-exclusive mode is when 

an I/O request on the file violates the alignment 
or length restrictions of Direct I/O. Alignment 

violations result in normal cached I/O being used 

for the file, and the inode lock reverts to the 
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read-shared, write-exclusive mode of operation 

depicted in Figure 6. 

2.2.1.2 Performance Considerations 
under Concurrent I/O 

Since Concurrent I/O implicitly invokes Direct 

I/O, all the performance considerations for Direct 

I/O mentioned in Section 2.1.1.2 hold for 

Concurrent I/O as well. Thus, applications that 

benefit from file system read-ahead, or have a 

high file system buffer cache hit rate, would 

probably see their performance deteriorate with 

Concurrent I/O, just as it would with Direct I/O. 
Concurrent I/O will also provide no benefit for 

applications in which the vast majority of data 

accesses are reads. In such environments, read-

shared, write-exclusive inode locking will 

already provide most of the benefits of 

Concurrent I/O.  

 

Applications that use raw logical volumes for 

data storage don’t encounter inode lock 

contention since they don’t access files. 

2.3 The Sync Daemon 

The sync daemon (/usr/sbin/syncd) forces a write 

of dirty (modified) pages in the file buffer cache 

out to disk. By default, the sync daemon runs at 

60-second intervals. On systems with large 
amounts of memory and large numbers of pages 

getting modified, this can result in high peaks of 

I/O activity when the sync daemon runs.   

 

Since Direct I/O bypasses the file buffer cache 

and directly writes data to disk, the use of Direct 

I/O results in a reduction in the number of dirty 

pages that need to be flushed by the sync daemon. 

The same holds true for raw logical volumes. 

3 Performance Test 
Environment 

In order to evaluate Concurrent I/O performance, 

we measured the throughput of an online 

transaction processing (OLTP) workload under 

different database storage configurations. We 

used Oracle9i Database for this study. This 

workload uses a client/server model, where a 

client system drives the database server with a 

mix of transactions intended to simulate a user 
environment. Database throughput was measured 

in terms of the number of transactions completed 

per second (tps) at the client. The client also 

measured the response time characteristics of the 

transactions executed by the database server. We 

measured the performance of our workload 

under three different configurations for database 
storage: 

� Raw logical volumes 

� JFS2 filesystems with Direct I/O 

� JFS2 filesystems with Concurrent I/O 

 

The workload was update intensive, and 

consisted of a mix of transaction types on 

multiple tables.  The system configuration used 

in these tests is specified in Table 3. 

Table 3: System configuration 

Attribute Value 

System Type pSeries™ 680 

Number of CPUs 4 

Processor Type RS64-IV 

Processor Clock Speed 600 MHz 

System Memory 48 GB 

O.S. Level AIX 5L version 5.2, 

64-bit kernel 

Database  Oracle9i Database 

release 2 

v9.2.0.1 (64-bit) 

Database size 500 GB 

Configured Disks >400 SSA 

 
The OLTP workload consists of a ramp-up phase, 

followed by the steady-state phase, and ending 

with a brief ramp-down phase. On our 

measurement configuration, the steady state 

performance was reached within about five 

minutes of execution. The performance 

measurement interval lasts about thirty minutes 

after reaching steady state. 

 

Database performance benchmarks typically use 

raw logical volumes for database storage. Raw 

logical volumes do not suffer from the overheads 
described in section 2 for file systems, and 

usually provide the best performance for 

database applications. We measured the 

performance of raw logical volumes to serve as 

the performance goal to be attained when 

database storage is done on file systems. 
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Table 4: Comparison of storage configurations 

Raw LV configuration JFS2 configuration 

Total no. of LVs Total no. of disks Total no. of files Total no. of disks 

193 420 51 420 

3.1 Raw Logical Volume 
Configuration 

The physical configuration for the OLTP run 

with raw logical volumes was designed to reduce 
I/O wait to as near to zero as possible. The 

objective was to maximize throughput and 

minimize I/O bottlenecks by spreading data 

across multiple logical volumes and disks. In all, 

193 raw logical volumes were used in this 

configuration. 

 

All of the raw logical volumes (LVs) were 

created in volume groups defined in 32MB 

partitions with the exception of the LVs for the 

database logs, which were defined in 128MB 

partitions. Previous exercises using this 
workload have shown that I/O disk performance 

is best when raw LVs are spanned (without 

striping) on the outer edge of the disks. 

 

For the database logs, SSA RAID-5 arrays were 

created consisting of 4 physical disks (pdisk) for 

each logical disk (hdisk).  The LVs and redo log 

files were 20GB in size, so as to eliminate log 

switches during the OLTP run. Unlike the other 

LVs, the LVs for the redo log files were striped 

across the two logical hdisks, with a stripe size of 
128K. 

3.2 JFS2 File System Configuration 

As previously mentioned, Direct I/O (DIO) 
eliminates the overheads associated with the file 

buffer cache. However, the write-exclusive inode 

lock continues to pose a performance bottleneck 

with Direct I/O. In order to minimize the effects 

of spinning on the inode lock, file system based 

database applications tend to maximize the 

number of files in their configuration in order to 

increase the number of concurrent writes in 

progress. In previous experiments involving 

JFS2 file systems with the Direct I/O option, we 

usually created as many file systems as the 

number of raw logical volumes used in the raw 
LV configuration. However, using a large 

number of files increases the complexity of 

database administration. A smaller number of 

files results in a more easily manageable 

configuration from a database administrator’s 

perspective.  

 

For this study, we chose to limit the number of 

files to a manageable number, rather than 
matching the number of raw logical volumes. 

This choice eliminated a direct one to one 

performance comparison between raw and JFS2 

physical layouts and implied a potential 

performance loss due to the use of very large 

data files. In addition, we treaded on 

performance waters by striping the JFS2 

volumes on raw devices, as opposed to the 

traditionally preferred method of spanning 

volumes on raw devices. However, as the very 

positive JFS2 results show, as long as the 

number of disks remains the same, DBAs can 
consolidate raw LVs into JFS2 LVs without 

risking loss in performance. 

 

For the Concurrent I/O run, the filesystems were 

mounted with the –o cio mount option, and for 

the Direct I/O run, they were mounted with the –

o dio option. We used a file system block size 

(agblksize) of 4KB. In general, the file system 

block size used should match the database block 

size, in order to satisfy Direct I/O alignment 

restrictions. For the measurements reported in 
this section, the database transaction logs (redo 

logs) were stored on raw logical volumes. Using 

file systems for the redo logs, with 

agblksize=512 bytes, resulted in about a 4% 

reduction in throughput. Using agblksize>512 

bytes results in much worse performance, as this 

violates the Direct I/O alignment restrictions that 

need to be satisfied in order for Concurrent I/O 

to be used for the file. Database control and 

configuration files, which are frequently 

accessed but do not usually satisfy Direct I/O 
alignment constraints, would exhibit better 

performance under cached I/O rather than Direct 

or Concurrent I/O.  

 

The thread scheduling policy used in our 

experiments was the default SCHED_OTHER 

policy. 

 

The OLTP workload measured in our 

experiments used asynchronous I/O for writing 

database buffers to disk. Asynchronous I/O (AIO) 

in JFS2 is handled by kernel processes (kprocs), 
called aioservers. AIO requests from the 

application are queued into an AIO queue. An 



AIX CIO Implementation and Performance 

 
wpAIXcio052703.doc                                                                                                Page 9 of 12 

aioserver picks requests off the AIO queue one 

at a time, and is unable to process any more 

requests until I/O has completed for the request it 

is currently servicing.  

 

Thus, the number of aioservers in the system 
limits the number of asynchronous I/O 

operations that can be in progress simultaneously. 

The maximum number of aioservers that can be 

created is controlled by the maxservers attribute, 

which has a default value of 10 per processor. 

For our experiments, we used a maxservers 

value of 400 per processor. 

4 Performance Test Results 

In this section, we compare various performance 

metrics for each of the three storage 

configurations measured. For ease of comparison, 

this data is presented through a series of graphs. 

For each graph, we present relevant observations 
to help explain the depicted behavior. In the 

graphs presented in this section, DIO stands for 

Direct I/O, and CIO for Concurrent I/O. 

4.1 Throughput 

Table 5 lists the average throughput and response 

times for each storage configuration, measured 

over the steady-state interval of each benchmark 

run. While the database throughput with Direct 

I/O was 70% lower than with raw LVs, the 

throughput with Concurrent I/O was only 8% 

lower than the raw LV case. As our graphs will 

corroborate, the poor Direct I/O performance can 

be largely attributed to severe lock contention for 

the inode locks. The Direct I/O performance 
could have been improved by using a larger 

number of files, such as by creating one file per 

disk, as this would have reduced inode lock 

contention. 

Figure 8 plots the throughput measured at 30-

second intervals over the duration of the run. The 

two dotted vertical lines demarcate the ramp-up, 

steady-state and ramp-down phases of the runs. 

The difference in performance between 

Concurrent I/O and raw LVs stems from two 

factors. The first is simply the additional 

pathlength due to I/O requests having to go 
through the file system path. The second factor 

has to do with the way asynchronous I/O is 

handled through a file system, as opposed to 

when raw LVs are used. Since the AIO server 

threads are kernel threads, a context switch 

occurs for each AIO request to a file. On the 

other hand, AIO requests to raw logical volumes 

use a “fast path” to the logical volume manager 

that avoids the use of AIO server threads.  

 

Table 5: Average throughput and response times 

Configuration 

Avg 

Throughput 

(tps) 

Avg 

Response 

Time 

(sec) 

Raw LVs 710.19   0.06 

Direct I/O 219.69 0.12 

Concurrent I/O 652.12 0.07 

 
Apart from this difference in performance, the 

behavior of the Concurrent I/O run is remarkably 

similar to the raw LV run. Both exhibit very low 

variation in throughput once steady-state is 

reached. The slight variation in throughput is 

merely because of normal load variations in the 

benchmark. The Direct I/O run displays wide 

variations in throughput, which is symptomatic 
of severe lock contention.  

4.2 Disk I/O  

Figure 9 shows the disk I/O rates for each of our 
runs. The I/O rate stays fairly constant 

throughout the run, and mirrors the throughputs 

presented in Figure 8. This is expected, since the 

amount of I/O per transaction is constant, so a 

lower throughput number would also correspond 

to a lower I/O rate. It is interesting to note that  

file system journaling does not appear to increase 

the disk I/O rate in the file system runs. This is 

because of the OLTP workload behavior. Files 

are created and populated when the database is 

created. The run only uses pre-initialized files, 

and there is virtually no file creation, deletion, 
allocation or truncation during the run. Thus, 

there is little journaling during the runs. 

 

The disk farm used in our experimental setup did 

not pose a bottleneck in any of our runs.  Figure 

10 plots the highest disk utilization for any disk 

within each 30-second measurement interval, 

over the duration of the benchmark run. As 

shown in the graph, the highest disk utilization 

by any disk at any point did not exceed 70% 

during any of our runs. CPU usage statistics 
showed no I/O wait times in any of our runs. 

4.3 CPU Usage 

CPU usage statistics are a commonly used metric 

for discussing system performance. We used the 
AIX vmstat command to collect CPU usage 

statistics at 30-second intervals for the entire 
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duration of each run. The vmstat command 

breaks down CPU usage into four components: 

%user, %system, %idle, and %wait. %user is the 

percentage of CPU time spent executing user-

level instructions. %system is the percentage of 

CPU time spent executing at the system 
(supervisor) level. %idle is the percentage of 

time that the CPU is available for additional 

work. %wait is the percentage of time that the 

CPU spends waiting for I/O to complete, with no 

runnable processes.  

 

Figures 11, 12 and 13 respectively show the 

%user, %system and %idle times for each run, as 

reported by vmstat. None of our benchmark runs 

displayed any %wait time. The high CPU 

utilization (%user + %system ≈ 100%) is typical 

of the OLTP benchmark, as there is little or no 
disk I/O wait. 

  

The Concurrent I/O run has a higher %system 

and lower %user than the raw LV run because of 

the additional context switches due to traversing 

down the file system path for I/O, and due to the 

use of AIO server threads for servicing AIO 

requests. This results in a greater amount of 

work being done at the system level. As such, 

the OLTP workload is not system-intensive. 

Neither the Concurrent I/O nor the raw LV runs 
show any idle time, whereas the Direct I/O run 

shows a high percentage of idle time. This, again, 

is indicative of severe lock contention in the 

Direct  I/O run.  
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Figure 8: Benchmark throughput over run duration. 
Higher tps indicates better performance.  
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Figure 9: Disk I/O throughput (in kilobytes of data 
transferred per second) over run duration.  
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Figure 10: Highest disk utilization over run duration.  
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Figure 11: %user over run duration 
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Figure 12: %system over run duration 
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Figure 13: %idle over run duration.  

4.4 Lock Statistics 

The study of the locking behavior exhibited by 

the three storage models reveals the most 

information about their performance 
characteristics. The lock statistics reported here 

were gathered using the AIX trace facility. The 

traces were gathered over a five-second interval 

during the steady state phase of each run. 

 

To better understand the locking statistics 

presented here, a brief explanation of the AIX 5L 

v5.2 locking process is in order. When a thread 

first attempts to acquire a lock and fails, it may 

spin around the lock for at most maxspin number 

of times. The variable maxspin can be set via the 

AIX schedo command. For our runs, we used the 
default maxspin value of 16384. If the thread 

fails to acquire the lock after maxspin attempts, it 

goes into wait state and is undispatched. When 

the lock is released by the owning thread, it 

wakes up one or more of the threads waiting to 

acquire that lock, and the cycle repeats itself.  

Heavy lock contention thus manifests itself as 

through a large number of threads going into the 

wait state, or blocking, while trying to acquire 

the lock.   

 

Figure 14 plots the number of blocks per second 

for the most contended lock classes in our tests, 
i.e., the number of times any thread was driven 

into wait state while waiting for a lock during the 

measurement interval, divided by the 

measurement interval. By “lock class”, we mean 

all the locks that fall under the same functional 

category. For example, the lock class “SSA” 

includes all the different locks used for 

serializing accesses to SSA devices. 
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Figure 14: Blocks/second for major lock classes 

 

The three major lock classes observed in our 

traces were:  

• AIOQ lock – serializes insertion and 

removal of AIO requests from the AIO 

queues.  

• Inode lock – the per-file write-

exclusive lock used by the file system to 
serialize write accesses to a file. This 

lock is not taken in Concurrent I/O, 

except under the conditions listed in 

Section 2.2.1.1.  

• SSA lock – used for serializing accesses 

to an SSA device. Each device has its 

own lock. 

As seen in Figure 14, the Direct I/O run shows 

excessive amounts of blocking due to the inode 

lock, which results in a lot of context switching. 

Since a large number of threads went into the 
wait state in the Direct I/O run, there was a 

significant amount of CPU idle time when there 

were no runnable threads, resulting in lower 
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throughput. The Concurrent I/O and raw LV runs 

do not acquire write-exclusive inode locks. 

5 Conclusion 

The performance experiments described in this 

paper show that using JFS2 Concurrent I/O for 

databases results in performance comparable to 

that achieved through the use of raw logical 
volumes for database storage, while providing 

greater flexibility and ease of administration. The 

throughput of the database application under 

Concurrent I/O was three times the throughput 

achieved with Direct I/O – a 200% improvement 

- and lagged the performance on raw logical 

volumes by only 8%. We have also shown that 

the performance equivalence between 

Concurrent I/O and raw logical volumes holds at 

a detailed level, with many system metrics 

showing remarkably similar behavior in both 

cases.  
Thus, Concurrent I/O combines all the 

performance advantages of using raw logical 

volumes, while greatly simplifying the task of 

database administration. This makes Concurrent 

I/O a very attractive option for database storage. 
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