

Improving Database Performance

With

 AIX Concurrent I/O

A case study with Oracle9i Database on AIX 5L version 5.2

Authors: Sujatha Kashyap

Bret Olszewski

Richard Hendrickson

 {skashyap, breto, richhend}@us.ibm.com

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 1 of 12

1 Introduction

A new file system feature called "Concurrent

I/O" (CIO) was introduced in the Enhanced

Journaling File System (JFS2) in AIX 5L™

version 5.2.0.10, also known as maintenance

level 01 (announced May 27, 2003). This new

feature improves performance for many

environments, particularly commercial relational

databases. In many cases, the database

performance achieved using Concurrent I/O with

JFS2 is comparable to that obtained by using raw

logical volumes. This paper details the

implementation and operational characteristics of

Concurrent I/O, and presents the results of our

performance evaluation of Concurrent I/O with

Oracle9i Database.

The file system has long been the heart of

UNIX® storage management. Commands and

interfaces for manipulating and managing data

stored on files are commonly used throughout

the UNIX world by users of all skill levels.

Managing persistent data via such universally

understood mechanics is key to application

portability. File systems thus provide a very

useful and desirable abstraction for data storage.

As is often the case with any method of

abstraction, however, the use of file systems
results in some tradeoffs between performance

and ease of use. The fastest means of transferring

data between an application and permanent

storage media such as disks, is to directly access

more primitive interfaces such as raw logical

volumes. The use of files for data storage

involves overheads due to serialization, buffering

and data copying, which impact I/O performance.

Using raw logical volumes for I/O eliminates the

overheads of serialization and buffering, but also

requires a higher level of skill and training on the
part of the user since data management becomes

more application-specific. Also, while file

system commands do not require system

administrator privileges, commands for

manipulating raw logical volumes do. However,

due to its superior performance, database

applications have traditionally preferred to use

raw logical volumes for data storage, rather than

using file systems.

With the Concurrent I/O feature now available in

JFS2, database performance on file systems

rivals the performance achievable with raw

logical volumes.

2 Using File Systems for
Database Applications

For database applications, the superior

performance of raw logical volumes compared to

file systems arises from certain features of the

file system:

• The file buffer cache

• The per-file write lock, or inode lock

• The sync daemon

These file system features help ensure data

integrity, improve fault tolerance, and in fact

improve application performance in many cases.

However, these features often pose performance

bottlenecks for database applications. This

section explains the role of these features in a file

system, how they impact database performance,

and the options provided by JFS2 to help reduce
their performance impact.

2.1 File Buffer Cache

At the most basic level, a file is simply a

collection of bits stored on persistent media.
When a process wants to access data from a file,

the operating system brings the data into main

memory, where the process can examine it, alter

it, and then request that the data be saved to disk.

The operating system could read and write data

directly to and from the disk for each request, but

the response time and throughput would be poor

due to slow disk access times. The operating

system therefore attempts to minimize the

frequency of disk accesses by buffering data in

main memory, within a structure called the file
buffer cache. On a file read request, the file

system first attempts to read the requested data

from the buffer cache. If the data is not already

present in the buffer cache, it is read from disk

and cached in the buffer cache. Figures 1 and 2

show the sequence of actions that take place

when a read request is issued under this caching

policy.

Similarly, writes to a file are cached so that

future reads can be satisfied without
necessitating a disk access, and to reduce the

frequency of disk writes. The use of a file buffer

cache can be extremely effective when the cache

hit rate is high. It also enables the use of

sequential read-ahead and write-behind policies

to reduce the frequency of physical disk I/O’s.

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 2 of 12

Another benefit is in making file writes

asynchronous, since the application can continue

execution without waiting for the disk write to

complete. Figure 3 shows the sequence of

actions for a write request under cached I/O.

While the file buffer cache improves I/O

performance, it also consumes a significant

portion of system memory. AIX’s Enhanced JFS,

also known as JFS2, allows the system

administrator to control the maximum amount of

memory that can be used by the file system for

caching. JFS2 uses a certain percentage of real

memory for its file buffer cache, specified by the

maxclient% parameter. The value of max-

client% can be tuned via the vmo command. By

default it is set to 80, which implies that JFS2

can use up to 80% of real memory for its file
buffer cache. The range of acceptable values for

maxclient% is from 1 to 100. For example, the

following command will reduce the maximum

amount of memory that can be used for the file

buffer cache to 50% of real memory: vmo –o

maxclient%=50.

In contrast, raw logical volumes do not use a

system-level cache to cache application data, so

there is neither duplication nor double-copying

of data.

Figure 1: Reads under cached I/O – buffer cache hit

Figure 2: Reads under cached I/O - buffer cache miss

Figure 3: Writes under cached I/O

2.1.1 Direct I/O

Certain classes of applications derive no benefit

from the file buffer cache. Some technical

workloads, for instance, never reuse data due to

the sequential nature of their data accesses,

resulting in poor buffer cache hit rates.

Databases normally manage data caching at the

application level, so they do not need the file
system to implement this service for them. The

use of a file buffer cache results in undesirable

overheads in such cases, since data is first moved

from the disk to the file buffer cache and from

there to the application buffer. This “double-

copying” of data results in additional CPU

consumption. Also, the duplication of

application data within the file buffer cache

increases the amount of memory used for the

same data, making less memory available for the

application, and resulting in additional system
overheads due to memory management.

For applications that wish to bypass the

buffering of memory within the file system cache,

Application buffer Application

File buffer cache

Disk

1

4

5

2

1. Application issues write request

2. Kernel copies data from application buffer to file buffer

cache

3. Application continues execution, without waiting for disk

write

…….

4. Periodic flushing of dirty file buffer cache pages initiated

by syncd

5. Dirty pages written to disk

K

E

R

N

E

L

3

Application buffer Application

File buffer cache

Disk

1

2

3

4 5

6

1. Application issues a read request

2. Kernel looks for requested data in the file buffer cache
3. Requested data not present in file buffer cache

4. Kernel reads data from disk

5. Read data is cached in file buffer cache

6. Read data is copied from the file buffer cache to the

application buffer

K

E

R

N

E

L

Application buffer Application

File buffer cache

Disk

1

2 3

1. Application issues read request

2. Requested data found in file buffer cache

3. Requested data copied over to application buffer

K

E

R

N

E

L

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 3 of 12

Direct I/O is provided as an option in JFS2.

When Direct I/O is used for a file, data is

transferred directly from the disk to the

application buffer, without the use of the file

buffer cache. Figures 4 and 5 depict the sequence

of actions that occur for reads and writes under
Direct I/O.

Figure 4: Reads under Direct I/O

Figure 5: Writes under Direct I/O

2.1.1.1 Direct I/O Usage

Direct I/O can be used for a file either by

mounting the corresponding file system with the
mount –o dio option, or by opening the file with

the O_DIRECT flag specified in the open()

system call. When a file system is mounted with

the –o dio option, all files in the file system use

Direct I/O by default. Direct I/O can be restricted

to a subset of the files in a file system by placing

the files that require Direct I/O in a separate

subdirectory and using namefs to mount this

subdirectory over the file system. For example, if

a file system somefs contains some files that

prefer to use Direct I/O and others that do not,

we can create a subdirectory, subsomefs, in

which we place all the files that require Direct

I/O. We can mount somefs without specifying –o
dio, and then mount subsomefs as a namefs file

system with the –o dio option using the

command: mount –v namefs –o dio

/somefs/subsomefs /somefs.

The use of Direct I/O requires that certain

alignment and length restrictions be met by the
application’s I/O requests. Table 1 lists these

requirements for JFS2. Failure to meet these

requirements causes reads and writes to be done

using normal cached I/O, but after the data is

transferred to the application buffer, the cached

copy is discarded. File system read-ahead does

not occur for files that use Direct I/O.

To avoid consistency issues, if there are multiple

processes open a file and one or more processes

did not specify O_DIRECT while others did, the
file stays in the normal cached I/O mode.

Similarly, if the file is mapped in memory

through the shmat() or mmap() system calls, it

stays in normal cached mode. Once the last

conflicting, non-direct access is eliminated (by

using the close(), munmap(), or shmdt() system

calls), the file is moved into Direct I/O mode.

The change from caching mode to Direct I/O

mode can be expensive because all modified

pages in memory will have to be flushed to disk

at that point.

Table 1: JFS2 restrictions for Direct I/O

File system
format

Buffer
alignment

Buffer length
increment

JFS2 before

AIX 5.2

ML01

4K bytes 4K bytes

JFS2 as of

AIX 5.2

ML01

agblksize

specified at file

system

creation

agblksize

specified at file

system creation

2.1.1.2 Performance Considerations
Under Direct I/O

Direct I/O benefits applications by reducing CPU

consumption and eliminating the overhead of

copying data twice – first between the disk and

the file buffer cache, and then from the file

Application buffer Application

Disk

1

1. Application issues write request

2. Kernel initiates disk write

3. Application data written to disk

4. Application continues execution upon completion of disk

writes

K

E

R

N

E

L

4

2

3

Application buffer Application

Disk

1

2

3

1. Application issues read request

2. Kernel initiates disk read

3. Requested data transferred from disk to application

buffer

K

E

R

N

E

L

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 4 of 12

buffer cache to the application’s buffer. However,

several factors could impact application

performance when Direct I/O is used.

Every Direct I/O read causes a synchronous read

from disk, unlike the normal cached I/O policy
where the read may be satisfied from the file

buffer cache (refer Figures 2 and 5). This can

result in poor performance if the data was likely

to be in memory under the normal caching policy.

Direct I/O also bypasses JFS2 read-ahead. File

system read-ahead can provide a significant

performance boost for sequentially accessed files.

When read-ahead is employed, the operating

system tries to anticipate future need for pages of

a sequential file by observing the pattern in

which an application accesses the file. When the
application accesses two successive pages of the

file, the operating system assumes that the

program will continue to access the file

sequentially, and schedules additional sequential
reads of the file. These reads are overlapped with

application processing, and will make the data

available to the application sooner than if the

operating system had waited for the program to

access the next page before initiating the I/O.

The number of pages to be read ahead is

determined by two parameters:
• j2_minPageReadAhead

Number of pages read ahead when the

operating system first detects sequential

access. If the program continues to

access the file sequentially, the next

read-ahead is twice j2_minPageRead-

Ahead, the next for 4 times j2_min-

PageReadAhead, and so on until the

number of pages reaches j2_maxPa-

geReadAhead. Default value is 2.

• j2_maxPageReadAhead
Maximum number of pages the

operating system will read ahead in a

sequential file. Default value is 8.

These parameters are tunable, and can be set via

the ioo command.

Table 2 compares the performance of Direct I/O

versus cached I/O for three different read

scenarios. The file block size used in these

experiments was 4K bytes, and the default values

of j2_minPageReadAhead=2, and j2_maxPag-

eReadAhead=8 were used.

The first row in Table 2 corresponds to the case

where the application reads a 1MB file

sequentially, byte by byte. When Direct I/O is

used in this case, the alignment restrictions are

violated. Consequently, normal cached I/O is

used to read a 4K page into the file buffer cache,

the requested byte is copied from the file buffer

cache to the application buffer, and the 4K page
is discarded from the file buffer cache. This

results in a 4K page being read for every byte

requested by the application, while also incurring

the costs of double-copying of data. Cached I/O

in this case enjoys two advantages: the 4K page

that is brought into the file buffer cache when a

single byte is read can be re-used to return 4K

bytes of data to the application upon subsequent

read requests. Additionally, read-ahead would

occur with cached I/O, further reducing the

latency of future read requests.

The second row in Table 2 corresponds to the

case where a 1GB file is read sequentially in

4KB increments. Although this case satisfies the

alignment restrictions for Direct I/O, read-ahead

will not occur when Direct I/O is used. Cached

I/O again outperforms Direct I/O in this case due

to file system read-ahead. Note that the total

amount of data read in this case is the same for

both Direct and cached I/O (although cached I/O

reads one additional page, due to read-ahead).

The third row in Table 2 corresponds to the case

where a 1GB file is read sequentially in 10MB

increments. Direct I/O significantly outperforms

cached I/O in this case for two reasons. First, the

overhead of double-copying is eliminated with

Direct I/O. Secondly, cached I/O does not see the

benefit of read-ahead in this case because at most

8 4K pages can be read ahead (since

j2_maxPageReadAhead=8), while the read

increment in this case is 2560 4K pages.

These examples show that applications do not
uniformly benefit from Direct I/O. However,

applications that see performance benefits when

using raw logical volumes for storage are likely

to benefit from the use of Direct I/O. Raw logical

volumes also impose alignment and length

restrictions on I/O – they require that the

application buffer be 512-byte aligned, and that

lengths be in 512-byte increments. Thus,

applications that use raw logical volumes for I/O

already implement these alignment and length

restrictions. By creating file systems with an
appropriate block size (e.g., by specifying

agblksize=512 at file system creation), such

applications can benefit from the use of Direct

I/O without any modification.

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 5 of 12

Table 2: Direct I/O vs. cached I/O performance

Cached I/O Direct I/O

Read

Increment Total File Size
Elapsed Time

(sec)

Total KB

Read Elapsed Time

Total KB

Read
1 byte 1 MB 1.59 1,036 185.27 4,194,320

4 KB 1 GB 21.18 1,045,982 104.31 1,045,986

10 MB 1 GB 20.59 1,048,592 6.81 1,048,596

2.2 Inode Locking

While an application views a file as a contiguous

stream of data, this is not actually how a file is

stored on disk. In reality, a file is stored as a set

of (possibly non-contiguous) blocks of data on

disk. Each file has a data structure associated

with it, called an inode.

The inode contains all the information necessary

for a process to access the file, such as file

ownership, access rights, file size, time of last

access or modification, and the location of the

file’s data on disk. Since a file’s data is spread

across disk blocks, the inode contains a “table of

contents” to help locate this data. It is important

to note the distinction between changing the

contents of an inode and changing the contents

of a file. The contents of a file only change on a
write operation. The contents of an inode change

when the contents of the corresponding file

change, or when its owner, permissions, or any

of the other information that is maintained as

part of the inode changes. Thus, changing the

contents of a file automatically implies a change

to the inode, whereas a change to the inode does

not imply that the contents of the file have

changed. Since multiple threads may attempt to

change the contents of an inode simultaneously,

this could result in an inconsistent state of the

inode. In order to avoid such race conditions, the
inode is protected by a lock, called the inode

lock. This lock is used for any access that could

result in a change to the contents of the inode,

preventing other processes from accessing the

inode while it is in a possibly inconsistent state.

When a file is accessed for reading, the contents

of the inode do not change, whereas writes to a

file do change the contents of the inode (and the

contents of the file). JFS2 uses a read-shared,

write-exclusive inode lock which allows multiple
readers to access the file simultaneously, but

requires that the lock be held in exclusive mode

when a write access is made. This means that

when the lock is held in write-exclusive mode by

a process, no other process may access the file

for either reads or writes. However, when the

lock is held in read-shared mode by a process,

other processes can concurrently read data from

the file. Figure 6 depicts the serialization

enforced by the inode lock in JFS2. In the figure,

threads 1 and 2 simultaneously read data from a
shared file. When thread 2 performs a write on

the file, it takes the inode lock in write-exclusive

mode, preventing thread 1 from performing reads

or writes on the file for the duration that thread 2

holds the lock.

Figure 6: Read-shared, write-exclusive inode locking
in JFS2

2.2.1 Concurrent I/O

The inode lock imposes write serialization at the

file level. Serializing write accesses ensures that
data inconsistencies due to overlapping writes do

not occur. Serializing reads with respect to

writes ensures that the application does not read

stale data. Sophisticated database applications

Read

Compute

Block
on read/

write

Read/

write

Read

Block on

write

Write

Compute

T

H

R

E
A

D

1

T

H

R

E
A

D

2

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 6 of 12

implement their own data serialization, usually at

a finer level of granularity than the file. Such

applications implement serialization mechanisms

at the application level to ensure that data

inconsistencies do not occur, and that stale data

is not read. Consequently, they do not need the
file system to implement this serialization for

them. The inode lock actually hinders

performance in such cases, by unnecessarily

serializing non-competing data accesses. For

such applications, AIX 5L v5.2 ML01 offers the

Concurrent I/O (CIO) option. Under Concurrent

I/O, multiple threads can simultaneously perform

reads and writes on a shared file. This option is

intended primarily for relational database

applications, most of which will operate under

Concurrent I/O without any modification.

Applications that do not enforce serialization for
accesses to shared files should not use

Concurrent I/O, as this could result in data

corruption due to competing accesses.

Figure 7: Inode serialization under Concurrent I/O on
JFS2

2.2.1.1 Concurrent I/O Usage

Concurrent I/O can be specified for a file either

through the mount command (mount –o cio), or

via the open() system call (by using O_CIO as

the OFlag parameter). When a file system is

mounted with the –o cio option, all files in the

file system use Concurrent I/O by default. Just as
with Direct I/O, Concurrent I/O can be restricted

to a subset of the files in the file system by

placing the files that use Concurrent I/O in a

separate subdirectory and using namefs to mount

this subdirectory over the file system. For

example, if a file system somefs contains some

files that prefer to use Concurrent I/O and others

that do not, we can create a subdirectory,

subsomefs containing all the files that use

Concurrent I/O. We can mount somefs without

the –o cio option, and then mount subsomefs as a
namefs file system with the –o cio option:

mount –v namefs –o cio /somefs/subsomefs
/somefs.

The use of Direct I/O is implicit with Concurrent

I/O, and files that use Concurrent I/O

automatically use the Direct I/O path. Thus,

applications using Concurrent I/O are subject to

the same alignment and length restrictions as

Direct I/O, specified in Table 1. As with Direct

I/O, if there are multiple outstanding opens to a

file and one or more of the calls did not specify
O_CIO, then Concurrent I/O is not enabled for

the file. Once the last conflicting access is

eliminated, the file begins to use Concurrent I/O.

Since Concurrent I/O implicitly uses Direct I/O,

it overrides the O_DIO flag for a file.

Under Concurrent I/O, the inode lock is acquired

in read-shared mode for both read and write

accesses. However, in situations where the

contents of the inode may change for reasons

other than a change to the contents of the file
(writes), the inode lock is acquired in write-

exclusive mode. One such situation occurs when

a file is extended or truncated. Extending a file

may require allocation of new disk blocks for the

file, and consequently requires an update to the

“table of contents” of the corresponding inode.

In this case, the read-shared inode lock is

upgraded to the write-exclusive mode for the

duration of the extend operation. Similarly, when

a file is truncated, allocated disk blocks might be

freed and the inode’s table of contents needs to

be updated. Upon completion of the extend or
truncate operation, the inode lock reverts to read-

shared mode. This is a very powerful feature,

since it allows files using Concurrent I/O to grow

or shrink in a manner that is transparent to the

application, without having to close or reopen

files after a resize. Figure 7 shows the behavior

of the inode lock under Concurrent I/O.

 Another situation that results in the inode lock

being acquired in write-exclusive mode is when

an I/O request on the file violates the alignment
or length restrictions of Direct I/O. Alignment

violations result in normal cached I/O being used

for the file, and the inode lock reverts to the

Write

Compute

Block

on read/

write

Read/

write

Read

Write

File

extend/

truncate

Write

T

H

R

E

A

D

1

T

H

R

E

A

D

2

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 7 of 12

read-shared, write-exclusive mode of operation

depicted in Figure 6.

2.2.1.2 Performance Considerations
under Concurrent I/O

Since Concurrent I/O implicitly invokes Direct

I/O, all the performance considerations for Direct

I/O mentioned in Section 2.1.1.2 hold for

Concurrent I/O as well. Thus, applications that

benefit from file system read-ahead, or have a

high file system buffer cache hit rate, would

probably see their performance deteriorate with

Concurrent I/O, just as it would with Direct I/O.
Concurrent I/O will also provide no benefit for

applications in which the vast majority of data

accesses are reads. In such environments, read-

shared, write-exclusive inode locking will

already provide most of the benefits of

Concurrent I/O.

Applications that use raw logical volumes for

data storage don’t encounter inode lock

contention since they don’t access files.

2.3 The Sync Daemon

The sync daemon (/usr/sbin/syncd) forces a write

of dirty (modified) pages in the file buffer cache

out to disk. By default, the sync daemon runs at

60-second intervals. On systems with large
amounts of memory and large numbers of pages

getting modified, this can result in high peaks of

I/O activity when the sync daemon runs.

Since Direct I/O bypasses the file buffer cache

and directly writes data to disk, the use of Direct

I/O results in a reduction in the number of dirty

pages that need to be flushed by the sync daemon.

The same holds true for raw logical volumes.

3 Performance Test
Environment

In order to evaluate Concurrent I/O performance,

we measured the throughput of an online

transaction processing (OLTP) workload under

different database storage configurations. We

used Oracle9i Database for this study. This

workload uses a client/server model, where a

client system drives the database server with a

mix of transactions intended to simulate a user
environment. Database throughput was measured

in terms of the number of transactions completed

per second (tps) at the client. The client also

measured the response time characteristics of the

transactions executed by the database server. We

measured the performance of our workload

under three different configurations for database
storage:

� Raw logical volumes

� JFS2 filesystems with Direct I/O

� JFS2 filesystems with Concurrent I/O

The workload was update intensive, and

consisted of a mix of transaction types on

multiple tables. The system configuration used

in these tests is specified in Table 3.

Table 3: System configuration

Attribute Value

System Type pSeries™ 680

Number of CPUs 4

Processor Type RS64-IV

Processor Clock Speed 600 MHz

System Memory 48 GB

O.S. Level AIX 5L version 5.2,

64-bit kernel

Database Oracle9i Database

release 2

v9.2.0.1 (64-bit)

Database size 500 GB

Configured Disks >400 SSA

The OLTP workload consists of a ramp-up phase,

followed by the steady-state phase, and ending

with a brief ramp-down phase. On our

measurement configuration, the steady state

performance was reached within about five

minutes of execution. The performance

measurement interval lasts about thirty minutes

after reaching steady state.

Database performance benchmarks typically use

raw logical volumes for database storage. Raw

logical volumes do not suffer from the overheads
described in section 2 for file systems, and

usually provide the best performance for

database applications. We measured the

performance of raw logical volumes to serve as

the performance goal to be attained when

database storage is done on file systems.

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 8 of 12

Table 4: Comparison of storage configurations

Raw LV configuration JFS2 configuration

Total no. of LVs Total no. of disks Total no. of files Total no. of disks

193 420 51 420

3.1 Raw Logical Volume
Configuration

The physical configuration for the OLTP run

with raw logical volumes was designed to reduce
I/O wait to as near to zero as possible. The

objective was to maximize throughput and

minimize I/O bottlenecks by spreading data

across multiple logical volumes and disks. In all,

193 raw logical volumes were used in this

configuration.

All of the raw logical volumes (LVs) were

created in volume groups defined in 32MB

partitions with the exception of the LVs for the

database logs, which were defined in 128MB

partitions. Previous exercises using this
workload have shown that I/O disk performance

is best when raw LVs are spanned (without

striping) on the outer edge of the disks.

For the database logs, SSA RAID-5 arrays were

created consisting of 4 physical disks (pdisk) for

each logical disk (hdisk). The LVs and redo log

files were 20GB in size, so as to eliminate log

switches during the OLTP run. Unlike the other

LVs, the LVs for the redo log files were striped

across the two logical hdisks, with a stripe size of
128K.

3.2 JFS2 File System Configuration

As previously mentioned, Direct I/O (DIO)
eliminates the overheads associated with the file

buffer cache. However, the write-exclusive inode

lock continues to pose a performance bottleneck

with Direct I/O. In order to minimize the effects

of spinning on the inode lock, file system based

database applications tend to maximize the

number of files in their configuration in order to

increase the number of concurrent writes in

progress. In previous experiments involving

JFS2 file systems with the Direct I/O option, we

usually created as many file systems as the

number of raw logical volumes used in the raw
LV configuration. However, using a large

number of files increases the complexity of

database administration. A smaller number of

files results in a more easily manageable

configuration from a database administrator’s

perspective.

For this study, we chose to limit the number of

files to a manageable number, rather than
matching the number of raw logical volumes.

This choice eliminated a direct one to one

performance comparison between raw and JFS2

physical layouts and implied a potential

performance loss due to the use of very large

data files. In addition, we treaded on

performance waters by striping the JFS2

volumes on raw devices, as opposed to the

traditionally preferred method of spanning

volumes on raw devices. However, as the very

positive JFS2 results show, as long as the

number of disks remains the same, DBAs can
consolidate raw LVs into JFS2 LVs without

risking loss in performance.

For the Concurrent I/O run, the filesystems were

mounted with the –o cio mount option, and for

the Direct I/O run, they were mounted with the –

o dio option. We used a file system block size

(agblksize) of 4KB. In general, the file system

block size used should match the database block

size, in order to satisfy Direct I/O alignment

restrictions. For the measurements reported in
this section, the database transaction logs (redo

logs) were stored on raw logical volumes. Using

file systems for the redo logs, with

agblksize=512 bytes, resulted in about a 4%

reduction in throughput. Using agblksize>512

bytes results in much worse performance, as this

violates the Direct I/O alignment restrictions that

need to be satisfied in order for Concurrent I/O

to be used for the file. Database control and

configuration files, which are frequently

accessed but do not usually satisfy Direct I/O
alignment constraints, would exhibit better

performance under cached I/O rather than Direct

or Concurrent I/O.

The thread scheduling policy used in our

experiments was the default SCHED_OTHER

policy.

The OLTP workload measured in our

experiments used asynchronous I/O for writing

database buffers to disk. Asynchronous I/O (AIO)

in JFS2 is handled by kernel processes (kprocs),
called aioservers. AIO requests from the

application are queued into an AIO queue. An

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 9 of 12

aioserver picks requests off the AIO queue one

at a time, and is unable to process any more

requests until I/O has completed for the request it

is currently servicing.

Thus, the number of aioservers in the system
limits the number of asynchronous I/O

operations that can be in progress simultaneously.

The maximum number of aioservers that can be

created is controlled by the maxservers attribute,

which has a default value of 10 per processor.

For our experiments, we used a maxservers

value of 400 per processor.

4 Performance Test Results

In this section, we compare various performance

metrics for each of the three storage

configurations measured. For ease of comparison,

this data is presented through a series of graphs.

For each graph, we present relevant observations
to help explain the depicted behavior. In the

graphs presented in this section, DIO stands for

Direct I/O, and CIO for Concurrent I/O.

4.1 Throughput

Table 5 lists the average throughput and response

times for each storage configuration, measured

over the steady-state interval of each benchmark

run. While the database throughput with Direct

I/O was 70% lower than with raw LVs, the

throughput with Concurrent I/O was only 8%

lower than the raw LV case. As our graphs will

corroborate, the poor Direct I/O performance can

be largely attributed to severe lock contention for

the inode locks. The Direct I/O performance
could have been improved by using a larger

number of files, such as by creating one file per

disk, as this would have reduced inode lock

contention.

Figure 8 plots the throughput measured at 30-

second intervals over the duration of the run. The

two dotted vertical lines demarcate the ramp-up,

steady-state and ramp-down phases of the runs.

The difference in performance between

Concurrent I/O and raw LVs stems from two

factors. The first is simply the additional

pathlength due to I/O requests having to go
through the file system path. The second factor

has to do with the way asynchronous I/O is

handled through a file system, as opposed to

when raw LVs are used. Since the AIO server

threads are kernel threads, a context switch

occurs for each AIO request to a file. On the

other hand, AIO requests to raw logical volumes

use a “fast path” to the logical volume manager

that avoids the use of AIO server threads.

Table 5: Average throughput and response times

Configuration

Avg

Throughput

(tps)

Avg

Response

Time

(sec)

Raw LVs 710.19 0.06

Direct I/O 219.69 0.12

Concurrent I/O 652.12 0.07

Apart from this difference in performance, the

behavior of the Concurrent I/O run is remarkably

similar to the raw LV run. Both exhibit very low

variation in throughput once steady-state is

reached. The slight variation in throughput is

merely because of normal load variations in the

benchmark. The Direct I/O run displays wide

variations in throughput, which is symptomatic
of severe lock contention.

4.2 Disk I/O

Figure 9 shows the disk I/O rates for each of our
runs. The I/O rate stays fairly constant

throughout the run, and mirrors the throughputs

presented in Figure 8. This is expected, since the

amount of I/O per transaction is constant, so a

lower throughput number would also correspond

to a lower I/O rate. It is interesting to note that

file system journaling does not appear to increase

the disk I/O rate in the file system runs. This is

because of the OLTP workload behavior. Files

are created and populated when the database is

created. The run only uses pre-initialized files,

and there is virtually no file creation, deletion,
allocation or truncation during the run. Thus,

there is little journaling during the runs.

The disk farm used in our experimental setup did

not pose a bottleneck in any of our runs. Figure

10 plots the highest disk utilization for any disk

within each 30-second measurement interval,

over the duration of the benchmark run. As

shown in the graph, the highest disk utilization

by any disk at any point did not exceed 70%

during any of our runs. CPU usage statistics
showed no I/O wait times in any of our runs.

4.3 CPU Usage

CPU usage statistics are a commonly used metric

for discussing system performance. We used the
AIX vmstat command to collect CPU usage

statistics at 30-second intervals for the entire

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 10 of 12

duration of each run. The vmstat command

breaks down CPU usage into four components:

%user, %system, %idle, and %wait. %user is the

percentage of CPU time spent executing user-

level instructions. %system is the percentage of

CPU time spent executing at the system
(supervisor) level. %idle is the percentage of

time that the CPU is available for additional

work. %wait is the percentage of time that the

CPU spends waiting for I/O to complete, with no

runnable processes.

Figures 11, 12 and 13 respectively show the

%user, %system and %idle times for each run, as

reported by vmstat. None of our benchmark runs

displayed any %wait time. The high CPU

utilization (%user + %system ≈ 100%) is typical

of the OLTP benchmark, as there is little or no
disk I/O wait.

The Concurrent I/O run has a higher %system

and lower %user than the raw LV run because of

the additional context switches due to traversing

down the file system path for I/O, and due to the

use of AIO server threads for servicing AIO

requests. This results in a greater amount of

work being done at the system level. As such,

the OLTP workload is not system-intensive.

Neither the Concurrent I/O nor the raw LV runs
show any idle time, whereas the Direct I/O run

shows a high percentage of idle time. This, again,

is indicative of severe lock contention in the

Direct I/O run.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

tp
s

RawLV DIO CIO

DIO

CIO

RawLV

Figure 8: Benchmark throughput over run duration.
Higher tps indicates better performance.

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

K
b

p
s

Raw DIO CIO

DIO

CIO

RawLV

Figure 9: Disk I/O throughput (in kilobytes of data
transferred per second) over run duration.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

%
 d

is
k

 u
ti

li
z
a

ti
o

n

Raw DIO CIO

DIO

CIO

RawLV

Figure 10: Highest disk utilization over run duration.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

%
u

s
e
r

RawLV DIO CIO

RawLV

CIO

DIO

Figure 11: %user over run duration

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 11 of 12

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

Elapsed Time (minutes)

%
s

y
s

te
m

RawLV DIO CIO

CIO

DIO

RawLV

Figure 12: %system over run duration

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55
Elapsed time (minutes)

%
id

le

RawLV DIO CIO

DIO

RawLV
CIO

Figure 13: %idle over run duration.

4.4 Lock Statistics

The study of the locking behavior exhibited by

the three storage models reveals the most

information about their performance
characteristics. The lock statistics reported here

were gathered using the AIX trace facility. The

traces were gathered over a five-second interval

during the steady state phase of each run.

To better understand the locking statistics

presented here, a brief explanation of the AIX 5L

v5.2 locking process is in order. When a thread

first attempts to acquire a lock and fails, it may

spin around the lock for at most maxspin number

of times. The variable maxspin can be set via the

AIX schedo command. For our runs, we used the
default maxspin value of 16384. If the thread

fails to acquire the lock after maxspin attempts, it

goes into wait state and is undispatched. When

the lock is released by the owning thread, it

wakes up one or more of the threads waiting to

acquire that lock, and the cycle repeats itself.

Heavy lock contention thus manifests itself as

through a large number of threads going into the

wait state, or blocking, while trying to acquire

the lock.

Figure 14 plots the number of blocks per second

for the most contended lock classes in our tests,
i.e., the number of times any thread was driven

into wait state while waiting for a lock during the

measurement interval, divided by the

measurement interval. By “lock class”, we mean

all the locks that fall under the same functional

category. For example, the lock class “SSA”

includes all the different locks used for

serializing accesses to SSA devices.

0

200

400

600

800

1000

AIOQ inode SSA

B
lo

c
k
s
/s

e
c
o

n
d

CIO

DIO

Raw

.

Figure 14: Blocks/second for major lock classes

The three major lock classes observed in our

traces were:

• AIOQ lock – serializes insertion and

removal of AIO requests from the AIO

queues.

• Inode lock – the per-file write-

exclusive lock used by the file system to
serialize write accesses to a file. This

lock is not taken in Concurrent I/O,

except under the conditions listed in

Section 2.2.1.1.

• SSA lock – used for serializing accesses

to an SSA device. Each device has its

own lock.

As seen in Figure 14, the Direct I/O run shows

excessive amounts of blocking due to the inode

lock, which results in a lot of context switching.

Since a large number of threads went into the
wait state in the Direct I/O run, there was a

significant amount of CPU idle time when there

were no runnable threads, resulting in lower

AIX CIO Implementation and Performance

wpAIXcio052703.doc Page 12 of 12

throughput. The Concurrent I/O and raw LV runs

do not acquire write-exclusive inode locks.

5 Conclusion

The performance experiments described in this

paper show that using JFS2 Concurrent I/O for

databases results in performance comparable to

that achieved through the use of raw logical
volumes for database storage, while providing

greater flexibility and ease of administration. The

throughput of the database application under

Concurrent I/O was three times the throughput

achieved with Direct I/O – a 200% improvement

- and lagged the performance on raw logical

volumes by only 8%. We have also shown that

the performance equivalence between

Concurrent I/O and raw logical volumes holds at

a detailed level, with many system metrics

showing remarkably similar behavior in both

cases.
Thus, Concurrent I/O combines all the

performance advantages of using raw logical

volumes, while greatly simplifying the task of

database administration. This makes Concurrent

I/O a very attractive option for database storage.

©
 Copyright IBM Corporation 2003

IBM Corporation
Marketing Communications
Server Group
Route 100
Somers, New York 10589

Produced in the United States of America
05-03
All Rights Reserved

This publication was developed for products and/or
services offered in the United States. IBM may not offer
the products, features, or services discussed in this
publication in other countries. The information may be
subject to change without notice. Consult your local
IBM business contact for information on the products,
features and services available in your area.

This equipment is subject to FCC rules. It will comply
with the appropriate FCC rules before final delivery to
the buyer.

IBM hardware products are manufactured from new
parts, or new and used parts. Regardless, our warranty
terms apply.

All statements regarding IBM’s future direction and
intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

Information concerning non-IBM products was obtained
from the suppliers of these products.
Questions on the capabilities of the non-IBM products
should be addressed with the suppliers.

All performance information was determined in a
controlled environment. Actual results may vary.
Performance information is provided “AS IS” and no
warranties or guarantees are expressed or implied by
IBM.

IBM, the IBM logo, AIX, AIX 5L, pSeries are trademarks
or registered trademarks of International Business
Machines Corporation in the United States or other
countries or both.

UNIX is a registered trademark of The Open Group in
the United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

The IBM home page on the Internet can be found at
http://www.ibm.com

The pSeries home page on the Internet can be found at
http://www.ibm.com/servers/eserver/pseries/

http://www.ibm.com
http://www.ibm.com/servers/eserver/pseries/

