
	 The kernel which forms the core of the Linux system is the result of one of the largest cooperative software

projects ever attempted. Regular 2-3 month releases deliver stable updates to Linux users, each with significant

new features, added device support, and improved performance. The rate of change in the kernel is high and

increasing, with almost 10,000 patches going into recent kernel releases. These releases each contain the

work of nearly 1000 developers representing well over 100 corporations.

	 Since 2005, over 3700 individual developers from over 200 different companies have contributed to the

kernel. The Linux kernel, thus, has become a common resource developed on a massive scale by companies

which are fierce competitors in other areas.

Linux Kernel Development
How Fast it is Going, Who is Doing It, What They are Doing, and Who

is Sponsoring It
by	Greg Kroah-Hartman, SuSE Labs / Novell Inc., gregkh@novell.com

	 Jonathan Corbet, LWN.net, corbet@lwn.net

	 Amanda McPherson, The Linux Foundation, amanda@linux-foundation.org

March 2008*

�

Introduction
	 The Linux kernel is the lowest level of software running on a

Linux system. It is charged with managing the hardware, running

user programs, and maintaining the overall security and integrity of

the whole system. It is this kernel, which after its initial release by

Linus Torvalds in 1991, jump-started the development of Linux as a

whole. The kernel is a relatively small part of the software on a full

Linux system (many other large components come from the GNU

project, the GNOME and KDE desktop projects, the X.org project,

and many other sources), but it is the core which determines how

well the system will work and is the piece which is truly unique to

Linux.

	 The Linux kernel is an interesting project to study for a number of

reasons. It is one of the largest individual components on almost any

Linux system. It also features one of the fastest-moving development

processes and involves more developers than any other open

source project. This paper looks at how that process works, focusing

on nearly three years of kernel history as represented by the 2.6.11

through 2.6.24 releases.

Development Model
	 With the 2.6.x series, the Linux kernel has moved to a relatively

strict, time-based release model. At the 2005 Kernel Developer

Summit in Ottawa, Canada, it was decided that kernel releases

would happen every 2-3 months, with each release being a “major”

release in that it includes new features and internal API changes.

	 The quick release cycle was chosen as a way to get new features

out to users in a stable form with minimal delay. As a result, new code

– features, device drivers, etc. – is available in a stable kernel within

a few months of its completion, minimizing or eliminating the need for

distributors to backport developmental code into stable releases. So

the kernels released by distributors contain many fewer distribution-

specific modifications, yielding higher stability and fewer differences

between distributions.

	 Each 2.6.x release is a stable release, in that it is made available

when the list of outstanding bugs is made as small as possible. For

problems which turn up after a kernel release, the “-stable” branch

exists as a way to quickly get fixes out to the community. This is best

explained with the diagram shown in Figure 1.

Figure 1 – Linux Kernel Release Cycle

	 The kernel team released the 2.6.19 kernel as a stable release.

Then the developers started working on new features and started

releasing the release candidate versions as development kernels so

that people could help test and debug the changes. After everyone

agreed that the development release was stable enough, it was

released as the 2.6.20 kernel.

	 While the development of new features was happening, the

2.6.19.1, 2.6.19.2 and other stable kernel versions were released,

containing bug fixes and security updates.

�

11000 100 200 300 400 500 600 700 800 900 1000

10,000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Days of Development

Ch
an

ge
s

pe
r

Re
le

as
e

2.6.11

2.6.21
2.6.20

2.6.19

2.6.18
2.6.17

2.6.16
2.6.15

2.6.14
2.6.13

2.6.12

2.6.22
2.6.23

2.6.24
	 This paper focuses exclusively on the main 2.6.x releases, to the

exclusion of the stable updates. Those updates are small, and, in

any case, the design of the development process requires that fixes

accepted for -stable also be accepted into the mainline for the next

major release.

Release Frequency
	 When the kernel developers first decided on this new

development cycle, it was said that a new kernel would be released

every 2-3 months, in order to prevent lots of new development from

being “backed up.” The actual number of days between releases can

be seen in Table 1.

Kernel Version Release Date Days of Development

2.6.11 2005-03-02 69

2.6.12 2005-05-17 108

2.6.13 2005-08-28 73

2.6.14 2005-10-27 61

2.6.15 2006-01-02 68

2.6.16 2006-03-19 77

2.6.17 2006-06-17 91

2.6.18 2006-09-19 95

2.6.19 2006-11-29 72

2.6.20 2007-02-04 68

2.6.21 2007-04-21 81

2.6.22 2007-07-08 75

2.6.23 2007-10-09 94

2.6.24 2008-01-24 108

Table 1 – Frequency of kernel releases

	 It turns out that they were very correct, with the average being

2.7 months between releases.

Rate of Change
	 When preparing work for submission to the Linux kernel,

developers break their changes down into small, individual

units, called patches. These patches usually do only one thing

to the source code; they are built on top of each other, modifying

the source code by changing, adding, or removing lines of code.

Each patch should, when applied, yield a kernel which still

builds and works properly.

	 This discipline forces kernel developers to break their changes

down into small, logical pieces; as a result, each change can be

reviewed for code quality and correctness. One other result is that

the number of individual changes that go into each kernel release is

very large, as can be seen in Figure 2.

	 By taking into account the amount of time required for each kernel

release, one can arrive at the number of changes accepted into the

kernel per hour. The results can be seen in Figure 3.

Figure 2 – Changes per kernel release

	 So, from the 2.6.11 to the 2.6.24 kernel release (a total of 1140

days), there were, on average, 2.83 patches applied to the kernel

tree per hour. And that is only the patches that were accepted. The

ability to sustain this rate of change for years is unprecedented in

any previous public software project.

Kernel Source Size
	 The Linux kernel keeps growing in size over time as more

hardware is supported and new features are added. For the following

numbers, we have counted everything in the released Linux source

2411 12 13 14 15 16 17 18 19 20 21 22 23

4

0

0.5

1

1.5

2

2.5

3

3.5

2.6.x kernel release

Ch
an

ge
s

pe
r

H
ou

r

Figure 3 – Changes per hour by kernel release

�

package as “source code” even though a small percentage of the

total are the scripts used to configure and build the kernel, as well

as a minor amount of documentation. Those files, too, are part of the

larger work, and thus merit being counted.

	 The information in Figure 4 show the number of files and lines in

each kernel version.

11000 100 200 300 400 500 600 700 800 900 1000

9,000,000

6,000,000

6,500,000

7,000,000

7,500,000

8,000,000

8,500,000

Days of Development

Li
ne

s
of

 c
od

e

2.6.11

2.6.21
2.6.20

2.6.19

2.6.18

2.6.17
2.6.16

2.6.15
2.6.14

2.6.13

2.6.12

2.6.22
2.6.23

2.6.24

Figure 4 – Size per kernel release

	 Over these releases, the kernel team has a very constant growth

rate of about 10% per year, a very impressive number given the size

of the code tree. But the kernel is not just growing. With every change

that is made to the kernel source tree, lines are added, modified, and

deleted in order to accomplish the needed changes. Looking at these

numbers, broken down by days, shows how quickly the kernel source

tree is being worked on over time. This can be seen in Figure 5.

2411 12 13 14 15 16 17 18 19 20 21 22 23

6000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

2.6.x kernel release

Li
ne

s
of

 c
od

e

Added

Modified

Deleted

Figure 5 – Rate of change by kernel release

	 Summing up these numbers, it comes to an impressive 3,621

lines added, 1,550 lines removed, and 1,425 lines changed every

day for the past 2 1/2 years. That rate of change is larger than any

other public software project of any size.

Who is Doing the Work
	 The number of different developers who are doing Linux

kernel development and the identifiable companies1 who are

sponsoring this work, have been increasing over the different kernel

versions, as can be seen in Table 2.

Kernel Version # of Developers # of Known Companies

2.6.11 483 71

2.6.12 701 90

2.6.13 637 91

2.6.14 625 89

2.6.15 679 96

2.6.16 775 100

2.6.17 784 106

2.6.18 897 121

2.6.19 878 126

2.6.20 728 130

2.6.21 834 132

2.6.22 957 176

2.6.23 991 178

2.6.24 1,057 186

All 3,678 271

Table 2 – Number of individual developers and employers

	 In fact, the individual development community has doubled in the

last three years.

	 Despite the large number of individual developers, there is still

a relatively small number who are doing the majority of the work.

Over the past three years, the top 10 individual developers have

contributed almost 15 percent of the number of changes and the

top 30 developers have contributed 30 percent. The list of individual

developers, the number of changes they have contributed, and the

percentage of the overall total can be seen in Table 3.

1 The identification of the different companies is described in the next section.

�

Who is Sponsoring the Work
	 The Linux kernel is a resource which is used by a large variety

of companies. Many of those companies never participate in the

development of the kernel; they are content with the software as

it is and do not feel the need to help drive its development in any

particular direction. But, as can be seen in Table 4, an increasing

number of companies are working toward the improvement of the

kernel.

Name # of Changes
% of Total
Changes

Al Viro 1571 1.9%

David S. Miller 1520 1.8%

Adrian Bunk 1441 1.7%

Ralf Baechle 1346 1.6%

Andrew Morton 1222 1.5%

Andi Kleen 993 1.2%

Takashi Iwai 963 1.2%

Tejun Heo 938 1.1%

Russell King 926 1.1%

Stephen Hemminger 920 1.1%

Thomas Gleixner 754 0.9%

Patrick McHardy 740 0.9%

Ingo Molnar 735 0.9%

Trond Myklebust 664 0.8%

Neil Brown 646 0.8%

Randy Dunlap 645 0.8%

Jean Delvare 617 0.7%

Jeff Garzik 615 0.7%

Christoph Hellwig 615 0.7%

David Brownell 588 0.7%

Paul Mundt 581 0.7%

Alan Cox 571 0.7%

Jeff Dike 558 0.7%

Herbert Xu 538 0.6%

David Woodhouse 503 0.6%

Greg Kroah-Hartman 496 0.6%

Linus Torvalds 495 0.6%

Dmitry Torokhov 494 0.6%

Alan Stern 478 0.6%

Ben Dooks 477 0.6%

Table 3 – Individual kernel contributors

Company Name # of Changes % of Total

None 11,594 13.9%

Unknown 10,803 12.9%

Red Hat 9,351 11.2%

Novell 7,385 8.9%

IBM 6,952 8.3%

Intel 3,388 4.1%

Linux Foundation 2,160 2.6%

Consultant 2,055 2.5%

SGI 1,649 2.0%

MIPS Technologies 1,341 1.6%

Oracle 1,122 1.3%

MontaVista 1,010 1.2%

Google 965 1.1%

Linutronix 817 1.0%

HP 765 0.9%

NetApp 764 0.9%

SWsoft 762 0.9%

Renesas Technology 759 0.9%

Freescale 730 0.9%

Astaro 715 0.9%

Academia 656 0.8%

Cisco 442 0.5%

Simtec 437 0.5%

Linux Networx 434 0.5%

QLogic 398 0.5%

Fujitsu 389 0.5%

Broadcom 385 0.5%

Analog Devices 358 0.4%

Mandriva 329 0.4%

Mellanox 294 0.4%

Snapgear 285 0.3%

Table 4 – Companies working toward the improvement of the kernel

	 Below we look more closely at the companies which are employing

kernel developers. For each developer, corporate affiliation was

obtained through one or more of the following: (1) the use of

company email addresses, (2) sponsorship information included in

the code they submit, or (3) simply asking the developers directly.

The numbers presented are necessarily approximate; developers

occasionally change employers, and they may do personal work out

of the office. But they will be close enough to support a number of

conclusions.

�

	 There are a number of developers for whom we were unable to

determine a corporate affiliation; those are grouped under “unknown”

in Table 4. With few exceptions, all of the people in this category

have contributed 10 or fewer changes to the kernel over the past

three years, yet the large number of these developers causes their

total contribution to be quite high.

	 The category “None,” instead, represents developers who are

known to be doing this work on their own, with no financial contribution

happening from any company.

	 The top 10 contributors, including the groups “unknown” and

“none” make up over 75% of the total contributions to the kernel. It

is worth noting that, even if one assumes that all of the “unknown”

contributors were working on their own time, over 70% of all kernel

development is demonstrably done by developers who are being

paid for their work.

	 What we see here is that a small number of companies are

responsible for a large portion of the total changes to the kernel.

But there is a “long tail” of companies which have made significant

changes. There may be no other examples of such a large, common

resource being supported by such a large group of independent

actors in such a collaborative way.

Why Companies Support Kernel Development
	 The list of companies participating in Linux kernel development

includes many of the most successful technology firms in existence.

None of these companies are supporting Linux development as an

act of charity; in each case, these companies find that improving the

kernel helps them to be more competitive in their markets. Some

examples:

• 	Companies like IBM, Intel, SGI, MIPS, Freescale, HP, etc. are all

working to ensure that Linux runs well on their hardware. That, in

turn, makes their offerings more attractive to Linux users, resulting

in increased sales.

• 	Distributors like Red Hat, Novell, and MontaVista have a clear

interest in making Linux as capable as it can be. Though these

firms compete strongly with each other for customers, they all

work together to make the Linux kernel better.

• 	Companies like Sony, Nokia, and Samsung ship Linux as a

component of products like video cameras, television sets, and

mobile telephones. Working with the development process helps

these companies ensure that Linux will continue to be a solid

base for their products in the future.

• 	Companies which are not in the information technology business

can still find working with Linux beneficial. The 2.6.25 kernel will

include an implementation of the PF_CAN network protocol which

was contributed by Volkswagen. PF_CAN allows for reliable

communications between components in an interference-prone

environment – such as that found in an automobile. Linux gave

Volkswagen a platform upon which it could build its networking

code; the company then found it worthwhile to contribute the code

back so that it could be maintained with the rest of the kernel. See

http://lwn.net/Articles/253425/ for more information on this work.

	 There are a number of good reasons for companies to support

the Linux kernel. As a result, Linux has a broad base of support

which is not dependent on any single company. Even if the largest

contributor were to cease participation tomorrow, the Linux kernel

would remain on a solid footing with a large and active development

community.

Conclusion
	 The Linux kernel is one of the largest and most successful open

source projects that has ever come about. The huge rate of change

and number of individual contributors shows that it has a vibrant and

active community, constantly causing the evolution of the kernel in

response to a number of different environments it is used in. There are

enough companies participating to fund the bulk of the development

effort, even if many companies which could benefit from contributing

to Linux have, thus far, chosen not to. With the current expansion of

Linux in the server, desktop and embedded markets, it’s reasonable

to expect this number of contributing companies – and individual

developers – will continue to increase.

Thanks
	 The authors would like to thank the thousands of individual kernel

contributors; without them, papers like this would not be interesting

to anyone.

Resources
	 We would also like to acknowledge Jonathan Corbet’s gitdm tool

that was used to create a large number of these different statistics.

The information for this paper was retrieved directly from the Linux

kernel releases as found at the kernel.org web site and from the

git kernel repository. Some of the logs from the git repository were

cleaned up by hand due to email addresses changing over time,

and minor typos in authorship information. A spreadsheet was used

to compute a number of the statistics. All of the logs, scripts, and

spreadsheets can be found at http://www.kernel.org/pub/linux/kernel/

people/gregkh/kernel_history.

* Based on a paper originally published at the 2006 Linux Symposium

