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Classification data mining is used widely in the area of retail analysis, disease

diagnosis and scam detections. Of late, the application of classification data mining

to the area of web development, web applications and analysis is being exercised.

The major challenges to this new facet of classification are the enormous amount

of data, data inconsistencies, pressure for time and accuracy of prediction. The

contemporary algorithms for classification, that majorly use decision diagrams, are

less useful in such a scenario. The major impediment is the large amount of static

time required in building a model (decision diagram) for accurate prediction or

decision making at run-time and the lack of an efficient incremental algorithm.

Randomized and sampling techniques researched for the problem have been less

accurate. The present work discusses deterministic and randomized algorithms

for classification data mining that are easily parallelizable and have better perfor-

mance. The algorithms suggest novel methods, like multiple levels of intelligent

sampling and partitioning, to collect record distributions in a database, for faster

evaluation of gini indexes. An incremental algorithm, to absorb newly available

data-sets, is also discussed. A combination of these characteristics, alongwith very
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high accuracy in decision-making, makes these algorithms adept for data mining

and more specifically web mining.

Key words: Classification, data mining, randomized algorithms, decision

diagrams, incremental algorithms, gini index and web mining.
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CHAPTER 1
INTRODUCTION

With the current trend in the industries to learn from one’s mistakes and

those of others, setups from small retailers to large corporations are looking to-

wards the “Knowledge Discovery” paradigm to get a more comprehensive overview

of their own data. This has been further made possible due to the increased per-

formances in the data warehousing and data mining algorithms, falling costs of

storage units and incresed processing speeds. The sections that follow illustrate

techniques used to store and mine data, in order to derive information therefrom,

that had never been available or thought of heretofore.

1.1 Data Warehousing

With the excessively large customer transactions happening every second, in

large super markets, internet sites, bank, insurance or phone companies, there is a

need to come up with alternative methods to store the historical data, so that there

is no loss of information. Also there could be a need, at a later date, to draw out

the hidden knowledge from the data without a tangible loss of information. The

study of data warehousing comprises everything from the machine architecture and

the data store, that could be best compatible to store the specific form of data, to

the algorithms used to handle and store data.

A data warehouse can be thought of as a collection of different sources of

data, put together, that have been cleaned and checked for inconsistencies prior to

merging. These data sources could be from different locations of a chain of super

markets, like Wal-Mart, or data recorded at the same location over time. The

1
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need to remove the inconsistencies in the data is dire, otherwise the information,

drawn out after mining the entire data, would be incorrect. There are various

algorithms used for the purpose of data source cleaning, data merging and storing

it in a format, from where the applications1 using the data can access it, in the

most efficient manner. Such algorithms have been documented in literature [1, 2].

Widom [2] also quotes a few issues in data warehousing designs that significantly

affect the application using the data.

1.2 Data Mining

Data mining can be viewed as a application that resides over a data ware-

house and uses the data to search for certain unknown patterns. The patterns

could be in the form of rules or clusters or some classification, as described in the

following sub-sections. Data mining is different from OLAP,2 in that OLAP uses

the query techniques to confirm the results known in the past or by heursitics.

In opposition, data mining is indeed a search for the unknown, wherein the

entire data set is used to draw out some information about it, at large, rather than

the specifics of the data in itself.

In the following sub-sections we will have a closer look at the various tech-

niques used for data mining .

1.2.1 Assocation Rules

This form of data mining is used to relate two or more quantities together,

that otherwise would apparently not have co-existed. An example would be 60% of

the people buying beer also buy diapers and 2% of all the transactions happening

contain both beer and diapers. This can be stated in the form a rule, Beer ⇒
1There could be varoius applications that could make use of the data store, like OLAP, data

visualization, data mining or even transactional ones for day-to-day transactions.
2On-line Analytical Processing.
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Diapers. This rule is said to have a 60% con�dence and 2% support. The task of

Association Rule Mining is to come up with a set of rules that satisfy a minimum

confidence and support level. One of the leading algorithms used for Association

Rule Mining is the Apriori Algorithm [3, 4, 5].

1.2.2 Clustering

The principle used in clustering is to group together (or cluster) the data

points that have a common characteristic. The whole idea is to partition the entire

data set into categories, depending upon some feature(s), such that the items in

one group or cluster are more similar to those in the same cluster as compared

to the ones in other clusters. Clustering is used in various facets of knowledge

discovery and learning, like machine learning, pattern recognition, optimization

. . . etc. A classic algorithm for clustering starts off with designating k data points

that act as centroids for the k clusters, and proceeds with evaluating the nearest

centroid for every data-point (to be clustered) and then re-evaluating the mean

(centroid) of the data-points in that cluster.

1.2.3 Sequential Patterns

Initially proposed by Agarwal and Srikant [6], the technique uses time (in

most cases) to detect a similarity (pattern) in the occurrence of events. This can be

used in various applications, like detecting patterns in which books are being read

by a set of library users, or detecting a chain-referral scam of medicine practioners,

or even more critical ones like disease diagnosis [3].

1.2.4 Classification

“One’s ability to make the correct set of decisions while solving a certain

problem and doing so in the specific allotted time is the key factor in one’s success,
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time and again. This is true for any sort of problems—may it be from a research

perspective or a political one—only the variables and constants change.”

–Anonymous

Classification data mining is associated with those aspects of knowledge

discovery, wherein there is a need to categorize data points, associating them with

a certain classification or category, based upon the classification of a few known

data points. Here, the objective is to traverse the training3 data set and coming

up with a model that could be used for future classification of a test4 data set. The

technique of classification has been used since a very long time for the purpose of

machine learning [7], optimizations using neural networks, decision trees . . . etc.

A decision tree or a decision diragram comprises a root node, that one uses

to make his �rst decision, while classifying a test record. A non-leaf node in the

decision diagrams represents the data reprsented by its sub-trees, while a leaf node

represents data belonging to one class and satisfies the conditions of all its ancestor

nodes. The decision is binary, in most cases, in that it could be either true or false

which takes one to one of the sub-trees of the root, for which the same procedure

could be recursively applied, until one reaches the leaf node, that determines the

classification for the record under consideration. The non-leaf nodes are decision-

making nodes (mostly binary) and hold a condition like Age ≤ 25, which would

lead on to two sub-trees, the data in which always satisfies the condition laid forth

by the common parent node, i.e. Age ≤ 25.

1.3 Goal

Most of the contemporary algorithms for growing decision trees discuss cost

effective methods, by which the size (height and spread) of the tree is optimized

3A data set for which a classification is known.
4A data set for which the classification is not known and has to be determined.
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and so is the dynamic time required for decision making. The algorithms output

the most compact form of a tree for a given training set, but are cost-inefficient at

the tree-growing stage. The principle used in most of the algorithms is to come up

with the best split attribute for a given data-set, about which the entire data-set

could be categorized into two sections (for binary decision diagrams), such that

most of the records of a type belong to one of the sub-trees. Now, for a given

data-set, it is very time consuming to come up with the very best split attribute

at every stage in the tree. Gini values are used (in most cases) to determine the

best split at a certain stage. The detailed explanation for gini values and their

calculation would be a subject for the following chapters.

The approach, mentioned above, is acceptable and often used in situations

where the decision diagrams are made statically and then used for the purpose of

decision making at run-time. Also, if there is no need to update the classification

for a long time, an approach that gives the most succinct tree is required, as then,

the time required for making decisions at runtime would be largely reduced. But,

in situations where it is necessary to update the decision diagram very frequently,

it might be required to come up with an approach that does so, in a very short

interval of time. As discussed before, the most time-consuming task, in the tree

building stage, is to determine which is the best split attribute-value pair. If one

spends time in deciding over the very best split at every stage, undoubtedly the

most concise and compact form of the tree would be obtained, but this could be

heavily time consuming. Conversely, if the very best split is not determined the

trees tend to be wider and longer (increasing the time required to make decisions

at run-time, while using the tree).

If the decision diagrams are to be used for the purpose of making the most

critical decisions, that have a very high risk level, one might be more inclined to
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use an algorithm that, although takes a lot of static creation time, outputs the

most concise and compact embodiment of the life-critical data set, a query on

which would not take long to execute. On the other hand, an application that has

no critical hazard might be greatly helped by an inherently incremental algorithm,

which would help in assimilating and consuming the most recent data within the

decision diagram. Thus, the trade-horses of creation and usage time are deter-

mined depending upon the application in mind and ultimate usage.

Web-applications, in most cases, are like the latter ones described above.

An example would be click-stream analysis, wherein the objective is to observe a

pattern from the web-clicks of various users to a set of web-pages. The problem

can be states as follows:

Imagine yourself to be an owner of a web-based commerical store that sells

books. There is a group of loyal customers that can be identified using their lo-

gin names and passwords. Every click made by every person, till date, has been

recorded. This comprises a range of customers that merely surf through the web-

pages under your company’s domain and buy nothing and others that are avid

buyers. Would it not be a interesting piece of knowledge to know who is buying

exactly what, and more specifically if there is a pattern of the types of books being

bought by various customers over a specific range of time! It might prove to be

commerically advantageous to be able to predict the buying pattern of a set of

customers (or potential customers) depending upon the buying-patterns of other

customers. But, with the amount of clicks being made on the web-pages and the

increasing number of transactions happening every second, it might be impossible,

at run-time, to search for and identify the parallelism between a set of clicks of

one particular customer and another, in the past. An effective data-structure like

a decision diagram would certainly come handy in such cases, where it is most
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important to interest a customer more in what he would have otherwise, anyway

been interested in, and making business. In such a case, the problem is mostly

one sided, here the presence of a decison-maker or a next-click-predictor is not of

primary importance, but having one such (a good one) would definitely help in

growth of business.

Also, as in case of the click-stream example above, a algorithm that is in-

cremental, in that it can incorporate fresh data into the decision-making data

structure, would be of significant use, rather than having a static decision-maker

that reflects the choice and trends in the market from a earlier era. As in the

above case, it could prove advantageous to be able to make decisions based on

some clicks, results or transactions happening just the previous second!5

The current work concentrates on the issues mentioned above, using tech-

niques like randomized algorithms and sampling to achieve speedups, without the

loss of accuracy. An attempt is also made, at making the algorithms incremental,

so that any additions to the data sets could be reflected in the decision-maker (also

referred to as the learner). In the chapters that follow, the algorithms and the im-

plementation details are mentioned, giving details of the data structures used for

the purpose.

5Though, it might be difficult and highly cost-inefficient to try and accomodate data from a
transaction that occured just a few minutes back.



CHAPTER 2
RELATED WORK IN THE AREA OF CLASSIFICATION DATA MINING

Decision diagrams and other classifiers like genetic algorithms, Bayesian and

neural networks have been used for a very long time for the purpose of simple

classification and decision support. Anahory and Murray [1] give detailed analysis

as to how one could use tools like decision diagrams for data mining which can

be very effective in the case of decision support over a data warehouse. Since the

evolution of the decision diagrams, a lot of algorithms, varying in time complexity

and the kind of data to be classified, have been devised for the purpose of classifica-

tion. Some of the famous algorithms developed include ID3 [8], C45 [7], SLIQ [9],

SPRINT [10], CLOUDS [11], and others. All these algorithms and other previ-

ous work in the area of classification data mining have sought the best possible

way—given a data-set or a database of records—to provide the classification with

the most concise representation or data-structure. Some of the common forms of

representation used for the purpose of classification data mining are neural net-

works, decision diagrams . . . etc. Another issue of primary importance is the time

required to pack the given data-set in the selected format of representation, in the

minimum possible time frame.

In all the algorithms to build decision diagrams, mentioned above, a com-

mon premise and one of the most important objective is that the tree building

algorithm should be precise. The tree should be an exact representation of the

given test data-set. But, in the race to come up with a perfect tree, a lot of time

is spent in building the tree in the first place. These algorithms are cost effective

and suggest techniques like parallel and simultaneous execution for a faster growth

8
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in the tree as in the work by Shafer et al. [10] but a certain amount of time has to

be spent at every node in the tree for the determination of the best split—which

cannot be compromised.

In the sections that follow, a brief description of a few predominantly used

algorithms for classification data mining is given. These include SLIQ, SPRINT

and CLOUDS. All of the above use the Gini Index for estimation of the best split

attribute and value.

2.1 Gini Calculation

One of the most important aspects of building a decision tree is to determine

the best split attribute-value pair for a certain data-set. Thus, at every stage in the

formation of the decision tree, the attribute-value pair that gives rise to the best

split of the current data-set has to be determined. The importance of estimating

the best split is that otherwise, the resultant tree could be longer and wider. In

the worst case, the resultant tree could be a skewed one, with only one non-leaf

child per node and a smaller number of records being classified at each step, as

depicted in the figures below. Table 2-1 shows a sample data-set that needs to be

classified, and Figures 2-1 and 2-2 show a concise and a skewed representation of

the same data-set.

The Gini Index for a data-set is defined as follows: Consider a data-set S

consisting of n records, each belonging to one of the c classes. The gini index for

S is defined as

gini(S) = 1−
c∑
j=1

p2
j

where pj is the relative frequency of class j in S.

To utilize this for the estimation of the best split, consider that a split
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partitions S into S1 and S2. The gini value of the split can be estimated using

ginisplit =
n1

n
gini(S1) +

n2

n
gini(S2)

where, n1 and n2 are the number of data points in S1 and S2, respectively, and n

is the number of data-points in S.

As it can be seen, the calculation of the gini index is the most important

step in the node-splitting stage in a decision tree. Also, it can be trivially observed

that the process could be time consuming, since, to be able to calculate the gini of

one particular potential split value, all the records have to be considered in order

to obtain the n1, n2 and all the pj’s for each S1 and S2. Since, it is of primary

importance to calculate the gini at all the potential points, viz., all the distinct

data points in the currect data-set for each attribute, any algorithm to do the

gini calculations would necessarily take, O(an2) time complexity, where n is the

number of records in the data-set and a is the number of attributes.

2.2 SLIQ Classifier for Data Mining

SLIQ was one of the first of its kind to introduce the concept of gini index to

grow decision trees. The algorithm is divided into two phases, viz, Tree Building

and Tree Pruning, for building decision diagrams. In the following sub-sections,

these two stages are discussed.

2.2.1 Tree Building

This comprises two steps, i) evaluation of splits for each attribute and select-

ing the best split and ii) creating of partitions using the best split. This is done in

the following manner. First the given table is split into separate lists, in which the

records are sorted according to that particular attribute but maintain a pointer to

the other attribute values of the same record, as can be seen below. The second
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column in each of the attribute lists are the record identifiers from the old (input)

table, which maintain the class (dependent) attribute, as can be seen in the class

list. The second column in the class list gives the current node that the particular

record belongs to. Every node also stores a histogram or distribution of records

(class values). Table 2-2 shows the original input table and Table 2-3 shows the

separated attribute lists and the class list. The splits are evaluated using the Eval-

uateSplits() algorithm as shown in Figure 2-3.

Table 2.2: Sample dataset to demonstrate SLIQ

RID Age Salary Class
1 23 15 G
2 30 40 B
3 40 60 G
4 45 65 B
5 55 75 G
6 55 100 G

Table 2.3: Attribute and class lists for SLIQ

Age List Salary List Class List (CL)
Age CL Index Salary CL Index Index Class Leaf
23 2 15 2 1 G N1
30 1 40 4 2 B N1
40 3 60 6 3 G N1
45 6 65 1 4 B N1
55 5 75 3 5 G N1
55 4 100 5 6 G N1

Depending upon the best split value, the node name entry in the class list

is updated according to the whether the record is pushed to the left or right sub-
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2.3.1 The SPRINT Algorithm

The algorithm at a macro-level is similar to its predecessor, SLIQ in that

the algorithm comprises two parts, the tree growth stage and the tree pruning

stage. The tree growth part of the algorithm has been modified to allow for par-

allelism, in the following manner. Like in the case of SLIQ, the given data-set is

broken down into multiple tables—one for each attribute, and preserving pointer

to the old record ID in the original data-set. The individual attribute lists are

then sorted, before the histograms can be generated. Associated with every node

is a histogram (distribution of the classes amongst the records in that node). A

histogram is actually a matrix of possible class values and up/down distribution,

implying number of records of the same classes lesser than or equal to (down) and

greater than (up) the current record, under investigation. Using these histograms,

the gini values for each attribute value can be calculated. Table 2-4 is a sample

data-set and 2-5 shows the calculation of histograms at a few stages for a given

attribute list.

Table 2.4: Attribute lists ’Age’ for SPRINT

Age Class RID Cursor Position
17 H 1 1
20 H 5
23 H 0
32 L 4 3
43 H 2
68 L 3 6
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Table 2.5: Attribute and class lists for SLIQ

H L
Cursor Cbelow 1 0

Position 0 Cabove 3 2

H L
Cursor Cbelow 3 1

Position 3 Cabove 1 1

H L
Cursor Cbelow 4 2

Position 6 Cabove 0 0

2.3.2 Speedup over SLIQ

SPRINT had a better speed-up over SLIQ, majorly owing to the fact that

it had a better time complexity, O(n log n) as compared to the (O2) as that of

SLIQ. Another advantage that SPRINT had over SLIQ, was that, since only one

attribute is needed to be processed at a time, only one list could be brought into

memory at a time, as compared to SLIQ where the whole table (or corresponding

parts of it) had to be memory resident to be able to calculate the best split. As a

special case of SPRINT, if one whole attribute list could be made memory resident

(at a time), along with the histogram (associated with that node) for storage of

statistics, one can achieve a further speed-up obviating the necessity for swapping

the list back and forth between memory and disk.

2.3.3 Exploiting Parallelism

The algorithm is inherently parallel in nature, whereby the entire data-set is

converted to multiple attribute lists (smaller tables), that can be processed (gini

calulation and determination of best split) in isolation, immaterial of the other

attribute values for the same record. Thus, one can think of ways to parallelize
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the above algorithm, by assigning each attribute list to a separate processor for

gini calculation, and then putting the result together to estimate the best split at

a node. The node splitting can also be done in parallel in the following manner.

Two processors enlist the subtree that each record should belong to after the split,

depending upon the split attribute value. The attribute list being sorted, it is

trivial to decide over the cut-off boundaries for each processor and hence they can

work in parallel. Since, there can be no record common to either, they can both

work on a common array in shared memory. This array, then can be used to

split other attribute lists depending upon the entry in the shared memory array.

Hence, splitting can be done in O(n) time using O(s) processors, where n is the

number of record in a node and s is the number of attributes, hence preserving

the total processor work, to O(ns). This can be further extended to calculate the

total spliting time complexity at the tree growth stage. Since there can be utmost

O(N) records in all the nodes at any level in the tree, the total time splitting

time complexity of O(N), where N is the total number of records in the data-set.

Assuming a well distributed full tree, the total time complexity can be estimated

to be O(N logN) for a O(s) processor parallel machine.

2.4 CLOUDS—A Large Data-set Classifier

CLOUDS2 was the first of its kind to use sampling for the purpose of clas-

sification. The sampling step was followed by an estimation step to determine a

closer and better split attribute-value pair. The CLOUDS algorithm assumes the

following two properties for gini indexes for real data-sets [11]:

• Given a sorted data-set, the gini value generally increases or decreases

slowly. This implies that the number of good local minima is significantly less

than the size of the data-set, especially for the best split attribute.

2Classification of Large or OUt-of-core DataSets.
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• The minimun gini value (potential split) for an attribute is significantly

lower than the other data-points along the same attribute and other attributes

too.

Using these two principles as guidelines a couple of sampling techniques were

developed:

2.4.1 Data-set Sampling (DS)

In this algorithm, a random sample of the data-set is obtained, and the

direct method (DM)3 for classification is applied. In order to maintain the quality

of the classifier, the gini values are calculated using the entire data-set, only for

the sampled data-points.

2.4.2 Sampling the Splitting Points (SS)

Here, a quantiling techique is used to partition the attribute domain into q parts.

Gini values are calculated for each of the boundaries of the q-quantiles, and the

lowest is chosen for the split attribute. Hence, it is required to have a pre-knowledge

of the type and range of the attribute values (meta-data).

2.4.3 Sampling the Splitting Points with Estimation (SSE)

The SSE, technique uses SS to estimate the gini values at the boundaries

of the q-quantiles for each attribute of the data-set. Then, as in the case of SS,

the minimum ginimin is chosen, here for the purpose of determining the threshold

value for the next (estimation) set to determine the lowest gini value. Using the

gini values, the lowest possible gini value in a quantile is determined, ginilow.

Intervals that do not qualify the threshold level are discarded, i.e. intervals such

that ginilow ≥ ginimin, are eliminated. For the surviving intervals, gini values are

calulated at every data point to determine the lowest possible gini value.

3Something like SPRINT, wherein the gini at every attribute value is calculated for estimating
the best split.
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CLOUDS uses both of the above to classify the data-set using sampling

techniques. The sampling technique determines the size of the decision tree. The

quantiling technique rules the accuracy rate and the time required at every stage.

2.5 Incremental Learners

The objective in having an incremental algorithm is that in case of the ex-

isting algorithms for building decision diagrams for new upcoming data, the entire

classifier (learner) would need to be destroyed and a new learner created using the

old and new data. Such a process would take a long time and would be repeated

frequently. An incremental algorithm is such that the time required is correspond-

ing merely to the new data, rather than the total of new and old data. One of the

ways to achieve incrementality in the algorithm is, if one could have some tech-

nique to merge two learners together to obtain one learner that is a combination

of the two learners. Chan and Stolfo [13, 14] have suggested some methods for

merging trees together. The following are the two major techniques suggested:

• Hypothesis booting is a method in which a number of different algo-

rithms are used on the same data-set to generate various learners. Then, using a

meta-learner, all these various learners are combined. Thus, the properties of all

the different learner algorithms are present in the new learner.

• Parallel learning is a technique in which a data-set is broken up into

various parts, on which the same algorithm is applied to obtain different parallel

learners, which can be combined together to obtain a learner for the whole data-

set.

The other techniques comprise a combination of these ideas.

The following chapters give the Algorithms and the Implementation details

of the Randomized Decision Tree algorithm along with performance statistics.



CHAPTER 3
ALGORITHMS

Having discussed the previous work in the area of classification data mining

and specifically in the area of algorithms for decision trees, in the previous chapter,

this chapter deals with the algorithms devised for the purpose of building (grow-

ing) randomized decision diagrams. The contemporary algorithms like SPRINT

and SLIQ aim at building the most concise and compact form of the trees for a

given data-set. But, as discussed before, this approach is exteremely time con-

suming. The present chapter discusses a few randomized algorithms that possibly

could have the same time complexity, but are estimated to run faster, without a

loss in accuracy in the outputted learner. In certain cases, the height and width of

the tree are more than the SPRINT/SLIQ version of the tree for the same data-set.

The following sections give the drawbacks of the above contemporary algo-

rithms that render them less useful for rapidly changing enormous amount of data

or applications where the data could be outdated very early.

3.1 Sorting Is Evil

One of the most important characteristics of web-based applications is that

the data is changing on a continuous basis and very little down time is permissible,

if any. In an application, like Click-stream Analysis, it could be, in most of the

cases, required to absorb and reflect a newly available data-set into the learner.

In such cases, the decision tree should not be made from scratch but should be

an addition to the already existing one. Hence, if it is required to sort the entire

data-set for each attribute, the opertion will be extremely costly. Thus, the sorting

20
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operation that needs to be done (though only once) at the root node should be

avoided as far as possible. If sorting cannot be avoided, then the number of records

that have to be sorted should be reduced drastically.

Inspired by the SS approach as suggested in Alsabti et al. [11], the following

algorithms suggest ways in which one can come up with decision diagrams without

sorting the entire data-set.

3.2 Randomized Approach to Growing Decision Trees

Motwani and Raghavan [15], Horowithz et al. [16], Cormen et al. [17] and

others suggest algorithms in which randomised approaches help in reducing the

time complexity of an algorithm, without significant loss of accuracy and in most

cases with 99% or higher accuracy.

One disadvantage with using randomized algorithms, as suggested before, is

that though one does not lose out on accuracy, the resulting trees could be wider

and longer – resulting in greater time to make a decision using this learner. If

the tree growth process is not controlled, the trees could end up being skewed up,

increasing the time complexity of the decision-making algorithms.

In applications where accuracy is of extereme importance, examples being

those of high risk applications or life critical ones, it might not be feasible to

use such algorithms. Examples of such are disease diagnosis or a learner that

differentiates a poisonous mushroom from a non-poisonous one. But in such cases,

if the learner assures 100% accuracy at the cost of higher search/decision time,

randomized approaches could prove to be useful.

In the subsections that follow, randomized algorithms and their modification

for building decision diagrams are suggested.
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3.2.1 SSE Without Sorting

Sorting the attribute list is the most time consuming task in calculation of

gini values before the node can be split. The attribute lists have to be seperately

sorted as there can be no co-relation between the order of any two attributes in

a data-set, the reason being that given a data-set with n attributes, (n − 1) of

them are independent attributes while 1 is a dependent attribute—referred to as

the class attribute.

The understated algorithm would work perfectly, in one of the following

scenarios :

• There are one or more attributes that are partially dependent on one or

more other attributes, in that their values/order can be predicted based upon the

value/order of other attributes or a combination thereof.

• If the application that uses the decision tree could tolerate faulty results

some of the times. This is possible if the application uses the decision diagrams to

predict a behavior of a non-life-threatening identity. It could also come of use in

scenarios where the result is required urgently—a faulty one would not do harm

to the application, but a timely procurement of a healthy result would certainly

help.

• One has a certain amount of pre-knowledge of the data-set, in that, one

can, after looking at a few data-points, make a fairly good guess of the nature of

the neighboring points. An example would be of a data-set generated at a weather

station. Looking at the temperatures of a few data-points, one can definitely make

calculated guesses about the neighboring point (at least, one is sure that the night

temperature is lower than the day temperature).

The algorithm proceeds with sampling a certain percentage of records and

initially working with them. The gini values at these points are evaluated. Since,
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we will have a constant number of sampled points the complexity would necessarily

be O(n), where n is the total number if records in the data-set.

Here the gini values for the sampled records are calculated using the entire

data-set, and hence these gini values are exact as opposed to approximate. This

can be achieved in one of the following ways :

• Since we have only a constant number, s, of sampled records, one can

obtain the statistics required for the gini calculation by merely comparing every

record in the data-set with every record in the sampled set (records for which the

gini is to be evaulated). This would require O(ns) time or, if only a constant

number of records are sampled, O(n) time.

• If the number of records sampled is large, it could be costly to compare

every one of the sampled records with the ones in the data-set. Here, we sort just

the sampled records in O(s log s) time and then use the above process, in such a

way that, if a record X lies ahead, in order, of another record Y for an attribute

z, in the sampled set, then one can assume that for a record M in the data-set, if

M.z ≤ X.z, then M.z ≤ Y.z is also true. Thus, using techniques like BinarySearch

or searching the array in the reverse order can help reduce the time required to

determine the statistics.

Using the gini values for the sampled data-points, as in the case of SSE , the

surviving intervals are selected. Here, unlike SSE since the sampled points have

not been picked up from a pre-sorted data-set, one cannot guarantee the location of

the ultimate minima. But, with a certain pre-knowledge about the data, like of the

type mentioned above, it could be possible to figure out an approximate position of

a local minima in an interval using techniques like BinarySearch to reduce the time

spent in carrying out the search. As explained above, such a method would not
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yield the best of results and the trees could be larger,1 but in cases, as discussed

above, it could be worth having an algorithm that builds a larger tree in a shorter

time frame.

3.2.2 Sampling a Large Number of Potential Split Points

In most of the contemporary databases, one does have a pre-knowledge about

the data itself, in the form of meta-data (or data about data). One does know

the domain of possible attribute values a particular attribute could have. It would

prove advantageous to exploit this knowledge to build a classifier so that one can

do the same, much faster. Now, note that a classifier is a data-structure, such

that at every level, one makes a decision wherein one selects a path, one would

traverse, depending upon a certain attribute value. The deciding factor is an at-

tribute and the threshold value that determines whether to search (or continue

traversal) in the left or right subtree. This threshold value is such that one gets

the best possible tree, in that the decision be made as soon as possible, with no

requirement that the value must exist in the training data-set (data-set required

to grow the decision diagram). The data-point selection can be done in one of two

ways explained below.

• If one has information about the data-set and the range of values each at-

tribute could have, then the sampled data-points could be synthetically generated,

so that they lie in the range covering all the possible values one can find in the

data-set. Then, one could use the same method used in the algorithm described

above to obtain a set of gini values for the selected data-points. Further techniques

like searching for a lower interval in surviving intervals could also be exploited to

zero on to the lowest (best) possible gini value, hence, determining the best split.

• Another technique one could use is that one samples a few records and

1longer and wider
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uses only those as potential splits. This technique could be useful in cases where

the data-set contains a lot of repeated data-points. In such cases, if a good sam-

pling technique is used, one can expect the best split point to be sampled for gini

calculation.

Depending upon the data-set one or more of the above methods could be

used for sampling. If the range of possible values for an attribute is small and

discrete, then it could prove to be advantageous to synthetically generate a large

number of potential split points for that attribute. If the attribute values are con-

tinuous then one could use the method of sampling a percentage of the records for

further calculation. Thus, depending upon the type of attribute, one could change

the strategy being used for sampling a smaller set of potential split points.

3.2.3 Improvised Storage Structure

In SPRINT and the algorithms discussed so far, the data-set is converted to

an intermediate representation, wherein, the attributes are split into various at-

tribute lists that can be individually sorted. To preserve the records, the class list

is created having incoming pointers from the individual attribute list, and stores

the node that every record belongs to, at any stage in the algorithm. The advan-

tage in having separate lists is that, one can just bring one list at a time in memory

and process it in isolation (detached from the other parts of the record). But, with

the algorithms stated above, this could imply a large number of comparisons and

memory swap-in-swap-outs.

Thus, if one can have the whole records stored in-memory, before the com-

parison stage, all the comparisons required with a record, from the data-set, could

be done at a time. Thus, it could be very convienent to compare the z-th attribute

of the s-th record from the sampled set and the n-th record from the original data-

set, for each z. A 3-dimensional array could be one such implementation.
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because, while collecting statistics, we determine the number of records lesser than

or equal to the current record’s attribute value. The records, in the data-set, that

we compare with are those that belong to the current node. In case of a split about

one of the z attributes, it would be difficult to carry forward the statistics for all

the attributes. One of the following algorithms suggests a method of storing the

statistics in such a way that they could be carried forward to the child nodes.

3.2.4 Better Split-points

As it has been discussed before, it could prove to be advantageous to use

attribute-values, other than the ones present in the data-set. The techniques that

have been described before, use methods like using synthetic data-points for the

evaluation of gini values. Other methods described in [10] and [9], use techniques

like splitting an interval into two and using the median for gini calculation. Here,

another technique is discussed that also aids the sampling techniques mentioned

before.

The algorithm is necessarily similar to the ones mentioned before, that use

sampling to obtain potential split points as opposed to calculating gini-values for

all the data-points. Initially, a certain percentage of sampling is done. Then the

sample set, S is increased three-fold by triplicating the records, in that, two data-

points are inserted in every interval. This can be done in linear time, i.e. in O(n)

time one can find the thirds of every interval and designate them as data-point, as

shown in Tables 3-1 and 3-2, below.

This can improve the performance of the previously stated algorithms in the

following manner:

• Sampling of potential split points harms the decision diagrams in only one

way – though the tree is not inaccurate, it could be wider and longer, reason being
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Table 3.1: Sampled attribute values

Attribute value
2
3
6
8
14

Table 3.2: Sampled attribute values with interpolated values

Attribute value
2

2.33333
2.66666

3
4
5
6

6.66666
7.33334

8
10
12
14
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that while sampling, the best split attribute-value could not have been sampled (and

hence used to decide the best split). Using the present algorithm can help reduce

the severity of this problem. As an example, in Figures 3-1 and 3-2, assuming that

the best split is obtained at attribute value 12.1, which was not sampled. Using

the technique of the thirds, a closer value, viz 12 was obtained, which could at

times prove to be better than 12.1, in itself, in that, the resultant tree could be

smaller.

• Using the method of the thirds, a closer sampling interval is obtained for a

better granularity. This can aid in zeroing on the best split point, or the near best

split point for algorithms like the ones descibed in [11] or a modification thereof,

as suggested in section 3.2.1.

In the present algorithm and other randomized algorithms described above,

the sampling technique reduces the number of gini calculations being performed,

hence reducing the time required at every stage in the algorithm. Yet, the major

bottle-neck, viz., collection of statistics of class distributions for gini calculations,

remains to be cost in-efficient. The following sections address the issue.

3.2.5 Accelerated Collection of Statistics

In most of the algorithms used for building decision trees, every record is

compared with every other record for collection of statistics used in gini calcula-

tions, with SPRINT as an exception. In the above randomized algorithms also,

every record s from the sample set S is compared with every record n from the

original data-set N . Since, the number of records in S is near constant, the com-

plexity of the overall comparsion is O(n), nearly linear. But, in scenarios, where

a higher sampling is required, the performance would deteriorate. The following

approach helps in reducing the number of comparisons.
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The collection of statistics in the randomized algorithms above is done

such that, the class dimension of every sampled record for each atrribute, gives the

count of number of records in the original data-set that are less than or equal to the

attribute-value, in question. Thus, for every attribute value j, for every record of

the data-set, time is spent to find all the sampled records that have their attribute

values greater than or equal to j. This could be avoided by using BinarySearch

and then PrefixComputation to obtain the statistics in a manner described below.

Before, the algorithm is stated, it is important to make the following observations:

• The attribute values when inserted in the 3-dimensional structure, men-

tioned above, are in sorted order. Hence, one can search for an attribute value in

O(log n) time.

• Consider two records, A and B, that are sampled and stored in the 3-

dimensional array, such that, for an attribute z, A.z < B.z and hence A preceeds

B in attribute list for z. If given that, for a record C belonging to the original

data-set, C.z < A.z, the k-th location of the class dimension has to be incremented

for both A.z and B.z, where, k is the classification of C.

Thus, the algorithm to collect the statistics is as shown in Figure 3-3.

The statistics obtained thus are useful in the following manner:

• The class dimension does not give a direct measure of the number of records

in N that are less than or equal to the current record, but a measure of number of

records with their attribute values lying in the interval demarked by the current

attribute value and the one prior to it in the 3-D array. This information could be

useful in a more detailed search to zero in on the best split if need be.

• Using this information, the statistics of the number of records with attribute

values less than or equal to the current record can be obtained using PrefixComputa-

tion. Calculation of prefixes being a purely mathematical operation, here addition,



¤ ¢

Ë)ÌlÍnÎpÏMÐsÑMÒ�ÓwÔnÕ�ÖO×�Ø©×�Õ�×�Ö
Ù�Ú Ñ�ÑMÒ Ú ÎpÏMÐlÍpÐFÛ�ÜpÌ�Ý�Ü#Ñ
Ü�Þhß Ú Ñ�à�á�à�â�ÎnÛVÑ
Ü#ÐFÛ�ãQÏ Ú â�ÎpÏ
Ýzß
ä Ü#Ó�å�Ì Ú�æ Ï Ú â�Î#Ï
Ý�ß�ç�ÏMÎpÓ áSÑMÎ¡çEÎpÏMÓ�ÑMÒ Ú ßMÜpÓ�å�Ì Ú Ý�ß Ú Ñ�àWè
éhê�ë Ú Ü#â,Ò�Ü#Ñ�Ñ�ÏMÐlì�ízÑ Ú�î�ï ê

ä ÎpÏ�Ñ�ÑMÒ Ú�æ Ï Ú â�ÎpÏ
ÝzßAÜ#â�â�ÎpÏ
ÝzÐlÛ�Í8ÑMÎ¡ÑMÒ Ú«î Þ�ÑMÒ¦Ü�Ñ�Ñ�ÏMÐlì�í�Ñ Ú
ð Û�ß Ú Ï�Ñ'ÑMÒ ÚJî Þ�ÑMÒcÜ#Ñ�Ï�ÏMÐlì�ízÑ Ú Þ¬ñnÜ#Ìlí Ú ßJòóÎnÛ�Ìsô�õ¼çEÎpÏÈÑMÒ Ú ß�ÎpÏ�Ñ Ú Ý8Ï Ú â�Î#Ï
Ý�ß	ÐlÛ
ÑMÒ Ú«ö ÞhÝ¦Ü�Ï�Ï
Ü�ô

éhê�ë Ú Ü#â,Ò¦ãQç�ÏMÎnÓHá�à�ì Ú ÌlÎnÛ�ÍpÐlÛ�Í6ÑMÎ8â!í�Ï�Ï Ú ÛVÑ�Û�Î©Ý Ú«ï ê
Ù¹Ú ÑJ÷�ì Ú ÑMÒ Ú â�ÌFÜpß�ß�Ðsø�â�Ü#ÑMÐlÎnÛùÎ#çÄã
é¬ê�ë Ú Üpâ
Ò�Ü�Ñ�Ñ�ÏMÐFì�í�Ñ Ú«î8ï ê

ú ß Ú6û·ülý Õnþlÿ#Ø��!Õnþ����©ò¬õÄÑMÎ«ø�Û�Ý8ÑMÒ Ú ø�ÏMß�Ñ'Ï Ú â�Î#Ï
Ý�ß�ÐlÛ�èÈà©ß�í�â,Ò
ÑMÒ�Ü#Ñ æ�� î	� ã � î�
'Ù�Ú ÑJÐsÑ)ì Ú
��

ð Û�â!Ï Ú Ó Ú ÛVÑ¹ÑMÒ Ú ÷©Þ�ÑMÒ%â Ú ÌFÌVâ!ÎnÛVÑ Ú ÛVÑMß�ÐlÛ%ÑMÒ Ú â!Ì�Ü#ß�ß¼ÝzÐFÓ Ú Û�ß�ÐlÎnÛ
ç�ÎpÏ ��


��UWgJQ5_tX�¤/l§¤/¿��-RTgJPJ_ZU}Yiq5b��>§�Ç:X ´ X�§=Xa¯�±

e�hjdC�?XNS5PId5X2o�hj`tYiXa_!YZqwhId�_ZXaefPJ_tS��:eaPJb[^5hI_ZUT`ZPJd5`as�PJdChjdr$�`
Y�hId5S5hI_ZS�bvhIe�q/UWd5Xjl��-RT`ZP5swS/Q5X
YiPcU}Yi`�UTd5q5Xa_ZXfd�Y�dwhyYiQ5_tXIs8¾3P�ªzÆÄÇ.¦�R�ZMN Æ X�§�X5Q RÈf�hjRWgJPJ_tUTYZq5bàUW`�^5hI_ihIRTRWXaRWUW�fhI�5RTXIl�,!PJ_ZP�O�U}Yi��X�Y
hIR°l�ã ¢�­jä efU}YiX�^whj_ihIRTRWXfR � hIRTgJPJ_tUTYiq/b[`=opPJ_AeaPJbk^5Q/Y�hyYiUWPIdcPIo@^/_ZXa��\/Xa`fl

)�Q�YZYiUTd5g�UTY�YiPIgJXaYZq5Xf_as�YZq5X|YiXfe�q/d5UW¡rQ5Xa`uPIo�`ihIbk^5RWUTd5gc^?PIYiXadrYZU�hIR@`Z^5RTUTY�SwhjYihy�:^?PJUTdrYZ`fs
Yiq/Xv¤y�9S5UWbkXfd/`ZUWPIdwhIR@`
YiPJ_ZhIgJX�`tYZ_ZQ5e�YiQ5_tX[opPJ_�YZq5X[`ZhIbk^5RWXaS�_tXfeaPJ_ZS5`uhId5S�Yiq5XkefRWhI`Z`2S5UT`tYi_tU}�
�5Q/YZUWPJd�hId5S�Yiq5XNhIeaefXfRTXf_ZhjYiXaS�efPJRTRWXaeaYiUTPJdcPIo�`
Y�hjYZUW`
YiUWea`AopPJ_�gJUWd5U�efhIRWeaQ5R�hyYiUWPId5`Ae�hId�q5XfRT^CUTd
hIe�q5UTXaz�UWd/g[h�zIXf_t$�q/UWgJq�`Z^?XfXaS��:Q/^�s?hjY�d5PkRWPJ`t`APIo=hjefefQ/_ihIe�$Jl

a�Ê«a æ Ð�ì Í Ñ 1 ìpÂ�&*Â�ì b�Ì � � ì�Ñ�Ò�Ó

3!d5RWUTVIX�Yi_ZhIS5UTYZUWPJd5hIR�SwhjYihI�whI`tXf`as?O�q5Xa_ZXaUWd�d5PkY:O�Pv_ZXfeaPJ_ZS/`�hI_tXNUTS5Xfd�YiUTe�hIR�¯pUWS5XfhIRWR}$/±�s
UWdcYZq5X�e�hI`tX2Pjo�O%Xf��SwhjY�h�s/Yiq5Xa_ZX2efPJQ/RWS��*X2h|RWPjYAPIo�S5Q5^5RTUWe�hyYiX�_ZXaefPJ_tS5`fl�
:d/o�hjeaY�swUTd�bvhId�$
e�hj`ZXf`as*YZq5XuSwhyY�h[eaPJQ5RTSCXazIXfd��?XNeaPJd�Yi_ZhIS5UWe�YiPJ_
$Jl!��XfefPI_ZS5`�efPJQ5RTSC�?XNeaPJd�Yi_ZhIS5UWe�YiPJ_
$Js?UWd�h
`ZeaXfdwhj_ZUWP/s�O�q/Xf_ZXa��$�gJU}zJXfdChkS5hjY�hk`ZXaY�O�UTYZq]�{hjYZYZ_ZUT�5Q/YiXa`fs@¯�� �1¢ ±(PIo=YZq5Xfbà�?XfUTd5gvUTd5S5X��
^?Xfd5S5Xad�Y�hjYZYZ_ZUT�5Q/YiXa`�hjd5SvPJd/X-S5Xa^*Xad5S5Xfd�Y�hyYZYi_tUW�5Q�YiX!PJ_�YZq5X G Ü}ðyò�ò�Õ I G ðWK�Õ�ÚyØcPIo�YZq5X!_ZXfeaPJ_ZS�s
UTo�Yiq5Xa_ZX�X]\/UT`tY(Y:O%P�_tXfefPI_ZS5`as)u.hId5S�óvs/UTd[Yiq/X�SwhjYihy�:`tXaY�s�`ZQ5e�q�YZqwhjY%opPJ_/uEhId5S�óvs�hIRWR�Yiq/X
� �F¢ UWd5S/Xf^?Xfd5S5Xad�Y!hjYZYZ_ZUW�/Q/YiXa`�zjhIRWQ5Xa`AbvhyYie�q�s��5Q/YAYiq/X�S5Xf^?Xfd5S/Xfd�Y�hjYZYZ_ZUW�/Q/YiX�S/P�Xa`Ad5PIY�l
�AqrQ5`fs?O�q5UWRTX�gJXfd5Xa_ihjYZUWd5gkYiq5X2S5XaefUW`tUWPJd�Yi_tXfXIs?XfU}Yiq5Xa_wu>PJ_�ó³PJ_!�?PIYiq�O�PJQ/RWSCq5h�zIXNYZPv�?X



32

eliminated. This fact could be made use of, while sampling the data-set, such that

a small number of records are used for classification.

The techniques used before ensure that the number of data-points, at which gini

values are calculated, are a good sample of the data-set, such that the gini values

are not calculated for duplicates. This improves the performance at the cost of

the size of the tree, but does not affect the accuracy. The following algorithm is

approximate in that outputted learned could produce inaccurate results for a few

cases.

The algorithm proceeds with drawing out a random sample from the data-

set. The percentage of sampling can vary according to the degree of inaccuracy

tolerated. Using these sampled records and data-points, one can build a learner

using any algorithm stated above. It can be argued that, due to the nature of the

web data, the classifier would be fairly accurate, for a good sample of the data.

The following chapter comments on the accuracy of the algorithm that uses

two levels of sampling, for building a classifier. The accuracy can be further im-

proved by iterating through the process a fixed number of times using an incre-

mental algorithm as described in the section 3.5.

3.4 “Say No to Randomization!”

Randomized algorithm for building decision diagrams can prove to be most

beneficial to applications that would only benefit from a classification tool. Also,

they can be very effective in applications where the tree needs to be re-constructed

over and over again, frequently, over a small interval of time. In applications, where

data generated due to web-clicks, could be misleading and inconsistent, to begin

with, the classifier would only be as good as the data in itself. Hence, in such cases,

using the two-level sampling technique to reduce the time required to build the

tree, and an incremental algorithm, discussed in 3.5, to better the classifier, would
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be the best solution. But, randomized algorithms do have a few disadvantages and

can be unacceptable in a few situations.

To list some of the disadvantages of the randomized algorithm for building

classifiers -

• The method of selectively calculating the gini indexes of a few sampled

data-points ensures that the the time complexity of the node split action is near

O(n log n). But, it does not ensure that at every stage the best split attribute

would be exploited. Resultingly, the trees could be much wider and longer than a

traditional top-down algorithm that selects the best gini value at every node split,

eg. SPRINT.

• In case of two-level sampling, the first level sampling, if not sufficient, could

lose out on some non-trivial data-points, leading to a larger inaccuracy rate for

the classifier at large. Thus, there is a trade-off between accuracy and time spent

to build the decision tree.

Applications that have a high risk factor and are life threatening, could ben-

efit little from such techniques, for the following reasons -

• The classifer for such applications would be expected up to have a very high

accuracy rate, in absense of which, the application would produce faulty results.

• It could also be require to have a compact tree for the purpose of classifi-

cation, so that the run-time to query on the tree is reduced. With longer trees the

application would not be as beneficial2.

Inspired by the techniques and data-structures used in the randomized al-

gorithms, the following algorithms, use the complete data-set for the purpose of

building decision diagrams, without randomization or sampling. The trees gen-

2This is theoretically true, although, as it can be observed in the chapter that follows, the
length of the trees formed using a randomized algorithm are comparable with the most compact
representation, and hence the run-times are also comparable
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erated using the following algorithms are the most compact possible, because at

every stage the best split value is selected.

3.4.1 Accelerated Collection of Statistics, the Reprise

This algorithm follows from the randomized version of FastStat algorithm. As

described before, here the 3-dimensional array (storage structure) is used to store

the class distributions prior to calculating the gini indexes. An algorithm similar

to the one described before is used for the purpose of collection of statistics. Here,

the records are not sampled. The entire data-set, in sorted order, is stored in the

3-dimesional structure. The complexity of the algorithm is hence, O(n log n), the

time required to sort the entire data-set. But, this needs to be done just once,

for the entire data-set. Unlike, the randomized methods, since all the records

have been sorted once, one does not require to sort them again, at every node.

An additional O(n log n) time is required at every node, for collection of statistics

and populating the class-dimension. This is done using BinarySearch, as before,

and then PrefixComputation is performed on them to obtain the class-distribution

statistics. Since, operations happening at every stage are mostly mathematical,

one can expect a speed-up over an algorithm that collects statistics by record

comparisons.

Yet, since the node can split at any attribute-value, the statistics cannot

be carried forward from a parent node to any of its children. The reason is that,

the statistics give the class-distribution of number of records, belonging to that

node, but less than or equal to the current record’s attribute-value. Since the node

can split at any attribute-value, the statistics, in their current format, cannot be

carried forward from a parent node to any of its children. The following algorithm,
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stores the statistics in such a format that they can be passed over to one of the

children nodes.

3.4.2 Statistics . . . To Go!

SPRINT can have a very high speed-up when parallelized. One interpreta-

tion of a parallelized version of SPRINT would be, assigning every attribute list

to a processor that calculates the statistics for that attribute list and does the

gini calculation. That is, the data-set is vertically fragmentable, to be processed

in parallel. But, for every attribute list, the statistics are linearly incremented

and hence it would be non-trivial to parallelize the data-set horizontally as well.

The present algorithm, stores the statistics in such a way that the storage can be

parallelized horizontally and vertically over the data-set. Also, they can be passed

over to the child node, without loss of content.

The algorithm, for the sake of simplicity, assumes that all the values in an

attribute list are unique. This assumption does not hurt the sequential version of

the algorithm, but for the parallel version of the algorithm an extra step (com-

pensating step) would need to be done to take care of duplicate elements. The

algorithm proceeds as -

Sort each attribute list individually, according to the attribute values. Scan-

ning the records sequentially, for every record j, the k-th location in the class-

dimension is initialized to one, where k is the classification for that record. These

are the preliminary statistics for the attribute list. Using these preliminary statis-

tics, a prefix computation is done on all the records to get the actual statistics or

class-distribution.

Since, the preliminary statistics are merely class-occurances of elements in

the attribute list, when a node is split, these could certainly be passed over to

one of the children nodes. At the child node, the algorithm can use the same pre-
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computation, the valid bits for only the last occurance of ever attribute-value x

are enabled, the other (prior) occurances are disabled. Only the enabled or valid

attribute values are considered for gini-calculation.

However, while splitting the nodes, since only the preliminary statistics are

passed over, the procedure remains unchanged.

The time complexity of the algorithm is necessarily O(n log n), but due to

mere mathematical computations, at each level in the tree, the algorithm can be

expected to have a better performance as compared to SPRINT. Also, the duplicate

elimination technique mentioned above reduces the number of gini-calculations

being performed, yet produces the most compact form of the tree.

3.5 Incremental Decision Trees

As discussed before, the need for an incremental algorithm is dire, in appli-

cations where new data is being generated at a high rate, and it is essential to use

it in the process of decision making. In such a scenario, re-building a tree, period-

ically could be a solution, but, it has the certain drawbacks. If the most compact

form of the tree is required, that is completely accurate (with respect to the train-

ing data-set), the tree building algorithm could be time consuming. In that case,

there would be intervals of time, wherein the tree either would have the old data

(uncommited to the decision-maker) or itself be unavailable for decision-making.

To cope with the pressures of dire requirement for an incremental, algorithm that

is continually available and is always accurate, the following algorithm could be

used.

Consider a decision tree, T , having m levels and representing n records. The

tree, T , is similar to the ones described before, barring that the leaf nodes hold

pointers to the records that they represent. Let A be a new record that has to be

inserted into the tree. The classification of A is c. To insert A into T , the tree is
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traversed starting at the root node, along the path depending upon the attribute

values of A. At every stage, there could be one of two cases:

• A lands at a non-leaf node, with the split condition, attribute j ≤ x. If

A.j ≤ x traverse left subtree, else right subtree, subject to the condition that the

left subtree satisfies the condition and right subtree falsifies it.

• A lands at the leaf node L, symbolizing class C. In this case, there could

be two possibilities:

◦ Class of A, i.e. c conforms with the class of the node, viz. C. In this

case, the record is dumped into pool of records embodied by L.

◦ Class of A, i.e. c does not conform with the class of the node, viz.

C. In this case, the entire pool of records represented by L and A need

to be put together in form of a tree. Any algorithm could be used at

this stage, to build a tree using the already-existing records of the node

and A. The root of this new tree, replaces L. In this case, the height

of the tree could possibly increase by one.

The resultant tree represents n+ 1 records, and has a height that satisfies,

m ≤ height ≤ m+ 1

The above approach will serve as an incremental algorithm, but, as the

number of records in the classifier increase, could prove to the highly inefficient.

This is because, the tree increases in height at the leaf level, only, maintaining the

same root node and other non-leaf nodes. Thus, once a node becomes a non-leaf

node, it would remain there permanently. Thus, as an alternative, the entire data-

set could be used to re-build a new tree T ′ when the number of records in the

data-set, represented by T reaches 150% of its original value, or the record count
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crosses 1.5n. One could also maintain the old tree T until T ′ has been created using

the records held in the leaf nodes of T . It can be argued that such an approach

could lead to the most compact tree structure frequently, while the tree predicts

accurate results all the time.

A few algorithms described in this chapter, have been implemented. The

implementation details and results are the subject of the next chapter.



CHAPTER 4
IMPLEMENTATION AND RESULTS

A few of the algorithms described in the previous chapter have been imple-

mented. This chapter provides with the implementation details and the perfor-

mance results. SPRINT is taken to be the benchmark for comparison.

4.1 Implementation

The present section describes the author’s experience at implementing the

algorithms. Java is selected as the language for implementation and the data

sources are simple flat-files. In the subsections that follow, methods have been

suggested for the use of alternative data sources. The datastructures, techniques

and tools used for faster execution of the algorithms are discussed below.

4.1.1 Datastructures

The datastructures used for implementation of the algorithms have been de-

fined in terms of generic re-useable java classes. A few of the native java classes

have been used in some cases, without significantly affecting performance. MyVec-

tor class, that has better performance than Java’s Vector class, has been defined

to replace arrays in the algorithms. The structure and implementation details of

MyVector class are a subject of section 4.1.6.

4.1.2 Implementing SPRINT

SPRINT is used as a benchmark of performance as well as accuracy – the

exact randomized algorithms have been compared with SPRINT to test for per-

formance and the approximate ones for accuracy. The comparison characteristics
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are given in section 4.2. For an accurate measure, SPRINT has been implemented

in Java using the same generic datastructures, if needed, as the ones used for the

randomized algorithms.

In incremental algorithms, for the case in which there is a disagreement be-

tween the new record and leaf-node class value, the data-points represented by the

leaf-node and the new record have to be re-classified. Randomized algorithms can-

not be used efficiently, because they tend have a reduced performance for a lower

order data-set. The number of records contained in a leaf-node is of the order of

a few hundreds, for a data-set with about 50000 tuples. Hence, the randomized

algorithms are a worse option. Thus, for re-classification of the leaf-records, a

SPRINT object is used.

Since, SPRINT is an exact classification algorithm, classification of test data

obtained using randomized algorithms is tested using SPRINT.

4.1.3 Implementing the Randomized Algorithms

Random samples can be generated using one of the following methods, each

has a complexity of O(n) and can be used in different scenarios.

• One of method traverses the data-set once, completely. At every record, a

coin is flipped – a random number between 0 and 100 is generated and is normal-

ized by the sampling percentage to decide whether the record is to be sampled or

not. This method proves to be useful, if one needs to scan through the data-set

to collect information. The method also guarantees unique records in the sampled

set. It can be used in cases like, determining the number of records in the entire

data-set belonging to each class, wherein a complete prior-scan of the entire data-

set is required.

• Another way to sample records is to generate a set, S, of the required

number of records. Then for every s ∈ S, select the s-th record from the data-set.
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This, method can be effective, where the data-set is memory resident, and there is

no need to scan through the entire data-set.

In the implementation of the randomized algorithms, the data-set is scanned

ones and stored in the form of arrays. At every stage in the algorithm, i.e. at every

node, a fresh sample is generated, for the purpose of generating an un-biased tree.

At deeper levels in the node, the number of records needed to be classified reduces,

and hence only a small number of records need to be sampled, and it would be

cost-ineffective, to scan though the data-set to select a very few records. Hence,

the latter method is used. To ascertain sampling of merely unique records, a bit

array is maintained, which is tested before selection of the set of random numbers

(samples).

To maintain pointers to the data-points at the leaf-node level, the Decision-

TreeNode class, extended class from the generic NodeBinary class has been defined,

to aid in defining generalized object, usable by incremental algorithms.

4.1.4 Iterative as Opposed to Recursive

Java copies the parameters and objects across functions and scopes. Nested

scopes produce duplicated data and the space occupied by it cannot be reclaimed

unless the scope is exitted. Due to the nature of the algorithms for building decision

diagrams, multiple nested scopes are generated for a recusive (easier) version of the

algorithm. The algorithm would necessarily have to traverse the left-most path,

before entering the right sub-tree. This, could cause memory to trash.

Both iterative and recusive algorithms have been implemented for SPRINT

as well as the random decision tree generators. Iterative implementations tend

to have lower execution speeds, but are optimized in memory usage, as the same

data-store can be iterated through for different nodes. The decision tree nodes

have to stored in an array format from iterative implementation while the recursive
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version inherently maps the recursive scope with the corresponding decision tree

node. Section 4.1.6 suggests alternative store structure for the nodes in iterative

code.

4.1.5 Alternative Data Sources

The current implementation of the decision tree making algorithms use flat-

files as the source of data. The data from the source is extracted into a DataObject

before the data is processed. This architecture enables the possibilty of raw data

being fed from a new data source, with minor modifications to the data retrival

module. The data is sorted (processed), re-organized in this data-object. Figure

4-1 details the architecture that makes plug-in for the new data source possible.

4.1.6 Embedded Server for Run-time Statistics

The time required to classify a data-set comprising tens of thousands of

records on a SUN Ultra 10 machine is of the order of tens of minutes. To regulate

the performance at every stage in the algorithm and generate run-time statistics,

an embedded server is used. The server lies close to core of the decision tree

builder and has access to statistics as the tree is built. The server can be queried

upon by an external client, at run-time, for latest statistics. Figure 4-2 detail the

architecture.

4.1.7 MyVector Class—for Better Array Management

Like the algorithms for building decision trees, arrays are a predominant

storage medium for most implementations. The usage of arrays makes data retrival

and storage faster and easier. But, arrays have the following disadvantages:

• The array bounds have to be fixed judiciously and then managed on a
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to the usages of techniques like Binary Search and Prefix Computation. Table 4-1

summarizes the results.

Table 4.1: Sample dataset compare performance of two randmized algorithms.
Data-set of 846 records, 70% first-level and 20% second-level sampling

Iteration Potential Split Points Algo. Accelerate Collection of
Algorithm Statistics Algorithm

1 54 20
2 56 17
3 54 11
4 53 15

avg. time in secs. 54.25 15.75

4.2.2 Accuracy

In case of the two-level sampling algorithm, since only a part of the data-

set is used for generating the tree, it is only approximate. The predictions done

using such a tree could be wrong, if the selected data is not well distributed. The

algorithm was tested using small and large data-sets, at various first-level sampling.

As can be seen in Figure 4-5, a 50% or higher of first-level sampling provide good

results, in a lower time frame, as seen in Figure 4-4.

As can be seen above, with a lower first-level sampling, the algorithm has

a high performance, i.e. takes lesser time to execute, but has a lower accuracy

rate. With a high first-level sampling, the accuracy improves, but the run-time

increases (though almost linearly). Thus, with respect to the application that uses

the decision tree, one can come up with a fair amount of first-level sampling, that

provides with acceptable accuracy and caters to the performances needs, as well.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

The current work discusses the need for a decision-makers, for web- and

other applications. In some cases, the need for the model to be an exact embodi-

ment of the input data-set or the training set, is dire. While, in the case of others,

like click-stream analysis, a fairly good prediction made, at run-time, using the

model, can help the application or boost up profits. The other requirement is that

of the time required to build the model and that required to run a query on it.

Depending on the application in use, one or both are needed to be optimized –a

decision made while choosing an algorithm used to build the tree.

Randomized algorithms for building decision diagrams have been discussed.

These have varying time-complexities, static build-time and dynamic query-time

and accuracy rates. For life critical applications, an exact classifier would be

required that has an optimized run-time, while for a business application an algo-

rithm that build trees in the smallest possible time frame at a slight expense of

accuracy could be desired/acceptable. In cases, where the data itself is inaccurate,

one could profit with an algorithm like the latter.

Incremental algorithms are required in scenarios where the data continuously

flows in and it is required to reflect the changes, if any, to the model at the earli-

est. The incremental algorithm, discussed here, optimizes on both the static and

dynamic time and yet incremental in nature –achieving the best of both worlds.

Thus, using the set of algorithms discussed, most of the applications can ben-

efit –achieving in much smaller time, almost the same result as an exact classifier

would produce.
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