
Analysis of Bug 689606
Dave Eberly
dave.eberly@artifex.com
February 4, 2010

The bug refers to the following code block in function pdf14 compose group in file gs/base/gxblend1.c.

for (y = y0; y < y1; ++y) {
for (x = 0; x < width; ++x) {

byte pix_alpha = alpha;
if (additive) {

for (i = 0; i < n_chan; ++i) {
tos_pixel[i] = tos_ptr[x + i * tos_planestride];
nos_pixel[i] = nos_ptr[x + i * nos_planestride];

}
}
<other code>

Comment 5 of the bug report provides profile information from Shark. Given that some time has passed
since the comment was added, the experiment was repeated and the first four entries of the time-profile
summary are listed next.

- 75.6%, pdf14_compose_group, gxps
- 14.4%, art_pdf_composite_group_8, gxps
- 4.4%, __bzero, libSystem.B.dylib
- 3.6%, Smask_Luminosity_Mapping, gxps

The profile source code views contain the percentage of time relative to total function time, listed at each
line of the code (see Figures 1 and 2). The amount of time spent copying inside the i-loop is quite large.
Switching to event sampling and trapping DTLB misses (data cache misses), it is observed that the copy
from nos ptr to nos pixel involves a large number of cache misses and is the cause of the poor performance.
nos planestride is 484704 and n chan is 4, so the i-loop makes four large jumps each iteration. If the
function were called infrequently, then the cache misses would not be noticeable. However, for the XPS file
at hand, there are nearly 2000 calls to pdf14 compose group, each involving a 2×2 block (width and y1-y0
are both 2).

The same experiment was performed on an Intel Core2 Quad Core running Microsoft Windows 7, using the
gxps program compiled with Microsoft Visual Studio 2005, and profiling with Intel’s VTune (same type of
profiler as Shark). The performance is also poor for the very same reason.

The Intel Macintosh version had an additional concern that Shark mentioned. The address calculation for
nos ptr involves a multiplication. Shark suggests optimization -O2 rather than -Os (the latter is what
Apple recommends for the PowerPC chip). On the Intel Windows version, the compiler does a good job
of optimizing the address calculation (no multiply). I modified the code to use as much incrementing of
pointers as possible, as shown in the next code.

for (y = y0; y < y1; ++y) {
byte* tosBase = tos_ptr;
byte* nosBase = nos_ptr;
for (x = 0; x < width; ++x) {

byte pix_alpha = alpha;
byte* tosSrc = tosBase;
byte* nosSrc = nosBase;
byte* tosTrg = tos_pixel;

1



byte* nosTrg = nos_pixel;
if (additive) {

for (i = 0; i < n_chan; ++i) {
*tosTrg = *tosSrc;
*nosTrg = *nosSrc;
++tosTrg;
++nosTrg;
tosSrc += tos_planestride;
nosSrc += nos_planestride;

}
}
<other code>

This helped improve performance regarding address calculations, but of course the cache-miss bottleneck
cannot be removed in this manner. The first four entries of the time-profile summary became

- 70.8%, pdf14_compose_group, gxps
- 18.2%, art_pdf_composite_group_8, gxps
- 5.0%, __bzero, libSystem.B.dylib
- 3.9%, Smask_Luminosity_Mapping, gxps

which shows a reduction in the percent of time spent in the function pdf14 compose group.

2



For comparison, Figure 1 shows a screen capture from the profiler with the current code enabled.

Figure 1

3



Figure 2 shows a screen capture with the modified pointer address calculations.

Figure 2

The reduction in time is apparent for the address calculations.

One possible solution to eliminate the bottleneck involves adding assembly code that sets cache hints for the
nos ptr data with the hope that the data is copied to cache in time for when the i-loop needs it. Naturally,
the assembly code is conditionally compiled for each platform.

The more deep-rooted problem, though, is the copy to/from chunks (tiled images) and planar images (row-
major order in linear memory). A solution that avoids conversions between the two storage types is preferable,
but will require more code changes than adding the cache hints. That said, the cache hints are not guaranteed
to work–it might not be possible to provide them soon enough, in which case the code will stall as it has
waiting for cache to be updated.

4


