
Supporting Robust and Secure Interactions in Open Domains through
Recovery of Trust Negotiations

Anna Cinzia Squicciarini
Computer Science Department

Purdue University

squiccia@cs.purdue.edu

Alberto Trombetta
Dipartimento di Informatica e Comunicazione

Universitá degli Studi dell’ Insubria

alberto.trombetta@uninsubria.it

Elisa Bertino
Computer Science Department

Purdue University

bertino@cs.purdue.edu

Abstract

Trust negotiation supports authentication and access
control across multiple security domains by allowing par-
ties to use non-forgeable digital credentials to establish
trust. By their nature trust negotiation systems are used
in environments that are not always reliable. In particu-
lar, it is important not only to protect negotiations against
malicious attacks, but also against failures and crashes
of the parties or of the communication means. To ad-
dress the problem of failures and crashes, we propose
an efficient and secure recovery mechanism. The mecha-
nism includes two recovery protocols, one for each of the
two main negotiation phases. In fact, because of the re-
quirements that both services and credentials have to be
protected on the basis of the associated disclosure poli-
cies, most approaches distinguish between a phase of dis-
closure policy evaluation from a phase devoted to actual
credentials exchange. We prove that the protocols, be-
sides being efficient, are secure with respect to integrity,
and confidentiality and are idempotent. To the best of our
knowledge, this is the first effort for achieving robustness
and fault tolerance of trust negotiation systems.

1 Introduction

Trust negotiation represents an effective approach to the
problem of authentication and access control among mul-
tiple security domains by allowing parties to use non-
forgeable digital credentials to establish trust [15, 2]. In
trust negotiation access to a service provided by a party,
referred to as service provider, is authorized based on
policies specifying properties, encoded through creden-
tials, that the requesting party should satisfy. Disclo-

sure of relevant credentials by the requesting party is in
turn governed by policies specifying which credentials
the service provider should submit before the requested
credentials can be disclosed by the requesting party. Trust
is therefore established through mutual exchange of cer-
tified digital credentials. A credential can be safely dis-
closed during a trust negotiation if the associated disclo-
sure policy is satisfied. Most approaches organize the
trust negotiation process according to two main sequen-
tial phases. The first phase, referred to as policy evalua-
tion phase, determines the disclosure policies associated
with the resources involved in the negotiation. The result
of this phase is a credential exchange sequence; such a se-
quence specifies which credential each party should sub-
mit to the other party and which credentials a party should
have received from the other party before releasing a
given credential. The second phase, referred to as cre-
dential exchange phase, performs the actual disclosure,
according to exchange sequence established by the first
phase, of the credentials required to successfully com-
plete the negotiation. In this work, we do not take into ac-
count approaches to trust management that are not based
on policy evaluation and credential exchange phases, like
Hidden Credentials [7], Secret Handshakes or Oblivious
signature-Based Envelopes [8]. Though trust negotiation
principles and systems have been quite investigated with
respect to issues such as privacy, safety and efficiency
[13, 15], an open issue is represented by the development
of suitable recovery strategies. By their nature trust nego-
tiation systems are used in open environments, often on
peer-to-peer infrastructures, that are not always reliable.
Because a trust negotiation process may require several
rounds to reach its final state, failure of the communi-
cation means of the parties implies repeating the same
rounds multiple times. Besides the computational issues,

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

this may jeopardize the security of the peers, as the same
sensitive information is to be sent multiple times over a
non-always secure network. Additionally, when a party
has to verify a credential with certification authorities,
failures may result in prohibitively long and costly ne-
gotiations. We thus believe that enhancing current trust
negotiation approaches with recovery protocols is an im-
portant requirement. The goal of the work reported in this
paper is to propose such a protocol. Our protocol is based
on the use of savepoint techniques [3] and message check-
point techniques [4] and it has some important features.
The first is that it provides strategies that are tailored for
each of the two main phases of the negotiation process
and are independent from each other. Therefore, in our
approach, it is possible to require recovery to be enabled
for both phases, or only for one of the two phases. The
second important feature is that our recovery protocol is
idempotent; therefore, failures occurring during recovery
do not affect the correctness of the recovery process. Fi-
nally, it is very efficient and thus can be enforced by peers
with limited resources, as shown by our implementation
results.
The protocols presented in the paper, although applica-
ble to any trust system, are built on top of a specific trust
negotiation system developed by us [2]. Trust-X [2] is a
system providing a comprehensive solution to trust nego-
tiation management. Aspects of Trust-X relevant to this
paper are presented in Section 2. We then present in
Section 3 the recovery protocol for the policy evaluation
phase. We present details of the adopted savepoint strat-
egy and the algorithms that are executed for recovering
after a crash. In Section 4 we prove several important
properties of this recovery protocol, that is, integrity, and
idempotency. We also prove complexity results; these re-
sults show that our approach is very efficient. In Section
5 we then present the details of the recovery protocol for
the credential exchange phase. In Section 6, we illustrate
details on the implementation of the protocols, and exper-
imental results. The results clearly show the advantage
of introducing recovery mechanisms in trust negotiations,
even for relatively short negotiations. We analyze related
work in Section 7 and conclude the paper in Section 8.

2 Trust-X : a framework for trust negotia-
tion

Trust-X is a comprehensive framework for trust negotia-
tion, providing both an XML-based language, referred to
as X -TNL, and a system architecture. X -TNL supports

the specification of digital credentials and disclosure poli-
cies, which is the key information exchanged during ne-
gotiations. Specifically, digital credentials are assertions
describing one or more properties of a given subject, cer-
tified by trusted third parties.
Protection needs for the release of a resource are ex-
pressed by disclosure policies. A resource can be either
a service, a credential, or any kind of data that needs to
be protected. Disclosure policies regulate the disclosure
of a resource by imposing conditions on the credentials
the requesting party should possess. We now provide a
simplified version of the notational language used in our
previous work [2]. We denote a credential as a structured
object composed of several items corresponding to its at-
tributes. A credential name and constraints on some of
its attribute values (if any), is referred to as term T (C).
Example of terms are IdCard(ZIPCode = 2342) or
Passport(). We express disclosure policies as finite set
of logic rules, each of the form: R ← T1(C), . . . , Tk(C).
Here, R is the target resource for which the policy is spec-
ified, and T1(C), . . . , Tk(C) are the terms corresponding
the credentials to be disclosed.
Trust-X also comprises an architecture for negotia-
tion management, which is symmetric and peer-to-peer.
Trust-X negotiation’s main goal is to carry out success-
ful negotiation while protecting as possible credential and
policy contents.To this extent, Trust-X negotiation is or-
ganized according to four different phases. Policies are
disclosed first during the policy evaluation phase, and
then only those credentials that are necessary for the ne-
gotiation success are disclosed during the credential ex-
change phase. Various strategies can be used for ap-
proaching trust negotiations, which may or may not in-
clude all the depicted phases. To maximize trust nego-
tiation effectiveness, it is crucial -regardless of the spe-
cific strategy adopted - to ensure robustness at least of the
policy evaluation and credential exchange phase. Both
are fundamental to any trust negotiation. Such approach
to negotiation has been widely adopted in several others
trust negotiation [11, 15] approaches. Thus, throughout
the paper, we focus on recovery protocols for those two
phases.
An important component of Trust-X is the Negotiation
Tree, a data structure keeping track of the negotiation pro-
cess. The tree is rooted at the requested resource and it
is initialized when the negotiation starts. Then, the tree
is dynamically built and is expanded as the phase pro-
ceeds. More precisely, a negotiation tree T is a tree in
which each node corresponds to a term, and edges cor-
respond to policy rules. Formally, a negotiation tree T

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

is a tuple T = 〈N ,R, E〉, where N denotes the set of
nodes, R denotes the root of the tree and E the set of
edges. The order of sibling edges is implied by the pol-
icy precondition set of each rule. Furthermore, set E con-
tains two different kinds of edges: simple edges and multi
edges. A simple edge is used to model policies having
only one term on the right side component of the associ-
ated rule. By contrast, a multi edge links several simple
edges in order to represent policy rules having more than
one term on their left side. Nodes belonging to a multi
edge are thus considered as a whole during the negotia-
tion. Each node of a negotiation tree can assume two dif-
ferent states: the deliv state denoting a delivery resource,
that is, a credential/resource ready to be disclosed with-
out further requirements, open state, meaning that the cre-
dential/resource denoted by the node is not yet ready to
be delivered. Nodes are appended to the tree according to
the policies exchanged and the dependencies among the
different terms. The successful completion of the pol-
icy evaluation phase is signaled by a portion of the tree
rooted at the requested resource consisting only of nodes
with a deliv state, that we refer to as valid view. When
the negotiation tree includes a valid view it is possible to
determine a trust sequence for the negotiation. The trust
sequence can be built by traversing the view according to
a specified order defined by the labelling function associ-
ated with the tree.

3 Recovery protocols for the policy evalua-
tion phase

As mentioned, the policy evaluation phase consists of
message exchanges between the peers involved in the ne-
gotiation, conveying disclosure policies. Each time re-
mote disclosure policies are obtained, the party updates
its local negotiation tree accordingly. No third party is
involved. Therefore if a peer crashes, it loses the nego-
tiation state. Restarting a negotiation may be costly and
not always possible. For instance, this is the case if the
involved credentials and/or policies are not locally stored
by the peers, and need to be retrieved elsewhere before
being exchanged. Or, it may be difficult if the peers are
moving objects, and have limited connectivity. The natu-
ral approach to avoid such loss is to save in stable storage,
either locally or remotely, the state of the process, and pe-
riodically update the saved state snapshot while the nego-
tiation progresses. Since the data structure keeping track
of the negotiation state is the negotiation tree, performing
savepoints in our context implies recording specific por-

tions of such negotiation tree. Other techniques may also
be adopted. For instance, the involved credentials may be
logged along with the exchanged policies. However, such
an approach will result in a number of additional infor-
mation to record. Further, once the negotiation is started
again the peers will have to perform additional operations
to rearrange such data in order to retrieve the negotiation
state from which restart.
The development of a savepoint technique requires that a
number of issues be addressed. A first issue is whether
the execution of the savepoints at the two peers should
be synchronous or asynchronous. On one hand, a syn-
chronous savepoint protocol makes the recovery simpler;
on the other hand, it requires that the peers agree on the
frequency of the savepoints, which may also not be easy
to reach. This is because the negotiating peers may differ
with respect to the network and storage resources they
have available. Peers may also have multiple or single
open negotiations and either run on desktop computers
or mobile devices. When such differences arise, it may
not be straightforward to reach an agreement on the save-
point frequency. A second issue is related to the storage
strategies for saving the negotiation state. In particular,
because the negotiation state is represented by the state
of the negotiation tree, one needs to determine storage
strategies for such a tree. A first possible approach is
to save only the tree’s paths that may potentially become
trust sequences, that is, valid solutions for the negotiation.
However, this solution requires the peers to execute al-
gorithms for composition/decomposition of the tree, thus
increasing the computational costs of the savepoints. The
second approach is to store the state of the entire nego-
tiation tree each time the savepoint is taken. Such an
approach has higher storage costs but it can be compu-
tationally very efficient if suitable tree linearization tech-
niques are adopted. Finally, a last crucial issue is related
to the security of the protocol executed when recover-
ing from a failure. During recovery from failures peers
can be exposed to various forms of attack, like identity
theft, phishing, denial of services, replays or man-in-the-
middle attacks. These attacks already afflict conventional
trust negotiation processes. However, when negotiations
are carried out in several sessions more attack points are
exposed, especially for attacks that aim at stealing peers’
identity and at tampering with negotiation data.
In the remainder of this section we present the technical
solutions we have devised to address the above issues.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

3.1 Trust negotiation savepoints

Whenever a peer temporarily fails, it loses all information
about the exchanged policies. The approach we adopt
to prevent such loss is based on savepoints. Generally
speaking, savepointing methods are based on periodically
saving a global state of the protocol to stable storage.
In case of a fault, the protocol is restarted from one of
these previously saved states. Savepointing-based meth-
ods differ in the way processes are coordinated and on
the interpretation of a consistent global state. In our con-
text, peers use stable storage devices to periodically save
a snapshot of the state of the process. For simplicity, we
assume these devices to be local at the system, or acces-
sible via remote connection. Two types of information
are collected. The first is the session key Ks used during
the negotiation for encrypting the exchanged messages.1

This information is saved the first time a savepoint is ex-
ecuted during the session. The second is the state of the
negotiation. The savepoint frequency for the tree may
vary according to different factors. Peers may set a time
window length or may execute the savepoint each time
a policy is received. Other approaches are also possible
which we discuss in more details in the concluding sec-
tion of the paper. Because of the large variety of choices
that can be made with respect to the savepoint frequency,
we have developed a protocol that does not make any spe-
cific assumption on such frequency. A key feature of our
approach is that it does not require that the two parties
adopt the same savepoint frequency: peers will take save-
points independently, regardless of the mutual dependen-
cies that are introduced because of message exchanges.
In addition to the savepoint frequency, the second impor-
tant issue is related to the strategies for storing the negoti-
ation state on stable storage. Several strategies can be de-
vised. As we have already mentioned, during the policy
evaluation phase, the data structure in charge of keeping
track of the negotiation state is the negotiation tree. In our
work, we have adopted the well-known object serializa-
tion strategies developed in the context of object-oriented
programming languages. In general, object serialization
is a strategy supporting the encoding of an object and all
the objects reachable from it into a stream of bytes. The
Java language that we have used for implementing the
protocol provides ad hoc classes for object serialization
and for the complementary reconstruction of the object
graph from the stream. Such a technique is particularly

1Session keys Ks are established using a standard authentication
session, as for example in SSL.

suited for savepointing the structure of the negotiation
tree, which is actually composed of nodes linked together
according to specific rules. Such a strategy makes it pos-
sible to recover the entire data structure, without any in-
formation loss. If a peer’s main resource limit is repre-
sented by the memory, the byte stream obtained by the
serialization might be sent to a remote repository. In such
a case, whenever a savepoint occurs, in addition to the
conventional messages exchanged with the counter peer,
messages will have to be sent toward the remote server
repository, under a secure connection. By contrast, if
resource limit is represented by the network connection,
data can be saved locally, and restored if required. In both
cases, the computational advantage of the recovery pro-
cess is significant for any negotiation longer than about
three rounds, as proven by our experimental results, dis-
cussed in Section 6.

3.2 The recovery protocol

The purpose of the protocol executed upon a failure is
twofold: the first is to authenticate peers and the second
is to determine the intermediate state of the negotiation
from which to restart. Peers authentication is required in
order to verify that the peers are those which claim to be,
that is, the peers which were negotiating before the fail-
ure. Authentication is assured by the use of the session
key Ks, saved at the beginning of the negotiation, for
encrypting messages conveying hash values exchanged
during the recovery protocol. Because such key is only
known to the parties which were negotiating before the
failure, only these parties can access the information ex-
changed during the execution of the recovery protocol.
Hash values are used for determining the negotiation tree
content to validate. Additionally, to further increase pro-
tocol security, a session key for the current recovery ses-
sion is generated and used to encrypt the messages ex-
changed as part of the recovery protocol.
The main activity that is executed by the recovery proto-
col, executed upon a failure, is thus to reconcile the nego-
tiation trees that parties have. The version of negotiation
tree that each peer retrieves from stable storage may be
different with respect to the version of the other peer be-
cause of different savepoint frequencies adopted by the
peers. Therefore we need to adopt a reconciliation strat-
egy to merge the two different trees.
The protocol starts by comparing the Merkle value [9]
computed on the tree content. If the Merkle values com-
puted by the peers are different, the peers proceed to ex-
ecute a tree comparison on a hashed version of the tree

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

nodes. The main advantage of using the Merkle tech-
nique is that, if the Merkle tree hash values coincide,
synchronization is reached by comparing a single hash
value and only one round of messages is required. Under
the assumption of peers properly taking savepoints dur-
ing failure free executions, this is not only the best case
scenario, but it is also the most probable one, also assum-
ing that policies do not include references to peers’ local
environment variables the values of which are not sent
to the other peer. The Merkle tree hash function is pre-
sented in the following definition. Given a tree node n we
use the notation n(T) to denote term nodes, while we use
n(party) to denote the party owning node n.

Definition 3.1 [Merkle tree hash function] Let T =
〈N , R, E〉 be a negotiation tree. The Merkle hash value
associated with T , denoted as MhNT (R), is defined as
follows:

MhNT (R) =

{
H(n(T)||n(party)) if n is a leaf node
H((n(T)||n(party)||MhN(child(1,n))||...||MhN(child(k,n)))

where ′||′ denotes the concatenation operator, child(i, n)
denotes the i-th child of node n and H(..) denotes a cryp-
tographic hash function, e.g. MD5.

By Definition 3.1, the Merkle tree hash value is computed
only on nodes content and not on the node state.2 The
reason is that the state of nodes might have been updated
during last part of the negotiation after the last savepoint.
The fact that node states are different does not necessarily
imply that recovery is not possible. Recovery can be exe-
cuted without considering the differences in state values,
as long as the tree content, or at least a view of it, has been
validated. The states of nodes will be reconciled once the
negotiation is recovered.
The recovery protocol is now discussed in more details.
We consider here the case of failures due to crash of one
of the peers. In case of both peers crash is analogous, and
the first peer reawakened can start the recovery. We call
such a peer the initiator, since it is the one in charge
of activating the recovery procedure. The counter peer
is called receiver or receiving peer. First, the initiator
peer sends a message to the receiver communicating the
height of the tree on which the Merkle tree hash value has
been computed. The height of the tree is to be revealed
to inform the receiver which tree portion has been consid-
ered. Then, a further comparison is executed, if the peers’
trees do not coincide. Protocol 1 reports the protocol for
Merkle hash values comparison. The case of a successful
Merkle value comparison is reported from step 1 to step
5.

2We recall that each node has a state field indicating whether the
corresponding credential can be disclosed.

Protocol 1 Protocol for Merkle hash values comparison.
Require: Init : is the peer initiating the protocol, while Rec is the

receiving peer. Ti and Tr are the tree version at the initiator and
receiver, respectively. Kr denotes the new session key while Ks

denotes the saved key.
Ensure: Hash values comparison.

1: Init : sends the request eKr(eKs (Request))
2: Rec : Decipher request dKr(dKs (Request)) and send

eKr(eKs (MhNTr (R)), T reeHeight)
3: Init: Check dKr(dKs (MhNTr (R))), compute MhNTi

(R)
on Ti of height TreeHeight.
{ Matching Hash values}

4: if MhNTr (R) = MhNTi
(R) then

5: Init: Send eKr(Ack)
6: else
7: Init: Compute hash(Ti) and send eKr(eKs (hash(Ti)))

{MhNTr (R) 6= MhNTi
(R)}

8: Rec: Compute hash(Tr) and compute V iew1 =
TreeMatch(dKr(dKs (hash(Ti))), hash(Tr))

9: Rec: Send eKr(eKs (hash(Tr), V iew1))
10: Init: V iew2 =

TreeMatch(dKr(dKs (hash(Tr))), hash(Ti))
{ Initiator checks for view compliance }

11: if V iew2 = V iew1 then
12: Init: Send eKr(Ack)
13: else
14: Init: Send eKr(Failure)
15: end if
16: end if

Example 1 Suppose a peer, called peer A, crashes. Sup-
pose that the crash occurs as soon as peer B has stored
tree T1 of Figure 1. At the beginning of the recovery
protocol, peer A matches the Merkle hash values corre-
sponding to trees T0 and T1. Such a matching fails, due to
peers’ different frequency in performing savepoints dur-
ing failure-free execution. Peers interaction is reported
in Figure 1.
If the values computed by the two peers are different, the
next phase of the protocol is executed. In such phase, the
initiator sends the negotiation tree with all the nodes en-
coded according to a hash function. The receiver then
compares the hash-encoded received tree with its own
tree in order to generate a consistent tree. At step 8 of
protocol 1, the tree comparison is also executed by Func-
tion TreeMatch(). Function TreeMatch() pseudo code
is not reported for lack of space. It consists of comparing
hash values of each node and pruning the node whenever
it does not coincide or it does not appear in the received
tree. The resulting tree, referred to as tree view of the
tree, is sent back to the initiator to notify it about the
result of the validation process. As reported in step 10,
the tree view is thus defined starting from the two ne-
gotiation trees, one from the initiator and the other one
from the receiver, and represents the reconciled version

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

IntiatorP Receiver

Reaweken

 Compare Hash(NT)
determine View(NT)

MERKLE
HASH

VALUES
MATCHINGCompare

Mh(T i) vs Mh(NT')

Compare
View(NT) vs

View(NT')

(1)Compute
Local Merkle Hash

Value

Compute
 Hash(NT)

 View(NT), Hash(NT)

Ack

Policy messages

 Policy messages

Request

Mh (NT)

Match fail, Hash(NT')

HASHED
TREE

 MATCHING
(2)

(3)

Trust
Negotiation
recovered:
POLICY

EVALUATION
PHASE

 Compare Hash(NT')
determine View(NT')

Figure 1. Peers interactions in the negotiation protocol

of these trees. Let T=〈N , R, E〉 and T’=〈N ′, R′, E ′〉 be
negotiation trees. The tree view generated from T and T’
is defined as VT = 〈N ′′, R′′, E ′′〉 where R = R′ = R′′,
N ′′ = N ′ ∩N , and E ′′ = E ′ ∩ E .
Having presented the protocols, we are now ready to in-
troduce the notion of integrity, that is specific to our re-
covery protocol. We say that the recovery protocol ver-
ifies integrity if the resumed peers can proceed with the
interrupted negotiation using a version of the negotiation
tree that does not carry any additional data with respect
to that exchanged before the crash. That is, a subtree
of the saved negotiation tree of both peers is admitted
as reconciled negotiation tree, but no terms and/or poli-
cies can be represented in this tree other than those al-
ready represented in the trees before the crash. This no-
tion of integrity is formalized through the notion of T -
compatibility introduced by the following definition.

Definition 3.2 [T-compatibility] Let initiator and re-
ceiving be two negotiating peers and R be a resource. Let
Ti = 〈Ni, R, Ei〉 and Tr = 〈Nr, R, Er〉 be two negotia-
tion trees for R. We say that Tr and Ti are T-compatible
with respect to a tree T , written Ti ≈T Tr, if one of the
following conditions holds:
1. T = Ti = Tr;
2. T = 〈N ′, R, E ′〉 is the result of Algorithm TreeMatch
on input Ti, Tr and E ′ = Er ∩ Ei and N ′ 6= ∅.

Therefore, whenever Ti and Tr verify the T -compatibility
condition with respect to a certain tree T , our integrity
notion is verified.

If the protocol succeeds, the subsequent step is to restart
the negotiation from the last disclosure policies ex-
changed. This information is given by the last nodes ap-
pended in the tree the peers have agreed on. The nego-
tiation protocol itself suggests which of the peers has to
send the next policies in order to proceed.3

The case when both peers crash is similar to the case
when only one peer crashes. The main difference is that
the initiator role can be indifferently played by each peer.
The role is actually assigned to the first peer asking to
resume the negotiation. In case the peers simultaneously
send the request for a recovery, the one which originally
triggered the negotiation process is in charge of acting as
the initiator.

4 Analysis of the protocols

In this section we analyze the security of Protocol 1
and evaluate its computational complexity. A thorough
analysis of such protocol is crucial since it provides the
means by which we guarantee that the recovery of the
negotiation does not introduce security breaches nor it
adds complexity to the system.

4.1 Correctness analysis

We discuss relevant properties of the proposed algo-
rithms, related to integrity and confidentiality. In our con-
text, integrity means that the result of the recovery pro-
cess does not introduce any data in the negotiation trees
that were not already present in the trees before the crash.
Confidentiality means – as usual – that no unauthorized
third party can gain access to the data exchanged during
the recovery protocol. We assume that peers are honest-
but-curious, that is, they faithfully follow the protocols
and the TreeMatch algorithm steps.

Theorem 4.1 The recovery protocol satisfies integrity.
Notice that our protocol does not explicitly deal with pro-
tection of data against hacking and tampering. For pre-
venting such threats, we rely on standard encryption tech-
niques.
Confidentiality is guaranteed by the use of encryption.
Before starting the recovery protocol, peers agree on a
new session key Kr. All the subsequent messages be-
tween the negotiating peers during the recovery process

3Recall that each level of a negotiation tree always refers to one of
the peers, alternatively.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

are encrypted with such key and with the old session key
Ks. The old session key Ks, besides for confidentiality,
is used for authenticating peers, as illustrated in the pre-
vious section. Thus, confidentiality relies on the secrecy
of the session keys Kr and Ks. In case confidentiality is
violated a third party is unable to access to the message
content, since most of the recovery messages will con-
vey hash values, which cannot be deciphered. The worst
case scenario happens when the message conveying the
view is intercepted by a third party. No actual credentials
are anyhow disclosed at this step. As such, the damage
is limited to disclosure of non-certified information (i.e.,
disclosure policies).
A further desirable property for a trust negotiation recov-
ery protocol is to be idempotent. Such property is im-
portant when dealing with the case of a crash occurring
while the peers are executing the recovery protocol. It
assures that the recovery protocol can be executed many
times and have the same effects as if it were executed only
once. Idempotency thus ensures that integrity is achieved
despite multiple failures that might occur during the exe-
cution of the recovery protocols. We refer to [12] for the
proof.

Theorem 4.2 The recovery protocol verifies the idempo-
tency property.

4.2 Complexity analysis

We estimate the storage overhead in terms of the number
of the nodes of the tree to be saved, whereas we measure
the communication complexity in terms of the number of
exchanged messages. We also make a comparison be-
tween the costs of recovery mechanism and that of reset-
ting the negotiation from the beginning.

Theorem 4.3 Let T be a negotiation tree containing n
nodes. The space complexity required for the recovery
procedure is O(n).

The communication complexity is given in terms of the
number of messages and the total size of messages ex-
changed.

Theorem 4.4 The worst case communication complexity
for the recovery protocol is O(1) in the number of rounds
to be performed, and O(n) in the size of the messages,
where n is the number of credentials involved in the re-
covered trust negotiation.
As such, time complexity of recovery protocol is linear
with respect to the number of nodes in the negotiation

tree. The complexity of a conventional trust negotiation
is usually polynomial in time [14].

5 Recovery protocol for the credential ex-
change phase

A trivial solution to revcovery from a crash occurred dur-
ing credentials exchange is to restart the credentials’ ex-
change from the beginning, assuming that the creden-
tials are still valid at the time the exchange is up again.
Clearly, this is not a reasonable solution, even more in
the resource-bounded setting of mobile environments, in
which negotiations may take place. We thus adopt a more
effective solution, based on a message-based checkpoint-
ing technique [3], according to which the peers’ states are
piggybacked on the messages the peers exchange. In or-
der to minimize the backup on stable storage of the state
of the exchange of credentials, each peer maintains in its
volatile memory a list recording every event occurred to
the credentials. Whenever a new event occurs (e.g., a cre-
dential’s request has been received or sent), the peer up-
dates the state and sends it to the other peer, along with
the actual message. Whenever a peer temporarily fails, it
loses all the information about the exchanged credentials.
If the peer reawakens within a fixed time bound, then the
other peer sends it its state, along with all its credentials
marked as sent and the credential exchange can proceed
from the point it was interrupted by the peer’s failure.
More precisely, consider two peers P1 and P2 that
have agreed to exchange credentials C1, . . . , Cn, as
a result of the policy exchange phase. Each peer, for
every credential involved in the trust negotiation, keeps
track of which events are related with such credential.
Possible events are the following: i) a peer can request
the credential to the other peer and thus mark such
credential as requested, ii) whenever a peer receives
the credential’s request, the corresponding credential
is marked as requested, iii) whenever the requested
credential has been sent, such credential is marked as
sent, iv) whenever the requested credential is received
by the peer, such credential is marked as received.
Finally, v) if none of the above events applies, then the
credential is marked as not requested. Such information
is represented as follows. The state of peer Pi is a
sequence Si = 〈s1, . . . , sn〉, where si belongs to the
set {not requested, sent, received, requested} and
denotes what is the last event occurred to credential
ci. At the beginning, every item in the state is set to
not requested. A peer can send or receive requests

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

for credentials, as well as send or receive credentials
themselves. According to the event occurred, peer Pi

updates accordingly its state Si:

• If Pi receives a request for credential Ck, then Pi

updates sk to requested.
• If Pi sends requested credential Ck, then Pi updates

sk to sent.
• If Pi requests credential Cj , then Pi updates sj to

requested.
• If Pi receives requested credential Cj , then Pi up-

dates sj to received.

When a peer Pi sends a credential’s request or a creden-
tial, it sends its current state Si as well. Then, in the
following we assume that peers communicate by mes-
sages M composed of requests/credentials and their cur-
rent states. We now introduce the SafeSend and SafeRe-
ceive Algorithms for sending credentials (and/or their re-
quests, as well) and receiving them, along with the prop-
erly updated state. The SafeReceive Algorithm executes
as follows: once peer Pi receives a message, it updates
its state Si by replacing it with the state state contained
in the message. Such state is the current state of the peer
that has sent the message. Then, if the content of the rest
of the message is a credential, the corresponding entry
Si.k in Si is updated to received. If this is not the case,
then the message contains a request for a credential, and
the corresponding entry in Si is updated to requested.
The SafeSend Algorithm does a similar work in updating
the current state of a peer, according to whether the peer
has to send a credential or a credential request.
In order to resume the credentials’ exchange after a peer’s
crash, the SafeSend algorithm is however not sufficient
yet. The FaultTolerantSend algorithm checks, before ex-
ecuting SafeSend algorithm (i.e. updating the state and
then sending it along with the negotiation’s content), that
the other peer is active. If this is not the case, the Safe-
Send algorithm periodically checks – within the time
limit specified by timeout – whether the other peer has
reawakened and in the affirmative case it sends the mes-
sage M , along with the sent credential lost by the failed
peer.
The overhead incurred for sending the peer’s state along
with ordinary messages (credentials’ requests or the cre-
dentials themselves) is linear in the number of credential
to be exchanged. Furthermore, the execution of FaultTol-
erantSend Algorithm involves sending to the reawakened
peer the credentials sent to it, before its crash.

Protocol 2 FaultTolerantSend Algorithm
Require: A message M , from peer P1−i

Ensure: Message M to peer Pi, within time bound equal to timeout
1: if Pi is down then
2: while timeout do
3: wait(t);
4: if (Pi is up) then
5: SafeSend(M);
6: Send P1−i’s credential marked as sent in S1−i;
7: break
8: end if
9: end while

10: end if

6 Implementation and experimental results

We have developed the proposed recovery protocols in
the context of the Trust-X system, which wass developed
in Java on top of the Oracle database version 10g. Oracle
is used to implement a repository storing disclosure
policies and the credentials necessary to carry on a trust
negotiation. In order to support recovery, the system
has been extended with new components supporting the
savepoint and recovery of the state of the parties involved
in the negotiation process.
We have carried out several tests to evaluate the per-
formance of the extended prototype. Our goal was to
identify the threshold, in terms of number of rounds, after
which recovery is more efficient than restarting the nego-
tiation from the beginning. The results clearly show the
advantage of introducing recovery mechanisms in trust
negotiation systems even for relatively short negotiations.

We have performed our experiments on an Intel 1.73GHz
processor, with 512MB of RAM using Microsoft Win-
dows XP. The performance of the prototype has been
measured in terms of CPU time (in milliseconds). We
analyzed the performance of the protocols using two dif-
ferent policy schemas. In the first schema, each peer
holds 15 credentials protected by corresponding single
term disclosure policies. Based on the experimental re-
sults, we determined the threshold, after which recover-
ing is more profitable than restarting the negotiation from
the beginning. In the second schema, we used this in-
formation to create a tree with the same height as in the
previous schema but with an increasing number of nodes
after the number of negotiation rounds becomes higher
than the threshold.
We carried out two different sets of tests for both phases
of our recovery protocols. We present the results of the
tests, in which we forced the interruption of the negotia-

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

5000

6500

8000

9500

11000

1 2 3 4 5 6 7 8

round

m
s

Without With

Figure 2. Recovery of the policy evaluation phase

tion at different moments during the tested phase, in order
to simulate crashes. We compare the results of the recov-
ered negotiation with the ordinary execution of the same
negotiation without the use of recovery protocol, that is,
the re-execution to complete the negotiation. The results
on the tests for recovery of the policy evaluation phase
are reported in Figure 2. In the first set of experiments
we observed that negotiations that require at least three
rounds register a significant advantage in using recovery
with respect to the case in which no recovery protocol
is used and thus the negotiation has to start again. As
mentioned before, in order to fully assess the behavior of
the recovery algorithm, we tested our protocols on a ne-
gotiation tree with a more articulated structure, and thus
introduced some multi-edges in the portion of the tree to
be recovered. We thus updated the policies of the two
peers so that the saved levels have several sibling nodes.
The results of these experiments confirm that the advan-
tage of recovery increases with the number of nodes for
each recovered level of the tree, even for shorter nego-
tiations. We do not report such results here for lack of
space. Thus, we conclude that recovery is advantageous
if the negotiation has at least two rounds; the advantage
is directly proportional to the tree complexity.
The results of the tests on the credential exchange phase
are very similar for both set of experiments, because the
different organizations of the nodes in the tree do not
modify the overall length of the credential path. Figure
3 reports the results of the first set of experiments. Also
in these experiments we compared the times for negoti-
ations using the recovery with the times of the same ne-
gotiations when no recovery is used. For the case of ne-
gotiations without recovery, we report the times required
to complete the entire negotiation. For the case of ne-
gotiations with recovery, the reported times are obtained
by adding: the execution times until the crash; the time
for recovery from the last saved checkpoint; the synchro-
nization time (to determine two common checklists); and
the time for credential exchange in order to complete the

60000

65000

70000

75000

80000

85000

credentials

ti
m

e
in

 m
s

Series1 Series2

Figure 3. Experiment results for recovery of the cre-
dential exchange phase for the first set of experiments

negotiation. As we can see from the graphs, the use of
the recovery protocols reduces the execution times, also
in the case of short credential sequences.

7 Related work

Trust negotiation for web-based applications has been
recognized as an interesting and challenging research
area to explore, and it has been the subject of intensive
work in the recent years. As a result, a variety of systems
and prototypes have been recently developed [11, 13, 15].
In particular, work on trust negotiation has focused on the
issue of policy sensitivity. Winslett et al. [15] have de-
signed Unipro, a unified scheme to model resource pro-
tection, including policies. Seamons et. al [11] intro-
duced policy graphs to safeguard sensitive policies from
unauthorized access. A formal framework for trust nego-
tiations has been proposed by Winsborough and Li [13].
They provide an approach for safe enforcement of poli-
cies that focuses on a privacy preserving credential ex-
change.
Concerning system architectures for trust negotiation,
Hess et. al. proposed a trust negotiation in TLS (TNT)
handshake protocol by adding trust negotiation features
[6]. Winslett et al. [15] proposed the TrustBuilder archi-
tecture for trust negotiation systems. The TrustBuilder
architecture includes a credential verification module, a
policy compliance checker, and a negotiation strategy
module, which is the core of the system. During a ne-
gotiation each agent adopts a local strategy to determine
which local resources to disclose and whether to termi-
nate the negotiation. As it is well-known, crash recov-
ery plays a central role both in centralized and distributed
database systems and it has been widely investigated
[1, 5]. Recently, a lot of work has been done to equip
mobile applications with transactional behavior, includ-

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

ing crash recovery (see [10] for a recent survey on this
topic). The recovery algorithms proposed in this work
are simplified versions of communication-induced check-
pointing protocols, as found for example, in the survey
[3]. In particular, we let the peers take independent save-
points without avoiding possibly useless savepoints, as it
is usual in more advanced techniques.

8 Concluding remarks

In this paper, we have proposed an efficient and secure
approach for recovering from crashes that may occur dur-
ing trust negotiations. To the best of our knowledge, this
is the first time that recovery has been introduced in trust
negotiation systems. The implementation and simulation
have shown that the communication overheads are low,
and definitely motivate the need of such type of proto-
col in a negotiation system. It is straightforward to adapt
the proposed techniques to any trust negotiation system
based on tree structure [14]. We will further investigate
the applicability of our approach to negotiation systems
which do not rely on a negotiation tree structure. Our ul-
timate goal is to provide a formal foundation for the de-
ployment of reliable trust negotiation systems resilient to
unexpected events, like system crash and/or attacks from
third parties.
The recovery techniques illustrated in the paper are also
a starting point to support a new type of negotiation, re-
ferred to as long lasting negotiation. Such a negotiation
is a trust negotiation carried on in several sessions. Un-
like conventional negotiations, in a long lasting negotia-
tion interruptions are intentional and requested by one of
the interacting peers. Peers may be willing to temporarily
suspend a negotiation if some external or internal events
occur.
We will further explore such aspect as part of our future
work. Additionally, we will explore how to mitigate
certain dangers from a security perspective. The first
question we plan to address is how to keep track of each
session, and for how long to maintain intermediate states
of a negotiation until the session expires. This is crucial
to avoid DoS attacks where a peer keeps starting a trust
negotiation and does not complete it. The optimal time
to track each session in the case many open sessions exist
will also be estimated.

Acknowledgments. The work reported in this paper has
been partially supported by the National Science Founda-
tion under the ITR Grant No. 0428554 The Design and

Use of Digital Identities and by the sponsors of CERIAS.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[2] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-χ: A
Peer-to-Peer Framework for Trust Establishment. IEEE
Trans. Knowl. Data Eng., 16(7):827–842, 2004.

[3] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34(3):375–408,
2002.

[4] E. N. Elnozahy and J. S. Plank. Checkpointing for
peta-scale systems: A look into the future of practical
rollback-recovery. IEEE Trans. Dependable Sec. Com-
put., 1(2):97–108, 2004.

[5] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[6] A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. E. Sea-
mons, and B. Smith. Advanced client/server authentica-
tion in tls. In NDSS, 2002.

[7] J. E. Holt, R. W. Bradshaw, K. E. Seamons, and H. Or-
man. Hidden Credentials. In WPES ’03: Proceedings of
the 2003 ACM workshop on Privacy in the electronic so-
ciety, pages 1–8, New York, NY, USA, 2003. ACM Press.

[8] J. Li and N. Li. Oacerts: Oblivious attribute certificates.
IEEE Transactions on Dependable and Secure Comput-
ing, 3(4):340–352, 2006.

[9] R. C. Merkle. A certified digital signature. In CRYPTO
’89: Proceedings on Advances in cryptology, pages 218–
238, New York, NY, USA, 1989. Springer-Verlag New
York, Inc.

[10] S. Pleisch and A. Schiper. Approaches to fault-tolerant
and transactional mobile agent execution—an algorithmic
view. ACM Comput. Surv., 36(3):219–262, 2004.

[11] K. E. Seamons, M. Winslett, and T. Yu. Limiting the dis-
closure of access control policies during automated trust
negotiation. In NDSS, 2001.

[12] A. C. Squicciarini, A. Trombetta, and E. Bertino. Sup-
porting robust and secure interactions in open domains
through recovery of trust negotiations. CERIAS Technical
Report.

[13] W. H. Winsborough and N. Li. Safety in automated trust
negotiation. In IEEE Symposium on Security and Privacy,
pages 147–160, 2004.

[14] T. Yu, X. Ma, and M. Winslett. Prunes: an efficient and
complete strategy for automated trust negotiation over the
internet. In ACM Conference on Computer and Commu-
nications Security, pages 210–219, 2000.

[15] T. Yu and M. Winslett. A unified scheme for resource
protection in automated trust negotiation. In IEEE Sym-
posium on Security and Privacy, pages 110–122, 2003.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

