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Abstract
We present a new methodology for computational analysis of gene and protein
networks. The aim is to generate new educated hypotheses on gene functions
and on the logic of the biological network circuitry, based on gene expression
profiles. The framework supports the incorporation of biologically motivated
network constraints and rules to improve specificity. Since current data is
insufficient for de-novo reconstruction, the method receives as input a known
pathway core and suggests likelyexpansionsto it. Network modeling is
combinatorial, yet data can be probabilistic. At the heart of the approach are a
fitness function which estimates the quality of suggested network expansions
given the core and the data, and a specificity measure of the expansions.
The approach has been implemented in an interactive software tool called
GENESYS. We report encouraging results in preliminary analysis of yeast
ergosterol pathway based on transcription profiles. In particular, the analysis
suggests a novel ergosterol transcription factor.

Contact: rshamir@tau.ac.il
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Introduction
Recent years witnessed an information revolution in biological research,
following the advent of novel high throughput experimentation methods which
encompass biological systems on a new scale. Most notable and mature of
these methods is transcription profiling using oligonucleotide chips and cDNA
micro-arrays, but other methods, like high throughput protein interactions,
protein localizations and DNA binding assays, are developing rapidly. These
methods create an urgent need for sophisticated computational tools that
facilitate rapid and comprehensive analysis of large amounts of biological data.

Most of the computational analysis of micro-arrays experiments today is
based on clustering of transcription profiles (Spellmanet al., 1998; Eisenet al.,
1998; Sharan and Shamir, 2000). Clustering is a useful way to identify common
data patterns and its utility has been demonstrated in many studies. Still, it is a
rather crude method, as it is based on pairwise comparisons, so clustering is
only a first step of the data analysis. Deeper inference of relations at a higher
level of complexity is called for, and is done mainly manually nowadays. The
research on genetic networks is trying to shape a new methodology that will
enable inference of more complex relations from the data.

Based on understanding of the biological regulatory mechanisms and
on theoretical examination of the evolutionary implications of the system
as a whole (Kauffman, 1993; Somogyi and Sniegoski, 1996), researchers
have constructed different mathematical models to describe the behavior of
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biological systems (Arkin et al., 1998; Chenet al., 1999b; Dhaseleeret al.,
1999; Chenet al., 1999a) (for a review seeDhaseleeret al.(2000)). Algorithms
and complexity analysis of inferring a genetic network from experimental data
were developed for some of these modeling approaches (Akutsu et al., 1998,
2000; Lianget al., 1998).

The discipline of genetic network analysis has not become yet a practical
aid to the biologist. The major reason to this can be called “experimental
complexity”: Theoretical studies show that, without additional assumptions,
the mathematical problem of inferring all but tiny genetic networks from
experiments is impractical, since the number of experiments that would have
to be performed in the worst case is out of reach (Akutsu et al., 1998). This
is true even when the models assumed are simple Boolean networks. Although
strong assumptions on the data reduce experimental complexity (e.g., random
distribution in the attractor space, cf.Akutsu et al. (1999); Dhaseleeret al.
(2000)), these assumptions do not hold for data gathered today. One still
cannot expect enough data to support current reconstruction approaches in the
foreseeable future.

The inherent (experimental) complexity of genetic network inference led
researchers to create statistical tools that would reveal relevant biological
features from available data (Friedmanet al., 2000), and construct tools for
an efficient design of an experiment plan to extract maximum information
from a fixed laboratory “budget” (Karp et al., 1999; Idekeret al., 2000). From
a different direction,Zien et al. (2000) suggested a method for comparative
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analysis in which a set of transcription profiles is analyzed against a set of
known metabolic pathways, in order to identify which of them is manifest in the
data. The last work was important in its utilization of known relations among
genes, although the notion of metabolic pathway is not directly connected to
regulatory function.

We present in this paper a novel framework for analysis of genetic networks
and hypothesis generation. The starting point of the process is a pathway core,
which represents prior knowledge on a particular biological sub-system. A
combinatorial search algorithm suggests the most promising core expansions,
in light of their level of fitness to a given, heterogeneous experimental dataset.
The use of a known core, together with the integration of data and additional
biological constraints, reduce experimental complexity. They enable for the first
time the computational generation of reasonable biological hypotheses, using
datasets of realistic size that are already available today.

To support these ideas, we have formalized the notion of biological network
models (generalizingLianget al.(1998)) and adapted them to the representation
of biological constraints and modern data sets. We have developed methods and
algorithms to evaluate the fitness of a model vis-a-vis a set of given experiments,
and studied the computational problem of finding an expansion of the core that
would improve this fitness.

A new software platform, named GENESYS (GEnetic Network Expansion
SYStem) was developed and used to test the framework with real biological
information. We have focused on budding yeast and used publicly available
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transcription profile data to generate likely expansions of ergosterol related
pathways. The results suggest a novel transcription factor and identify
interesting regulation patterns, proving that computational analysis can reveal
complex relations in genetic networks, even with today’s data sets.

The paper is organized as follows. We first provide some definitions
and notation to set up our modeling approach. Next we discuss algorithms
for modeling fitness calculations and explore the computational problem of
expanding a pathway core. Finally we present the results on real transcription
profiles and pathways.
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Modeling: Definitions and Assumptions
In this section we describe the formal framework for our analysis and tools. We
also explain the reasoning behind our modeling choices.

A biological network (or model) is defined by a setU of variables (genes,
proteins, mRNAs etc.), a setC of valuesor statesthat the variables may attain,
and functions f v : C‖U‖

→ C for eachv ∈ U . The interpretation is that
the value of variablev at timet depends on the values of its input variables at
time t − 1, and the functional dependence is described byf v. We use the term
arguments of f v for the non trivial arguments of the function. (u is a trivial
argument of fv if changing the value ofu alone never alters the value of the
function.) We denote byarg( f v) the set of arguments off v.

A useful partial description of the network is given via its dependencies. The
dependency graphof N is a directed graphG(N) = (U, A) where(u, v) ∈

A iff u is an argument off v. The set of arguments ofv in G is argG(v) =

{u|(u, v) ∈ A}.
Since we will be searching for a “best” network, we need to describe

the search space next: Amodel space is defined by the four-tuple
(U,C, Fbio,Gbio) whereU andC are as above,Fbio ⊆ F := { f : C‖U‖

→ C}

is the class of candidate functions, andGbio is a class of dependency graphs on
U . The space consists of all networks with functions fromFbio and dependency
graphs fromGbio.

Fbio andGbio are used to limit the model space, by incorporating biological
knowledge and realistic constraints.Fbio constrains the properties of each
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particular function. For example,M O N Od is the set of monotone functions
with at most d arguments.Gbio constrains the overall architecture of the
network. For example,I N DEGr is the set of graphs with indegrees at most
r , andM AX REGr is the set of digraphs having at mostr nodes with outgoing
edges (those nodes would be interpreted as theregulatorsof the network).

In our study of transcription regulation in yeast using gene expression data,
the following model space was used:U was the set of all mRNAs of yeast
genes (ORFs). The values inC corresponded to transcription changes:−1:
down regulation; 0: normal; 1: up regulation.Gbio was set toI N DEGr . There
were no constraints on the candidate functions, i.e.Fbio = F . SeeFig. 1 for a
concrete biological example of a network.

A key reason for distinguishingGbio and dependency graphs is that often we
may have insufficient information to infer precise functional relations. Inferring
dependencies only is less prone to over-fitting, yet it provides key information
on the network.

In our definitions of a model space, values and time scale are discrete,
and the functional relations are deterministic. This simplifying choice was
made in order to reduce the number of degrees of freedom and to avoid
over-fitting. We believe that important features of biological systems (mainly
complex genetic and protein switches) can be elucidated using such simplified
models. Continuous or stochastic modeling require rate constants tuning, which
drastically increase the amount of information for validating a model. Such
models are currently impractical to solve for all but very small networks.
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Fig. 1. Overview of the core expansion methodology. A) Large data sets (e.g.
expression profiles) are transformed into a uniform database. B) A pathway core is
constructed based on the literature. The core shown here is the dependency structure
of part of the yeast ergosterol pathway, consisting of 7 variables. The exact logic of the
system is defined by the association of a discrete function to each model variable. C)
The core model is expanded with additional variables and interactions. Expansions are
scored by their level of fitness to the database.
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For micro-array data, by anexperiment we mean a triplet (I N P, OUT,
P E RT) where I N P and OUT are theinput and output vectors, assigning
values to each variable inU . P E RT ⊆ U is the set ofperturbed variables,
i.e., those genes that were knocked-out or over-expressed. Hence, a knock-out
or over-expression experiment will produce one triplet. Time-series data,
providing expression levels at a series ofn time points, yieldn − 1 experiment
triplets, where the vectors at time pointsi andi +1 form I N P andOUT of the
i -th experiment. Note that this transformation assumes that data dependence is
Markovian. We will useI N Pe

S (OUTe
S) to denote the input (output) values of

the variable setS in the experimente.
If in an experimentI N P = OUT, we say it is asteady state experiment.

Real data sets are often either time series of samples along some synchronized
biological process (Spellmanet al., 1998; DeRisi et al., 1997), or a single
sample from a cell culture under some condition (Hugheset al., 2000). Steady
state experiments might contain an averaging of an underlying temporal process
and so modeling them correctly entails a less detailed representation of the
biological system. Mathematically, for steady state data, one must exclude
models with variables regulating themselves, in order to avoid the trivial
self-regulation solution.

Some compensation for the discretization of the network space is provided
by probabilistic modeling of the experimental data: (Below, and occasionally
later, we use overlines on vectors for clarity.) A(noisy) experimentis a triplet
(P I N P, P OUT, P E RT), where P E RT ⊆ U , and P I N P and P OUT
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assign to each variable inU a distribution over the values inC. In other words,
P I N Pv(c) (P OUTv(c)) is the probability thatv attains the valuec ∈ C in
the input (output). This enables better data utilization by factoring in the noise
inherent in high throughput experiments.
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Cores, Expansion, and Fitness
In order to apply optimization strategies on the model space, one needs an
objective function, which evaluates how well each network in the model space
fits the experiments data. Often, we seek an optimal network that conforms
with prior knowledge. To that end, we define acoreas a networkN′ defined on
a subsetU ′

⊆ U . The core represents our prior knowledge. Anexpansionof a
core is a network containingN′ as a subnetwork. Similarly, acore digraph is
a dependency graphG′ defined onU ′

⊆ U , and a digraph containingG′ as a
subgraph is an expansion of it.

Our goal is to infer biological pathways by finding an expansion network or
digraph that fit the experimental data best. This must be preceded by developing
a good fitness function. Such function should perform well both in sensitivity
(scoring good expansions high) and specificity (scoring bad expansions low),
and must also be efficiently computable.Local fitness functions evaluate the fit
of the experimental data to the functionf v of a single variablev, while global
fitness evaluates the overall network. Our local fitness functions use ideas that
generalizeLianget al. (1998):

Given a functionφ ∈ Fbio and a set of experimentsE = (I N Pe,OUTe,
P E RTe)e≤n, theconsistencyof φ for variablev, or the consistency of the pair
(φ, v), is:

Consist(v, φ, E) =

|{e ∈ E, v /∈ P E RTe | φ(I N Pe) = OUTe
v }|
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Denote the arguments ofφ by x1, . . . , xd. The consistencyof (φ, v) given a
noisy experiment setE is:

Consist(v, φ, E) = Pr(φ(x1, . . . , xd) = v) =∑
e∈E

∑
u=(u1,...,uk)∈Ck

(
∏

i

P I N Pe
xi
(ui ))× P OUTe

v (φ(u))

The explicit formula assumes statistical independence of the distributions
P I N Pv andP OUTv for eachv.

When seeking to infer dependencies only, we defineConsist(v, S, E), the
consistency of a setS of arguments for nodev, as the maximum consistency
obtained by anyf v ∈ Fbio whose arguments all belong toS. An important
special case is when there are no constraints on functions in the model space. In
this situation we can compute the consistency of a candidate argument set for a
node efficiently, as follows:

PROPOSITION1. For any S= {s1, . . . , sd} ∈ U, if Fbio = F and E is a set
of noiseless experiments we have:

Consist(v, S, E) =

∑
c1,...,cd∈C

maxc∈C|{e ∈ E |

I N Pe
si

= ci , i = 1, . . . ,d ∧ OUTe
v = c}|

PROOF. Since we have no constraints on the function once its set of
arguments is determined, we can optimize the consistency by making the best
choice for each input assignment independently.
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Consist(v, S, E):
Initialize amd

× m real valued tablevoteand
a scalarconsistwith zeroes.
For all e ∈ E if v 6∈ P E RTe do

For all vectorsu ∈ Cd do
pu =

∏
i I N Pe

vi
(ui )

For i = 1, . . . ,m do:
vote[u, i ] = vote[u, i ] + pu ∗ P OUTe

v (ci )

For all u ∈ Cd do:
consist= consist+ maxi {vote(u, i )}.

Fig. 2. Consistency computation.

A similar reasoning applies to noisy experiments, by maximizing the
likelihood of the function value for each input assignment independently.Fig. 2
outlines the algorithm for noisy experiments. The algorithm uses a table of size
|C|

d+1 and iterates on the experiments to simultaneously sum the probabilities
of all i/o transitions. LetS = {v1, . . . , vd}, denote the number of experiments
by n and letm = |C|.

PROPOSITION2. The consistency of an argument set for a variable in the
model space(U,C,F, I N DEGd) can be computed in O(nmd(m + d)) steps
for noisy experiments and O(n + md+1) steps for perfect experiments.
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Though simple and easy to compute, the consistency function gives no
information regarding the specificity of a speculated regulation pattern, and is
thus very sensitive to overfitting. To address this problem, we shall describe
how to calculate a “p-value” of the measured consistencyκ = Consist(v, S,
E). As our null hypothesis, we assume independence of the measured values of
the variablev and the variables inarg(v). We wish to estimate the probability
of observing consistencyκ or higher in the data under the null hypothesis.
Consider first the case of perfect experiments and assumev was not perturbed
in any experiment. Now define a probability space based on the data. We use
two random variables,X andY. X attains values inC with probabilities:

pi = Pr(X = ci ) =
1

n
|{e ∈ E | OUTe

v = ci }| (1)

If arg(v) = {v1, . . . , vd}, Y is taking values inCd with probabilities:

Pr(Y = (c1, .., cd)) =

1

n
|{e ∈ E | I N Pe

vi
= ci , i = 1, . . . ,d}| (2)

Let S be a set of possible arguments for a variablev, with consistencyκ.
The regulation specificity of the pair(S, v), denotedr Spec(S, v, E), is the
probability of obtaining a consistency ofκ or higher in the probability space
(Y × X)n. Note that one can also user Specitself as a fitness function (with a
negative sign, to maintain the formulation of maximizing fitness).
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The size of the probability space defined above is exponential inn, so a naive
algorithm for computingr Specis not practical. We present an approximation
which is practical whenn−κ is small (almost perfect consistency) and is linear
in the number of experimentsn. We use a random variable from the space
X defined above and set the input values deterministically toI N PS. We now
calculate the probabilityπ(κ) for obtaining a consistencyκ or better in a data
set with then inputs from I N PS and outputs sampled fromX. If there arel
input configurations with multiplicitiesn1, . . . ,nl thenπ(κ) is the probability
of gettingn′

i identical values out ofni samples fromX for i = 1, . . . , l and∑
n′

i ≥ κ.
Denote byψ(r, s) the probability of getting at leasts identical values when

sampling r times from X. Then ψ(r, s) can be computed exhaustively in
O(rmr ) time. To computeψ(r, s) efficiently we distinguish two cases:

(1) if s ≥
r
2 thenψ(r, s) =

∑
j

∑r −s
i=0

(r
i

)
pr −i

j (1 − p j )
i so is computable in

O(mr) time.
(2) if s ≤

r
2 thenr ≥ 2s or 2r − 2s ≥ r , sormr

= O(rm2(r −s)).
So in particular, whenr − s = O(1) computingψ(r, s) is polynomial inr

andm for all s.
To computeπ(κ) we enumerate all integer partitions oft = n − κ, t1, . . . , tl

s.t.
∑

ti = t , and compute:

π(κ) =

∑
(ti )

∏
i

ψ(ni ,ni − ti ) (3)

Sinceni − ti ≤ n − κ we get thatπ(k) is computable inO(t l (m2t
+ l )) time,

so we conclude
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PROPOSITION3. If t = n − κ = O(1) then the regulation specificity of
(S, v) is computable in O(n + t l (m2t

+ l )) time.

The generalization of p-values to noisy experiments is done as follows. Given
a noisy experiments setE = {ei }i<n we assume statistical independence of
the distributionsP I N P and P OUT and construct a probability space that
represents possible deterministic instantiations of the noisy experiment set. We
define a random variableEr with values in the space of perfect experiments
sets. The probability of obtaining a given perfect experiment set value{hi }i<n

is:

Pr({hi }) =∏
v∈U,i<n

P I N Pei
v (I N Phi

v )P OUTei
v (OUThi

v )

Then
r Spec(v,G, E) = E(r Spec(v,G, Er )) (4)

Again, a naive computational approach for the finding the expectations above
is impractical. We have performed approximate evaluations by exhausting only
part of the probability space forEr .

We are now ready to state our main optimization problem: Thepathway
expansion problemis defined with respect to a model space(U,C, Fbio,Gbio)

and using a prescribed fitness functionf i t . Given a set of experimentsE and
a core digraphG′

= (U ′, E′), find a core expansionG′′
⊇ G′ maximizing

f i t (G′′). If several solutions exists, find one minimizing‖G′′
‖.
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For an expansionG′′ setSv = {x ∈ G′′
|xv ∈ E′′

} and define

f i t (G′′) =

∑
v∈U ′

consist(v, Sv, E) (5)

PROPOSITION4. The pathway expansion problem, with the fitness function
(Equation 5), is NP hard, even assuming constant time computation of fitness,
and even for cores of size one.

PROOF. We shall show that the decision version of the problem, “is there an
expansion with perfect consistency and size≤ l ?” is NP-complete. Clearly that
problem is in NP. We will construct a reduction from SET COVER. Given a set
S = {a1, . . .ar } and a collection of subsetsI = {S1, . . . , Sq} of S, construct
an instance of the expansion problem as follows.U will be the set of subsets
plus an additional variable, i.e.U = {1, . . . ,q, ”c”}. The experiments set will
consist ofr + 1 steady state experiments indexed byS∪ ”0” and defined by the
matrix below (columns are variables, rows are experiments,χ is the standard
subset characteristic function):

c 1 .. q
0 0 0 .. 0
1 1 χS1(a1) . . . χSq(a1)
...
...

r 1 χS1(ar ) . . . χSq(ar )

(6)

The core is set simply to the single variablec and we setl = k + 1.
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We will show that an expansion ofc with perfectc consistency is equivalent
to a set cover. First note that any set of expansion variables is equivalent to a
collection of subsetsI ′

⊂ I . Now if c is perfectly consistent withI ′ then there
do not existe1,e2 such thatI N Pe1

I ′ = I N Pe2
I ′ andOUTe1

c 6= OUTe2
c . Taking

e2 as the “0” experiment implies that there is noe s.t. I N Pe
I ′ = I N P0

I ′ . Since

I N P0
I ′ is a vector of zeros, we conclude that for eache ∈ E − 0 (equivalent

to an S element) we must have a variable in the expansionI ′ (equivalent to a
subset in the cover) with non zero value (equivalent to having a subset covering
the element).

Now assume I’ is a set cover, taking the set as an expansion yields perfect
consistency since the only experiment with 0 values over all the expansion is
the “0” experiment (otherwise the node represented by the experiment is not
covered).

In conclusion, there exist a set coverI ′ with ‖I ′
‖ ≤ k iff there exist an

expansionU ′′
= I ′

∪ {c} s.t.‖U ′′
‖ ≤ k + 1.

In the case of bounded indegree, the pathway expansion problem is
polynomial: If all indegrees are at mostd, then the expanded set is of size at
most‖U ′

‖ ∗ d, and trying all such sets is polynomial for fixedd.
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Results
GENESYS (GEnetic Network Expansion SYStem) is a new software platform
implementing the concepts and methods described above. The environment
includes engines for representing networks and computing fitness, a flexible
expansion algorithm, viewers for visualization of biological data sets, an
application to enable interactive usage of the viewers and engine and an internal
database scheme for the storage of datasets and pathways.

The system was implemented in C++ and Perl/Tk under linux (about 25000
code lines). It is able to analyze single node expansions (see below) of cores
with up to 30 nodes within ten minutes or less on a standard pc.

To test our ideas, we applied GENESYS to yeast transcription datasets using
the ergosterol pathway as a core. We focused on the simplest possible core
expansion: Thesingle node expansionprocess examines each of the variables
in U and calculates the sum of fitness gains to all core variables from adding
that variable to the core. Note that unlike clustering or similarity tests, we are
not looking for genes that are similar across the entire data set, but rather seek
genes that might regulate or indirectly affect the pathway in those experiments
which are left unexplained by the core model. We present below the results of
two different screening processes, with different limitations and goals.

The fitness function was computed as follows. Denote the core byU ′. For
each non-core variablev, its global fitness is∑

u∈U ′

max
S⊂U∪{v},|S|≤d

−r Spec(u, S, E).
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We have actually used a variant ofr Specthat is more efficiently computable,
and yields essentially the same results as reported below.

Preprocessing Expression Data

Our study focused on yeast, which has the largest publicly available gene
expression datasets. The variable set consisted of 6200 yeast ORFs.
Transcription profiles were taken from two large scale yeast cDNA array
experiments:Hugheset al. (2000) performed some 260 selected knock-out
experiments ; Gaschet al. (2000) performed 100 experiments testing yeast
behavior in stressful conditions. We have chosen to view all experiments
as steady state experiments: For knockout experiments this is a natural
choice. For the stress time series data, we chose to view each measured
transcription profile as a different steady state experiment, since the time
intervals between measurements were non uniform and typically much larger
than the transcription activation delay.

Details on data normalization and transformation into probability distributions
can be found in the supplementary web page (http://www.math.tau.ac.il/
∼rshamir/genesys/ismb01).

Pathway cores were generated based on available literature, notably
SGD (Ball et al., 2001) and YPD (Costanzoet al., 2001). Other biological
references will be cited when discussing the results.

http://www.math.tau.ac.il/~rshamir/genesys/ismb01
http://www.math.tau.ac.il/~rshamir/genesys/ismb01
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Ergosterol Metabolism

Ergosterol is an essential lipid in yeast which is similar to cholesterol in
mammals. Ergosterol’s primary role is in the cell membranes but it is also
involved in aerobic metabolism, sterol uptake and sterol transport. Ergosterol
metabolism is understood rather well. As many of the knockout experiments
of Hugheset al. (2000) targeted that pathway, and it is believed to undergo
significant transcription regulation, we chose it to test our analysis techniques.
Ergosterol metabolism is composed of two pathways in series. The first, the
mevalonate pathway, transforms acetyl-CoA to farnesyl and provides essential
components for few important metabolic pathways (e.g. heme and quinones).
The latter part transforms farnesyl to ergosterol. Much of the regulation of
ergosterol is believed to be transcriptionally mediated, but the actual details
are known only in part (Daumet al., 1998; Bammert and Fostel, 2000; Turi and
Loper, 1992).

Fig. 3 shows the basic known ergosterol metabolic pathway from farnesyl
to ergosterol, including a series of 11 enzymes and three transcription factors.
It is important to stress here the difference between metabolic pathways
and regulatory networks: The fact that two enzymes follow each other in a
biochemical process does not mean theirtranscription regulation is directly
connected. We have modeled the ergosterol dependency structure core as the
set of variables, with dependencies marked only between known transcription
factors and their targets. In other words, no dependency was prescribed between
enzymes. We have used this core and the expression data described above to test
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GENESYS.
We have analyzed the reactions of pathway enzymes in the entire data set

(see supplementary data). A number of experiments showed a global reaction
of the pathway: in those experiments most of the pathway enzymes underwent
significant change. This is presumably the result of some self regulatory
mechanism (and indeed ergosterol itself is reported to function as transcription
regulator for its pathway enzymes). However, many other experiments (about
40) showed a change in one or more of the pathway genes, which is not
explained by the above mechanism. Those experiments may be explained by
a more elaborate model. This motivates our attempt to expand the model and
explain more of the data.

Transcription Factors Screening

Out of the~6200 yeast ORFs, we identified 130 putative transcription factors
(TFs). For this we used SGD annotations, as well as typical structural motifs
(e.g., zinc fingers). We then applied the single node expansion algorithm,
limiting the candidates for node expansions to these putative TFs. In the first
test, we ranked the fitness gain of each of the putative TFs against a “naked”
core consisting of the eleven ERG enzymes with no dependencies among them.
HAP1 was ranked second out of 130 (Table 1), in agreement with the known
role of HAP1 in ERG11 regulation. TUP1 is a general repressor and was thus
ranked lower, ROX1 was less expressed in the data and was ranked much lower.
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Fig. 3. The ergosterol pathway from farnesyl to ergosterol. Only enzymes (names
starting with ERG) and known transcription factors (ROX1, HAP1, TUP1) are shown.
Thin arrows indicate subsequent enzymes (not a model dependency). Thick arrows
indicate model dependencies.

Having gained some confidence in the process quality, we focused on
improving our understanding of ERG11 regulation.Turi and Loper(1992)
analyzed the promoter region of ERG11 with results that are summarized in
Fig. 4. This time we applied the single node expansion to a core consisting of
the eleven ERG enzymes as well as HAP1 and ROX1 as regulators of ERG11.
The algorithm measured the improvement in fitness contributed by each of the
130 TFs, and an uncharacterized gene was ranked first. That gene improves
the fitness of ERG11 (and others). Remarkably, it also has a good homology
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Table 1. Putative transcription factors that ranked best in an expansion of the “naked”
ergosterol core.

Gene Annotation Gain
PIP2 Peroxisome proliferation 0.0866
HAP1 erg11 activator 0.07
YDR213W Unknown 0.0624
GLN3 nitrogen catabolite 0.0602
RAP1 transcription 0.0547

to HAP1 (33% identity, 50% similarity along 100 amino acids and even better
in a shorter range). Moreover, analyzing ERG11 logic as a function of HAP1,
ROX1, TUP1 and the novel TF shows that the effect of the new putative TF
on ERG11 is inductive (as expected from a UAS2 binding gene). We thus have
evidence from three different methods: sequence homology, promoter analysis
indicating a second inducer should exist, and our screening procedure using
some 360 different expression profiles in distinct cell states. All three support
the hypothesis that our novel TF is indeed an ERG11 regulator that might bind
to UAS2. We are in the process of testing this hypothesis experimentally.

Screening All Genes

The admission of putative transcription factors only as added variables was
important in the reduction of model space, and it allowed us to obtain very
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Fig. 4. ERG11 promoter region according to (Turi and Loper, 1992). UAS/URS:
upstream activation/repression site. The transcription factors HAP1 and ROX1 induce
and repress, respectively, ERG11 transcription via the binding sites UAS1 and URS1.
UAS2 was identified as a likely binding site of an unknown activator. One of our
goals in this study was to demonstrate that we can suggest the identity of the missing
activator.

Table 2. Results of 1-expansion of the ergosterol core pathway. Gene annotations
are from SGD. ’Gain’: the increase to fitness by using the additional variable. ’Gain
location’: the core genes whose regulation modeling was significantly improved by the
variable, in order of significance.

Gene ORF Annotation Gain Gain location
1.POS5 YPL188W Unknown 0.026 ERG4
2.YBR043C YBR043C Unknown 0.023 ERG4
4.INO1 YJL153C Inositol biosynthesis 0.018 ERG6,ERG25,ERG5
7.GAS1 YMR307W cell surface glycoprotein 0.017 ERG4,ERG6,ERG5,ERG25
10.MKK2 YPL140C PCK1 signaling 0.016 ERG4
11.ERG10 YPL028W Ergosterol metabolism 0.016 ERG6,ERG25,ERG5,ERG7
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Fig. 5. ERG4 dependent genes. The Venn-like diagram represents all experiments
in which ERG4,POS5 and YBR043C were induced. The number inside each of
the sets indicate its size. Induction in this case is any up-regulation with regulation
specificity less than 0.01. The graph shows that induction of POS5 and YBR043C
strongly correlate with ERG4 induction (11/12 experiments in both cases). ERG4 is
showing a second, separate regulation pattern (5 experiments) which is unrelated to
POS5,YBR043C.

specific results. It is, however, interesting to try and screen all~6200 yeast
ORFs against the ergosterol core. This type of analysis may discover more
general patterns of regulation that cannot be directly tagged as “A is a factor
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of B”. Still, as shown below, some interesting biology may be learned from it.
The results of such a screen are given inTable 2. The two top ranking genes,
POS5, YBR043C, are both of unknown function. POS5 has homology to iron
metabolism enzymes. Both present significant fitness gain for ERG4 regulation.
ERG4 is the last of the ergosterol pathway enzymes, is not essential and little is
known on its regulation.Fig. 5gives a more detailed look on the relations among
the three genes. Note that using standard clustering or similarity, the behavior
of ERG4 in experiments with no POS5, YBR043C involvement would have
masked the pattern identified here.

The fourth gene in the screening list is INO1 which is involved in inositol
biogenesis. Inositol has a regulatory function in the phospholipid pathway
(adjacent to ergosterol). Note that the dependency is localized differently
(improving different variables) in that case. The relation of GAS1 to ergosterol
might be rooted in its function in the cell wall. The dependency between our
core and MKK2 is very reasonable considering its function in the signaling
pathway to the cell wall protein PCK1. The 11th gene in the list is ERG10,
which is the first gene in the mevalonate pathway leading to our core.

The dependencies revealed by the general 1-expansion screening can serve as
the basis for deeper biological exploration. The process pinpoints statistically
significant patterns which are hard to identify otherwise. In contrast with the
TF 1-expansion screening, the results are less direct and do not identify specific
dependencies.
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Concluding remarks
We have presented a new methodology for biological hypotheses generation,
using genetic network cores and high throughput experimental data. A new
software platform, called GENESYS, was implemented to enable analysis of
available transcription profiles data sets and target pathways. Several initial
test cases with the ergosterol pathway and yeast transcription profiles show
that correct hypotheses are generated. We were able to find several biologically
interesting regulation patterns including a novel putative ergosterol transcription
factor.

GENESYS is under continuous development. Future goals would be to
further improve global fitness calculation, to test the system on additional
pathways and data sets, and to prepare the theory and tools for the incorporation
of large scale Proteomics data.
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