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Hybridization of the same sample to 2
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Hybridization of the same sample to 2
chips/channels

e

kogllntansity)



Normalization — the process of
removing systematic errors (biases)
from the data



Sources of Systematic Errors

J Different incorporation efficiency of dyes
H Different amounts of mMRNA

J Experimenter/protocol issues
(comparing chips processed by different

labs)
J Different scanning parameters

D Batch bias



Normalization - two problems

. How to detect biases? Which
genes to use for estimating
biases among chips/channels?

. How to remove the biases?



Which Genes to use for bias
detection?

1. All genes on the chip

Jd  Assumption: Most of the genes are equally
expressed in the compared samples, the
proportion of the differential genes is low
(<20%).

9 Limits:

* Not appropriate when comparing highly
heterogeneous samples (different tissues)

* Not appropriate for analysis of ‘dedicated chips’
(apoptosis chips, inflammation chips etc)



Which Genes to use for bias
detection?

1. Housekeeping genes

Assumption: based on prior knowledge a set of
genes can be regarded as equally expressed in the
compared samples

Affy novel chips: ‘normalization set’ of 100 genes

NHGRI’s cDNA microarrays: 70 "house-keeping"
genes set

Limits:

> The validity of the assumption is questionable

> Housekeeping genes are usually expressed at high levels,
not informative for the low intensities range




Which Genes to use for bias
detection?

Spiked-in controls from other organism, over a
range of concentrations

Limits:

> low number of controls- less robust

> Can’t detect biases due to differences in RNA extraction
protocols

‘Invariant set”

Trying to identify genes that are expressed at
similar levels in the compared samples without
relying on any prior knowledge:

:Ran:( the genes in each chip according to their expression
eve

Find genes with small change in ranks



Normalization Methods



1. Global normalization (Scaling)

> A single normalization factor (k) is
computed for balancing chips\channels:

Xinorm — k>'<Xi

> Multiplying intensities by this factor
equalizes the mean (median) intensity
among compared chips



Global Normalization
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Boxplots
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Before Normalization
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2. Intensity-dependent
normalization (Yang, Speed)

(Lowess - local linear fit)

> Compensate for intensity-dependent
biases



Detect Intensity-dependent Biases:
M vs A plots

> X axis: A — average intensity
A = 0.5*log(Cy3*Cy5)
> Y axis: M - log ratio
M = log(Cy3/Cy5)



We expect the M vs A plot to look like:
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Intensity-dependent bias
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Intensity-Dependent Normalization

Assumption: Most of the genes are equally expressed at all intensities

Lowess — fitting local regression curve — c(A)

T Xrem = k(A)Xi
7 c(A)=log(k(A)
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®» | OESS (Local Regression)
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3. Quantile Normalization

Global normalization - enforces the chips
to have equal mean (median) intensity

Lowess — enforces equal means at all
Intensities

Quantile Normalization - enforces the
chips to have identical intensity
distribution




M =logz(R/G)
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Diensity

After lowess normalization
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Quantile Normalization

> Sort intensities in each chip
> Compute mean intensity in each rank across the chips
> Replace each intensity by the mean intensity at its rank
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Recommendation (Bolstad et al, Speed, 2003)

> Quantile normalization performs best
> Lowess is comparable to Quantile
> Scaling is not satisfactory



Normalization - tools

> Bioconductor (both AFFY and cDNA):
J Packages in R language

> dChip (Affymetrix):
0 Quantile, Invariant set

> Expander (both AFFY and cDNA):

Q| owess
0 Quantile
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