Normalization

Outline

- What is normalization
- Why is normalization needed
- Three quantitative methods for normalization
- > Software tools

Hybridization of the same sample to 2 chips/channels

- Ideally: scatter plot coincides with the x=y diagonal
- Due to Random errors: we expect to see a 'cloud' around the x=y diagonal.

Probe intensity - 1

Hybridization of the same sample to 2 chips/channels

- In practice: Both Random and Systematic measurement errors (Bias)
- Due to Biases scatter plots are not centered around the x-y diagonal

Hybridization of the same sample to 2 chips/channels

Normalization – the process of removing systematic errors (biases) from the data

Sources of Systematic Errors

- Different incorporation efficiency of dyes
- Different amounts of mRNA
- Experimenter/protocol issues
 (comparing chips processed by different labs)
- Different scanning parameters
- Batch bias

Normalization - two problems

- How to detect biases? Which genes to use for estimating biases among chips/channels?
- II. How to remove the biases?

Which Genes to use for bias detection?

1. All genes on the chip

Assumption: Most of the genes are equally expressed in the compared samples, the proportion of the differential genes is low (<20%).</p>

Limits:

- Not appropriate when comparing highly heterogeneous samples (different tissues)
- Not appropriate for analysis of 'dedicated chips' (apoptosis chips, inflammation chips etc)

Which Genes to use for bias detection?

1. Housekeeping genes

- Assumption: based on prior knowledge a set of genes can be regarded as equally expressed in the compared samples
- · Affy novel chips: 'normalization set' of 100 genes
- NHGRI's cDNA microarrays: 70 "house-keeping" genes set

Limits:

- The validity of the assumption is questionable
- Housekeeping genes are usually expressed at high levels, not informative for the low intensities range

Which Genes to use for bias detection?

- 1. Spiked-in controls from other organism, over a range of concentrations
 - Limits:
 - low number of controls- less robust
 - Can't detect biases due to differences in RNA extraction protocols
- 2. "Invariant set"
 - Trying to identify genes that are expressed at similar levels in the compared samples without relying on any prior knowledge:
 - * Rank the genes in each chip according to their expression level
 - Find genes with small change in ranks

Normalization Methods

1. Global normalization (Scaling)

A single normalization factor (k) is computed for balancing chips\channels:

$$X_i^{\text{norm}} = k^*X_i$$

Multiplying intensities by this factor equalizes the mean (median) intensity among compared chips

Global Normalization

Boxplots

2. Intensity-dependent normalization (Yang, Speed)

(Lowess – local linear fit)

Compensate for intensity-dependent biases

Detect Intensity-dependent Biases: M vs A plots

- $^{>}$ X axis: A average intensity A = 0.5*log(Cy3*Cy5)
- Y axis: M log ratio M = log(Cy3/Cy5)

We expect the M vs A plot to look like:

Intensity-dependent bias

Intensity-Dependent Normalization

Assumption: Most of the genes are equally expressed at all intensities

Lowess – fitting local regression curve – c(A)

→ LOESS (Local Regression)

3. Quantile Normalization

- Global normalization enforces the chips to have equal mean (median) intensity
- Lowess enforces equal means at all intensities
- Quantile Normalization enforces the chips to have identical intensity distribution

Before Normalization

$M = \log_2(R/G)$ -2 3 13 15 9 11

After Scaling

After lowess normalization

After quantile normalization

Quantile Normalization

- Sort intensities in each chip
- Compute mean intensity in each rank across the chips
- Replace each intensity by the mean intensity at its rank

Recommendation (Bolstad et al, Speed, 2003)

- Quantile normalization performs best
- Lowess is comparable to Quantile
- Scaling is not satisfactory

Normalization - tools

- Bioconductor (both AFFY and cDNA):
 - Packages in R language
- dChip (Affymetrix):
 - Quantile, Invariant set
- Expander (both AFFY and cDNA):
 - Lowess
 - Quantile

Acknowledgements

- Figures in this presentations were taken in part from presentations of:
 - Henrik Bengtsson, Terry Speed
 - Yee Yang, Terry Speed
 - Guilherme J. M. Rosa
 - Laurent Gautier, Rafael Irizarry, Leslie Cope, and Ben Bolstad