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Gaussian Smoothing

Common Names: Gaussian smoothing

Brief Description

The Gaussian smoothing operator is a 2-D convolution operator thatis used to “blur' images and remove detail and noise. In this
sense itis similar to the mean filter, but it uses a different kernel that represents the shape of a Gaussian ("bell-shaped') hump. This
kernel has some special properties which are detailed below.

How It Works

The Gaussian distribution in 1-D has the form:

G(x) = ﬁe_

where g is the standard deviation of the distribution. We have also assumed that the distribution has a mean of zero (i.e. itis
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centered about the line x=0). The distribution is illustrated in Figure 1.
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Figure 1 1-D Gaussian distribution with mean 0 and =1

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form:

1 _52 2
G(x,y) = mﬁ )

This distribution is shown in Figure 2.
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Figure 2 2-D Gaussian distribution with mean (0,0) and &=1

The idea of Gaussian smoothing is to use this 2-D distribution as a “pointspread’ function, and this is achieved by convolution.
Since the image is stored as a collection of discrete pixels we need to produce a discrete approximation to the Gaussian function
before we can perform the convolution. In theory, the Gaussian distribution is non-zero everywhere, which would require an

#2

infinitely large convolution mask, butin practice itis effectively zero more than about three standard deviations from the mean, and

so we can truncate the mask at this point. Figure 3 shows a suitable integer valued convolution mask that approximates a

Gaussian with a & of 1.4.
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Figure 3 Discrete approximation to Gaussian function with g=1.4

Once a suitable mask has been calculated, then the Gaussian smoothing can be performed using standard convolution methods.
The convolution can in fact be performed fairly quickly since the equation for the 2-D isotropic Gaussian shown above is separable
into x and y components. Thus the 2-D convolution can be performed by first convolving with a 1-D Gaussian in the x direction, and

then convolving with another 1-D Gaussian in the y direction. (The Gaussian is in fact the only completely circularly symmetric

operator which can be decomposed in such a way.) Figure 4 shows the 1-D x component mask that would be used to produce the

full mask shown in Figure 3. The y componentis exactly the same but is oriented vertically.

1.3

3.2

3.8

3.2

1.3

10.7

Figure 4 One of the pair of 1-D convolution masks used to calculate the full mask shown in Figure 3 more quickly.
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A further way to compute a Gaussian smoothing with a large standard deviation is to convolve an image several times with a
smaller Gaussian. While this is computationally complex, it can have applicability if the processing is carried out using a hardware
pipeline.

The Gaussian filter not only has utility in engineering applications. Itis also attracting attention from com putational biologists
because it has been attributed with some amount of biological plausibility, e.g. some cells in the visual pathways of the brain often
have an approximately Gaussian response.

Guidelines for Use

The effect of Gaussian smoothing is to blur an image, in a similar fashion to the mean filter. The degree of smoothing is
determined by the standard deviation of the Gaussian. (Larger standard deviation Gaussians, of course, require larger
convolution masks in order to be accurately represented.)

The Gaussian outputs a “weighted average' of each pixel's neighbourhood, with the average weighted more towards the value of
the central pixels. This is in contrast to the mean filter's uniformly weighted average. Because of this, a Gaussian provides gentler
smoothing and preserves edges better than a similarly sized mean filter.

One of the principle justifications for using the Gaussian as a smoothing filter is due to its frequency response. Most convolution
based smoothing filters act as lowpass frequency filters. This means that their effectis to remove low spatial frequency components
from an image. The frequency response of a convolution filter, i.e. its effect on different spatial frequencies, can be seen by taking
the Fourier transform of the filter. Figure 5 shows the frequency responses of a 1-D mean filter with width 7 and also of a Gaussian
filter with & = 3.
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Figure 5 Frequency responses of Box (i.e. mean) filter (width 7 pixels) and Gaussian filter (& = 3 pixels). The spatial

frequency axis is marked in cycles per pixel, and hence no value above 0.5 has a real meaning.

Both filters attenuate high frequencies more than low frequencies, but the mean filter exhibits oscillations in its frequency response.
The Gaussian on the other hand shows no oscillations. In fact, the shape of the frequency response curve is itself (half a)
Gaussian. So by choosing an appropriately sized Gaussian filter we can be fairly confident about what range of spatial frequencies
are still presentin the image after filtering, which is not the case of the mean filter. This has consequences for some edge
detection techniques, as mentioned in the section on zero crossings. (The Gaussian filter also turns out to be very similar to the
optimal smoothing filter for edge detection under the criteria used to derive the Canny edge detector.)

—
We use ﬁto illustrate the effect of smoothing with successively larger and larger Gaussian filters.
—

ﬁ shows the effect of filtering with a Gaussian of & = 1.0 (and mask size 5x5).
E shows the effect of filtering with a Gaussian of & = 2.0 (and mask size 9x9).

E shows the effect of filtering with a Gaussian of & = 4.0 (and mask size 15x15).
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We now consider using the Gaussian filter for noise reduction. For example, consider the image : Iwhich has been corrupted

by Gaussian noise with a mean of zero and & = 8. Smoothing this with a 5x5 Gaussian yields : I (Compare this result with that

achieved by the mean and median filters.)

Saltand pepper noise is more challenging for a Gaussian filter. Here we will smooth the image ! which has been corrupted by

1% salt and pepper noise (i.e. individual bits have been flipped with probability 1%). E shows the result of Gaussian smoothing

(using the same convolution as above). (Compare this with the original !.) Notice that much of the noise still exists and that,
although it has decreased in magnitude somewhat, it has been smeared out over a larger spatial region. Increasing the standard
deviation continues to reduce/blur the intensity of the noise, but also attenuates high frequency detail (e.g. edges) significantly, as

shown in E This type of noise is better reduced using median filtering, conservative smoothing or Crimmins Speckle Removal.

Exercises

1. Starting from the Gaussian noise (mean 0, & = 13) corrupted image : I compute both mean filter and Gaussian filter

smoothing at various scales, and compare each in terms of noise removal vs. loss of detail.

2. Athow many standard deviations from the mean does a Gaussian fall to 5% of its peak value? On the basis of this suggest
a suitable square mask size for a Gaussian filter with & = s.

3. Estimate the frequency response for a Gaussian filter by Gaussian smoothing an image, and taking its Fourier transform
both before and afterwards. Compare this with the frequency response of a mean filter.

4. How does the time taken to smooth with a Gaussian filter compare to the time taken to smooth with a mean filter for a mask

ofthe same size? Notice that in both cases the convolution can be sped up considerably by exploiting certain features of the
kernel.
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General advice about the local HIPR installation is available here
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