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Windows 95/NT System

Programming

Interprocess Communication
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Main Topics

• Shared Memory and Synchronization Techniques

– Mutex Objects

– Signals and semaphores

– Critical Sections

– Deadlock

• Pipes

– Anonymous Pipes and Named Pipes

– Reading and Writing Pipes
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Wait Functions

• Win32 wait functions enable a thread to

block its own execution

– return when conditions specified in wait are

satisfied

– include timeout interval and handles to one or

more synchronization objects
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Wait Functions

• WaitForSingleObject

• WaitForSingleObjectEx (alertable wait)

• WaitForMultipleObjects

• WaitForMultipleObjectsEx

• MsgWaitForMultipleObjects (can return when

specified type of input is available)
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Synchronization Object Overview

• A synchronization object is an object whose

handle can be specified in wait function to coordinate

the execution of multiple threads

• Objects used exclusively for synchronization

– event

– mutex

– semaphore

• Other synchronization objects:

– change notification, console input, process, thread
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Mutex Objects

• Signaled when not owned by any thread, non-signaled

when owned by thread

• Only one thread at a time can own a mutex

• Created using CreateMutex

– other threads with handle to mutex can own mutex object

• Thread obtains ownership by specifying object handle

in OpenMutex wait function

• Release using ReleaseMutex function
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Mutex Objects (cont’d)

One thread calls CreateMutex 

Pass mutex handles to other cooperating threads

loop forever

WaitForSingleObject

... critical section ...

ReleaseMutex

end loop
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Synchronization Example:

Using Named Objects & Mutex

HANDLE hMutex;

DWORD dwErr;

hMutex = CreateMutex ( NULL, /* no security descriptor */ 

FALSE, /* mutex not owned */

“DatabaseMutex”); /* object name */

if (hMutex == NULL)

printf (“CreateMutex error: %d\n”, GetLastError() );

else

if (GetLastError() == ERROR_ALREADY_EXISTS)

printf (“CreateMutex opened existing mutex\n”);

else

printf(“CreateMutex created new mutex\n”);

One process 

creates

mutex object

HANDLE hMutex;

hMutex = OpenMutex (MUTEX_ALL_ACCESS, 

FALSE, /* handle not inheritable */

“DatabaseMutex”);

if (hMutex == NULL)

printf (“OpenMutex error: %d\n”, GetLastError() );

Another process

opens handle to

existing mutex
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Synchronization Example:

Using Named Objects & Mutex

dwWaitResult = WaitForSingleObject (hMutex, 5000L); /* 5-second timeout */

switch (dwWaitResult) {

case WAIT_OBJECT_0: /* obtained mutex ownership */

try {

... write to database ...

}

finally {

if (!ReleaseMutex (hMutex)) { /* release mutex ownership */

... error handling ...

}

break;

case WAIT_TIMEOUT:

return FALSE;

case WAIT_ABANDONED: /* got ownership of abandoned mutex object */

return FALSE;

}
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Critical Section Objects

• Similar to mutex objects, but can be used only by threads of

the same process

– faster than mutex objects

• Can be owned by only one thread at a time

• Must declare CRITICAL_SECTION variable and initialize

using InitializeCriticalSection

• Thread use EnterCriticalSection to request

ownership and LeaveCriticalSection to release

ownership

• Use DeleteCriticalSection to release system

resources
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Semaphore Objects

• Limits number of concurrent accesses to a shared

resource

• Create using CreateSemaphore

• Other threads can open handle to existing semaphore
object using OpenSemaphore

– semaphore count decreases by one

• Use ReleaseSemaphore to increase semaphore

count
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Synchronization Example:

Using Semaphore Objects

HANDLE hSemaphore;

LONG cMax = 10;

hSemaphore = CreateSemaphore (NULL, /* no security attributes */

cMax, /* initial count */

cMax, /* maximum count */

NULL); /* unnamed semaphore */

if (hSemaphore == NULL) 

... check for error ...
DWORD dwWaitResult;

dwWaitResult = WaitForSingleObject (hSemaphore, 0L);

switch (dwWaitResult) {

case WAIT_OBJECT_0:

... semaphore signalled ...

break;

case WAIT_TIMEOUT:

... semaphore nonsignalled ...

break;

}

Before accessing

shared resource

Create

semaphore
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Synchronization Example:

Using Semaphore Objects (cont’d)

if (!ReleaseSemaphore (

hSemaphore, /* semaphore handle */

1, /* increase count by one */

NULL) ) { /* not interested in previous count */

... handle error ...

}

After accessing shared

resource, release semaphore
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Event Objects

• Useful for signaling thread when a particular event has

occurred

• State can be either signaled or non-signaled

• Create using CreateEvent

• Other threads can open a handle to existing event

object using OpenEvent

• Use PulseEvent function to set event object’s state

to signaled and then reset it to non-signaled after

releasing appropriate number of wait threads
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Example: Using Event Objects

• Event objects used to prevent several threads from

reading from shared memory buffer while master

thread is writing to it

Sets event object to non-signaled

... write to buffer ...

Resets event object to signaled

Shared

buffer

Master thread

Reader thread(s)
wait for own read event to be signaled

... read from buffer ...

set event object to signaled
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Using Event Objects: Master Thread

#define NUMTHREADS 4

HANDLE hGlobalWriteEvent;

void CreateEventsAndThreads (void) {

HANDLE hReadEvents [NumThreads], hThread;

DWORD i, IDThread;

if ((hGlobalWriteEvent = CreateEvent (NULL, TRUE, TRUE, “WriteEvent”)) == NULL)

/* error exit */

/* Create multiple threads and auto-reset event object for each thread */

for (i=1; i<=NUMTHREADS; i++) {

hReadEvents[i] = CreateEvent (NULL, FALSE, TRUE, NULL) ;
if (hReadEvents[i] == NULL) { 

        /* error exit */ 
} 
hThread = CreateThread(NULL, 0, 
    (LPTHREAD_START_ROUTINE) ThreadFunction, 
    &hReadEvents[i], /* pass event handle  */ 
    0, &IDThread); 
if (hThread == NULL) { 

        /* error exit */ 
}

}  
} 
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Master Thread (cont’d)

VOID WriteToBuffer(VOID) {
DWORD dwWaitResult, i;
if (! ResetEvent(hGlobalWriteEvent) ) {

        /* error exit */
}
dwWaitResult = WaitForMultipleObjects(

        NUMTHREADS, hReadEvents, TRUE, INFINITE);
switch (dwWaitResult) {
        case WAIT_OBJECT_0:
        .
        . /* Write to shared buffer */
        .
        break;
    default:
        printf("Wait error: %d\n", GetLastError());
        ExitProcess(0);
}



Interprocess Communication 18

Master Thread (cont’d)

if (! SetEvent(hGlobalWriteEvent) ) {
        /* error exit */
}
for(i = 1; i <= NUMTHREADS; i++)
    if (! SetEvent(hReadEvents[i]) ) {
            /* error exit */
    }
}
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Event Example: Reader Threads
VOID ThreadFunction(LPVOID lpParam) {
DWORD dwWaitResult, i;
HANDLE hEvents[2];

hEvents[0] = (HANDLE) *lpParam;  /* thread's read event */
hEvents[1] = hGlobalWriteEvent;
dwWaitResult = WaitForMultipleObjects(
        2,            /* number of handles in array   */
        hEvents,      /* array of event handles       */
        TRUE,         /* wait till all are signaled   */
        INFINITE);    /* indefinite wait              */
switch (dwWaitResult) {
case WAIT_OBJECT_0:
        /* … Read from the shared buffer … */
        break;
    /* An error occurred. */
    default:

printf("Wait error: %d\n", GetLastError());
        ExitThread(0);
}
if (! SetEvent(hEvents[0]) ) {
        /* error exit */
}
}
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Interprocess Synchronization

• Multiple processes can have handles of same mutex,

semaphore, or event object for IPC

• Processes can share object handles using named

objects

• Child process created by CreateProcess can

inherit handle of mutex, event, or semaphore object
if SECURITY_ATTRIBUTES structure enables

inheritance
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Duplicating Handles

• DuplicateHandle function creates a duplicate

handle that can be used by another specified

process

– creating process must pass handle to other process

using interprocess communication
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Overlapped I/O

• Win32 API can do synchronous and

asynchronous I/O

• Synchronous I/O:

– returns only when I/O completes

• Asynchronous (overlapped) I/O:

– returns as soon as the call is issued

– process is signaled when I/O completes

– good for time-consuming I/O
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Pipes

• A pipe is a communication conduit with two ends

– a process with a handle to one end can communicate

with a process having a handle to the other end

• Can be:

– one-way: one end read-only; other end write-only

– two-way: both ends of the pipe can read or write

• Can be anonymous (unnamed) or named
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Anonymous Pipes

• Unnamed, one-way pipe that transfers data between related

processes

– parent and child process

– two child processes of the same parent

• Used for local communication only

• Use CreatePipe to create an anonymous pipe with two

handles

– read handle

– write handle

• After creating pipe, pass one end to another process;

usually through inheritance
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Anonymous Pipes (cont’d)

• Parent must communicate handle value to child:
– Parent specifies pipe handle to SetStdHandle before

creating child

– Child uses GetStdHandle to retrieve handle value when

it starts up

• Standard handles are

– standard input

– standard output

– standard error
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Reading From Anonymous Pipes

• To read from a pipe, use read handle in call
to ReadFile function

• ReadFile returns when

– an error occurs

– when the specified number of bytes has been

read

– when the write end of the pipe is closed
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Writing To Anonymous Pipes

• To write to a pipe, use write handle in call to
WriteFile

• WriteFile returns when

– an error occurs

– when the specified number of bytes has been written

– when the read end of the pipe is closed

• If pipe’s buffer is full and there are still bytes to
write, WriteFile does not return until some

other process or thread reads from pipe, making

more buffer space available
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Asynchronous I/O On Pipes

• Asynchronous (overlapped) I/O not

supported for anonymous pipes

– cannot use ReadFileEx and WriteFileEx

– overlapped parameter to ReadFile and

WriteFile ignored
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Redirecting Standard Output of Child to Pipe

• Call GetStdHandle to get current standard output handle

• Call CreatePipe to create anonymous pipe

• Call SetStdHandle to set standard output to write handle

of pipe

• Call CreateProcess to create child process which inherits

handles from parent

– child process use GetStdHandle to retrieve handles

• Call CloseHandle to close parent’s handle to write end of

pipe

• Call ReadFile function to read from pipe

– parent reads data written to standard output by child process
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Wait Functions

• WaitForSingleObject

– returns when state of specified object is signaled or when timeout

elapses

• WaitForMultipleObjects

– returns when state of one of specified objects is signaled or when

timeout elapses

• WaitForSingleObjectEx,
WaitForMultipleObjectsEx

– similar to first two, but can perform alertable wait when

fAlertable parameter is TRUE

• functions return when ReadFileEx or WriteFileEx completion

routine is queued for execution
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