
Interprocess Communication 1

Windows 95/NT System

Programming

Interprocess Communication

Interprocess Communication 2

Main Topics

• Shared Memory and Synchronization Techniques

– Mutex Objects

– Signals and semaphores

– Critical Sections

– Deadlock

• Pipes

– Anonymous Pipes and Named Pipes

– Reading and Writing Pipes

Interprocess Communication 3

Wait Functions

• Win32 wait functions enable a thread to

block its own execution

– return when conditions specified in wait are

satisfied

– include timeout interval and handles to one or

more synchronization objects

Interprocess Communication 4

Wait Functions

• WaitForSingleObject

• WaitForSingleObjectEx (alertable wait)

• WaitForMultipleObjects

• WaitForMultipleObjectsEx

• MsgWaitForMultipleObjects (can return when

specified type of input is available)

Interprocess Communication 5

Synchronization Object Overview

• A synchronization object is an object whose

handle can be specified in wait function to coordinate

the execution of multiple threads

• Objects used exclusively for synchronization

– event

– mutex

– semaphore

• Other synchronization objects:

– change notification, console input, process, thread

Interprocess Communication 6

Mutex Objects

• Signaled when not owned by any thread, non-signaled

when owned by thread

• Only one thread at a time can own a mutex

• Created using CreateMutex

– other threads with handle to mutex can own mutex object

• Thread obtains ownership by specifying object handle

in OpenMutex wait function

• Release using ReleaseMutex function

Interprocess Communication 7

Mutex Objects (cont’d)

One thread calls CreateMutex

Pass mutex handles to other cooperating threads

loop forever

WaitForSingleObject

... critical section ...

ReleaseMutex

end loop

Interprocess Communication 8

Synchronization Example:

Using Named Objects & Mutex

HANDLE hMutex;

DWORD dwErr;

hMutex = CreateMutex (NULL, /* no security descriptor */

FALSE, /* mutex not owned */

“DatabaseMutex”); /* object name */

if (hMutex == NULL)

printf (“CreateMutex error: %d\n”, GetLastError());

else

if (GetLastError() == ERROR_ALREADY_EXISTS)

printf (“CreateMutex opened existing mutex\n”);

else

printf(“CreateMutex created new mutex\n”);

One process

creates

mutex object

HANDLE hMutex;

hMutex = OpenMutex (MUTEX_ALL_ACCESS,

FALSE, /* handle not inheritable */

“DatabaseMutex”);

if (hMutex == NULL)

printf (“OpenMutex error: %d\n”, GetLastError());

Another process

opens handle to

existing mutex

Interprocess Communication 9

Synchronization Example:

Using Named Objects & Mutex

dwWaitResult = WaitForSingleObject (hMutex, 5000L); /* 5-second timeout */

switch (dwWaitResult) {

case WAIT_OBJECT_0: /* obtained mutex ownership */

try {

... write to database ...

}

finally {

if (!ReleaseMutex (hMutex)) { /* release mutex ownership */

... error handling ...

}

break;

case WAIT_TIMEOUT:

return FALSE;

case WAIT_ABANDONED: /* got ownership of abandoned mutex object */

return FALSE;

}

Interprocess Communication 10

Critical Section Objects

• Similar to mutex objects, but can be used only by threads of

the same process

– faster than mutex objects

• Can be owned by only one thread at a time

• Must declare CRITICAL_SECTION variable and initialize

using InitializeCriticalSection

• Thread use EnterCriticalSection to request

ownership and LeaveCriticalSection to release

ownership

• Use DeleteCriticalSection to release system

resources

Interprocess Communication 11

Semaphore Objects

• Limits number of concurrent accesses to a shared

resource

• Create using CreateSemaphore

• Other threads can open handle to existing semaphore
object using OpenSemaphore

– semaphore count decreases by one

• Use ReleaseSemaphore to increase semaphore

count

Interprocess Communication 12

Synchronization Example:

Using Semaphore Objects

HANDLE hSemaphore;

LONG cMax = 10;

hSemaphore = CreateSemaphore (NULL, /* no security attributes */

cMax, /* initial count */

cMax, /* maximum count */

NULL); /* unnamed semaphore */

if (hSemaphore == NULL)

... check for error ...
DWORD dwWaitResult;

dwWaitResult = WaitForSingleObject (hSemaphore, 0L);

switch (dwWaitResult) {

case WAIT_OBJECT_0:

... semaphore signalled ...

break;

case WAIT_TIMEOUT:

... semaphore nonsignalled ...

break;

}

Before accessing

shared resource

Create

semaphore

Interprocess Communication 13

Synchronization Example:

Using Semaphore Objects (cont’d)

if (!ReleaseSemaphore (

hSemaphore, /* semaphore handle */

1, /* increase count by one */

NULL)) { /* not interested in previous count */

... handle error ...

}

After accessing shared

resource, release semaphore

Interprocess Communication 14

Event Objects

• Useful for signaling thread when a particular event has

occurred

• State can be either signaled or non-signaled

• Create using CreateEvent

• Other threads can open a handle to existing event

object using OpenEvent

• Use PulseEvent function to set event object’s state

to signaled and then reset it to non-signaled after

releasing appropriate number of wait threads

Interprocess Communication 15

Example: Using Event Objects

• Event objects used to prevent several threads from

reading from shared memory buffer while master

thread is writing to it

Sets event object to non-signaled

... write to buffer ...

Resets event object to signaled

Shared

buffer

Master thread

Reader thread(s)
wait for own read event to be signaled

... read from buffer ...

set event object to signaled

Interprocess Communication 16

Using Event Objects: Master Thread

#define NUMTHREADS 4

HANDLE hGlobalWriteEvent;

void CreateEventsAndThreads (void) {

HANDLE hReadEvents [NumThreads], hThread;

DWORD i, IDThread;

if ((hGlobalWriteEvent = CreateEvent (NULL, TRUE, TRUE, “WriteEvent”)) == NULL)

/* error exit */

/* Create multiple threads and auto-reset event object for each thread */

for (i=1; i<=NUMTHREADS; i++) {

hReadEvents[i] = CreateEvent (NULL, FALSE, TRUE, NULL) ;
if (hReadEvents[i] == NULL) {

 /* error exit */
}
hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE) ThreadFunction,
 &hReadEvents[i], /* pass event handle */
 0, &IDThread);
if (hThread == NULL) {

 /* error exit */
}

}
}

Interprocess Communication 17

Master Thread (cont’d)

VOID WriteToBuffer(VOID) {
DWORD dwWaitResult, i;
if (! ResetEvent(hGlobalWriteEvent)) {

 /* error exit */
}
dwWaitResult = WaitForMultipleObjects(

 NUMTHREADS, hReadEvents, TRUE, INFINITE);
switch (dwWaitResult) {
 case WAIT_OBJECT_0:
 .
 . /* Write to shared buffer */
 .
 break;
 default:
 printf("Wait error: %d\n", GetLastError());
 ExitProcess(0);
}

Interprocess Communication 18

Master Thread (cont’d)

if (! SetEvent(hGlobalWriteEvent)) {
 /* error exit */
}
for(i = 1; i <= NUMTHREADS; i++)
 if (! SetEvent(hReadEvents[i])) {
 /* error exit */
 }
}

Interprocess Communication 19

Event Example: Reader Threads
VOID ThreadFunction(LPVOID lpParam) {
DWORD dwWaitResult, i;
HANDLE hEvents[2];

hEvents[0] = (HANDLE) *lpParam; /* thread's read event */
hEvents[1] = hGlobalWriteEvent;
dwWaitResult = WaitForMultipleObjects(
 2, /* number of handles in array */
 hEvents, /* array of event handles */
 TRUE, /* wait till all are signaled */
 INFINITE); /* indefinite wait */
switch (dwWaitResult) {
case WAIT_OBJECT_0:
 /* … Read from the shared buffer … */
 break;
 /* An error occurred. */
 default:

printf("Wait error: %d\n", GetLastError());
 ExitThread(0);
}
if (! SetEvent(hEvents[0])) {
 /* error exit */
}
}

Interprocess Communication 20

Interprocess Synchronization

• Multiple processes can have handles of same mutex,

semaphore, or event object for IPC

• Processes can share object handles using named

objects

• Child process created by CreateProcess can

inherit handle of mutex, event, or semaphore object
if SECURITY_ATTRIBUTES structure enables

inheritance

Interprocess Communication 21

Duplicating Handles

• DuplicateHandle function creates a duplicate

handle that can be used by another specified

process

– creating process must pass handle to other process

using interprocess communication

Interprocess Communication 22

Overlapped I/O

• Win32 API can do synchronous and

asynchronous I/O

• Synchronous I/O:

– returns only when I/O completes

• Asynchronous (overlapped) I/O:

– returns as soon as the call is issued

– process is signaled when I/O completes

– good for time-consuming I/O

Interprocess Communication 23

Pipes

• A pipe is a communication conduit with two ends

– a process with a handle to one end can communicate

with a process having a handle to the other end

• Can be:

– one-way: one end read-only; other end write-only

– two-way: both ends of the pipe can read or write

• Can be anonymous (unnamed) or named

Interprocess Communication 24

Anonymous Pipes

• Unnamed, one-way pipe that transfers data between related

processes

– parent and child process

– two child processes of the same parent

• Used for local communication only

• Use CreatePipe to create an anonymous pipe with two

handles

– read handle

– write handle

• After creating pipe, pass one end to another process;

usually through inheritance

Interprocess Communication 25

Anonymous Pipes (cont’d)

• Parent must communicate handle value to child:
– Parent specifies pipe handle to SetStdHandle before

creating child

– Child uses GetStdHandle to retrieve handle value when

it starts up

• Standard handles are

– standard input

– standard output

– standard error

Interprocess Communication 26

Reading From Anonymous Pipes

• To read from a pipe, use read handle in call
to ReadFile function

• ReadFile returns when

– an error occurs

– when the specified number of bytes has been

read

– when the write end of the pipe is closed

Interprocess Communication 27

Writing To Anonymous Pipes

• To write to a pipe, use write handle in call to
WriteFile

• WriteFile returns when

– an error occurs

– when the specified number of bytes has been written

– when the read end of the pipe is closed

• If pipe’s buffer is full and there are still bytes to
write, WriteFile does not return until some

other process or thread reads from pipe, making

more buffer space available

Interprocess Communication 28

Asynchronous I/O On Pipes

• Asynchronous (overlapped) I/O not

supported for anonymous pipes

– cannot use ReadFileEx and WriteFileEx

– overlapped parameter to ReadFile and

WriteFile ignored

Interprocess Communication 29

Redirecting Standard Output of Child to Pipe

• Call GetStdHandle to get current standard output handle

• Call CreatePipe to create anonymous pipe

• Call SetStdHandle to set standard output to write handle

of pipe

• Call CreateProcess to create child process which inherits

handles from parent

– child process use GetStdHandle to retrieve handles

• Call CloseHandle to close parent’s handle to write end of

pipe

• Call ReadFile function to read from pipe

– parent reads data written to standard output by child process

Interprocess Communication 30

Wait Functions

• WaitForSingleObject

– returns when state of specified object is signaled or when timeout

elapses

• WaitForMultipleObjects

– returns when state of one of specified objects is signaled or when

timeout elapses

• WaitForSingleObjectEx,
WaitForMultipleObjectsEx

– similar to first two, but can perform alertable wait when

fAlertable parameter is TRUE

• functions return when ReadFileEx or WriteFileEx completion

routine is queued for execution

	Windows 95/NT System Programming
	Main Topics
	Wait Functions
	Wait Functions
	Synchronization Object Overview
	Mutex Objects
	\376\377\000M\000u\000t\000e\000x\000 \000O\000b\000j\000e\000c\000t\000s\000 \000\(\000c\000o\000n\000t \031\000d\000\)
	Synchronization Example: Using Named Objects & Mutex
	Synchronization Example: Using Named Objects & Mutex
	Critical Section Objects
	Semaphore Objects
	Synchronization Example:Using Semaphore Objects
	\376\377\000S\000y\000n\000c\000h\000r\000o\000n\000i\000z\000a\000t\000i\000o\000n\000 \000E\000x\000a\000m\000p\000l\000e\000:\000U\000s\000i\000n\000g\000 \000S\000e\000m\000a\000p\000h\000o\000r\000e\000 \000O\000b\000j\000e\000c\000t\000s\000 \000\(\000c\000o\000n\000t \031\000d\000\)
	Event Objects
	Example: Using Event Objects
	Using Event Objects: Master Thread
	\376\377\000M\000a\000s\000t\000e\000r\000 \000T\000h\000r\000e\000a\000d\000 \000\(\000c\000o\000n\000t \031\000d\000\)
	\376\377\000M\000a\000s\000t\000e\000r\000 \000T\000h\000r\000e\000a\000d\000 \000\(\000c\000o\000n\000t \031\000d\000\)
	Event Example: Reader Threads
	Interprocess Synchronization
	Duplicating Handles
	Overlapped I/O
	Pipes
	Anonymous Pipes
	\376\377\000A\000n\000o\000n\000y\000m\000o\000u\000s\000 \000P\000i\000p\000e\000s\000 \000\(\000c\000o\000n\000t \031\000d\000\)
	Reading From Anonymous Pipes
	Writing To Anonymous Pipes
	Asynchronous I/O On Pipes
	Redirecting Standard Output of Child to Pipe
	Wait Functions

