

pdfmark Reference Manual

Technical Note #5150

Adobe Developer Technologies

Revised: November 10, 1999

bbc

Copyright 1993-1999 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part
of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a "PostScript printing device," "PostScript display
device," or similar item refers to a printing device, display device or item (respectively) that contains
PostScript technology created or licensed by Adobe Systems Incorporated and not to devices or
items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Acrobat Exchange, Distiller,
PostScript, and the PostScript logo are trademarks of Adobe Systems Incorporated.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the
United States and other countries. HP-UX is a registered trademark of Hewlett-Packard Company.
AIX and PowerPC are registered trademarks of IBM Corporation in the United States. ActiveX,
Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and other countries. UNIX is a registered trademark of The Open
Group. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no
warranty of any kind (express, implied, or statutory) with respect to this publication, and
expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third party rights

.

Version History

June 19, 1993 Tim Bienz First version.

January 26, 1994 Tim Bienz Updates and corrections.

5 December 1994 Tim Bienz 2.0 revisions.

7 April 1995 Tim Bienz Reorganized.

7 July 1995 Tim Bienz 2.1 revisions.

24 October 1996 Gary Staas 3.0 revisions.

14 February 1997 Gary Staas Minor revisions.

4 June 1997 Gary Staas Add headers for examples.

22 July 1997 Gary Staas Add link named action example.

5 November 1997 Gary Staas Add create base URI example.

13 January 1999 Gary Staas Update format. Add structure and supporting
commands. Add alternate image sample.

22 October 1999 Denise Stone Updated 4.05 version.

Version History

Acrobat
Developer FAQ

Acrobat
Distiller

Acrobat
 Interapplication
Communication

(IAC)

Getting Started Using the
Adobe Acrobat Software

Development Kit

Acrobat
FDF Toolkit

Plug-ins

Acrobat Core
API Reference

Acrobat Distiller
Parameters

Acrobat Distiller
API Reference

pdfmark
Reference

FDF Toolkit
Overview

Acrobat Digital
Signature API

Reference

Acrobat Forms
API Reference

Acrobat Search
API Reference

Acrobat Weblink API
Reference

PDF Reference
Manual

Acrobat
Glossary

Adobe Acrobat SDK
Contents Description

Acrobat SDK
Release Notes

Acrobat Capture
API Reference

Acrobat Catalog
API Reference

Acrobat PDF
Writer API
Reference

Other Plug-ins

Documentation Roadmap

Acrobat PDF
Library Overview

Acrobat API
Development

Samples
Roadmap

Acrobat Core
API Overview

Acrobat Plug-In
Developer’s Guide

FDF Toolkit
Reference

Acrobat IAC
Overview

Acrobat IAC
Reference

http://partners.adobe.com/asn/developer/acrosdk/DOCS/devfaq.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/devfaq.pdf

v

Contents

Chapter 1: Introduction

 9

1.1 Introduction 9

1.2 pdfmark Operator 10

1.3 Private Data 11

Chapter 2: Basic Syntax

 12

2.1 Annotations 12
Notes 12
Links 15
Custom Annotations 18

2.2 Bookmarks 19

2.3 Articles 22

2.4 Named Destinations 23

2.5 Pass-through PostScript Language Commands 25

2.6 Page Cropping 26

2.7 Info Dictionary 27

2.8 Catalog Dictionary 29

Chapter 3: Cos Objects

 31

3.1 Naming Objects with _objdef 31

3.2 Implicitly Named Objects 33

3.3 PUT 34

3.4 PUTINTERVAL 34

vi

3.5 CLOSE 35

Chapter 4: Logical Structure

 37

4.1 Structure Operators 40

4.2 Structure Tree Root 41
StRoleMap 41
StClassMap 42

4.3 Elements 42

4.4 Specifying Parents and Containers 43

4.5 Element Operators 44
StPNE 44
StBookmarkRoot 47
StPush 48
StPop 48
StPopAll 49

4.6 Specifying Element Content 49
StBMC 49
StBDC 50
EMC 51
StOBJ 51

4.7 Nesting Structure Elements 52

4.8 Attribute Objects 52
StAttr 52

4.9 Storing and Retrieving the Implicit Parent Stack 53
StStore 53
StRetrieve 54

4.10 EPS Considerations 54

Chapter 5: Support Commands

 56

5.1 Namespace Commands 56
NamespacePush 56
NamespacePop 57

vii

Chapter 6: Naming Graphics and Images

 58

6.1 Naming Graphics with BP and EP 58

6.2 Naming Images with the NI Command 62

Chapter 7: Specifying Destinations and Actions

 63

7.1 View Destinations 65

7.2 Goto Actions 68

7.3 GotoR Actions 68

7.4 Launch Actions 69

7.5 Article Actions 71

7.6 Custom Actions 73

7.7 Named Destinations 74

Chapter 8: Examples

 75

8.1 Define pdfmark So PostScript Interpreters Ignore pdfmarks
75

8.2 File Open Action 75

8.3 Info Dictionary 76

8.4 Crop All Pages 76

8.5 Annotations 77
Simple Note 77
Fancy Note 77
Private Data in Note 77
Movie or Sound Annotation 78
Simple Link (Old style, compatible with all Distiller
application versions) 78
Link that Launches Another File 78
Custom Link Action (URI Link for the Acrobat WebLink Plug-
in) 79
Custom Link Action (Named Action) 79
Custom Annotation Type 79
Putting a File’s Contents Into a Text Annotation. 80

viii

8.6 Crop This Page 80

8.7 Create Text for the Article “Now is the Time” 80
Continue Text for the Article “Now is the Time” 81

8.8 Named Destination 81

8.9 Article Containing Two Beads 82

8.10 Pass-through PostScript Language Code 82

8.11 Bookmarks 82
Bookmark with a URI as an Action 83

8.12 Putting a File’s Contents Into a Text Annotation 83

8.13 Using OBJ pdfmark to Add an Open Action to a PDF File 84

8.14 Using OBJ pdfmark to Create a Base URI 84

8.15 Using OBJ and PUT pdfmarks to Create an Alternate Image
84

8.16 Using OBJ, PUT, BP, and EP pdfmarks to Create an Acrobat
Form 86
Define __pdfMark__ so Anything Between BP and EP
pdfmarks Is Not Printed 86
Acrobat Form Definitions 86
Font Encoding Resource 88
Font Dictionaries 89

8.17 Forms Examples 90
PDFMarkPrefix 90
Define the AcroForm Dictionary at the Catalog of the
Document 91
Define the Widget Annotations, Which Are Also Field
Dictionaries for this Form 93

8.18 Structure Examples 97
Interrupted Structure 97
Independence of Logical and Physical Structure 99
Page Break Within Logical Structure 101
Logical Structure Out-of-order in Physical Structure 102

Appendix A: Changes Since Earlier Versions

 104

9

CHAPTER

1

Introduction

1.1

Introduction

The Acrobat

®

 Distiller

®

 application converts PostScript

®

language files into Portable Document Format (PDF) files.
PDF files can include special features such as notes, links,
bookmarks, articles, info dictionary entries, and page
cropping. This information is not normally present in a
PostScript language file and therefore cannot be
incorporated into the PDF file by the distilling process.

Note: The terms note, link, and bookmark are used in this
document in the same way as they are in the user interface of
Acrobat and Reader. These correspond, respectively, to the
text annotation, link annotation, and outline entry objects that
appear in a PDF file (see the latest version in the

Portable
Document Format Reference Manual

 for a description of
the PDF file format).

This document describes the syntax and use of the

pdfmark

 operator, which is used in PostScript language
files to represent PDF features.

pdfmark

 is present in
implementations of the PostScript Level 2 interpreter used
in the Distiller application. This document describes the
implementation of the

pdfmark

 operator that is present
in version 2.1 of the Distiller application. Use of

pdfmark

makes it possible for an Independent Software Vendor
(ISV) already supporting the PostScript language to
support PDF features without having to write PDF files
directly.

Note: It is extremely important to understand how pages in a PDF
document are numbered. The

pdfmark

 operator uses the
page’s sequence number. All pages in a document are

10

numbered sequentially; the first page in a document is
page 1. All page numbers mentioned in this note must be
specified using this sequence number, not the page number
as it appears on the printed page.

If you received this technical note without obtaining the
entire Acrobat Software Development Kit (SDK), you can
get the complete SDK by visiting:

http://partners.adobe.com/asn/developer/acrosdk/
main.html

1.2

pdfmark Operator

The

pdfmark

 operator takes as its arguments a mark
object (that is, a”[“ character), a variable number of key–
value pairs, and a name object. It does not return any
values. Each instance of the

pdfmark

 operator in a
PostScript language file is referred to as a

marker

.

The general syntax of the

pdfmark

 operator is:

[

...Various key–value pairs...

KIND pdfmark

KIND

 is a name specifying the kind of

pdfmark

.

To ensure that PostScript devices, such as printers, that do
not implement the

pdfmark

 operator can use files
containing that operator, the following PostScript
language code should be placed in the prolog of the
PostScript language file. It makes each marker a no-op if
the PostScript interpreter processing the file does not
implement the

pdfmark

 operator.

/pdfmark where

{pop} {userdict /pdfmark /cleartomark load put} ifelse

http://partners.adobe.com/asn/developer/acrosdk/main.html

11

1.3

Private Data

Some markers can accept arbitrary key–value pairs,
providing a way to put private data into PDF files. All keys
must be name objects. Unless otherwise stated, values
may be boolean, number, string, name, array, or
dictionary objects. Array elements must be boolean,
number, string, or name objects.

When specifying arbitrary key–value pairs, key names
must contain a specific prefix to ensure that they do not
collide with key names used by other developers. Contact
Adobe’s Developer Technologies group to obtain a prefix
to be used by your company or organization.

Note: The private key names in this technical note use the prefix
ADBE.

12

CHAPTER

2

Basic Syntax

This section describes the various forms of the

pdfmark

operator. In general, the key–value pairs used as operands
for the

pdfmark

 operator follow closely the key–value
pairs that appear in the PDF file.

2.1

Annotations

Annotation markers are used to create notes, links, and
custom annotations. Annotations are specified using the

pdfmark

 operator in conjunction with the name ANN.

Note: Prior to version 2.1 of the Distiller application, annotation
markers could only be used to create notes, and the Subtype
key was not supported. Link markers were used to create
links. It was not possible to create custom annotations.

2.1.1

Notes

The syntax for creating a note is:

[/Contents string

/Rect [llx lly urx ury]

/SrcPg pagenum

/Open boolean

/Color array

/Title string

/ModDate datestring

/Subtype string

/ANN pdfmark

13

Table 1

Note Attributes

Key Type Semantics

Contents

string (

Required

) Contains the note’s text string. The
maximum length of the

Contents

 string is 65,535
characters. The encoding and character set used is the
PDFDocEncoding (described in Appendix C in the

Portable Document Format Reference Manual)

 or
Unicode. If Unicode, the string must begin with
<FEFF>.

Rect

array (

Required

) An array of four numbers [

xll

,

yll

,

xur

,

yur

]
specifying the lower-left x, lower-left y, upper-right

x

,
and upper-right

 y

 coordinates—in user space—of the
rectangle defining the open note window.

SrcPg

integer (

Optional

) The sequence number of the page on which
the note appears. The first page in a document is page
1, not 0. If the

SrcPg

 key is present, the note marker
may be placed anywhere in the PostScript language
file. If omitted, the marker must occur within the
PostScript language description for the page on which
the note is to appear.

Open

boolean (

Optional

) If true, the note is open, that is, the text is
visible. If false, the note is closed, that is, displayed as
an icon. If omitted, the note has no Open key in the
PDF file, and the note is closed.

Color array (Optional) The background color of a note icon, the
title bar color of an open active note’s window, and
the window frame color of an inactive open note’s
window. The value is an array containing three
numbers, each of which must be between 0 and 1,
inclusive, specifying a color in the DeviceRGB color
space. See Section 7.11 in the Portable Document
Format Reference Manual for a description of this
color space. If omitted, a default color is used.

14

In addition to the keys listed in Table 1, “Note Attributes,”
notes may also specify arbitrary key–value pairs.

Title string (Optional) The note’s title. The encoding and character
set used is either PDFDocEncoding (as described in
Appendix C in the Portable Document Format
Reference Manual) or Unicode. If Unicode, the string
must begin with <FEFF>. For example, the Unicode
string for (ABC) is <FEFF004100420043>. Title has a
maximum length of 255 PDFDocEncoding characters or
126 Unicode values, although a practical limit of 32
characters is advised so that it can be read easily in the
Acrobat viewer.

ModDate string (Optional) The date and time the note was last
modified. It must be of the form:

(D:YYYYMMDDHHmmSSOHH'mm')

“D:” is an optional prefix. YYYY is the year. All fields
after the year are optional. MM is the month (01-12),
DD is the day (01-31), HH is the hour (00-23), mm are
the minutes (00-59), and SS are the seconds (00-59).
The remainder of the string defines the relation of
local time to GMT. O is either + for a positive
difference (local time is later than GMT) or − for a
negative difference. HH' is the absolute value of the
offset from GMT in hours, and mm' is the absolute
value of the offset in minutes. If no GMT information
is specified, the relation between the specified time
and GMT is considered unknown. Regardless of
whether or not GMT information is specified, the
remainder of the string should specify the local time.

Subtype name (Optional, supported in version 2.1 and higher of the
Distiller application) The annotation’ s PDF subtype.
Must either be omitted or /Text.

Table 1 Note Attributes

Key Type Semantics

15

Example 1 Notes

% Simple Note

[/Rect [75 586 456 663]

/Contents (This is an example of a note.)

/ANN pdfmark

% Fancy Note

[/Rect [75 425 350 563]

/Open true

/Title (John Doe)

/Contents (This is an example of a note. \nHere is some text

after a forced line break.

% This is another way to do line breaks.)

/Color [1 0 0]

/Border [0 0 1]

/ANN pdfmark

% Private data in Note

[/Contents (My unimaginative contents)

/Rect [400 550 500 650]

/Open false

/Title (My Boring Title)

% The following is private data. Keys within the private

% dictionary do not need to use the % organization’s prefix

% because the dictionary encapsulates them.

/ADBETest_MyInfo <<

/Routing [(Me) (You)]

/Test_Privileges << /Me /All /You /ReadOnly >>

>>

/ADBETest_PrivFlags 42

/ANN pdfmark

2.1.2 Links

Note: Prior to version 2.1 of the Distiller application, links could only
be specified by using the pdfmark operator in conjunction
with the name LNK, and without the Subtype key. This form is
supported in version 2.1 for backward compatibility, but
should no longer be used.

16

The syntax for creating a link is:

[/Rect [llx lly urx ury]

/Border [bx by c [d]]

/SrcPg pagenum

/Color array

/Subtype /Link

…Action-specifying key–value pairs…

/ANN pdfmark

Table 2 Link Attributes

Key Type Semantics

Rect array (Required) An array of four numbers [xll, yll, xur, yur]
specifying the lower-left x, lower-left y, upper-right x,
and upper-right y coordinates—in user space—of the
rectangle defining the link button.

Border array (Optional) The link’s border properties. Border is an
array containing three numbers and, optionally, an
array. All elements are specified in user space
coordinates.

If Border is of the form [bx by c], the numbers specify
the horizontal corner radius (bx), the vertical corner
radius (by), and the width (c) of the link’s border. The
link has a solid border.

If it is of the form [bx by c [d]], the fourth element (d)
is a dash array that specifies the lengths of dashes and
gaps in the link’s border.

The default value for Border is [0 0 1].

SrcPg integer (Optional) The sequence number of the page on which
the link is to appear. The first page in a document is
page 1, not 0. If the SrcPg key is present, the link
marker may be placed anywhere in the PostScript
language file. A link marker that does not contain this
key must occur within the PostScript language
description for the link’s source page.

17

In addition to the keys listed in Table 2, “Link Attributes,” a
link must contain key–value pairs that specify an action
such as traversing a link (see “Specifying Destinations and
Actions” for more information), and may also specify
arbitrary key–value pairs.

Example 2 Links

% Simple link (old style, compatible with all Distiller

% application versions)

[/Rect [70 650 210 675]

/Page 3

/View [/XYZ -5 797 1.5]

/LNK pdfmark

% Fancy link

[/Rect [70 550 210 575]

/Border [0 0 2 [3]]

/Color [0 1 0]

/Page /Next

/View [/XYZ -5 797 1.5]

/Subtype /Link

/ANN pdfmark

% Link

[/Rect [70 650 210 675]

/Border [16 16 1]

/Color [1 0 0]

/Page 1

/View [/FitH 5]

/Subtype /Link

/ANN pdfmark

Color array (Optional) The link’s border color. The value is an array
containing three numbers, each of which must be
between 0 and 1, inclusive, specifying a color in the
DeviceRGB color space. See Section 7.10 in the
Portable Document Format Reference Manual for a
description of this color space. If omitted, a default
color is used.

Subtype name (Required) The annotation’ s PDF subtype. Must be
/Link.

Table 2 Link Attributes

Key Type Semantics

18

% Link to a named destination

[/Rect [70 650 210 675]

/Border [16 16 1 [3 10]]

/Color [0 .7 1]

/Dest /MyNamedDest

/Subtype /Link

/ANN pdfmark

% Link that launches another file

[/Rect [70 600 210 625]

/Border [16 16 1]

/Color [0 0 1]

/Action /Launch

/File (test.doc)

/Subtype /Link

/ANN pdfmark

% Custom Link action (URI link for the Acrobat WebLink plug-

% in)

[/Rect [50 425 295 445]

/Action << /Subtype /URI /URI

(http://www.adobe.com) >>

/Border [0 0 2]

/Color [.7 0 0]

/Subtype /Link

/ANN pdfmark

2.1.3 Custom Annotations

Custom annotation support allows the creation of
arbitrary annotation types, such as video, sound, or
graphics.

The syntax for creating a custom annotation is:

[/Subtype string

…Appropriate key–value pairs…

/ANN pdfmark

19

In addition to the key–value pair listed in Table 3, “Custom
Annotation Attributes,” custom annotations may contain
arbitrary key–value pairs, which are interpreted as they
would be if a link marker was used (except that the
/Border attribute is not recognized).

Example 3 Custom Annotations

% Custom annotation type.

% The Acrobat viewers do not know how to interpret this

% annotation type.

% So this appears with an unknown annotation icon unless an

% installed plug-in can draw it.

[/Rect [400 435 500 535]

/Subtype /ADBETest_DummyType

/ADBETest_F8Array [0 1 1 2 3 5 8 13]

/ANN pdfmark

2.2 Bookmarks

A bookmark, known as an outline entry in PDF, is specified
by using the pdfmark operator in conjunction with the
name OUT.

The syntax for a bookmark marker is:

[/Title string

/Count int

…Action-specifying key–value pairs…

/OUT pdfmark

Table 3 Custom Annotation Attributes

Key Type Semantics

Subtype name (Required) The annotation’s PDF subtype. See Section
6.6 in the Portable Document Format Reference
Manual for more information.

20

In addition to the keys listed in Table 4, “Bookmark
Attributes,” a bookmark must contain key–value pairs that
specify an action. See “Specifying Destinations and Actions”
for more information.

Bookmark markers may occur anywhere in the PostScript
language file subject only to the ordering constraints
imposed by the Count key.

Table 4 Bookmark Attributes

Key Type Semantics

Title string (Required) The bookmark’s text. The encoding and
character set used is either PDFDocEncoding (as
described in Appendix C in the Portable Document
Format Reference Manual) or Unicode. If Unicode,
the string must begin with <FEFF>. For example, the
Unicode string for (ABC) is <FEFF004100420043>. Title
has a maximum length of 255 PDFDocEncoding
characters or 126 Unicode values, although a practical
limit of 32 characters is advised so that it can be read
easily in the Acrobat viewer.

Count integer (Required if the bookmark has subordinate
bookmarks) Specifies the number and visual
appearance of subordinate bookmarks, using the
following rules:

1. Bookmark markers must appear in sequential
order in the PostScript language file.

2. A bookmark with no subordinate bookmarks must
omit the Count key.

3. A bookmark with subordinate bookmarks (for
example, a chapter bookmark with several
subordinate section headings) must include the
Count key. The absolute value of this key is the
number of bookmarks immediately subordinate—that
is, excluding subordinates of subordinates. If the
value is positive, the parent bookmark is open; if
negative, the parent bookmark is closed. An open
bookmark shows its subordinates, while a closed
bookmark does not.

21

Example 4 Bookmarks

% Bookmarks

[/Count 2 /Page 1 /View [/XYZ 44 730 1.0] /Title (Open

Actions) /OUT pdfmark

[/Action /Launch /File (test.doc) /Title (Open test.doc) /OUT

pdfmark

[/Action /GoToR /File (test.pdf) /Page 2 /View [/FitR 30 648

209 761]

/Title (Open test.pdf on page 2) /OUT pdfmark

[/Count 2 /Page 2 /View [/XYZ 44 730 1.0] /Title (Fixed Zoom)

/OUT pdfmark

[/Page 2 /View [/XYZ 44 730 2.0] /Title (200% Magnification) /

OUT pdfmark

[/Count 1 /Page 2 /View [/XYZ 44 730 4.0] /Title (400%

Magnification) /OUT pdfmark

[/Page 2 /View [/XYZ 44 730 5.23] /Title (523% Magnification)

/OUT pdfmark

[/Count 3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of

Contents #1) /OUT pdfmark

[/Page 1 /View [/XYZ 44 730 1.0] /Title (Page 1 - 100%) /OUT

pdfmark

[/Page 2 /View [/XYZ 44 730 2.25] /Title (Page 2 - 225%) /OUT

pdfmark

[/Page 3 /View [/Fit] /Title (Page 3 - Fit Page) /OUT pdfmark

[/Count -3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of

Contents #2) /OUT pdfmark

[/Page 1 /View [/XYZ null null 0] /Title (Page 1 - Inherit) /

OUT pdfmark

[/Page 2 /View [/XYZ null null 0] /Title (Page 2 - Inherit) /

OUT pdfmark

[/Page 3 /View [/XYZ null null 0] /Title (Page 3 - Inherit) /

OUT pdfmark

[/Count 1 /Page 0 /Title (Articles) /OUT pdfmark

[/Action /Article /Dest (Now is the Time) /Title (Now is the

Time) /OUT pdfmark

%Bookmark with a URI as an action

[/Count 0 /Title (Adobe's Home page)

/Action << /Subtype /URI /URI (http://www.adobe.com)>> /OUT

pdfmark

22

2.3 Articles

Articles consist of a title and a list of rectangular areas
called beads. Each bead is specified by using the pdfmark
operator in conjunction with the name ARTICLE. Beads
are added to the article in the order that they are
encountered in the PostScript language file.

The syntax for a bead marker is:

[/Title string

/Rect [llx lly urx ury]

/Page pagenum

/ARTICLE pdfmark

Table 5 Article Bead Attributes

Key Type Semantics

Title string (Required) The title of the article to which a bead
belongs. The encoding and character set used is either
PDFDocEncoding (as described in Appendix C in the
Portable Document Format Reference Manual) or
Unicode. If Unicode, the string must begin with
<FEFF>. For example, the Unicode string for (ABC) is
<FEFF004100420043>. Title has a maximum length of
255 PDFDocEncoding characters or 126 Unicode values,
although a practical limit of 32 characters is advised so
that it can be read easily in the Acrobat viewer.

Rect array (Required) An array of four numbers [xll, yll, xur, yur]
specifying the lower-left x, lower-left y, upper-right x,
and upper-right y coordinates—in user space—of the
rectangle defining the bead.

Page integer (Optional) The sequence number of the page on which
the bead is located. A bead marker that contains the
optional Page key may be placed anywhere in the
PostScript language file. A bead marker that does not
contain this key must occur within the PostScript
language description for the page on which the article
bead is to appear.

23

In addition to the keys listed in Table 5, “Article Bead
Attributes,” the first bead in an article may also specify
arbitrary key–value pairs. Suggested keys are Subject,
Author, and Keywords.

Note: Articles do not support dictionaries as values in arbitrary key–
value pairs.

Example 5 Article

% Article containing two beads

 [/Title (Now is the Time)

/Author (John Doe)

/Subject (Coming to the aid of your country)

/Keywords (Time, Country, Aid)

/Rect [225 500 535 705]

/Page 2

/ARTICLE pdfmark

[/Title (Now is the Time)

/Rect [225 500 535 705]

/Page 3

/ARTICLE pdfmark

2.4 Named Destinations

The destination of a bookmark or link may be specified as
a name instead of as a page number and view. When the
Acrobat viewer encounters such a named destination, it
looks through the PDF file’s table of named destinations
to determine the page and view corresponding to the
name. The advantage of using named destinations,
particularly for cross-document links, is that it allows the
document containing a link’s destination to be revised
asynchronously from the document containing the link’s
source, eliminating concern over whether link
destinations moved to different pages. A named
destination is specified by using the pdfmark operator in
conjunction with the name DEST.

The syntax for a named destination marker is:

[/Dest name

/Page pagenum

/View destination

/DEST pdfmark

24

In addition to the keys listed in Table 6, “Named
Destination Attributes,” named destinations may also
specify arbitrary key–value pairs.

In Acrobat 3.0, named destinations may be appended to
URLs, following a “#” character, as in http://
www.adobe.com/test.pdf#nameddest=name. The Acrobat
viewer displays the part of the PDF file specified in the
named destination.

Note: The 2.0 and 2.1 versions of the Acrobat products supported a
maximum of approximately 4000 named destinations in a
PDF file. The 3.0 version removed this limit.

Example 6 Named Destination

[/Dest /MyNamedDest

/Page 1

/View [/FitH 5]

/DEST pdfmark

Table 6 Named Destination Attributes

Key Type Semantics

Dest name (Required) The destination’s name.

Page integer (Optional) The sequence number of the destination
page. If present, the named destination marker may
be placed anywhere in the PostScript language file. If
omitted, the marker must occur within the PostScript
language description for the destination page.

View array (Optional) The view to display on the destination
page. If omitted, defaults to a null destination (lower
left corner of the page at a zoom of 100%). See “View
Destinations” for information on specifying a view
destination.

25

2.5 Pass-through PostScript Language Commands

Blocks of PostScript language code can be specified by
using the pdfmark operator in conjunction with the name
PS. Any PostScript language code specified in this manner
is copied directly into the PDF file without being distilled,
and is ignored when the PDF file is viewed using Acrobat
or Reader. It is only used when the PDF file is printed to a
PostScript printer.

Note: Pass-through PostScript language code should be used only
when PDF does not provide another way to achieve the same
result.

The syntax for specifying a block of pass-through
PostScript language code is:

[/DataSource string or file

/Level1 string or file

/PS pdfmark

This marker must be placed in the PostScript language
program at the point where the block of code is to be
executed during printing.

Example 7 Pass-through PostScript Language Code

% Note that this is not an appropriate use of the PS marker,

% since PDF supports commands to draw lines

[/DataSource (0 0 moveto 100 700 lineto stroke)

/PS pdfmark

Table 7 Pass-through PostScript Language Command Attributes

Key Type Semantics

DataSource string
or file

(Required) The PostScript language commands to copy
into the PDF file. See the discussion of the file operator
in the PostScript Language Reference Manual, Third
Edition for information on specifying files.

Level1 string
or file

(Optional) PostScript Level 1 language code that is
used instead of the value of the DataSource key when
printing to a printer that supports only PostScript
Level 1.

26

2.6 Page Cropping

Page cropping is specified by using the pdfmark operator
in conjunction with the names PAGES and PAGE. PAGES
specifies the default page cropping for all pages in a
document, while PAGE specifies the page cropping only
for the current page.

The syntax for specifying the default page cropping for a
document is:

[/CropBox [llx lly urx ury]

/PAGES pdfmark

This marker can be placed anywhere in the PostScript
language program, but it is recommended that it be
placed at the beginning of the file, in the Document
Setup section between the document structuring
comments %%BeginSetup and %%EndSetup, before any
marks are placed on the first page.

The syntax for specifying a non-default page cropping for
a particular page in a document is:

[/CropBox [llx lly urx ury]

/PAGE pdfmark

This marker must be placed before the showpage
operator for the page it is to affect. It is recommended
that it be placed before any marks are made on the page.
For example, this marker affects only the first page of a
document if it is placed before any marks are made on the
first page.

27

Example 8 Page Cropping

% Crop all pages

[/CropBox [54 403 558 720] /PAGES pdfmark

% Crop this page

[/CropBox [0 0 612 792] /PAGE pdfmark

2.7 Info Dictionary

A document’s Info dictionary contains key–value pairs
that provide various pieces of information about the
document. Info dictionary information is specified by
using the pdfmark operator in conjunction with the name
DOCINFO.

The syntax for specifying Info dictionary entries is:

[/Author string

/CreationDate string

/Creator string

/Producer string

/Title string

/Subject string

/Keywords string

/ModDate string

/DOCINFO pdfmark

Table 8 Page Cropping Attributes

Key Type Semantics

CropBox array (Required) The location and size of the viewable area
of the page. CropBox is an array of four numbers [xll,
yll, xur, yur] specifying the lower-left x, lower-left y,
upper-right x, and upper-right y coordinates—
measured in default user space—of the rectangle
defining the cropped page. The minimum allowed
page size is 1×1 inch (72×72 units in the default user
space coordinate system) and the maximum allowed
page size is 45×45 inches (3240×3240 units in the
default user space coordinate system).

28

Info dictionary markers may occur anywhere in the
PostScript language file.

Table 9 Info Dictionary Attributes

Key Type Semantics

Author string (Optional) The document’s author.

CreationD
ate

string (Optional) The date the document was created. See
the description of the ModDate key for information
on the string’s format.

Creator string (Optional) If the document was converted to PDF
from another form, the name of the application that
originally created the document.

Producer string (Optional) The name of the application that
converted the document from its native form to PDF.

Title string (Optional) The document’s title.

Subject string (Optional) The document’s subject.

Keywords string (Optional) Keywords relevant for this document.
These are used primarily in cross-document searches.

ModDate string (Optional) The date and time the document was last
modified. It should be of the form:

(D:YYYYMMDDHHmmSSOHH'mm')

“D:” is an optional prefix. YYYY is the year. All fields
after the year are optional. MM is the month (01-12),
DD is the day (01-31), HH is the hour (00-23), mm are
the minutes (00-59), and SS are the seconds (00-59).
The remainder of the string defines the relation of
local time to GMT. O is either + for a positive
difference (local time is later than GMT) or − for a
negative difference. HH' is the absolute value of the
offset from GMT in hours, and mm' is the absolute
value of the offset in minutes. If no GMT information
is specified, the relation between the specified time
and GMT is considered unknown. Regardless of
whether or not GMT information is specified, the
remainder of the string should specify the local time.

29

In addition to the keys listed in Table 9, “Info Dictionary
Attributes,” arbitrary keys can be specified. Values must be
string objects.

Example 9 Info Dictionary Entries

[/Title (My Test Document)

/Author (John Doe)

/Subject (pdfmark 3.0)

/Keywords (pdfmark, example, test)

/Creator (Hand Programmed)

/ModificationDate (D:19940912205731)

/ADBETest_MyKey (My private information)

/DOCINFO pdfmark

2.8 Catalog Dictionary

A document’s Catalog dictionary contains key–value pairs
that provide various pieces of information about the
document. The following Catalog dictionary information
can be set using the pdfmark operator:

• The action that occurs when the file is opened.

• The way the document is displayed when it is opened.
The choices allow the display of only the document,
the document plus thumbnail images, the document
plus bookmarks, or just the document in full screen
mode.

Catalog dictionary information is specified by using the
pdfmark operator in conjunction with the name
DOCVIEW.

The syntax for specifying Catalog dictionary entries is:

[/PageMode name

…Action-specifying key–value pairs…

/DOCVIEW pdfmark

30

In addition to the keys listed in Table 10, “Catalog
Attributes,” a Catalog that contains an open action must
have additional key–value pairs specifying the action. See
“Specifying Destinations and Actions” for information.

Catalog dictionary markers may occur anywhere in the
PostScript language file.

Example 10 Catalog Dictionary Entries

[/PageMode /UseOutlines

/Page 2 /View [/XYZ null null null]

/DOCVIEW pdfmark

Table 10 Catalog Attributes

Key Type Semantics

PageMode name (Optional) Specifies how the document is displayed
when it is opened. Must be one of the following:

UseNone — Open the document, displaying neither
bookmarks nor thumbnail images.

UseOutlines — Open the document and display
bookmarks.

UseThumbs — Open the document and display
thumbnail images.

FullScreen — Open the document in full screen
mode.

The default value is UseNone.

31

CHAPTER 3

Cos Objects

Cos objects are the building blocks of PDF files. Version
3.0 of the Acrobat Distiller application adds the capability
of defining composite (array, dictionary, and stream) Cos
objects directly. A PostScript language program can create
Cos objects, name them, and create indirect references to
them in other objects by using these names. Cos objects
are created using the pdfmark operator in conjunction
with the name OBJ.

3.1 Naming Objects with _objdef

The syntax for specifying a Cos object is:

[/_objdef {OBJNAME}

/type name

/OBJ pdfmark

Table 11 Cos Object Attributes

Key Type Semantics

_objdef special (Required) The name of the Cos object. Must be
enclosed by curly braces, as in {myobjectname}.

Note A Cos object name is not a standard name object,
that is, it does not start with a slash “/”.

type name (Required) The type of Cos object. Must be one of the
following:

array — Create an array.

dict — Create a dictionary.

stream — Create a stream.

32

The /_objdef {OBJNAME} key–value pair can also be added
to the following pdfmark commands:

• ANN — annotation

• BP — encapsulated graphic

• DEST — destination

• LNK — link

• NI — encapsulated image

• PS — embedded PostScript

• StPNE — structure element

Note: The name given by _objdef exists only during the distillation
process and has no relationship to any identifier created in
the output PDF file.

All the Cos objects created with these pdfmark commands
are dictionaries. This allows names to be given to other
objects created by pdfmark operators, such as
annotations. Simply prefix the object’s pdfmark definition
with a /_objdef {OBJNAME} key–value pair:

[/_objdef {OBJNAME}

...pdfmark operator that creates object...

Example 11 shows how a text annotation can be created
and named for later reference.

Example 11 Naming a Text Annotation

[/_objdef {TextAnnot} /Contents (Added text annot)

/Rect [200 200 300 300] /Subtype /Text /ANN pdfmark

Cos objects created with an OBJ pdfmark can be used to
define other Cos objects. An OBJNAME in curly braces can
be passed to a pdfmark operator as the value in a key–
value pair or as an element in an array. In this case, the
Distiller program places an indirect reference to that
object in the PDF file.

33

Example 12 contains a pdfmark to create a text
annotation on the current page with extra keys in the
annotation dictionary, /MyPrivateAnnotArrayData and
/MyPrivateAnnotDictData, with values that are indirect
references to the array and dictionary objects created by
the previous pdfmark entries.

Example 12 pdfmarks Referencing Cos Objects

[/_objdef {myarray} /type /array /OBJ pdfmark

[/_objdef {mydict} /type /dict /OBJ pdfmark

[

/MyPrivateAnnotArrayData {myarray}

/MyPrivateAnnotDictData {mydict}

/SubType /Text

/Rect [500 500 550 550]

/Contents (Here is a text annotation)

/ANN pdfmark

Note: Names defined by _objdef are in the namespace governed by
the stack operators NamespacePush and NamespacePop,
defined in “Namespace Commands”.

3.2 Implicitly Named Objects

In addition to named Cos objects created by the OBJ
pdfmark, there are several implicitly named objects:

• {Catalog} — the PDF file’s Catalog dictionary

• {DocInfo} — the PDF file’s Info dictionary

• {PageN} — the dictionary for page N (where N is a
positive integer)

• {ThisPage} — the dictionary for the current page being
processed in the PostScript stream

• {PrevPage} — the dictionary for the page before the
current page

• {NextPage} — the dictionary for the page after the
current page

To put information in composite objects created with OBJ,
use the PUT, PUTINTERVAL, or CLOSE pdfmark names.

34

3.3 PUT

The pdfmark operator in conjunction with the name PUT
allows information to be added to Cos objects created
with the OBJ pdfmark operator.

The syntax for PUT has several forms, depending on the
composite object added to:

[{ARRAYNAME} index value /PUT pdfmark

[{DICTNAME} <<key1 value1...>> /PUT pdfmark

[{STREAMNAME} string /PUT pdfmark

[{STREAMNAME} file /PUT pdfmark

The object name is an implicitly defined name, such as
{Catalog} or {Page33}, or was defined previously in either
an OBJ pdfmark or /_objdef {OBJNAME} key–value pair in
another pdfmark.

For array Cos objects, PUT inserts the value argument at
the location index. Indices start at 0, and the array grows
automatically to hold the largest index specified.
Unspecified entries are made NULL objects.

For dictionary Cos objects, PUT adds the key–value pairs
specified as arguments.

For stream Cos objects, PUT concatenates the data
provided to the stream object. The source of stream data
may be either a string or a file. For a file source, file is the
PostScript file entity, defined by the PostScript file
operator. Stream data is always compressed using a
lossless method (either LZW or ZIP, depending on the
compatibility level set for the Distiller program).

3.4 PUTINTERVAL

The pdfmark operator in conjunction with the name
PUTINTERVAL adds multiple entries to an array object,
starting at an index.

The syntax for PUTINTERVAL is:

[ARRAYNAME} index [value1 ... valuen] /PUTINTERVAL pdfmark

The array is resized if necessary to hold the objects added.

35

3.5 CLOSE

The pdfmark operator in conjunction with the name
CLOSE closes a stream object created by pdfmark.

The syntax for CLOSE is:

[{STREAMNAME} /CLOSE pdfmark

The named stream object is closed and written to the PDF
file. The name is still valid and may be referenced by other
objects, but it can no longer be written to. When the
Distiller application completes writing a PDF file, any
open streams are closed and written automatically.

Example 13 shows how to create and reference Cos
objects with pdfmark.

Example 13 Creating Cos Objects with pdfmark

% Create composite objects

[/_objdef {myarrayname} /type array /OBJ pdfmark

[/_objdef {mydictname} /type dict /OBJ pdfmark

[/_objdef {mystreamname} /type stream /OBJ pdfmark

% Add values to objects

% insert 132 at location 0

[{myarrayname} 0 132 /PUT pdfmark

% insert key–value pair into dictionary

[{mydictname} << /TheKey 366 >> /PUT pdfmark

% insert string into stream object

[{mystreamname} (any string) /PUT pdfmark

% Use predefined named objects

% insert key–value pair into Catalog

[{Catalog} << /Answer 42 >> /PUT pdfmark

% insert key–value pair into Page 25’s dictionary

[{Page25} << /SpecialKey (special string) >> /PUT pdfmark

% insert key–value pair into the current page’s dictionary

[{ThisPage} << /NewKey (new string) >> /PUT pdfmark

% Create an annotation with a name and add to it

% create text annotation

[/_objdef {MikesAnnot} /Contents (a simple text annot)

/Rect [100 100 200 200] /Subtype /Text /ANN pdfmark

36

% add another key to this text annotation

[{MikesAnnot} << /AnotherKey (another string value) >> /PUT

pdfmark

Note: A PostScript language program can make an object
reference {foo} before defining the object {foo}. If {foo} is
never defined, it is left as an unresolved reference in the xref
table. Hence any consumer of such a PDF file must be able
to handle unresolved references.

37

CHAPTER 4

Logical Structure

In Version 1.3, PDF files can contain structure trees giving
a logical structure to the information in a document. This
section defines the structure suite used in conjunction
with the pdfmark operator that can be used to specify
logical structure within PDF files.

The facilities for describing logical structure in PDF are
described in Section 6.17 in the Portable Document
Format Reference Manual, Version 1.3. The uses of
pdfmark specified here correspond closely to the
constructs presented there. You should be familiar with
these facilities for logical structure.

The structure suite has an implicit parent stack of
elements whose top item is the parent for any created
element and content. The structure of the tree is thus
determined by pushing elements on this stack and adding
children.

Example 14 gives a flavor of the structure suite. The
example shows an entire structure tree, consisting of one
section containing two paragraphs. It illustrates both how
to create the tree structure and how the structure is
related to the page content of the PDF file. Example 15
shows the parts of the output PDF file that result from the
PostScript language code.

Example 14 A Simple Structure

% One section with two paragraphs, all on one page.

% On the first page:

% Start a section with the unnamed Structure Tree as parent.

% Push the Section element onto the implicit parent stack as

% current

38

% implicit parent.

[/Subtype /Section

/StPNE pdfmark

% Start a paragraph with the Section as implicitly-specified

% parent.

% Push the Paragraph element on top of the implicit parent

% stack as the current implicit parent.

[/Subtype /P

/StPNE

pdfmark

% Begin the marked content holding the text of the

% first paragraph. It is implicitly added to the Paragraph

% element.

[/StBMC pdfmark

% [PostScript code for the contents of the first paragraph

% goes % here.]

% End the marked content holding the text of the first

% paragraph.

[/EMC pdfmark

% Pop the Paragraph element off the implicit parent stack.

% This exposes the Section element as implicit parent again.

[/StPop pdfmark

% And now for the second paragraph:

[/Subtype /P

/StPNE

pdfmark

[/StBDC pdfmark

% [PostScript code for the contents of the second paragraph

% goes % here.]

[/EMC pdfmark

% We're being tidy by popping both the second Paragraph

% element and the Section element off the stack. We could have

% left everything hanging at the end of the document, or used

% [/StPopAll pdfmark.

[/StPop pdfmark

[/StPop pdfmark

39

Example 15 PDF Output Resulting from Code in Example 14

% [This example is for illustration only. The PDF code

% actually produced by Adobe Acrobat Distiller application

% may differ.]

% In the Catalog dictionary, under the key StructTreeRoot,

% the % following dictionary is entered as object 3 0:3 0 obj

<</Type /StructTreeRoot

% The Section element is the only kid.

/K [4 0 R]

/ParentTree 100 0 R

>> endobj

% The number tree that locates structure parents of marked

% content.

100 0 obj<<

/Nums [0 101 0 R]

>> endobj

% Structure parents for page 1.

101 0 obj[5 0 R 6 0 R] endobj

% End of parent tree objects.

% As object 4 0, the following dictionary representing the

% Section element:

4 0 obj

<</Type /StructElement

/S /Section

% Parent link, refers back to the dictionary representing the

% Structure Tree Root.

/P 3 0 R

% The Section element has two Paragraph elements as kids.

/K [5 0 R 6 0 R]

>> endobj

% Object 5 0, the first Paragraph element

5 0 obj

<</Type /StructElement

/S /P

/P 4 0 R

% Page in whose content stream integer Marked Content ID’s

% denote Kids

/Pg 10 0 R

/K [0]

>> endobj

% Object 6 0, the second Paragraph element

40

6 0 obj

<</Type /StructElement

/S /P

/P 4 0 R

% Page in whose content stream integer Marked Content ID’s

% denote Kids

/Pg 10 0 R

/K [1]

>> endobj

% Object 10 0, the Page object for the page on which both

% paragraphs are marked. Only the relevant entries in the

% dictionary are shown.

% The Resources dictionary of the Contents stream of the page.

<</StructParents 0

>>

% Inside the Contents stream of the page.

/P <</MCID 0>> BDC

% [Paragraph 1 content marking goes here.]

EMC

/P <</MCID 1>> BDC

% [Paragraph 2 content marking goes here]

EMC

4.1 Structure Operators

This section lists the names used in conjunction with the
pdfmark operator that make up the structure suite.

• “StRoleMap” adds entries to the role map.

• “StClassMap” adds entries to the class map.

• “StPNE” creates a new structure element.

• “StBookmarkRoot” creates a root bookmark for a
structure bookmark tree.

• “StPush” pushes an existing element onto the implicit
parent stack.

• “StPop” pops an element off the implicit parent stack.

• “StPopAll” completely empties the implicit parent
stack.

• “StBMC” indicates the beginning of marked content.

41

• “StBDC” indicates the beginning of marked content
with a dictionary.

• “EMC” delimits the end of marked content.

• “StOBJ” adds an existing PDF object as part of an
element’s content.

• “StAttr” enables the attachment of attribute objects to
elements.

• “StStore” saves the current state of the implicit parent
stack.

• “StRetrieve” restores the implicit parent stack from a
saved state.

Most of these names are directly related to the features
of the logical structure PDF facility, but some only
manipulate the state of the PDF creation process, without
corresponding to any particular output. The descriptions
are grouped functionally by the logical structure feature
or process state that they control.

Section 4.2 through Section 4.9 fill in the details of the
structure suite. “Structure Examples” gives a variety of
usage examples.

4.2 Structure Tree Root

The Acrobat Distiller application automatically creates a
new Structure Tree Root the first time it creates a new
element with “StPNE”.

The following two names (StRoleMap and StClassMap)
can be used in conjunction with pdfmark to add
information to the Structure Tree Root.

4.2.1 StRoleMap

StRoleMap adds entries to the role map of the Structure
Tree Root. If the Structure Tree Root does not already
exist, it is created. The dictionary entries added are
provided as key–value pairs with StRoleMap. A role map
dictionary is created for the Structure Tree Root if one

42

does not already exist. A given key–value pair always
modifies the role map, even if the key is already in the
dictionary, even for a single invocation of StRoleMap.

The syntax for adding entries to a role map is:

[/<new element subtype name>

/<standard structural subtype name>

...

/<new element subtype name>

/<standard structural subtype name>

/StRoleMap pdfmark

4.2.2 StClassMap

StClassMap behaves like StRoleMap, except that it adds
entries to the class map of the Structure Tree Root, rather
than the role map.

The syntax for adding entries to a class map is:

[/<class name> {<attribute object name>}

...

/<class name> {<attribute object name>}

/StClassMap pdfmark

The <attribute object name> can be any name defined
with _objdef, but must represent either a dictionary or
stream PDF object. You can use _objdef to associate an
object with a name in a variety of ways, as noted in
“Naming Objects with _objdef” and “Implicitly Named
Objects”.

4.3 Elements

The structure suite provides several commands concerned
with creating elements and linking them into Structure
Trees. All element creation operators share the common
set of attributes in Table 12, “Common Element Attributes”.

43

Table 12 Common Element Attributes

4.4 Specifying Parents and Containers

pdfmarks that create elements or element content require
specification of the parent (in the case of elements) or the
containing element (in the case of element content).
Many applications of the structure suite are expected to
have an element structure conforming to the physical
structure within the document. Since nesting structures
are easily processed in terms of a runtime stack, the
structure suite maintains an implicit parent stack whose
top item serves as the current implicit parent for element
and content creation operators. The items on the stack
can be either elements or the Structure Tree Root.

pdfmark operators that create an element use the
element on the top of the processing application’s implicit
parent stack as the new element’s parent. If the
processing application’s implicit parent stack is empty, the
document’s Structure Tree Root is made the parent; the
Structure Tree Root is created if it does not already exist.

Some operators specify an element but cannot accept the
Structure Tree Root as the implicit argument. These
commands are in error if the implicit parent stack is empty

Key Type Semantics

Subtype name (Required) The element type, such as Link or
Section.

Title string (Optional) A human-readable name for the
particular element.

Alt string (Optional) An alternate representation of the
element’s contents as human-readable text.

ID string (Optional) A unique identifier for the element. The
identifier must be unique within the document in
which the element occurs. It is an error to specify
an element with the same ID as an existing
element in the same tree.

Class name (Optional) The class name to be associated with
the element.

44

when they are encountered or if the top item on the stack
is the Structure Tree Root rather than an element. These
cases are noted in the command descriptions.

4.5 Element Operators

4.5.1 StPNE

StPNE (“Push New Element”) creates a new element with
the element on the top of the implicit parent stack as its
parent. If the implicit parent stack is empty, the Structure
Tree Root is pushed onto the stack and used as the parent.
If there is no Structure Tree Root, one is created, pushed
onto the stack, and immediately used as the parent.

The syntax for a creating a new element is:

[/Subtype name

/_objdef {OBJNAME}

/Title string

/Alt string

/ID string

/Class name

/At integer

/Bookmark dictionary

/StPNE pdfmark

The dictionary in an invocation of StPNE may contain the
keys given in Table 12, “Common Element Attributes”,
Table 13, “Specifying Position Within a Container”, and
Table 14, “Specifying a bookmark”.

The keys in Table 12 specify element attributes.

A new element is added to its parent at the index
specified with the At key in Table 13. The newly-created
element is pushed onto the implicit parent stack.

To allow subsequent pdfmark operators to refer to the
element being created, StPNE may also take the key
_objdef, defined in “Naming Objects with _objdef”. Once an
element is named, it can be referenced with the E key,
described in Table 17, “Referring to an Existing Element or
Structure Tree Root”.

45

A bookmark can be automatically generated for an
element using the Bookmark key in Table 14, “Specifying a
bookmark”. The key’s value is a bookmark dictionary,
which may contain most of the keys of the OUT pdfmark.
The bookmark dictionary contains the Title and Open keys
described in Table 15, “Bookmark dictionary”, which set the
bookmark’s title and open state.

The bookmark dictionary may also contain the key-value
pairs that specify an action in Table 22, “Action Types”.
(See “Specifying Destinations and Actions” for more
information on actions.) If an action is specified, the
element is added to the structure bookmark subtree
unconditionally. If none of these action keys are present,
the bookmark’s action is to go to either the first page
where a marked content is a kid of this element or a kid in
one of its descendant elements.

If the Bookmark key is present (even with an empty
dictionary), this element is added to the Structured
Bookmark subtree. Example 16 defines a bookmark for an
element.

Example 16 A Bookmark for a Structural Element

[…other /StPNE key-value pairs…

/Bookmark

<<

/Title (an element in my structure)

/Open true

>>

/StPNE pdfmark

46

Table 13 Specifying Position Within a Container

Table 14 Specifying a bookmark

Table 15 Bookmark dictionary

Key Type Semantics

At integer (Optional) Index at which to insert this item within
its parent. If omitted, the child item is added as the
last child of its parent, retaining all existing items
in their original positions. If less than or equal to
zero, the new item becomes the first child of its
parent. If greater than or equal to the current
number of children of the intended parent, the
new item becomes the last element of its parent. If
the index is any other number, the item is inserted
at that index within the container, and all items
that had indices greater than or equal to the given
index are shifted to the position with index one
greater. An item may be an element, marked
content, or a PDF object.

Key Type Semantics

Bookmark dictionary (Optional) Specifies a bookmark that is generated
for this structural element. Table 15, “Bookmark
dictionary” describes this dictionary.

Key Type Semantics

Title string (Optional) Bookmark title. The encoding and
character set used is either PDFDocEncoding (as
described in Appendix C in the Portable
Document Format Reference Manual) or
Unicode. If Unicode, the string must begin with
<FEFF>. For example, the Unicode string for (ABC)
is <FEFF004100420043>. Title has a maximum
length of 255 PDFDocEncoding characters or 126
Unicode values, although a practical limit of 32
characters is advised so that it can be read easily in
the Acrobat viewer.

If this key is absent, the title is the title of the
element or SubType.

47

4.5.2 StBookmarkRoot

StBookmarkRoot creates the root bookmark for structure
bookmarks added by a StPNE with a Bookmark key. It
contains the Title and Open keys in Table 16, “Specifying a
bookmark tree root”. It may also contain the action keys in
Table 22, “Action Types”; if none of these keys are present,
the bookmark root has no action associated with it. An
operator with StBookmarkRoot must appear before any
StPNE with a Bookmark key, otherwise the default
(“Untitled”, closed, no action) is used for the structured
bookmark subtree.

Example 17 shows a StBookmarkRoot pdfmark.

Example 17 Structure Bookmark Tree Root

[/Title (My structure tree)

/Open true

/StBookmarkRoot pdfmark

Table 16 Specifying a bookmark tree root

Open boolean (Optional) If true, the bookmark is open, that is, its
children are visible. If false, the bookmark is closed.
If this key is absent, the bookmark is closed.

Key Type Semantics

Title string (Optional) Bookmark title. The encoding and
character set used is either PDFDocEncoding (as
described in Appendix C in the Portable
Document Format Reference Manual) or
Unicode. If Unicode, the string must begin with
<FEFF>. For example, the Unicode string for (ABC)
is <FEFF004100420043>. Title has a maximum
length of 255 PDFDocEncoding characters or 126
Unicode values, although a practical limit of 32
characters is advised so that it can be read easily in
the Acrobat viewer.

If this key is absent, the title is “Untitled”.

Key Type Semantics

48

4.5.3 StPush

StPush pushes an existing element onto the implicit
parent stack. It takes the E key described in Table 17,
“Referring to an Existing Element or Structure Tree Root”. It
is an error for StPush to specify an object that is not an
element created by a previous StPNE.

The syntax for pushing an element is:

[/E {OBJNAME}

/StPush pdfmark

Table 17 Referring to an Existing Element or Structure Tree Root

4.5.4 StPop

StPop pops the implicit parent stack, removing the
element formerly at the top of the stack. It has no keys in
its dictionary. It is an error for StPop to be encountered
when the implicit parent stack is empty.

The syntax for pop element is:

[/StPop pdfmark

Open boolean (Optional) If true, the bookmark is open, that is, its
children are visible. If false, its children are unseen.
If this key is absent, the bookmark is closed.

Key Type Semantics

E (Element) obj name (Optional) Specifies an existing element, given as
an object name of the special form {name} used to
refer to Cos objects.

Note. If the E key is omitted, the Structure Tree
Root of the document is specified. The Structure
Tree Root is created if it does not already exist.

Key Type Semantics

49

4.5.5 StPopAll

StPopAll completely empties the implicit parent stack. It
has no keys in its dictionary.

The syntax for a pop all is:

[/StPopAll pdfmark

4.6 Specifying Element Content

Elements may have two kinds of document content:
marked content (MC) and references to PDF objects
(OBJRs).

To specify marked content, use StBDC and StBMC to
indicate the beginning of marked content; EMC delimits
the end of marked content. These operators combine the
creation of the marked content region in the PDF content
stream with the creation of marked content and its
placement within the Kids list of a specified element or
Structure Tree Root.

It is possible to nest marked content as specified by these
operators. This nesting has nothing to do with the implicit
element nesting maintained by the implicit parent stack;
nested marked content may belong to elements in
different branches of a Structure Tree. See “Nesting
Structure Elements”.

4.6.1 StBMC

StBMC marks the beginning of a sequence of marked
content objects. The MC created is contained by the
element on top of the implicit parent stack. StBMC takes
the P (Properties) and T (Tag) keys specified in Table 18,
“Specifying Tags and Property List Entries for Marked
Content”. The marked content is added to its containing
element at the position optionally specified by the At key
in Table 13, “Specifying Position Within a Container”. It is an
error if the implicit parent stack is empty when StBMC is
encountered.

50

The syntax for beginning page content is:

[/T <tag>

/StBMC pdfmark

4.6.2 StBDC

StBDC marks the beginning of a sequence of page
content objects with an associated property list, given by
a dictionary. StBDC behaves just like StBMC, with the
addition of a property list. The MC created is contained by
the element on top of the implicit parent stack. StBDC
takes the P (Properties) and T (Tag) keys specified in
Table 18, “Specifying Tags and Property List Entries for
Marked Content”. The marked content is added to its
containing element at the position optionally specified by
the At key in Table 13, “Specifying Position Within a
Container”. It is an error if the implicit parent stack is
empty when StBDC is encountered.

The syntax for beginning page content with a dictionary
is:

[/T <tag>

/P <properties dictionary>

/StBDC pdfmark

Table 18 Specifying Tags and Property List Entries for Marked Content

Key Type Semantics

P
(Properties)

dictionary (Optional) Key–value pairs that are entered into
the properties dictionary of the marked content
being created. If this key is omitted, no properties
other than those required by the implementation
of logical structure in PDF are entered into the
properties dictionary. This key is supported only
with StBDC.

T (Tag) name (Optional) The tag to be given to the marked
content being created. If this key is omitted, the
subtype of the containing element is used.

51

4.6.3 EMC

The end of a marked sequence of page content operators
is signalled by EMC. The syntax for an end of page
content is:

[/EMC pdfmark

4.6.4 StOBJ

StOBJ adds an existing PDF Object to the content of the
element on top of the implicit parent stack. It is an error if
the implicit parent stack is empty when StOBJ is
encountered. StOBJ identifies the object to be added with
the Obj key in Table 19, “Referring to an Arbitrary PDF
Object”, and it sets the new content’s index within the
containing element to the position specified by the At key
in Table 13, “Specifying Position Within a Container”.

The syntax for adding a PDF Object to an element’s
content is:

[/Obj {OBJNAME}

/At integer

/StOBJ pdfmark

To specify a PDF object as content of an element, use the
Cos object reference mechanism. The PostScript file
creates a Cos object with a given name (as specified in
“Naming Objects with _objdef”) then uses that name with
StOBJ to create an Object Reference (OBJR). Only
dictionary and stream PDF objects may be used for OBJRs.

Note that _objdef associates an object with a name in a
variety of ways, as noted in “Naming Objects with _objdef”
and “Implicitly Named Objects”. A name defined in this way
can be used with any StOBJ, as long as it represents a
dictionary or stream PDF object.

52

Table 19 Referring to an Arbitrary PDF Object

4.7 Nesting Structure Elements

You nest structure elements by using StPNE and StPop—
not by nesting StBMC/BDC and EMC. In other words, the
nesting is in the tree structure of elements—not in the
marked content regions, which should be disjointed.
Nesting StBMC/BDC and EMC results in the marked
content itself being nested—not the corresponding
elements in the structure tree.

4.8 Attribute Objects

Attribute Objects (AOs) can be inserted either under the
Attributes key in an element or in the ClassMap of a
Structure Tree Root. StAttr attaches attribute objects to
elements. StClassMap enters attribute objects in the
ClassMap of the Structure Tree Root.

4.8.1 StAttr

StAttr creates a new attribute object and adds it to the
element on top of the implicit parent stack. The AO’s
contained object is specified via an object reference
{name}. The StAttr’s dictionary contains the Obj key
specified in Table 19, “Referring to an Arbitrary PDF Object”.
It is an error if the implicit parent stack is empty when
StAttr is encountered.

The syntax to create a new attribute object is:

[/Obj {OBJNAME}

/StAttr pdfmark

The object name must refer to a PDF dictionary or stream.

Key Type Semantics

Obj obj name (Required) The object to be added as data to the
specified element, given as an object name of the
special form {name} used to refer to Cos objects. It
is an error to specify an unassigned object name.

53

4.9 Storing and Retrieving the Implicit Parent Stack

Using operators that specify a parent implicitly depends
on the ability to mimic a tree’s structure by nesting the
structure within the document. However, it is not always
possible to maintain this representation across page
boundaries. For example, a paragraph may be
represented by regions on more than one page, or it may
be interrupted by other page content. To allow
originating applications some flexibility in their page
output without compromising the convenience of
specifying tree structure, the structure suite provides a
way of storing and later retrieving the tree’s context.

The names under which implicit parent stacks are stored
and retrieved are in a separate namespace from other
names managed by the Distiller. The namespace stack
commands NamespacePush and NamespacePop defined
in “Namespace Commands” affect this namespace as well
as the namespace for Cos object names.

4.9.1 StStore

StStore saves the current state of the implicit parent stack
under a name in a namespace used internally by the
Distiller for this purpose alone. StStore does not change
the implicit parent stack. Table 20, “Referring to Saved
Implicit Parent Stack State” specifies the StoreName key for
the name associated with the saved implicit parent stack
state. Storing an implicit parent stack state under a
previously used name completely replaces the implicit
parent stack state already stored under that name.

The syntax for a saving the current implicit parent stack
state is:

[/StoreName name

/StStore pdfmark

Note: Names defined by StStore are in the namespace governed
by the stack operators NamespacePush and
NamespacePop, defined in “Namespace Commands”.

54

4.9.2 StRetrieve

StRetrieve restores the state of the implicit parent stack
from a saved state in the Distiller. The previous state of
the implicit parent stack is overwritten by the restored
state. The StoreName key in Table 20, “Referring to Saved
Implicit Parent Stack State” indicates the name of the
implicit parent stack state to be retrieved. It is an error to
try to retrieve a nonexistent state, that is, to use a name
that was not associated with a stack state by a previous
StStore.

The syntax for a restoring the current state is:

[/StoreName name

/StRetrieve pdfmark

Table 20 Referring to Saved Implicit Parent Stack State

4.10 EPS Considerations

Encapsulated PostScript (EPS) is a special form of
PostScript used for embedding graphics created in one
application in a document created in another application.
Applications can create EPS files containing structure
elements without knowing anything about the
environment into which the EPS file is to be embedded,
which complicates the processing of a structure inside
embedded EPS. The logical structure design here allows
structure within an embedded EPS to be connected to the
structure of the surrounding file by way of the implicit
parent stack, while insulating the namespace of the
containing file from accidents due to naming coincidences
in embedded EPS files.

Key Type Semantics

StoreName name (Required) The name under which an implicit
parent stack state is to be stored or retrieved.

55

It is strongly recommended that applications embedding
EPS files wrap the embedded PostScript between
NamespacePush and NamespacePop to insulate the
overall PostScript document from the consequences of
multiply-defined object names.

56

CHAPTER 5

Support Commands

This section treats several commands that support other
features, such as Cos object naming and logical structure.

5.1 Namespace Commands

The Distiller application maintains a pushdown stack of
namespaces for Cos object names and implicit parent
stack names. The only Cos object names visible at a given
point in processing a PostScript file are those in the
namespace on top of the stack. The stack starts with a
default outermost namespace on top; this namespace
cannot be popped off the stack.

The implicitly-named objects described in “Implicitly Named
Objects” are always visible. They are not subject to
namespace pushing and popping.

To guarantee that embedded EPS files cannot interfere
with structure element processing of the containing file
(see “EPS Considerations”), this namespace contains:

• Names for Cos objects, defined by the /_objdef key.

• Names for stored implicit parent stacks, defined by
“StStore”.

• Names for images, defined by “NI”.

5.1.1 NamespacePush

NamespacePush causes a new, empty namespace to be
pushed onto the namespace stack and causes all other
namespaces to be hidden. It takes no parameters.

57

The syntax for pushing a namespace is:

[/NamespacePush pdfmark

5.1.2 NamespacePop

NamespacePop pops the topmost namespace from the
stack, never to be accessed again. The next lower
namespace on the stack becomes the current namespace
for Cos object definitions. It is an error if NamespacePop is
encountered when the outermost namespace is the only
occupant of the stack. NamespacePop takes no
parameters.

The syntax for popping a namespace is:

[/NamespacePop pdfmark

There is no way to save and restore namespaces.

58

CHAPTER 6

Naming Graphics and
Images

6.1 Naming Graphics with BP and EP

Version 3.0 of the Acrobat Distiller application allows a
PostScript language program to specify that a given set of
graphical operations should be encapsulated and treated
as a single object. pdfmark operators using the names BP
(Begin Picture) and EP (End Picture) enclose a set of
graphic operations; the pdfmark operator with the name
SP (Show Picture) indicates where to insert the object,
which may be inserted in more than one place.

The syntax for the graphics encapsulation commands is:

[/BBox [llx lly urx ury] /_objdef {OBJNAME} /BP pdfmark

[/EP pdfmark

[{OBJNAME} /SP pdfmark

When the Distiller program sees a pdfmark with the name
BP, it forks the distillation from the current context and
distills subsequent graphics into a PDF Form object. When
it encounters a pdfmark with the name EP, the Distiller
application finishes the Form object, and distillation
continues in the original context. The pdfmark named SP
tells the Distiller program to insert a use of the picture in

Table 21 Begin Picture Attributes

Key Type Semantics

BBox array (Required) An array of four numbers [xll, yll, xur, yur]
specifying the lower-left x, lower-left y, upper-right x,
and upper-right y coordinates—in user space—of the
rectangle defining the graphic’s bounding box.

59

the current context—in the same manner as if it were a
cached PostScript form painted with the execform
PostScript language operator. It includes the picture in the
current context (page, form, and so forth) using the CTM
to position the graphic.

The /_objdef {OBJNAME} key–value pair in the BP pdfmark
names the picture OBJNAME. Any subsequent pdfmark
can refer to this object.

Note: Graphics names are in the namespace governed by
NamespacePush and NamespacePop, defined in
“Namespace Commands”.

pdfmark operators with the names BP and EP can be
nested.

The picture built using the BP and EP names need not be
added to a page using an SP pdfmark. It can be inserted
into other objects by referring to it by name in another
pdfmark.

Defining the pdfmark operator so that a PostScript
interpreter ignores any text between a mark and a
pdfmark does not nullify processing any PostScript
operators between the BP and EP pdfmarks. To avoid
printing anything between the BP and EP pdfmarks, use a
construct like the one shown in Example 18.

Example 18 Ignoring Text Between BP and EP pdfmarks

% Set __pdfMark__ true if pdfmark is already defined

%%BeginPDFMarkPrefix

/pdfmark where {pop

/__pdfMark__ true def

}{

/pdfmark {cleartomark} def

/__pdfMark__ false def

} ifelse

% Use __pdfMark__ to avoid printing text between BP and EP

[/BBox [0 0 100 100] /_objdef {Check} /BP pdfmark

__pdfMark__ {

0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 0 7 moveto (4)

show

} if

[/EP pdfmark

60

The PostScript language sample in Example 19 draws a
gray rectangle, then builds a picture enclosed by the BP
and EP pdfmark names. (The picture is simply an X.) It
shows the picture in three places on the page using the SP
pdfmark, then draws another gray rectangle.

Example 19 Using the Graphics Encapsulation pdfmark
Names

% draw a gray rectangle

0.5 setgray

0 0 100 100 rectfill

% create a picture

[/BBox [0 0 100 100] /_objdef {MyPicture} /BP pdfmark

0 setgray

0 0 moveto 100 100 lineto stroke

100 0 moveto 0 100 lineto stroke

[/EP pdfmark

% make the picture appear on the page

[{MyPicture} /SP pdfmark

% make the picture appear in another place on the page

% gsave

200 200 translate

[{MyPicture} /SP pdfmark

grestore

% make the picture appear in another place on the page

% at a different size

gsave

100 400 translate

.5 .5 scale

[{MyPicture} /SP pdfmark

grestore

% draw another gray rectangle

0.5 setgray

512 692 100 100 rectfill showpage

61

The resulting page stream in the PDF file contains the
following:

0.5 g

0 0 100 100 re f

q 1 0 0 1 0 0 cm /Fm1 Do Q

q 1 0 0 1 200 200 cm /Fm1 Do Q

q 0.5 0 0 0.5 100 400 cm /Fm1 Do Q

512 692 100 100 re f

The graphics between the BP and the EP pdfmarks have
been saved in a Form object, which has this stream:

0 g

0 0 m

100 100 l

100 0 m

0 100 l

S

The resulting page looks like this:

62

6.2 Naming Images with the NI Command

To allow a PostScript image to be referenced the same
way a Cos object is referenced, the NI command gives a
name to an image. Once named, the name can be used to
identify the image. For example, this allows an image to
be included in PDF logical structure via “StOBJ”, so that it
can be included later in element content. The example
“Using OBJ and PUT pdfmarks to Create an Alternate Image”
shows using NI with an alternate image.

NI defines a name for an image to be found subsequently
in the PostScript source file. It takes the standard _objdef
key to name the image within Distiller. The image does
not need to immediately follow the NI. Images are
assigned the name given in the most recent invocation of
NI not yet paired with an image.

The syntax for defining an image name is:

[/_objdef {OBJNAME}

/NI pdfmark

Another way of understanding the rule for associating
names with images is that Distiller maintains a stack of
names pushed by NI and popped by the occurrence of an
image. It is not an error to encounter an image when this
stack is empty: it merely receives no name.

Note: Image names are in the namespace governed by
NamespacePush and NamespacePop, defined in
“Namespace Commands”.

63

CHAPTER 7

Specifying Destinations and
Actions

PDF supports three general ways to specify what happens
when a user opens a file, clicks on a link, or clicks on a
bookmark: view destinations, actions, and named
destinations.

View destinations specify another location in the same
file.

They are generalizations of the concept of a view
destination. Four types of actions are supported by
version 2.0 and later of the Acrobat viewers. They are:

• GoTo — Same capabilities as view destinations.

• GoToR — Specifies a location in another PDF file.

• Launch — Launches an arbitrary application or
document.

• Article — Begins reading a specified article.

Named destinations, described in “Named Destinations”,
can also be used.

Bookmarks, links, and the Catalog dictionary of
documents that have an open action must contain exactly
one of the keys listed in Table 22, “Action Types”.
Additional key–value pairs are required, depending on
which of the three specification schemes is used. These
are described in the following paragraphs.

64

Table 22 Action Types

Key Type Semantics

Action name or
dictionary

Specifies the action type. Must be either a predefined
name or an action dictionary.

If a name, must be one of the following:

GoTo — Jumps to a specified page and zoom factor
within the current document. Requires the Dest key, or
both the Page and View keys. See “Goto Actions”.

GoToR — Opens another PDF document at a
specified page and zoom factor. Requires the Dest
key, or both the Page and View keys, plus file-specifier
keys. See “GotoR Actions”.

Launch — Launches a document or an application.
Requires file-specifier keys. See “Launch Actions”.

Article — Jumps to an article, either in the current
document or another PDF document. Requires the
Dest key. In addition, requires file-specifier keys if the
article is in a different PDF file. See “Article Actions”.

The file-specifier keys File, MacFile, DOSFile, UnixFile,
URI, and ID define an external file. At least one of these
keys must be defined for actions that require a file-
specifier key.

If the value of Action is a dictionary, it specifies a custom
action. Custom action dictionaries, which are supported
by version 2.1 and higher of the Distiller application, are
generally used to specify actions that are handled by
action handler plug-ins for Acrobat. See “Custom
Actions”.

The default value for Action is GoTo.

Dest name,
integer, or
string

Specifies an Article action’s destination, or a named
destination for any action. If it is a named destination,
the value must be a name object that matches the name
of a destination defined with the DEST pdfmark. For an
Article destination, the value may be an integer that
specifies the article’s index in the document (the first
article in a document has an index of 0), or a string that
matches the article’s Title. See “Named Destinations”.

65

7.1 View Destinations

The value of the View key is an array that specifies a page
number, a location on the page, and a fit type. The
location is either a rectangle, a point, or an x– or y–
coordinate, depending on the fit type. View destinations
should be used when compatibility with version 1.0
Acrobat products is important. GoTo actions should be
used to obtain the same functionality when this
compatibility is not important.

View array Specifies a link or bookmark’s destination on a page,
and the fit type. “View Destinations” describes the View
array’s elements.

Key Type Semantics

Page integer
or name

The destination page. If an integer value is specified, it
must be the sequence number of the page within the
PDF file. The first page in a file is page 1, not page 0.

For links and articles, the name objects Next and Prev are
also valid page destination values.

If the destination page of a link is the same page, the
Page key should be omitted. If the value of the Page key
is 0, the bookmark or link has a NULL destination.

Table 22 Action Types

Key Type Semantics

66

Destinations, which are the value of the View key, are
specified as an array containing one of the fit type names
from Table 23, “Fit Type Names and Parameters”, followed
by any required parameters.

Table 23 Fit Type Names and Parameters

Name Parameters and semantics

Fit No parameters.

Fit the page to the window. This is a shortcut for specifying FitR
with the rectangle being the crop box for the page.

FitB No parameters.

Fit the bounding box of the page contents to the window.

FitH top

Fit the width of the page to the window. top specifies the
distance in default user space from the page origin to the top of
the window. This is a shortcut for specifying FitR with the
rectangle having the width of the page, and both y-coordinates
equal to top.

FitBH top

Fit the width of the bounding box of the page contents to the
window. top specifies the distance in default user space from the
page origin to the top of the window.

FitR x1 y1 x2 y2

Fit the rectangle specified by the parameters (in default user
space) to the window.

FitV left

Fit the height of the page to the window. left specifies the
distance in default user space from the page origin to the left
edge of the window. This is a shortcut for specifying FitR with
the rectangle having the height of the page, and both x-
coordinates equal to left.

FitBV left

Fit the height of the bounding box of the page contents to the
window. left specifies the distance in default user space from the
page origin to the left edge of the window.

67

The zoom factors for the horizontal and vertical directions
are identical; there are not separate zoom factors for the
two directions. As a result, more of the page may be
shown than specified by the destination. For example,
when using FitR, portions of the page outside the
destination rectangle appear in the window, unless the
window happens to have the same aspect ratio (height-
to-width ratio) as the destination rectangle.

A common destination is “upper left corner of the
specified page, with a zoom factor of 1.” This can be
obtained using the XYZ destination form, with a left of
− 4 and a top equal to the top of the CropBox (or the
page size if no CropBox was specified) plus 4. The offset
of 4 is used to slightly move the page corner from the
corner of the window, to provide a visual cue that the
corner of the page is being shown.

Note: In version 1.0 of Acrobat and Reader for the Microsoft
Windows environment, the position of a document within a
window is not completely arbitrary. As a result, the offset
displayed may not be exactly the offset of 4 that was
specified.

Example 20 View Destination

[/Rect [70 650 210 675]

/Page 3

/View [/XYZ -5 797 1.5]

/LNK pdfmark

XYZ left top zoom

left and top specify the distance in default user space from the
origin of the page to the top-left corner of the window. zoom
specifies the zoom factor, with 1 being 100% magnification. If
left, top or zoom is NULL, the current value of that parameter is
retained. For example, specifying a view destination of /View [/
XYZ NULL NULL NULL] goes to the specified page and retain
the same horizontal and vertical offset and zoom as the current
page. A zoom of 0 has the same meaning as a zoom of NULL.

Table 23 Fit Type Names and Parameters

Name Parameters and semantics

68

7.2 Goto Actions

GoTo actions specify the same information as a view
destination. They exist primarily to bring the version 1.0-
style view destination into the same model as the action
types in the version 2.0 and later Acrobat products.

7.3 GotoR Actions

GoToR actions specify a location in another PDF file. They
contain the same information as a GoTo action, plus a file
name.

Key Type Semantics

File string (Required) The device-independent pathname of the PDF
file. See Section 7.4 in the Portable Document Format
Reference Manual for a description of the pathname
format.

DOSFile string (Optional) The MS-DOS pathname (in the PDF pathname
format), of the PDF file. Acrobat viewer applications on
Windows and DOS computers ignore the File key if the
DOSFile key is present. See Section 7.4 in the Portable
Document Format Reference Manual for a description
of the pathname format.

MacFile string (Optional) The Mac OS filename (in the PDF pathname
format) of the PDF file. Acrobat viewer applications on
Mac OS computers ignore the File key if the MacFile key
is present. See Section 7.4 in the Portable Document
Format Reference Manual for a description of the
pathname format.

UnixFile string (Optional) The UNIX filename (in the PDF pathname
format) of the PDF file. Acrobat viewer applications on
UNIX computers ignore the File key if the UnixFile key is
present. See Section 7.4 in the Portable Document
Format Reference Manual for a description of the
pathname format.

69

Example 21 GoToR Action

[/Action /GoToR /File (test.pdf) /Page 2

/View [/FitR 30 648 209 761]

/Title (Open test.pdf on page 2)

/OUT pdfmark

7.4 Launch Actions

Launch actions launch an arbitrary application or
document. On some platforms, options or filenames may
be passed to the application that is launched. Launch
actions are specified by an application or document name
and, if necessary, the options and filename that are
passed to the application that is launched.

URI string (Optional) The URI of the PDF file. This string is a URI
formatted as specified in RFC 1738 and must follow the
character encoding requirements of that RFC. See Section
7.4.3 in the Portable Document Format Reference
Manual for more information. Acrobat viewer
applications ignore the File key if the URI key is present.

Named destinations may be appended to URLs, following
a “#” character, as in http://www.adobe.com/
test.pdf#nameddest=name. The Acrobat viewer displays
the part of the PDF file specified by the named
destination.

ID array (Optional) An array of two strings specifying the PDF file
ID. This key can be used to ensure the correct version of
the destination file is found. If present, the destination
PDF file’s ID is compared with ID, and the user is warned
if they are different. See Section 6.12 in the Portable
Document Format Reference Manual for a description
of the file ID.

Key Type Semantics

70

Note: The Acrobat 2.0 or later viewer applications running under
Windows use the Windows function ShellExecute() to launch
an application specified using the Launch action. The keys
WinFile, Dir, Op, and Params correspond to the parameters
of ShellExecute.

Key Type Semantics

File string (Required) The device-independent pathname of the
application or document to launch. See Section 7.4 in the
Portable Document Format Reference Manual for a
description of the pathname format.

DOSFile string (Optional) The MS-DOS pathname (in the PDF pathname
format) of the application or document to launch.
Acrobat viewer applications on Windows and DOS
computers ignore the File key if the DOSFile key is
present. See Section 7.4 in the Portable Document
Format Reference Manual for a description of the
pathname format.

MacFile string (Optional) The Mac OS filename (in the PDF pathname
format) of the application or document to launch.
Acrobat viewer applications on Mac OS computers ignore
the File key if the MacFile key is present. See Section 7.4
in the Portable Document Format Reference Manual
for a description of the pathname format.

UnixFile string (Optional) The UNIX filename (in the PDF pathname
format) of the application or document to launch.
Acrobat viewer applications on UNIX computers ignore
the File key if the UnixFile key is present. See Section 7.4
in the Portable Document Format Reference Manual
for a description of the pathname format.

URI string (Optional) The URI of the PDF file. This string is a URI
formatted as specified in RFC 1738 and must follow the
character encoding requirements of that RFC. See Section
7.4 in the Portable Document Format Reference
Manual for more information. Acrobat viewer
applications ignore the File key if the URI key is present.

Named destinations may be appended to URLs, following
a “#” character, as in http://www.adobe.com/
test.pdf#nameddest=name. The Acrobat viewer displays
the part of the PDF file specified by the named
destination.

71

Example 22 Launch Action

[/Rect [70 600 210 625]

/Border [16 16 1]

/Color [0 0 1]

/Action /Launch

/File (test.doc)

/Subtype /Link

/ANN pdfmark

7.5 Article Actions

Article actions set the Acrobat viewer to article-reading
mode, at the beginning of a specified article.

Dir string (Optional) The default directory of a Windows
application. See the description of WinFile.

Op string (Optional) The operation to perform. See the description
of WinFile. The string must be open or print. The default
is open. If WinFile specifies an application, not a
document, this key is ignored and the application is
launched. This key is used only under Windows.

WinFile string (Optional) The MS-DOS filename of the document or
application to launch.

Params string (Optional) The parameters passed to a Windows
application started with the Launch action. See the
description of WinFile. If WinFile keys specifies an
application, Params must not be present.

Unix string (Optional) The parameters passed to a UNIX application
started with the Launch action. See the description of
UNIXFile. The format of this string is not yet defined.

Key Type Semantics

Dest integer
or string

(Required) An Article action’s destination. The value may
be an integer that specifies the article’s index in the
document (the first article in a document has an index of
0), or a string that matches the article’s Title.

Key Type Semantics

72

File string (Required if the destination article is in another PDF file)
The device-independent pathname of the PDF file. See
Section 7.4 in the Portable Document Format
Reference Manual for a description of the pathname
format.

DOSFile string (Optional) The MS-DOS pathname (in the PDF pathname
format), of the destination PDF file. Acrobat viewer
applications on Windows and DOS computers ignore the
File key if the DOSFile key is present. See Section 7.4 in
the Portable Document Format Reference Manual for
a description of the pathname format.

MacFile string (Optional) The Mac OS filename (in the PDF pathname
format), of the destination PDF file. Acrobat viewer
applications on Mac OS computers ignore the File key if
the MacFile key is present. See Section 7.4 in the
Portable Document Format Reference Manual for a
description of the pathname format.

UnixFile string (Optional) The UNIX filename (in the PDF pathname
format), of the destination PDF file. Acrobat viewer
applications on UNIX computers ignore the File key if the
UnixFile key is present. See Section 7.4 in the Portable
Document Format Reference Manual for a description
of the pathname format.

URI string (Optional) The URI of the PDF file. This string is a URI
formatted as specified in RFC 1738 and must follow the
character encoding requirements of that RFC. See Section
7.4.3 in the Portable Document Format Reference
Manual for more information. Acrobat viewer
applications ignore the File key if the URI key is present.

Named destinations may be appended to URLs, following
a “#” character, as in http://www.adobe.com/
test.pdf#nameddest=name. The Acrobat viewer displays
the part of the PDF file specified by the named
destination.

Key Type Semantics

73

Example 23 Article Action

[/Action /Article /Dest (Now is the Time)

/Title (Now is the Time)

/OUT pdfmark

7.6 Custom Actions

Custom actions allow creation of action types other than
those provided by the predefined names.

Note: Custom action dictionaries are supported by version 2.1 and
higher of the Distiller application.

Custom actions are specified by providing a dictionary
containing all the key–value pairs that are to be placed
into the action dictionary in the PDF file. This requires a
detailed knowledge of an action’s representation in PDF.
See Section 6.8 in the Portable Document Format
Reference Manual for a description of actions.

Note: Known action keys are filtered in the same way as they are
for other action types, for example, Subtype is filtered to S,
Dest is filtered to D, and File is filtered to F. See Section 6.8 in
the Portable Document Format Reference Manual for a
list of the abbreviated action key names used in PDF files.

One common use of custom actions is to create URI
actions, which allow a PDF file to link to locations on the
World-Wide Web (WWW). Example 24 shows a note
marker containing a custom URI action.

ID array (Optional) An array of two strings specifying the file ID
of the destination file. This key can be used to ensure the
correct version of the destination file is found. If present,
the destination PDF file’s ID is compared with ID, and the
user is warned if they are different. See Section 6.12 in
the Portable Document Format Reference Manual for
a description of the file ID.

Key Type Semantics

74

Example 24 Link Containing a Custom URI Action

[/Rect [50 425 295 445]

/Action << /Subtype /URI /URI (http://www.adobe.com) >>

/Border [0 0 2]

/Color [.7 0 0]

/Subtype /Link

/ANN pdfmark

7.7 Named Destinations

Named destinations can be used as the destination for
any bookmark or link, or by the optional open action in a
document’s Catalog dictionary.

Example 25 Named Destination

[/Rect [70 650 210 675]

/Border [16 16 1 [3 10]]

/Color [0 .7 1]

/Dest /MyNamedDest

/Subtype /Link

/ANN pdfmark

Key Type Semantics

Dest name The destination name. It must match the name of a
destination defined with the DEST pdfmark.

75

CHAPTER 8

Examples

This section gives examples illustrating many uses of the
pdfmark operator.

8.1 Define pdfmark So PostScript Interpreters Ignore
pdfmarks

%!PS-Adobe-3.0

%%BeginProlog

/bd {bind def} bind def

/fsd {findfont exch scalefont def} bd

/sms {setfont moveto show} bd

/ms {moveto show} bd

/pdfmark where

{pop} {userdict /pdfmark /cleartomark load put} ifelse

%%EndProlog

%%BeginSetup

8.2 File Open Action

[/PageMode /UseOutlines

/Page 2 /View [/XYZ null null null]

/DOCVIEW pdfmark

76

8.3 Info Dictionary

[/Title (My Test Document)

/Author (John Doe)

/Subject (pdfmark 3.0)

/Keywords (pdfmark, example, test)

/Creator (Hand Programmed)

/ModificationDate (D:19940912205731)

/ADBETest_MyKey (My private information)

/DOCINFO pdfmark

8.4 Crop All Pages

[/CropBox [54 403 558 720]

/PAGES pdfmark

/DrawBorder

{58 407 moveto 554 407 lineto 554 716 lineto

58 716 lineto closepath stroke

} bd

/F1 10 /Helvetica fsd

/F2 10 /Helvetica-Oblique fsd

/F3 10 /Helvetica-Bold fsd

/F4 12 /Helvetica-Bold fsd

%%EndSetup

%%Page: 1 1

DrawBorder

(This is Page 1) 75 690 F4 sms

(Below is a closed, default note created using pdfmark:) 75

670 F1 sms

(Below is an open note with a custom color and label:) 75 570

F1 sms

(Below is a closed note) 400 670 F1 sms

(containing private data:) 400 655 F1 sms

(Below is a custom annotation.) 400 570 F1 sms

(It should appear as an unknown) 400 555 F1 sms

(annotation icon:) 400 540 F1 sms

77

8.5 Annotations

8.5.1 Simple Note

[/Rect [75 586 456 663]

/Contents (This is an example of a note. You can type text

directly into a note or copy text from the clipboard.)

/ANN pdfmark

8.5.2 Fancy Note

[/Rect [75 425 350 563]

/Open true

/Title (John Doe)

/Contents (This is an example of a note. \nHere is some text

after a forced line break.

This is another way to do line breaks.)

/Color [1 0 0]

/Border [0 0 1]

/ANN

pdfmark

8.5.3 Private Data in Note

[/Contents (My unimaginative contents)

/Rect [400 550 500 650]

/Open false

/Title (My Boring Title)

% The following is private data. Keys within the private

% dictionary do not need to use the

% organization’s prefix because the dictionary encapsulates

% them.

/ADBETest_MyInfo <<

/Routing [(Me) (You)]

/Test_Privileges << /Me /All /You /ReadOnly >>

>>

/ADBETest_PrivFlags 42

/ANN pdfmark

78

8.5.4 Movie or Sound Annotation

[

/Type /Annot

/Subtype /Movie

/Rect [216 503 361 612]

/T (Title)

/F 1

% The specified file may be a movie or sound file

/Movie << /F (/Disk/moviefile) /Aspect [160 120] >>

/A << /ShowControls true >>

/Border [0 0 3]

/C [0 0 1]

/ANN pdfmark

8.5.5 Simple Link (Old style, compatible with all Distiller
application versions)

[/Rect [70 650 210 675]

/Page 3

/View [/XYZ -5 797 1.5]

/LNK pdfmark Fancy Link

[/Rect [70 550 210 575]

/Border [0 0 2 [3]]

/Color [0 1 0]

/Page /Next

/View [/XYZ -5 797 1.5]

/Subtype /Link

/ANN pdfmark showpage

%%Page: 3 3

8.5.6 Link that Launches Another File

[/Rect [70 600 210 625]

/Border [16 16 1]

/Color [0 0 1]

/Action /Launch

/File (test.doc)

/Subtype /Link

/ANN pdfmark

79

8.5.7 Custom Link Action (URI Link for the Acrobat WebLink
Plug-in)

[/Rect [50 425 295 445]

/Action << /Subtype /URI /URI (http://www.adobe.com) >>

/Border [0 0 2]

/Color [.7 0 0]

/Subtype /Link

/ANN pdfmark

% URI link with a named destination

[/Rect [50 425 295 445]

/Action << /Subtype /URI /URI (http://

www.adobe.com#YourDestination) >>

/Border [0 0 2]

/Color [.7 0 0]

/Subtype /Link

/ANN pdfmark

8.5.8 Custom Link Action (Named Action)

% Link with a named action—executes a menu item

[/Rect [50 425 295 445]

/Action << /Subtype /Named /N /GeneralInfo >>

/Border [0 0 2]

/Color [.7 0 0]

/Subtype /Link

/ANN pdfmark

8.5.9 Custom Annotation Type

This appears with an unknown annotation icon in the
Acrobat viewers, because they do not know how to
interpret this annotation type.

[/Rect [400 435 500 535]

/Subtype /ADBETest_DummyType

/ADBETest_F8Array [0 1 1 2 3 5 8 13]

/ANN pdfmark showpage

%%Page: 2 2

DrawBorder

(This is Page 2) 75 690 F4 sms

(Click here to go to page 3.) 75 660 F2 sms

(Click here to go to page 3.) 75 560 F2 sms

80

8.5.10 Putting a File’s Contents Into a Text Annotation.

See “Putting a File’s Contents Into a Text Annotation”.

8.6 Crop This Page

[/CropBox [0 0 612 792] /PAGE pdfmark

(This is Page 3) 75 690 F4 sms

(Click here to go to page 1.) 75 660 F2 sms

(Click here to open test.doc.) 75 610 F2 sms

8.7 Create Text for the Article “Now is the Time”

(Now is the Time \(Article\)) 230 690 F4 sms

(Now is the time for all good men to come to the aid of their

country.) 230 670 F1 sms

(Now is the time for all good men to come to the aid of their

country.) 230 655 ms

(Now is the time for all good men to come to the aid of their

country.) 230 640 ms

(Now is the time for all good men to come to the aid of their

country.) 230 625 ms

(Now is the time for all good men to come to the aid of their

country.) 230 610 ms

(Now is the time for all good men to come to the aid of their

country.) 230 595 ms

(Now is the time for all good men to come to the aid of their

country.) 230 580 ms

(Now is the time for all good men to come to the aid of their

country.) 230 565 ms

(Now is the time for all good men to come to the aid of their

country.) 230 550 ms

(Now is the time for all good men to come to the aid of their

country.) 230 535 ms

(Now is the time for all good men to come to the aid of their

country.) 230 520 ms

(Now is the time for all good men to come to the aid of their

country.) 230 505 ms

81

8.7.1 Continue Text for the Article “Now is the Time”

(Now is the Time continued...) 230 690 F2 sms

(Now is the time for all good men to come to the aid of their

country.) 230 670 F1 sms

(Now is the time for all good men to come to the aid of their

country.) 230 655 ms

(Now is the time for all good men to come to the aid of their

country.) 230 640 ms

(Now is the time for all good men to come to the aid of their

country.) 230 625 ms

(Now is the time for all good men to come to the aid of their

country.) 230 610 ms

(Now is the time for all good men to come to the aid of their

country.) 230 595 ms

(Now is the time for all good men to come to the aid of their

country.) 230 580 ms

(Now is the time for all good men to come to the aid of their

country.) 230 565 ms

(Now is the time for all good men to come to the aid of their

country.) 230 550 ms

(Now is the time for all good men to come to the aid of their

country.) 230 535 ms

(Now is the time for all good men to come to the aid of their

country.) 230 520 ms

(Now is the time for all good men to come to the aid of their

country.) 230 505 ms

(Click here to go to Adobe’s Home Page on the Web) 55 430 ms

8.8 Named Destination

[/Dest /MyNamedDest

/Page 1

/View [/FitH 5]

/DEST pdfmark

Link to a Named Destination

[/Rect [70 650 210 675]

/Border [16 16 1 [3 10]]

/Color [0 .7 1]

/Dest /MyNamedDest

/Subtype /Link

/ANN pdfmark

82

8.9 Article Containing Two Beads

 [/Title (Now is the Time)

/Author (John Doe)

/Subject (Coming to the aid of your country)

/Keywords (Time, Country, Aid)

/Rect [225 500 535 705]

/Page 2

/ARTICLE pdfmark

[/Title (Now is the Time)

/Rect [225 500 535 705]

/Page 3

/ARTICLE pdfmark

8.10 Pass-through PostScript Language Code

[/DataSource (0 0 moveto 100 700 lineto stroke)

/PS pdfmark showpage

8.11 Bookmarks

[/Count 2 /Page 1 /View [/XYZ 44 730 1.0] /Title (Open

Actions) /OUT pdfmark

[/Action /Launch /File (test.doc) /Title (Open test.doc) /OUT

pdfmark

[/Action /GoToR /File (test.pdf) /Page 2 /View [/FitR 30 648

209 761]

/Title (Open test.pdf on page 2) /OUT pdfmark

[/Count 2 /Page 2 /View [/XYZ 44 730 1.0] /Title (Fixed Zoom)

/OUT pdfmark

[/Page 2 /View [/XYZ 44 730 2.0] /Title (200% Magnification) /

OUT pdfmark

[/Count 1 /Page 2 /View [/XYZ 44 730 4.0] /Title (400%

Magnification) /OUT pdfmark

[/Page 2 /View [/XYZ 44 730 5.23] /Title (523% Magnification)

/OUT pdfmark

[/Count 3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of

Contents #1) /OUT pdfmark

[/Page 1 /View [/XYZ 44 730 1.0] /Title (Page 1 - 100%) /OUT

pdfmark

[/Page 2 /View [/XYZ 44 730 2.25] /Title (Page 2 - 225%) /OUT

pdfmark

83

[/Page 3 /View [/Fit] /Title (Page 3 - Fit Page) /OUT pdfmark

[/Count -3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of

Contents #2) /OUT pdfmark

[/Page 1 /View [/XYZ null null 0] /Title (Page 1 - Inherit) /

OUT pdfmark

[/Page 2 /View [/XYZ null null 0] /Title (Page 2 - Inherit) /

OUT pdfmark

[/Page 3 /View [/XYZ null null 0] /Title (Page 3 - Inherit) /

OUT pdfmark

[/Count 1 /Page 0 /Title (Articles) /OUT pdfmark

[/Action /Article /Dest (Now is the Time) /Title (Now is the

Time) /OUT pdfmark

8.11.1 Bookmark with a URI as an Action

[/Count 0 /Title (Adobe’s Home page)

/Action << /Subtype /URI /URI (http://www.adobe.com)>> /OUT

pdfmark

%%EOF

8.12 Putting a File’s Contents Into a Text Annotation

% Put a file's contents into a text annotation.

/F (file's platform dependent path name) (r) file def

[/_objdef {mystream} /type /stream /OBJ pdfmark

[{mystream} F /PUT pdfmark

[

/MyPrivateAnnotmyStreamData {mystream}

/SubType /Text

/Rect [500 500 550 550]

/Contents (Here is a text annotation)

/ANN pdfmark

84

8.13 Using OBJ pdfmark to Add an Open Action to a
PDF File

% Go to the 5th page of a document upon opening it.

% First and third lines can be reused.

% Second line specifies the GoTo action, which can be

% customized easily.

[/_objdef {MyAction} /type /dict /OBJ pdfmark

[{MyAction} << /S /GoTo /D [{Page5} /FitH 770] >> /PUT

pdfmark

[{Catalog} << /OpenAction {MyAction} >> /PUT pdfmark

8.14 Using OBJ pdfmark to Create a Base URI

% Create a dictionary object

 [/_objdef {myURIdict} /type /dict /OBJ pdfmark

% Add a "Base" key-value pair to the dictionary we just

% created

 [{myURIdict} << /Base (http://www.adobe.com) >> /PUT

pdfmark

% Add our dictionary to the PDF file’s Catalog dictionary

 [{Catalog} << /URI {myURIdict} >> /PUT pdfmark

8.15 Using OBJ and PUT pdfmarks to Create an
Alternate Image

This example shows how to create alternate images. In
this case, we create an image that has one Alternate. The
Alternate is stored on as a JPEG file on a web server, and is
the default image used when printing.

%Give the next image a name, so we can add an Alternates array

% to it later

[/_objdef {myImage} /NI pdfmark

%Create the base image (just a 2x1 pixel grayscale image for

% this sample)

<<

 /Width 2

 /Height 1

 /ImageMatrix [1 0 0 1 0 0]

 /ImageType 1

 /Decode [0 1]

 /BitsPerComponent 8

85

 /DataSource (1Z)

>> image

%Create a stream for the Alternate Image

 [/_objdef {myPrintingImageStream} /type /stream /OBJ pdfmark

%Add the necessary key-value pairs to the stream dictionary

% to make it a valid image XObject.

%This particular image XObject uses the external streams

% capability of PDF to point to an image

%stored on an IIP server, retrieving it as a JPEG file.

%Since all stream data is stored on a web server, we don’t

% explicitly add data to the stream.

%As a result, the stream ends up with a length of zero, which

% is OK for external streams.

[{myPrintingImageStream} << /Type /XObject /Subtype /Image /

Width 150 /Height 150

/FFilter /DCTDecode /ColorSpace /DeviceRGB /BitsPerComponent

8

/F << /FS /URL /F (http://www.mycompany.com/myfile.jpg) >>

 >> /PUT pdfmark

%Add an Alternates array to the base image

[{myImage} << /Alternates [<</Image {myPrintingImageStream}

/DefaultForPrinting true >>] >> /PUT pdfmark

There are two possibilities for alternate images:

• Alternate image data is outside of PDF file

• Alternate image data inside PDF file

The above sample shows only how to construct the first
type. Note also that if the Alternate uses a different color
space than the base image, it is possible that the PDF file
may not contain the appropriate ProcSet references in
the Resources dictionary to print the page to PostScript.
For example, if the base image is grayscale and the
Alternate is DeviceRGB, it is likely that the page’s
Resources contains only the ImageB procset (for grayscale
images) and not the ImageC procset (for color images).

86

8.16 Using OBJ, PUT, BP, and EP pdfmarks to Create an
Acrobat Form

This example illustrates how to define a form.

8.16.1 Define __pdfMark__ so Anything Between BP and EP
pdfmarks Is Not Printed

% Set __pdfMark__ true if pdfmark is already defined

%%BeginPDFMarkPrefix

/pdfmark where {

pop

/__pdfMark__ true def

}{

/pdfmark {cleartomark} def

/__pdfMark__ false def

} ifelse

%%EndPDFMarkPrefix

8.16.2 Acrobat Form Definitions

Definition of common objects that are used by the
widgets such as Fonts, Encoding arrays and Form XObjects
for Button faces.

%%<<AcroForm Begin

[/BBox [0 0 100 100] /_objdef {Check} /BP pdfmark

__pdfMark__ {

0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 0 7 moveto (4)

show

} if

[/EP pdfmark

[/BBox [0 0 100 100] /_objdef {Cross} /BP pdfmark

__pdfMark__ {

0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 9.7 7.3 moveto

(8) show

} if

[/EP pdfmark

% Up/Down button appearances

[/BBox [0 0 200 100] /_objdef {Up} /BP pdfmark

__pdfMark__ {

0.3 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto 2 98

87

lineto 198 98 lineto

196 96 lineto 4 96 lineto 4 4 lineto fill 0.34 setgray 198 98

moveto 198 2 lineto

2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill

0 setgray 8 22.5 moveto 1 0 0 setrgbcolor /Helvetica 72

selectfont (Up) show

} if

[/EP pdfmark

[/BBox [0 0 200 100] /_objdef {Down} /BP pdfmark

__pdfMark__ {

0.7 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto 2 98

lineto 198 98 lineto

196 96 lineto 4 96 lineto 4 4 lineto fill 0.34 setgray 198 98

moveto 198 2 lineto

2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill

0 setgray 8 22.5 moveto 0 0 1 setrgbcolor /Helvetica 72

selectfont (Down) show

} if

[/EP pdfmark

% Submit button appearances

[/BBox [0 0 250 100] /_objdef {Submit} /BP pdfmark

__pdfMark__ {

0.6 setgray 0 0 250 100 rectfill 1 setgray 2 2 moveto 2 98

lineto 248 98 lineto

246 96 lineto 4 96 lineto 4 4 lineto fill 0.34 setgray 248 98

moveto 248 2 lineto

2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill

/Helvetica 76 selectfont 0 setgray 8 22.5 moveto (Submit)

show

} if

[/EP pdfmark

[/BBox [0 0 250 100] /_objdef {SubmitP} /BP pdfmark

__pdfMark__ {

0.6 setgray 0 0 250 100 rectfill 0.34 setgray 2 2 moveto 2 98

lineto 248 98 lineto

246 96 lineto 4 96 lineto 4 4 lineto fill 1 setgray 248 98

moveto 248 2 lineto

2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill

/Helvetica 76 selectfont 0 setgray 10 20.5 moveto (Submit)

show

} if

[/EP pdfmark

88

8.16.3 Font Encoding Resource

[/_objdef {pdfDocEncoding}

 /type /dict

/OBJ pdfmark

[{pdfDocEncoding}

 <<

 /Type /Encoding

 /Differences [

24 /breve /caron /circumflex /dotaccent /hungarumlaut /ogonek

/ring

/tilde 39 /quotesingle 96 /grave 128 /bullet /dagger /

daggerdbl

/ellipsis /emdash /endash /florin /fraction /guilsinglleft /

guilsinglright

/minus /perthousand /quotedblbase /quotedblleft /

quotedblright /quoteleft

/quoteright /quotesinglbase /trademark /fi /fl /Lslash /OE /

Scaron

/Ydieresis /Zcaron /dotlessi /lslash /oe /scaron /zcaron 164

/currency

166 /brokenbar 168 /dieresis /copyright /ordfeminine 172 /

logicalnot

/.notdef /registered /macron /degree /plusminus /twosuperior

/threesuperior

/acute /mu 183 /periodcentered /cedilla /onesuperior /

ordmasculine

188 /onequarter /onehalf /threequarters 192 /Agrave /Aacute /

Acircumflex

/Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /

Ecircumflex

/Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /

Ntilde

/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /

Oslash

/Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /

germandbls

/agrave /aacute /acircumflex /atilde /adieresis /aring /ae /

ccedilla

/egrave /eacute /ecircumflex /edieresis /igrave /iacute /

icircumflex

/idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde

/odieresis

/divide /oslash /ugrave /uacute /ucircumflex /udieresis /

89

yacute

/thorn /ydieresis

]

 >>

/PUT pdfmark

8.16.4 Font Dictionaries

[/_objdef {Helv}

 /type /dict

/OBJ pdfmark

[{Helv}

 <<

/Type /Font

/Subtype /Type1

/Name /Helv

/BaseFont /Helvetica

/Encoding {pdfDocEncoding}

 >>

/PUT pdfmark

[/_objdef {TiIt}

 /type /dict

/OBJ pdfmark

[{TiIt}

 <<

/Type /Font

/Subtype /Type1

/Name /TiIt

/BaseFont /Times-Italic

/Encoding {pdfDocEncoding}

 >>

/PUT pdfmark

[/_objdef {TiRo}

 /type /dict

/OBJ pdfmark

[{TiRo}

 <<

/Type /Font

/Subtype /Type1

/Name /TiRo

/BaseFont /Times-Roman

90

/Encoding {pdfDocEncoding}

 >>

/PUT pdfmark

[/_objdef {ZaDb}

 /type /dict

/OBJ pdfmark

[{ZaDb}

 <<

/Type /Font

/Subtype /Type1

/Name /ZaDb

/BaseFont /ZapfDingbats

 >>

/PUT pdfmark

8.17 Forms Examples

This section gives examples illustrating various uses of the
Forms pdfmark suite.

The following examples are derived from the sampler
example; see sampler.pdf and sampler.ps in the
Docs:OtherDoc folder on the Acrobat 4.05 SDK CD.

8.17.1 PDFMarkPrefix

Discriminate between running in a printer, where the
pdfmark operator is not defined, and on Distiller.

%%BeginPDFMarkPrefix

systemdict /currentdistillerparams known not {

 /str 256 string def

 {currentfile str readline not {exit} if

 (%%EndPDFMarkPrefix) eq {exit} if } loop

} if

91

8.17.2 Define the AcroForm Dictionary at the Catalog of the
Document

Includes these required entries:

• Fields (the array from where all widgets in the form
can be found)

• Default Appearance (DA)

• Default Resources (DR)

• NeedApperances boolean, set to true to indicate that
when the document is opened, traverse all widgets to
generate their display and add them to the Fields array

Also includes definition of common objects that are used
by the widgets such as fonts, encoding arrays, and Form
XObjects for button faces.

%%<<AcroForm Begin

[/_objdef {pdfDocEncoding}

 /type /dict

/OBJ pdfmark

[{pdfDocEncoding}

 <<

 /Type /Encoding

 /Differences [

 24 /breve /caron /circumflex /dotaccent /hungarumlaut /

 ogonek /ring /tilde 39 /quotesingle 96 /grave 128 /

 bullet /dagger /daggerdbl /ellipsis /emdash /endash /

 florin /fraction /guilsinglleft /guilsinglright /minus /

 perthousand /quotedblbase /quotedblleft /quotedblright /

 quoteleft /quoteright /quotesinglbase /trademark /fi /fl

 /Lslash /OE /Scaron /Ydieresis /Zcaron /dotlessi /lslash

 /oe /scaron /zcaron 164 /currency 166 /brokenbar 168 /

 dieresis /copyright /ordfeminine 172 /logicalnot /

 .notdef /registered /macron /degree /plusminus /

 twosuperior /threesuperior /acute /mu 183 /

 periodcentered /cedilla /onesuperior /ordmasculine 188 /

 onequarter /onehalf /threequarters 192 /Agrave /Aacute /

 Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /

 Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /

 Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /

 Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave

92

 /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /

 germandbls /agrave /aacute /acircumflex /atilde /

 adieresis /aring /ae /ccedilla /egrave /eacute /

 ecircumflex /edieresis /igrave /iacute /icircumflex /

 idieresis /eth /ntilde /ograve /oacute /ocircumflex /

 otilde /odieresis /divide /oslash /ugrave /uacute /

 ucircumflex /udieresis /yacute /thorn /ydieresis

]

 >>

/PUT pdfmark

[/_objdef {ZaDb}

 /type /dict

/OBJ pdfmark

[{ZaDb}

 <<

/Type /Font

/Subtype /Type1

/Name /ZaDb

/BaseFont /ZapfDingbats

 >>

/PUT pdfmark

[/_objdef {Helv}

 /type /dict

/OBJ pdfmark

[{Helv}

 <<

/Type /Font

/Subtype /Type1

/Name /Helv

/BaseFont /Helvetica

/Encoding {pdfDocEncoding}

 >>

/PUT pdfmark

[/_objdef {aform}

 /type /dict

/OBJ pdfmark

[/_objdef {afields}

 /type /array

/OBJ pdfmark

93

[{aform}

 <<

 /Fields {afields}

 /DR << /Font << /ZaDb {ZaDb} /Helv {Helv} >> >>

 /DA (/Helv 0 Tf 0 g)

 /NeedAppearances true

 >>

/PUT pdfmark

[{Catalog}

 <<

 /AcroForm {aform}

 >>

/PUT pdfmark

%%>> %End AcroForm

8.17.3 Define the Widget Annotations, Which Are Also Field
Dictionaries for this Form

The collection of all individual widget annotations.

It is possible to have multiple instances of these sections,
maybe defining a single widget on each instance.

%%<<Widgets Begin

[

 /Subtype /Widget

 /Rect [216 647 361 684]

 /F 4

 /T (SL Text)

 /FT /Tx

 /DA (/Helv 14 Tf 0 0 1 rg)

 /V (5)

/AA <</K<<

 /S /JavaScript

 /JS (AFNumber_Keystroke\(2, 0, 0, 0, "$", true\);)

 >>

 /F<<

 /S /JavaScript

 /JS (AFNumber_Format\(2, 0, 0, 0, "$", true\);)

 >>

>>

/ANN pdfmark

94

[

 /Subtype /Widget

 /Rect [216 503 361 612]

 /F 4

 /T (Ping Result)

 /FT /Tx

 /DA (/Helv 0 Tf 0 0 1 rg)

 /Ff 4096

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [216 432 252 468]

 /F 4

 /T (Check Box)

 /FT /Btn

 /DA (/ZaDb 0 Tf 0 g)

 /AS /Off

 /MK << /CA (4)>>

 /AP <<

 /N << /Oui null >>

 >>

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [216 360 252 396]

 /F 4

 /T (Radio)

 /FT /Btn

 /DA (/ZaDb 0 Tf 0 g)

 /Ff 49152

 /AS /Off

 /MK << /CA (8)>>

 /AP <<

 /N << /V1 null >>

 >>

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [261 360 297 396]

 /F 4

 /T (Radio)

 /FT /Btn

95

 /DA (/ZaDb 0 Tf 0 g)

 /Ff 49152

 /AS /Off

 /MK << /CA (8)>>

 /AP <<

 /N << /V2 null >>

>>

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [306 360 342 396]

 /F 4

 /T (Radio)

 /FT /Btn

 /DA (/ZaDb 0 Tf 0 g)

 /Ff 49152

 /AS /Off

 /MK << /CA (8)>>

 /AP <<

 /N << /V3 null >>

>>

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [351 360 387 396]

 /F 4

 /T (Radio)

 /FT /Btn

 /DA (/ZaDb 0 Tf 0 g)

 /Ff 49152

 /AS /Off

 /MK << /CA (8)>>

 /AP <<

 /N << /V4 null >>

>>

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [216 287 361 324]

 /F 4

 /T (Pop Down)

 /FT /Ch

96

 /Ff 131072

 /Opt [[(1)(First)] [(2)(Second)] [(3)(Third)]

 [(4)(Fourth)] [(5)(Fifth)]]

 /DV (5)

 /V (5)

 /DA (/TiIt 18 Tf 0 0 1 rg)

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [216 215 361 252]

 /F 4

 /T (Combo)

 /FT /Ch

 /Ff 917504

 /Opt [(Black)(Blue)(Green)(Pink)(Red)(White)]

 /DA (/TiRo 18 Tf 0 g)

 /V (Black)

 /DV (Black)

/ANN pdfmark

[

 /Subtype /Widget

 /Rect [216 107 253 180]

 /F 4

 /T (ListBox)

 /FT /Ch

 /DA (/Helv 10 Tf 1 0 0 rg)

 /Opt [(1)(2)(3)(4)(5)]

 /DV (3)

 /V (3)

/ANN pdfmark

%

% Example of how the /MK dictionary is used.

% Notice that the text will be shown upside-down (180 degree

rotation).

%

[

 /Subtype /Widget

 /Rect [430 110 570 150]

 /F 4

 /T (Clear)

 /FT /Btn

 /H /P

97

 /DA (/HeBo 18 Tf 0 0 1 rg)

 /Ff 65536

 /MK <<

 /BC [1 0 0]

 /BG [0.75 0.45 0.75]

 /CA (Clear)

 /AC (Done!)

 /R 180

 >>

 /BS <<

 /W 3

 /S /I

 >>

 /A <<

 /S /ResetForm

 >>

/ANN pdfmark

%%>> %End Widgets

%%EndPDFMarkPrefix

8.18 Structure Examples

This section gives examples illustrating various uses of the
structure pdfmark suite.

8.18.1 Interrupted Structure

This example shows a paragraph that is graphically
interrupted by a table. The originating application has
chosen to write out the PostScript in graphical order, but
logically the paragraph is one element and the table is
another. To further complicate matters, the document
contains a special element that is a list of tables.

% Start a ListOfTables element directly under the Structure

% Tree Root. Give it an object name for later reference.

[/Subtype /ListOfTables

/_objdef {LOT}

/StPNE

pdfmark

% Pop it off the stack so that the next element becomes a

% child of the Structure Tree Root.

98

[/StPop pdfmark

% Start the page with the section on it.

% Start the section, also making it the default parent

% element.

[/Subtype /Section

 /StPNE

pdfmark

% Start the paragraph.

[/Subtype /P

/StPNE

pdfmark

% Here comes the portion of the paragraph before the table

[/StBDC pdfmark

% [code to write the first portion of the paragraph goes here]

[/EMC pdfmark

% Now we’re interrupted by a table that doesn’t belong to the

% paragraph. Save the context as a conservative move because

% we don’t want to worry about what the table code does to the

% implicit parent stack.

[/StoreName /S1

 /StStore

pdfmark

% The table is an element, and it contains cells as child

% elements.

[/E {LOT}

/StPush

pdfmark

[/Subtype /Table

 /StPNE

pdfmark

% ... code to draw the table and establish its logical

% substructure here ...

% Pop the table and the List of Tables off the implicit parent

% stack.

[/StPop pdfmark

99

[/StPop pdfmark

% Resume the paragraph. It turns out that the table code was

% tidy, but it’s probably a good thing that we didn’t count on

% it. Get the implicit parent stack back into a known state.

[/StoreName /S1

 /StRetrieve

pdfmark

[/StBDC pdfmark

% ... code to write the second portion of the paragraph ...

[/EMC pdfmark

% Pop the Paragraph and Section elements and the Structure

% Tree Root off the stack.

[/StPop pdfmark

[/StPop pdfmark

[/StPop pdfmark

8.18.2 Independence of Logical and Physical Structure

This shows that the logical structure and the physical
nesting of marked content can have different tree
structures. In this example there are again two Structure
Trees. One is the usual hierarchical structure of the
document; the other is a list of funny words that occur
within the document. The words occur as nested marked
content within the marked content forming the contents
of a paragraph, but the words become the content of
elements in a separate branch of the structure tree from
the Paragraph elements.

% Set up a List element to hold the Funny Word List.

[/Subtype /List

/Title (Funny Words)

/_objdef {FWL}

/StPNE

pdfmark

[/StPop pdfmark

[/Subtype /Section

100

 /StPNE

pdfmark

[/Subtype /P

/StPNE

pdfmark

% Begin PostScript code for the paragraph

[/StBDC pdfmark

(John was thrilled to find some) show

% Here’s an occurrence of a funny word coming up.

% Start an element for the funny word list...

[/E {FWL}

/StPush

pdfmark

[/Subtype /Word

/StPNE

pdfmark

% Fill that element with the funny word from the

% page content. This content is still in the

% marked content within the paragraph element.

[/StBDC pdfmark

(puccoon) show

[/EMC pdfmark

% Pop the Word element off the implicit parent stack.

[/StPop pdfmark

% Resume paragraph content that’s not in the funny word

% (, not knowing that it could also be called)

% ... another funny word ...

[/E {FWL}

/StPush

pdfmark

[/Subtype /Word

/StPNE

pdfmark

[/StBDC pdfmark

(gromwell) show

[/EMC pdfmark

[/StPop pdfmark

(.) show

% Close off the marked content for the paragraph...

101

[/EMC pdfmark

% ...and tidy up the stack

[/StPop pdfmark

[/StPop pdfmark

[/StPop pdfmark

8.18.3 Page Break Within Logical Structure

This shows how to handle logical structure spanning more
than one page. The example shows a logical paragraph
spanning a page break.

%%Page: 1 1

% Begin a Paragraph element

[/Subtype /P

 /StPNE

pdfmark

[/StBDC pdfmark

% ... write the portion of the paragraph that’s on Page 1 ...

[/EMC pdfmark

showpage

%%Page: 2 2

% The Paragraph element is still on the top of the stack, so

% we can just add some more content to it implicitly.

[/StBDC pdfmark

% ... write the portion of the paragraph that’s on Page 2 ...

[/EMC pdfmark

102

8.18.4 Logical Structure Out-of-order in Physical Structure

This example shows how to build a logical structure
whose elements appear in a different physical order in
the document from their logical order. The example is
based on a magazine in which an opinion piece starting
on the last inside page is continued on an earlier page in
the printing order.

%%Page 5 5

[/Subtype /Section

 /ID (ID string)

 /StPNE

pdfmark

% This Paragraph element is actually a later paragraph within

% the Section element than the Paragraph element that appears

% on the next page.

[/Subtype /P

 % No /At key, so defaults to being inserted as last child of

% its parent.

 /StPNE

pdfmark

[/StBDC pdfmark

% ... draw the paragraph...

[/EMC pdfmark

% ... the rest of the page ...

showpage

% Pop the Paragraph element off the stack

[/StPop pdfmark

%%Page 6 6

[/Subtype /P

 % Insert as first child of parent.

/At 0

 /StPNE

pdfmark

[/StBDC pdfmark

% ... draw the paragraph...

103

[/EMC pdfmark

% Pop the Paragraph and Section elements off the stack

[/StPop pdfmark

[/StPop pdfmark

104

APPENDIX A

Changes Since Earlier
Versions

Changes since 5 November 1997 version

• Added structure operator information and related
additions in new sections:
“Logical Structure”
“Support Commands”
“Naming Images with the NI Command”

• Added Alternate image sample code:
“Using OBJ and PUT pdfmarks to Create an Alternate
Image”

Changes since 22 July 1997 version

• Added creating a base URI example.

Changes since 4 June 1997 version

• Added link named action example.

Changes since 14 February 1997 version

• Added headers for pdfmark examples.

Changes since 07 July 1995 version

• Added changes for Acrobat Distiller 3.0:

— Specifying Cos objects.

— Encapsulating graphics.

— URI as a file specification.

105

• Added example showing form definition for Acrobat
forms.

• Added example defining movie and sound
annotations.

• Changed headings in large example at end to
delineate examples better.

• General updates, such as removing reference to
obsolete documentation.

Changes since 07 April 1995 version

• Updated contents for version 2.1 of the Distiller
application:

— Updated version number in Section 1.

— Updated list of version numbers with ~4k limit on
the number of named destinations (Section 3.4).

— Added “dictionary” to the enumeration of value
types allowed in arbitrary key–value pairs (Section
1).

— Added UnixFile key (Sections 4.3, 4.4, and 4.5).

— Added Unix key (Section 4.4).

— Added Subtype key (Tables 1, 2, and 3).

— Rewrote annotation section to show how to create
links and custom annotations using the annotation
marker (Section 3.1).

— Updated almost all link examples (Example 2) to
use the new preferred method of link creation via
annotation markers. Left one example in the old
style, using a link marker.

— Added custom annotation example (Example 3).

— Added “private data” Note example (Example 1).

106

— Added URI link example (Example 2).

— Added description of custom actions (Table 13 and
Section 4.6).

— Added examples of custom URI actions (Examples 4,
and 20).

• Added a number of index entries.

• Corrected improper capitalization of DataSource in
pass-through PostScript language code (Table 7).

• Added cross-reference to Tech Note #5151 for
determining the Distiller application’s version number
programmatically (Section 2).

• Corrected Info dictionary example to use a prefix on
the private keys (Example 9).

• Corrected the specification of a note’s and link’s color
(Table 1 and Table 2). The text previously stated that
the color could be specified in the DeviceGray,
DeviceRGB, or DeviceCMYK color spaces. In fact, it
must be in DeviceRGB.

Changes since 05 December 1994 version

• Completely reorganized the document to make it
easier to understand and use.

• Removed several spurious key–value pairs (for
example, removed Title and ModDate from links).

• Modified example to show a named destination.

Changes since January 26, 1994 version

• Complete update for version 2.0 of the Acrobat
products. New features include articles, actions, named
destinations, Info and Catalog dictionary entries, and
pass-through PostScript language code.

• Replaced examples with a larger, single example.

107

Changes since June 19, 1993 version

• Corrected the description of the Count key for
bookmarks to state that the value of this key specifies
the number of immediate subordinate bookmarks, not
the total number of subordinate bookmarks at all
levels.

• Example code for Figure 6 — Updated the value of the
Count key to be consistent with the correct definition
of the Count key.

	DocMap
	Contents
	Introduction
	1.1 Introduction
	1.2 pdfmark Operator
	1.3 Private Data

	Basic Syntax
	2.1 Annotations
	2.1.1 Notes
	2.1.2 Links
	2.1.3 Custom Annotations

	2.2 Bookmarks
	2.3 Articles
	2.4 Named Destinations
	2.5 Pass-through PostScript Language Commands
	2.6 Page Cropping
	2.7 Info Dictionary
	2.8 Catalog Dictionary

	Cos Objects
	3.1 Naming Objects with _objdef
	3.2 Implicitly Named Objects
	3.3 PUT
	3.4 PUTINTERVAL
	3.5 CLOSE

	Logical Structure
	4.1 Structure Operators
	4.2 Structure Tree Root
	4.2.1 StRoleMap
	4.2.2 StClassMap

	4.3 Elements
	4.4 Specifying Parents and Containers
	4.5 Element Operators
	4.5.1 StPNE
	4.5.2 StBookmarkRoot
	4.5.3 StPush
	4.5.4 StPop
	4.5.5 StPopAll

	4.6 Specifying Element Content
	4.6.1 StBMC
	4.6.2 StBDC
	4.6.3 EMC
	4.6.4 StOBJ

	4.7 Nesting Structure Elements
	4.8 Attribute Objects
	4.8.1 StAttr

	4.9 Storing and Retrieving the Implicit Parent Stack
	4.9.1 StStore
	4.9.2 StRetrieve

	4.10 EPS Considerations

	Support Commands
	5.1 Namespace Commands
	5.1.1 NamespacePush
	5.1.2 NamespacePop

	Naming Graphics and Images
	6.1 Naming Graphics with BP and EP
	6.2 Naming Images with the NI Command

	Specifying Destinations and Actions
	7.1 View Destinations
	7.2 Goto Actions
	7.3 GotoR Actions
	7.4 Launch Actions
	7.5 Article Actions
	7.6 Custom Actions
	7.7 Named Destinations

	Examples
	8.1 Define pdfmark So PostScript Interpreters Ignore pdfmarks
	8.2 File Open Action
	8.3 Info Dictionary
	8.4 Crop All Pages
	8.5 Annotations
	8.5.1 Simple Note
	8.5.2 Fancy Note
	8.5.3 Private Data in Note
	8.5.4 Movie or Sound Annotation
	8.5.5 Simple Link (Old style, compatible with all Distiller application versions)
	8.5.6 Link that Launches Another File
	8.5.7 Custom Link Action (URI Link for the Acrobat WebLink Plug-in)
	8.5.8 Custom Link Action (Named Action)
	8.5.9 Custom Annotation Type
	8.5.10 Putting a File’s Contents Into a Text Annotation.

	8.6 Crop This Page
	8.7 Create Text for the Article “Now is the Time”
	8.7.1 Continue Text for the Article “Now is the Time”

	8.8 Named Destination
	8.9 Article Containing Two Beads
	8.10 Pass-through PostScript Language Code
	8.11 Bookmarks
	8.11.1 Bookmark with a URI as an Action

	8.12 Putting a File’s Contents Into a Text Annotation
	8.13 Using OBJ pdfmark to Add an Open Action to a PDF File
	8.14 Using OBJ pdfmark to Create a Base URI
	8.15 Using OBJ and PUT pdfmarks to Create an Alternate Image
	8.16 Using OBJ, PUT, BP, and EP pdfmarks to Create an Acrobat Form
	8.16.1 Define __pdfMark__ so Anything Between BP and EP pdfmarks Is Not Printed
	8.16.2 Acrobat Form Definitions
	8.16.3 Font Encoding Resource
	8.16.4 Font Dictionaries

	8.17 Forms Examples
	8.17.1 PDFMarkPrefix
	8.17.2 Define the AcroForm Dictionary at the Catalog of the Document
	8.17.3 Define the Widget Annotations, Which Are Also Field Dictionaries for this Form

	8.18 Structure Examples
	8.18.1 Interrupted Structure
	8.18.2 Independence of Logical and Physical Structure
	8.18.3 Page Break Within Logical Structure
	8.18.4 Logical Structure Out-of-order in Physical Structure

	Changes Since Earlier Versions

