

Adobe Developer Technologies

ADOBE SYSTEMS INCORPORATED

Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000

Eastern Regional Office

24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120

ADOBE SYSTEMS EUROPE LIMITED

Adobe House, 5 Mid New Cultins
Edinburgh EH11 4DU
Scotland, United Kingdom
+44-131-453-221

ADOBE SYSTEMS JAPAN

Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150 Japan
+81-3-5423-8100

FDF Toolkit
Overview

Technical Note #5194

Revised: November 10, 1999

Copyright 1999 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe
Systems Incorporated. No part of this publication (whether in hardcopy
or electronic form) may be reproduced or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the Adobe Systems
Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated.
All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless
otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript
language interpreter.

Except as otherwise stated, any reference to a "PostScript printing
device," "PostScript display device," or similar item refers to a printing
device, display device or item (respectively) that contains PostScript
technology created or licensed by Adobe Systems Incorporated and not
to devices or items that purport to be merely compatible with the
PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture,
Acrobat Exchange, Distiller, PostScript, and the PostScript logo are
trademarks of Adobe Systems Incorporated.

Apple, Macintosh, and Power Macintosh are trademarks of Apple
Computer, Inc., registered in the United States and other countries. HP-
UX is a registered trademark of Hewlett-Packard Company. AIX and
PowerPC are registered trademarks of IBM Corporation in the United
States. ActiveX, Microsoft, Windows, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the
United States and other countries. UNIX is a registered trademark of
The Open Group. All other trademarks are the property of their
respective owners.

This publication and the information herein is furnished AS IS, is
subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors
or inaccuracies, makes no warranty of any kind (express, implied,
or statutory) with respect to this publication, and expressly
disclaims any and all warranties of merchantability, fitness for
particular purposes, and noninfringement of third party rights.

Acrobat
Developer FAQ

Acrobat
Distiller

Acrobat
 Interapplication
Communication

(IAC)

Getting Started Using the
Adobe Acrobat Software

Development Kit

Acrobat
FDF Toolkit

Plug-ins

Acrobat Core
API Reference

Acrobat Distiller
Parameters

Acrobat Distiller
API Reference

pdfmark
Reference

FDF Toolkit
Overview

Acrobat Digital
Signature API

Reference

Acrobat Forms
API Reference

Acrobat Search
API Reference

Acrobat Weblink API
Reference

PDF Reference
Manual

Acrobat
Glossary

Adobe Acrobat SDK
Contents Description

Acrobat SDK
Release Notes

Acrobat Capture
API Reference

Acrobat Catalog
API Reference

Acrobat PDF
Writer API
Reference

Other Plug-ins

Documentation Roadmap

Acrobat PDF
Library Overview

Acrobat API
Development

Samples
Roadmap

Acrobat Core
API Overview

Acrobat Plug-In
Developer’s Guide

FDF Toolkit
Reference

Acrobat IAC
Overview

Acrobat IAC
Reference

http://partners.adobe.com/asn/developer/acrosdk/DOCS/devfaq.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/devfaq.pdf

FDF Toolkit Overview

iv

C

ONTENTS

Contents

What Is in This Tech Note . 9

Audience . 9

Conventions Used in This Book . 10

Other Useful Documentation . 10

Acrobat Forms Resources . 10

Prerequisites . 11

PART I: FDF Overview

Chapter 1 Introduction to FDF 13

FDF Overview . 13

Acrobat Forms . 13
FDF Toolkit Functionality . 13
The Basics . 13

Description of the Forms Data Format . 14

File Structure . 14
The FDF Catalog Object . 15
Use of FDF . 19
Sample FDF . 19
FDF for Annotations . 20

Posting Form Data to a Web Server in HTML or FDF 21

Choosing the Output Format . 21
Replacing an HTML Form with Acrobat Form . 21

Scenarios for Using FDF . 22

Acrobat Form with Results Returned in the Same Form 22
Acrobat Form with Results Returned in a New Form . 23
HTML Form with Results Returned in an Acrobat Form 24

Chapter 2 FDF and Web Server Connectivity29

Building Server Side Applications With FDF . 29

The FDF Toolkit . 29
Sample Application . 31
Setting Up the Client Side PDF File . 33
Populating a PDF File . 33
Sample Application to Generate FDF Data . 37
Debugging Tip . 38

FDF Toolkit Overview

v

C

ONTENTS

PART II: Language Specific Overview

Chapter 3 FDF Toolkit for C/C++ 41

Introduction . 41

Building Applications with the FDF Toolkit . 41

UNIX Support . 41
Microsoft Windows Support . 41

FDF Toolkit Methods . 42

General . 43
UNIX and Macintosh Specific . 43
Parsing FDF Data . 43
Generating FDF Data . 43
Cleaning Up and Closing FDF Files . 44

Chapter 4 FDF Toolkit for ActiveX 45

Introduction . 45

Building Applications with the FDF Toolkit . 45

Installation . 45

Using the FDF Toolkit in Visual Basic . 46

Using the FDF Toolkit with Active Server Pages 46

Setting Up the NT Server to Handle FDF Data . 46

Chapter 5 FDF Toolkit for Java50

Introduction . 50

Differences Between Java Implementations . 50

Building Applications with the FDF Toolkit . 50

FDF JNI Based Java Toolkit Class Overview . 51

For the FDFTK Class . 51
General Methods For the Creating and Opening FDFDoc Objects 51
FDFDoc Methods for Parsing FDF Data . 51
Methods for Generating FDF Data . 52
Cleaning Up and Closing FDF Files . 53

FDF ActiveX Based Java Toolkit Class Overview 53

Chapter 6 FDF Toolkit for Perl 54

Perl FDF Toolkit Overview for Windows . 54

Calls Not Available in the Windows Perl FDF Toolkit . 54
Using the Perl FDF Toolkit . 54
Sample Usage of the Windows Perl FDF Toolkit . 55

FDF Toolkit Overview

vi

C

ONTENTS

FDF Toolkit Methods . 55

General Methods . 55
Templates . 56
Generating FDF Data . 56
Parsing FDF Data . 56
Cleaning Up and Closing FDF Files . 57
Calls Not Available in the UNIX Perl FDF Toolkit . 58
Functions Only Available in the UNIX Perl FDF Toolkit 58
Supported Platforms for the FDF Toolkit Libraries . 58
Using the Perl FDF Toolkit . 58
Sample Usage of the Perl FDF Toolkit for UNIX . 59

FDF Toolkit methods . 59

General Methods . 59
Templates . 60
Generating FDF Data . 60
Parsing FDF Data . 60
Cleaning Up and Closing FDF Files . 61

FDF Toolkit Overview

vii

L

IST

OF

 F

IGURES

List of Figures

Figure 1.1

 Using HTML with Acrobat Forms 22

Figure 1.2

 Returning FDF into the Same Form 23

Figure 1.3

 Simple ASP for generating FDF 23

Figure 1.4

 Returning FDF into a Different Form 24

Figure 1.5

 Start from HTML, end in an Acrobat form 25

Figure 1.6

 Dynamic Creation of a PDF from Templates 26

FDF Toolkit Overview

viii

L

IST

OF

 T

ABLES

List of Tables

Table 1.1

 FDF Attributes . 15

Table 1.2

 Field Attributes . 15

Table 1.3

 Icon-fit Attributes . 17

Table 1.4

 Pages-object Attributes . 17

Table 1.5

 Templates Dictonary Attributes 18

Table 1.6

 Named Page Reference Dictionary Attributes 18

Table 1.7

 FDF Annotation Attributes . 19

FDF Toolkit Overview

9

Preface

What Is in This Tech Note

This technical note provides an introduction to development using the Forms Data Format
(FDF) Toolkit. It describes FDF, the FDF Toolkits, the FDF Toolkit Software Development Kit
(SDK), and support options. This technical note is divided into the following chapters:

■

Chapter 1 provides an introduction to the FDF toolkit, some typical scenarios for using the
toolkit and introduces templates.

■

Chapter 2 discusses FDF and Web Server Connectivity. It shows how to build server-side
applications with FDF including parsing FDF and generating FDF.

■

Chapter 3 describes the FDF Toolkit for C/C++.

■

Chapter 4 describes the FDF Toolkit for ActiveX.

■

Chapter 5 describes the FDF Toolkit for Java.

■

Chapter 6 describes the FDF Toolkit for Perl.

This overview provides background information on the Forms Data Format, examples of use,
and platform-specific information.

Audience

This technical note is intended for developers who need basic information on the FDF Toolkit
and its capabilities. It assumes that you have basic knowledge of:

■

Windows NT Server or UNIX

■

Web authoring on either of these platforms

■

PDF file format

■

Adobe Acrobat and the capabilties of the Forms plug-in

■

One of the following languages: Visual Basic, C/C++, Java, or Perl, and have at least one
development environment for that language

P

REFACE

FDF Toolkit Overview

10

Conventions Used in This Book

Conventions Used in This Book

The Acrobat documentation uses certain text styles to identify various operators, keywords,
terms, and objects.

Other Useful Documentation

You should be familiar with the Acrobat core API and Portable Document Format (PDF). The
following technical notes provide this information.

Forms Data Format Toolkit Reference

, Technical Note #5193, describes how to develop server
applications to parse or generate Forms Data Format (FDF) data for use with Acrobat Forms.

Portable Document Format Reference Manual

, Version 1.3. Provides a description of the
PDF file format, as well as suggestions for producing efficient PDF files. It is intended for
application developers who wish to produce PDF files directly.

Acrobat Forms Resources

You can find important resources that will help you get the most out of the forms capabilities
in Adobe Acrobat. New resources will be made available to our Web site on a regular basis, so
you may want to bookmark this page for convenience:

http://www.adobe.com/prodindex/acrobat/formsresources.html

Name Description Examples

ObjectName

Acrobat object types are written with initial
capital letters and italics

ASAtom

methodName

Acrobat API methods and parameter names

AVDestInfoDestroy

 and

des-
tInfo

file names

File names

WeblinkHFT.h

operator

PostScript language operators, PDF opera-
tors, PDF keywords, names of keys in dictio-
naries, and predefined names.

moveto

,

Tf

,

stream

, and

Type

code

Examples and samples

PDColorValue color;

comments

Comments in code examples

/* disable floating
windows */

documents

Other document titles

Acrobat Core API
Overview

Web links Hypertext links to URLs

www.apple.com

term The first occurrence of terms and the Boolean val-
ues true and false

true and false

http://www.adobe.com/prodindex/acrobat/formsresources.html

PREFACE

FDF Toolkit Overview 11

Prerequisites

The FDF Toolkit is part of the Adobe Solutions Network’s Acrobat SDK. To download all or
part of the FDF Toolkit, which includes support for writing Web applications in C/C++, Java,
Perl and ActiveX, go to:

http://partners.adobe.com/asn/developer/acrosdk/forms.html

Prerequisites

Readers are assumed to know the following:

■ The process of creating form fields and buttons, and modifying their properties. See the
Adobe Acrobat Guide, accessible via the menu item Help -> Acrobat Guide.

■ The process flow for HTML forms, on both the client and server. Technical bookstores
generally stock a number of excellent books that cover this topic.

In addition, you will need to install the FDF Toolkit on a computer with the following
requirements:

■ Windows NT or UNIX

■ Acrobat 4.0

■ Administrator privileges

■ Web Server, such as IIS or Apache

■ A development environment for at least one of the following languages: C/C++, Visual
Basic, Perl, or Java

■ An e-mail account (optional, but strongly suggested)

http://www.adobe.com/prodindex/acrobat/formsresources.html
http://partners.adobe.com/asn/developer/acrosdk/forms.html

Part I

FDF Overview

FDF Toolkit Overview 13

1 Introduction to FDF

FDF Overview

This chapter describes the Forms Data Format (FDF) and the FDF Toolkit for creating
and/or parsing FDF-formatted text for an Acrobat form. It also compares HTML and
FDF as the file format for Acrobat form-based submissions.

Acrobat Forms

Acrobat Forms are a group of extensions to PDF used by Adobe Acrobat. These extensions
allow PDF files to contain fields and buttons and can be considered to be simply a new layer
on top of a PDF file. The underlying PDF file may be created by any PDF producer such as the
PDF Writer, the Acrobat Distiller application, or the Acrobat Capture application. The fields
are subsequently added manually using Acrobat. In addition to the forms data stored in PDF
files, there is a need for a file format to use for transmitting forms data between a server and a
client. The Acrobat products support both the HTML form format (that is, MIME type
application/x-www-form-urlencoded) and an Acrobat-specific Forms Data Format: FDF
(MIME type application/vnd.fdf).

FDF Toolkit Functionality

The FDF Toolkit is a threadsafe API for writing a server application to generate FDF data or
parse FDF data from a form created by the Acrobat Forms plug-in. The FDF Toolkit can be
used on Microsoft Windows NT, or UNIX platforms. The FDF Toolkit supports the C/C++,
Java, Perl, and Visual Basic (Active Server Pages) development languages.

The Basics

After filling in an Acrobat form, the user must click on a button whose action is a Submit form
action to submit the data to a server. The format of the submitted data may be either HTML-
compatible (urlencoded) or FDF. The selection of which format to use is made at the time the
form is created.

■ If HTML is selected, the format submitted is identical to HTML form submissions.
Existing CGI scripts for HTML forms may be used to parse data in this format.

■ If FDF is selected, the data format is FDF. There is a server library to help parse and
generate FDF files.

The URL to submit to is not restricted to the http scheme. For example, it can also be the
mailto scheme, for example, mailto:someuser@somecompany.com.

NOTE: To see the format of the FDF data that is being sent to the server, create a form and enter data
into one or more of its fields. Instead of submitting this to the server, simply select the “Export Form
Data…” menu item from the File menu of Acrobat.

Description of the Forms Data Format1 INTRODUCTION TO FDF

FDF Toolkit Overview 14

Description of the Forms Data Format

FDF is used when submitting form data to a server, receiving the response, and incorporating
it into the form. It can also be used to generate (that is, “export”) stand-alone files containing
Form data that can be stored, transmitted electronically (for example, via e-mail), and
imported back into the corresponding form.

FDF can also be used to control the document structure. That is, constructs within FDF allow
it to control which Acrobat forms are used in the creation of a new PDF document. This
functionality can be used to create complex documents dynamically.

FDF is also used to define a container for annotations that are separate from the PDF
document to which the annotations apply.

File Structure

An FDF file consists of a one-line header, a body, and a trailer. It can optionally contain a
cross-reference table. FDF is structured in the same way as PDF, but need only contain those
elements required for Acrobat forms data export and import, which are:

■ Header

■ Body

■ Cross Reference Table (optional)

■ Trailer

Header

The first line of an FDF file specifies the version number of the PDF specification that FDF is
a part of. The current version of PDF is 1.3; therefore the first line of an FDF file is:

%FDF-1.3

Body

The body consists of one Catalog object and any additional indirect objects that it may
reference. The Catalog object is a dictionary with only one (required) key in it, FDF. Its value
is a dictionary, whose entries are described in The FDF Catalog Object. It is legal for the body
to contain additional objects, and for the Catalog object to contain additional key-value pairs.
Comments can appear anywhere in the body section of an FDF file. Just as in PDF, objects in
FDF can be direct or indirect.

Trailer

The trailer consists of a trailer dictionary, followed by the last line of the FDF file, containing
the end-of-file marker,%%EOF. The trailer dictionary consists of the keyword trailer,
followed by at least one key-value pair enclosed in double angle brackets. The only required
key is Root, and its value is an indirect reference to the Catalog object in the FDF body.

It is legal for the trailer dictionary to contain the additional key-value pairs described in the
PDF specification.

Description of the Forms Data Format1 INTRODUCTION TO FDF

FDF Toolkit Overview 15

The FDF Catalog Object

The value of the FDF key in the Catalog object is a dictionary whose entries are described in
Table 1.1.

FDF fields

Table 1.2 describes the attributes of each field in the FDF.

TABLE 1.1 FDF Attributes

Key Type Semantics

Fields array (Optional) This array contains the root fields being exported or
imported. A root field is one with no parent (it is not in the Kids
array of another field).

Status string (Optional) A status to be displayed indicating the result of an
action, typically a SubmitForm action. This string is encoded
with PDFDocEncoding.

NOTE: The Acrobat 3.0 implementation of Forms displays
the Status, if any, in an Alert Note, when importing an FDF.

F File specification (Optional) File specification for the PDF document that this
FDF data was exported from, or is meant to be imported into.

ID array (Optional) The value of the ID field in the trailer dictionary of
the PDF document that this FDF data was exported from, or is
meant to be imported into.

Pages array (Optional) This array causes new pages to be added to a PDF
document. Use of the /Pages key precludes the use of the /Fields
and /Status keys.

Encoding name (Optional) The encoding to be used for any FDF field value (/V
key) or option (/Opt key) that is a string and does not begin with
the Unicode prefix <FE FF>. The default is PDFDocEncoding.

NOTE: The only Encoding value supported by Acrobat 4.0
is Shift-JIS. All other values will use the default,
PDFDocEncoding.

Annot array (Optional) An array of FDF annotation dictionaries.

TABLE 1.2 Field Attributes

Key Type Semantics

T string (Required) The partial field name.

Kids array (Optional) Contains the child field dictionaries.

V various (Optional) Field value.

Opt array (Optional) Options.

Description of the Forms Data Format1 INTRODUCTION TO FDF

FDF Toolkit Overview 16

Ff integer (Optional) Field flags. When imported into an Acrobat form, it replaces
the current value of the /Ff key in the corresponding field inside the form.
If /SetFf and/or /ClrFf are also present, they are ignored.

SetFf integer (Optional) Field flags. When imported into an Acrobat form, it is OR’ed
with the current value of the /Ff key in the corresponding field inside the
form.

ClrFf integer (Optional) Field flags. When imported into an Acrobat form, for each bit
that is set to one in this value, sets the corresponding bit in the form field’s
/Ff flags to zero. If /SetFf is also present, /ClrFf is applied after /SetFf.

F integer (Optional) Widget annotation flags. When imported into an Acrobat form,
it replaces the current value of the /F key in the corresponding field inside
the form. If /SetF and/or /ClrF are also present, they are ignored.

SetF integer (Optional) Widget annotation flags. When imported into an Acrobat form,
it is OR’ed with the current value of the /F key in the corresponding field
inside the form.

ClrF integer (Optional) Widget annotation flags. When imported into an Acrobat form,
for each bit that is set to one in this value, sets the corresponding bit in the
form’s /F flags to zero. If /SetF is also present, /ClrF is applied after
/SetF.

AP dictionary (Optional) Dictionary containing the appearances for a Push Button field.

AS name (Optional) Appearance state.

A dictionary (Optional) Action to be performed on activation of this Widget
annotation.

AA dictionary (Optional) Additional actions.

APRef dictionary (Optional) Dictionary that includes references to external PDF files
containing the pages to use for the appearances for a Push Button field.
The values of the N, R, and D keys must all be named page reference
dictionaries, described in Table 1.6. If both an /AP and an /APRef are
provided, the /AP is used.

IF dictionary (Optional) The Icon-fit dictionary controls how the button icon is to be
manipulated within the boundaries of the button.

TABLE 1.2 Field Attributes

Key Type Semantics

Description of the Forms Data Format1 INTRODUCTION TO FDF

FDF Toolkit Overview 17

Icon-fit Dictionary

The Icon-fit dictionary controls how the button icon is to be manipulated within the boundaries
of the button. The Icon-fit dictionary, if provided, must contain three keys, described in
Table 1.3.

FDF Pages Object

Table 1.4 presents the pages-object attributes.

TABLE 1.3 Icon-fit Attributes

Key Type Semantics

SW (Scale When) name (Required) Indicates when the icon should be scaled inside
the button. The value is one of:
B Scale when icon is too big, or only scale down.
S Scale when icon is too small, or only scale up.
N Never scale.
A Always scale. This is the default value, used if no icon-fit
dictionary is provided.

S (Scaling) name (Required) Indicates how the icon should be scaled inside
the button. Possible values are:

A (Anamorphic) Always exactly fills the BBox for the
button. Anamorphic scaling does not maintain the aspect
ratio of the icon.
P (Proportional) Aspect ratio is maintained. The icon is
scaled until the contents fill the BBox for the field
annotation. This is the default value, used if no icon-fit
dictionary is provided.

A (Align) array (Required) An array of two numbers between 0 and 1
indicating the fraction of leftover space to assign to the left
and bottom location of the icon. A value of [0.5 0.5] centers
the icon in the BBox, and a value of [0 0] makes the icon
appear in the lower left corner of the BBox.

This array is not used if the icon is scaled anamorphically. If
no Icon-fit dictionary is provided, a value of [0.5 0.5] is
used.

TABLE 1.4 Pages-object Attributes

Key Type Semantics

Templates array (Required) An array of named page dictionaries that describe the
named pages that serve as templates on a page. The templates
dictionary attributes are described in Table 1.5.

PInfo dictionary (Optional) Contains other information about the page described by this
dictionary. Currently there are no attributes defined.

Description of the Forms Data Format1 INTRODUCTION TO FDF

FDF Toolkit Overview 18

Table 1.5 describes the templates dictionary attributes.

The /Rename key is used when a new page is being added to a PDF document under the
control of the FDF, and a new field on the new page has the same name as an existing field.
This can occur if the same template page is imported more than once, or if two different
templates are imported but have fields with the same names.

If /Rename is true, fields from the document being imported are renamed to guarantee their
uniqueness. If /Rename is false, the fields are not renamed, and each time the FDF provides
keys for that field, all fields with that name will be updated.

NOTE: Acrobat renames fields by prepending a page number, a template name, and an ordinal number
to the field name. The template ordinal number corresponds to the order in which the template is
applied to a page, with 0 being the first template specified for the page. For example, suppose the first
template used on the fifth page has the name template and has /Rename set to true. In this case, the
fields defined in that template will be renamed by prepending the character string P5.Template_0. to the
field names.

The named page reference dictionary describes the location of external templates or page
elements as shown in Table 1.6.

TABLE 1.5 Templates Dictonary Attributes

Key Type Semantics

TRef dictionary (Required) A named page reference dictionary that describes the
location of the template. The named page reference dictionary
attributes are described in Table 1.6.

Fields array (Optional) This array contains the root fields being imported. A root
field is one with no parent (that is, it is not in the Kids array of another
field). The attributes of the fields are described in Table 1.2.

Rename boolean (Optional) If false, prevents the fields from being renamed during FDF
importing. The default value is true. /Rename affects the fields
described in the same dictionary and their children. The effect of
/Rename is described more fully below.

TABLE 1.6 Named Page Reference Dictionary Attributes

Key Type Semantics

F File
specification

(Optional) Refers to an external PDF file. If the /F key is omitted, it is
assumed that the /Name refers to a page in the document being imported
into.

Name string (Required) The name of the referenced named page (template or page
element) in the document specified by the /F key.

Description of the Forms Data Format1 INTRODUCTION TO FDF

FDF Toolkit Overview 19

FDF Annotation dictionaries

Each annotation dictionary in an FDF file must have a /Page key indicating the page of the
source document to which the annotation is attached.

Use of FDF

For most of the keys, unless otherwise indicated in Table 1.2, importing consists of taking the
value of each key as received in the FDF data, and using it to replace the value of the
corresponding key in the field inside the form with the same fully qualified name.

NOTE: Of all the possible keys shown in Table 1.2, Acrobat 3.0 will export only the /V key of a field
when generating FDF data, and Acrobat 4.0 will export only the /V and /AP keys. It will, however,
import FDF files containing fields using any of the described keys.

NOTE: If Acrobat is importing FDF data that has specified in the /F key of the /FDF dictionary a form
that is not the current PDF, then that form is fetched first, before the FDF data gets imported.

NOTE: When exporting FDF data, Acrobat computes a relative path from the location the FDF data is
being stored to the location the form is in, and uses that as the value of the /F key in the FDF dictionary.

NOTE: If FDF data being imported contains fields whose fully-qualified names are not present in the
form, those fields will be discarded. This feature can be useful, among other cases, if FDF data
containing commonly used fields (such as name, address, and so forth) is used to populate various types
of Acrobat Forms, each of which does not necessarily include all the fields available in the FDF data.

NOTE: As shown in Table 1.2, the only required key in the field dictionary is /T. One possible use for
exporting FDF with fields that only contain a /T key but no /V key, is as an indication to a server of
which fields are desired in the FDF coming back as a response. For example, a server accessing a
database might choose between sending all fields in a record, versus just some selected ones, based on
the use of this feature in the request FDF. The implementation of Acrobat Forms will ignore, during
import, fields in the FDF data that do not exist in the form.

NOTE: The Acrobat implementation of forms allows the choice for a SubmitForm action to send the
data using HTML format. This is for the benefit of existing server scripts written to process such forms.
However, any such existing scripts that generate new HTML forms as a response will need to be
modified to generate FDF data instead.

Sample FDF

The following example illustrates a simple FDF file.

%FDF-1.2
1 0 obj <<
/FDF <<
/Fields
[
<<
/T (My Children)

TABLE 1.7 FDF Annotation Attributes

Key Type Semantics

Page integer (Required for annotations in FDF files) The ordinal page number on which
this annotations should appear. Page 0 is the first page.

Description of the Forms Data Format1 INTRODUCTION TO FDF

FDF Toolkit Overview 20

/V (Tali)
/Opt [(Maya) (Adam) (Tali)]
>>
]
/F (Dependents.pdf)
>>
>>
endobj
trailer
<</Root 1 0 R>>
%%EOF

FDF for Annotations

The following example shows an FDF file used to express a set of annotations for a separate
PDF document.

%FDF-1.3
%\342\343\317\323
1 0 obj
/FDF <<

/Annot
[
 <<

/Type /Annot
/Subtype /Text
/Page 0
/Rect [88 370 359 442]
/Contents (Converted to Word for Windows)
/M (D:19970620115631)
/T (Joe Carousel)

 >>
 <<

/Type /Annot
/Subtype /Circle
/Page 0
/Rect [232 282 341 444]
/Contents (Was Macintosh version 5.1a)
/M (D:19970616124809)
/T (Joe Carousel)

 >>
]

 >>
endobj
%%EOF

Posting Form Data to a Web Server in HTML or FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 21

Posting Form Data to a Web Server in HTML or FDF

This section describes how to post form data to a Web Server using HTML or FDF.

Choosing the Output Format

You can choose between HTML and FDF formats when implementing an Acrobat forms
application.

■ HTML support allows Acrobat forms to be used as a direct replacement for HTML forms.
Choose HTML if you need compatibility with existing systems.

■ FDF supports various capabilities not possible with HTML. Choose FDF if you wish to
take advantage of its additional capabilities, which include:
– When sending data back from the server, it is not necessary to re-send the form itself; the

data can populate the same form that originated the data.
– FDF allows you to change the look of buttons. Additionally, you can take advantage of

this capability to send graphical information in either direction between the client and the
server.

– The form can be altered via an FDF sent back from the server: the various actions
attached to buttons can be modified, field properties can be changed, and list boxes and
combo boxes can be populated with different choices.

– FDF can be used to dynamically synthesize PDF documents composed of a variable
number of pages from templates found in PDF documents specified by the FDF, and to
populate any fields in the “spawned” pages with data. A template is simply a page with
a name attached that can be hidden.

Replacing an HTML Form with Acrobat Form

Figure 1.1 shows the simplest case, which permits existing CGI applications to be used
without modification. To use Acrobat forms in such a system, you create:

1. An Acrobat form with field names that match those in the existing HTML form.

Scenarios for Using FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 22

2. A button on the form whose action is a submit form action. The URL to submit to may be
relative (to the URL of the form that you are submitting from).

FIGURE 1.1 Using HTML with Acrobat Forms

Scenarios for Using FDF

This section describes additional typical scenarios for using FDF.

Acrobat Form with Results Returned in the Same Form

Figure 1.2 shows a system in which the form data is returned into the same form that originally
submitted the data. In such a system, the data sent to the server may be either FDF or
urlencoded format, while the data returned from the server must be in FDF format and have a
MIME type of application/vnd.fdf.

NOTE: When the server returns data in FDF format, and you are submitting from an Acrobat Form, the
URL to submit to must end in #FDF; for example, http://localhost.com/cgi-bin/ yourscript#FDF.

NOTE: If you return a static FDF file stored on the server, as opposed to one dynamically generated by
a server script as in the example below, then you may have to define application/vnd.fdf as a new MIME
type on your server.

Web Server

Web Browser

Acrobat
Form

Web Browser

URL encoded data
sent to server

New HTML document
returned from server

CGI App

HTML
Form

Scenarios for Using FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 23

FIGURE 1.2 Returning FDF into the Same Form

Existing CGI applications must be modified to return FDF instead of HTML documents.
Figure 1.3 shows a simple FDF-generating Active Server Page (ASP) that works with the
Microsoft Internet Information Server 3.0. For anything more complicated than this example,
the use of the FDF Toolkit is highly recommended.

FIGURE 1.3 Simple ASP for generating FDF

<%@ LANGUAGE = VBScript%>
<% Response.ContentType = "application/vnd.fdf " %> %FDF-1.2
1 0 obj
<<
/FDF << /fields [
<< /T (status)/V (Hello, World!) >>
] >>
>>
endobj
trailer
<<
/Root 1 0 R
>>
%%EOF

Acrobat Form with Results Returned in a New Form

In some cases, you may wish to return data into a form different from which it was submitted.
Figure 1.4 shows such a case. The CGI application needed to implement such an application is
almost identical to that used in the system described in the previous section. The only
difference is that you must include an /F key in the FDF file when you want to populate a
different form. The value of the /F key specifies the URL for the PDF file to populate with the
forms data. This URL may be relative (to the URL of the form that you are submitting
from).The specified file is retrieved (from the server) and populated with the forms data.

NOTE: If the returned FDF is for the same form that you submitted from, it should not include the /F
key.

The data sent to the server may be either FDF or urlencoded format. The data returned from
the server must be in FDF format and have a MIME type of application/vnd.fdf.

Web ServerWeb Browser

Acrobat
Form

URL encoded or FDF data
sent to server

FDF
returned from server

CGI App

Scenarios for Using FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 24

FIGURE 1.4 Returning FDF into a Different Form

HTML Form with Results Returned in an Acrobat Form

An additional possibility is starting from an HTML form, submitting to the server, and having
the server return an FDF whose /F key is the absolute URL of an Acrobat form. The specified
form is retrieved and populated with the forms data. Figure 1.5 shows such a system.

NOTE: For this to work, it is necessary that you select Acrobat as the application that handles the
MIME type “application/vnd.fdf”. For example, if you are using Netscape Communicator 4.x, you do
this under Preferences -> Applications. Choose Acrobat as the “helper” application. If you are using
Internet Explorer (on the Microsoft Windows platform), open Windows Explorer, choose the menu item
View -> Options -> File Types, and make sure there is an entry for “Adobe Acrobat Forms Document”
which has the “Default Extension for Content Type:” set to “FDF” and the “Content Type (MIME):”
set to “application/vnd.fdf”. Additionally, the checkbox “Confirm open after download” should be
unchecked. Finally, under “Actions:” there should be an entry for “open”, and in its properties,
“Application used to perform action” should be set to wherever Acrobat resides, and the checkbox “Use
DDE” should be unchecked. It also is imperative that from within Acrobat you go to the File ->
Preferences -> Weblink menu item and choose your browser. All of these settings are taken care of
during Acrobat installation, if Acrobat is installed after the Web browser.

NOTE: For the case being discussed in this section the URL to submit to does not need to end in #FDF.

Web Server

Web Browser

Acrobat
Form #1

Web Browser

FDF or URL
encoded data

FDF (with /F key)

CGI App

Acrobat
Form #1

Web Browser

Acrobat
Form #2 Web Server

PDF requested
from server

Acrobat Form #2

Scenarios for Using FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 25

FIGURE 1.5 Start from HTML, end in an Acrobat form

Web Server

Web Browser

HTML
Form

Web Browser

URL encoded data

FDF (with /F key)

CGI App

HTML
Form

Web Browser

HTML
Form

Web Server

PDF requested
from server

Acrobat Form

Web Browser

Acrobat
Form

Acrobat

FDF given to Acrobat as the
"helper" aplication for MIME type

application/vnd.fdf

Acrobat uses WebLink to
request the Acrobat Form
indicated by the /F key in

the received FDF

Acrobat

FDF data loded into
Acrobat Form

Scenarios for Using FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 26

Templates

Acrobat Forms has the ability to dynamically create PDF documents composed of a variable
number of pages from templates found in PDF documents specified by the FDF, and to
populate any fields in the “spawned” pages with data carried by that FDF file. Figure 1.6
shows such a system.

FIGURE 1.6 Dynamic Creation of a PDF from Templates

Acrobat lets you define a page in your document as a template, which can then be used to
dynamically generate a new form, or duplicate PDF pages on the fly. This allows you to build
a form that dynamically creates another form.

Templates are useful in several ways:

■ They allow the user to fill out as many form pages as needed. Additional pages (complete
with new form fields) are spawned on the fly. For information on defining an action that
dynamically creates new pages, choose Help -> Forms JavaScript Guide to display the
Acrobat Forms JavaScript Object Specification.

IMPORTANT: Template functionality is not supported in Acrobat Reader. Therefore, if you
create an Acrobat application that uses template functionality, a user who only has access to
Acrobat Reader will not be able to use your application.

Web Server

Web Browser

Acrobat
Form #1

Web Browser

FDF or URL
encoded data

FDF carrying template
information

CGI App

Acrobat
Form #1

Web Browser

New
PDF

Web Server

PDFs containing templates
requested from server

New document is assembled
from PDFs returned by

server. Fields (if any) are
populated.

Scenarios for Using FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 27

To define a template:

1. Navigate to the page you want to use as a template, and choose Tools -> Forms -> Page
Templates.

2. Enter a name for the template, and click Add. Click Yes in the confirmation dialog box.

3. Click Close to define the template and close the Document Templates dialog box.

To edit a template:

1. Choose Tools -> Forms -> Page Templates.

2. Select the desired template in the list, and do one of the following:
– To hide the selected template page, click the eye icon to the left of the template name. To

show the template, click the icon again. When you show a hidden template page, it
appears appended to the end of the document. You cannot hide a template page if it is the
only page in the document. If you delete a hidden template page, it is deleted from the
PDF file.

– To change the template contents to the current displayed page, click Change.
– To remove the selected template from the list, click Delete.
– To display the selected template page, click Goto. You cannot use Goto to display a

template that is hidden.

3. Click Close to accept the template changes and close the Document.

There are two types of FDF:

■ Classic, first introduced with Acrobat 3.0.

■ Template-based, that directs the construction of a brand new PDF document from
templates found inside the specified PDF document.

NOTE: You cannot add templates to a classic FDF. If you try, you will get an error code returned (for
example., FDFErcIncompatibleFDF) indicating an incompatible FDF. Many of the calls in the FDF
Library (for example, FDFSetFile) are incompatible with a template-based FDF (an FDF for which
FDFAddTemplate has been called. Other calls (for example, FDFSetValue) work with either kind of
FDF. If called with a template-based FDF, they act on the most recently added template.

Scenarios for Using FDF1 INTRODUCTION TO FDF

FDF Toolkit Overview 28

Encoding

When using HTML forms and submitting data to the Web server, that data may be transmitted
using some encoding. For example, in Japan, that encoding is typically Shift-JIS.

A new feature added in Acrobat 4.0 provides an alternative way of transmitting and receiving
data via FDF. FDF has the ability to transmit/receive Forms data in FDF using an encoding
that is different from the one used internally in PDF. This scheme indicates inside FDF which
encoding is being used for transmission.

The /Encoding key defines which encoding is being used inside the FDF data for any string
that is the value of the /V key, and any string that is an element of the /Opt array. The /V key
may also have a name as its value (for the case of fields of type checkbox or radio button),

For Acrobat 4.0, the only possible value of the /Encoding key is Shift-JIS.

FDF Toolkit Overview 29

2 FDF and Web Server Connectivity

Building Server Side Applications With FDF

The last chapter defined the Form Data Format, the FDF file structure, and provided a general
overview of how the Form Data Format (FDF) is used. This chapter takes a step by step look at
how to use FDF in a Web environment.

One of the many features in Acrobat is the ability to electronically fill out a PDF-based form.
Previously, a user would have to download the PDF file, print the PDF file to a printer, fill out
the areas of the form (by either writing or typing the information onto the page), scan and
convert the form back to a PDF and somehow transfer it back to the original owner. This was a
time-intensive process.

Acrobat does away with such redundancies and allows the PDF file to contain annotations that
represent text fields, action buttons, radio button, check boxes, list boxes, and combo boxes.
The data from this PDF-based form can be exported in HTML or FDF format.

NOTE: Exporting data in FDF format has a number of advantages such as populating the
same PDF file on the client with new data, sending graphical information back to a PDF
file, altering a PDF file on the client, or constructing a PDF file with templates. These
features will be detailed later in this chapter. Generally you export data to HTML format
only when you have some existing Web application that parses a Web page and you want to
retain your current code.

The FDF file can be parsed to extract data from the individual fields. This could then be used
to populate a database or provide input to some other application. You can also generate FDF
data and save it to a file or buffer to populate a PDF file.

The FDF Toolkit

To build applications that parse and/or generate FDF data on a Web server, you need the FDF
Toolkit. If you have not already downloaded the FDF Toolkit, it is available from the Adobe
developers Web site at:

http://partners.adobe.com/asn/developer/acrosdk/forms.html

The next sections discuss parsing and generating FDF data using the FDF Toolkit. These
sections cover how to initialize, parse, create, save, and free resources with the Toolkit.
Sample code illustrates the use of the FDF Toolkit.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 30

Parsing FDF Data with the FDF Toolkit

To parse FDF data from an FDF file using the FDF Toolkit, the Web server application needs
to open the FDF file or buffer and use the various methods in the Toolkit to extract the data.
The application can generate a response (acknowledging some action has taken place) or do
some other processing on this data. Examples of this include populating a database with the
incoming form data or processing the field data to be used in an order entry system. The last
step involves cleaning up any open network connections and closing any open data buffers.

To illustrate this, let’s say we have a company that sells office supplies. We have an online
catalog that users can fill out and then submit the items they wish to purchase using an order
form page in our catalog. An application program could be written to parse the FDF coming in
from a PDF file (from a Web client, for example). To parse an FDF file you need to:

1. Initialize the library.

2. Open the FDF data from a file or a buffer.

3. Get the values of the data from the individual fields (usually contained in the /V key in the
FDF data).

4. Close the FDF data buffers and free any resources used.

We will now detail these steps further.

Initializing the FDF Toolkit

On UNIX systems, you must first call FDFInitialize to initialize the Toolkit. Other calls to
methods in the API can be made only after the Toolkit has been initialized.

Initializing the FDF Toolkit is only needed when using the C/C++ and Java versions of the
library. There is no need to initialize the Toolkit for the Perl or ActiveX versions of the library.

When developing on Microsoft Windows systems, it is not necessary to make calls to initialize
and finalize the library. This takes place when the FDF data is opened by your application.
Once opened, you may make calls to the rest of the API and use FDFClose to close any open
FDF files.

Opening the FDF File

The first section of your code should open the FDF file either from a source file or from a
standard http port from the Web client. To open the FDF file, we use the FDFOpen command
and pass the following parameters:

■ The pathname to the FDF file or, to read from stdin, “-” if we open the FDF file coming in
from the Web client.

■ The number of bytes to read. If you are opening a file, pass “0” instead.

■ A pointer to an FDFDoc object. This pointer will be referenced by the rest of the API.

For example you would call FDFOpen like this:

ASInt32 howMany = atoi(getenv("CONTENT_LENGTH"));
 errorCode = FDFOpen ("-", howMany, &FdfInput);

Getting Values from the Field

Once the FDF file or data buffer is opened, the field values can be parsed by several get
methods. The most common method used is FDFGetValue.

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 31

The FDFGetValue method gets field values of the specified field. If you open any FDF file in a
text editor, you will find the /V key. This key points to the value of the field. For example:

%FDF-1.2
%,,,”
1 0 obj
<<
/FDF << /Fields [<< /V (John Peppermint)/T (Name)>>] /F (simple.pdf)>>

The /V key points to the value of “John Peppermint”. The name of the field is specified by the
/T key. In this case, the name of the field is “Name”.

To get the values of the key, we reference the FDFDoc object passed by the FDFOpen method
and specify the field we are interested in and the buffers that will be used to store the data. The
data returned in this buffer is used by the rest of your application (for example, the address or
name of a customer). Here is an example how FDFGetValue is used to get the field values of a
field named “Customer.Name”:

errorCode = FDFGetValue (FdfInput, "Customer.Name", cNameBuffer,
sizeof(cNameBuffer), &howMany);

Cleaning Up and Finalizing the Library

Once data processing has been completed, resources used by the toolkit must be freed. Use
FDFClose to close any open FDFDoc objects. If you are writing a C or Java application for a
UNIX system, you must call FDFFinalize to finalize the library and free resources used by the
Toolkit.

Sample Application

Below is a sample application written for C that parses a simple PDF file coming in from a
Web client. This application could also be written in Java, Perl, or VBScript (for use with
Microsoft’s Active Server Pages) by using the other flavors of the FDF Toolkit. Later chapters
of this technical note discuss the other versions of the FDF Toolkit. This particular example
runs on a Windows NT system using Microsoft’s IIS version 3.0 and extracts data from a PDF
document displayed on the Web client.

/*
** Copyright 1999 Adobe Systems, Inc.
**
** parseFDF - A sample Windows NT application to parse FDF data
** from "stdin".
*/

#include <stdio.h>
#include <stdlib.h>
#include "fdftk.h"

void main()

{

/*
** Definitions

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 32

*/

FDFDoc FdfInput;
FDFErc errorCode;
char cNameBuffer [50];
char cAddrBuffer [50];
char cComboBuffer [50];

ASInt32 howMany = atoi(getenv("CONTENT_LENGTH"));

/*
** FDFOpen:
*/

errorCode = FDFOpen ("-", howMany, &FdfInput);

/*
** FDFGetValue:
*/

errorCode = FDFGetValue (FdfInput, "Customer.Name",
cNameBuffer, sizeof(cNameBuffer), &howMany);

errorCode = FDFGetValue (FdfInput, "Customer.Address",

cAddrBuffer, sizeof(cNameBuffer), &howMany);

errorCode = FDFGetValue (FdfInput, "My Combo Box",
cComboBuffer, sizeof(cComboBuffer), &howMany);

/*
** Presumably after we parsed this data, we would propulate a database
** or generate another FDF file with some sort of response ...
*/

// Your code goes here

/*
** This next line of code is important if you are returning FDF
** You must emit the correct MIME type to "stdout" or you'll get a
** CGI error simular to this:
**
** "The specified CGI application misbehaved by not returning
** a complete set of HTTP headers."
**
** At this point you would generate FDF for the return and
** then do this:
**
**
** printf ("Content-type: application/vnd.fdf\n\n");
** fflush (stdout);
**
**
** For this example we will only send back acknowledgement that the
** code worked

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 33

*/

printf ("Content-type: text/plain\n\n");
printf ("Parsing of the submitted FDF completed\n");

/*
** FDFClose:
**
** Use FDFClose to close any open FDFDocs and free resources
*/

errorCode = FDFClose(FdfInput);

}

Setting Up the Client Side PDF File

When building form fields that will be sent to a Web server, it is necessary to create and define
a button that can be used to submit all or some of the data. The submit button on the PDF file
must have a button defined with the “Submit Form” action pointing to the Web server and the
complete path to the Web application program. If you are submitting from an Acrobat Form
and the server returns FDF data, then your URL must end in “#FDF”, For example:

http://localhost/cgi-bin/parseFDF.exe#fdf

In this case, the Submit Form action in the PDF file points to the Web server called “localhost”
and the application called “parseFDF.exe” to extract FDF data.

On the other hand, if you are submitting from an HTML form, then the URL for submitting
form data to the server does not need to end with “#FDF”. However, the returned FDF data
must include an /F key giving the full URL of the PDF that it is for. The PDF is automatically
loaded by Acrobat upon opening the FDF. The /F key is set with the FDFSetFile method
discussed in the next section.

IMPORTANT: The FDF file does not require an /F key if the FDF data is for the same form
that was originally submitted. It does require an /F key if the FDF data is for a different
form than the one originally submitted.

Populating a PDF File

Once you have parsed the data from the PDF file, you could use the FDF Toolkit to generate
FDF data to populate a form with new data and return it to the user. The next section discusses
using the FDF Toolkit to generate FDF data.

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 34

Generating FDF Data with the FDF Toolkit

The Web server application creates FDF data using methods in the library to initialize and to
create a pointer to the FDFDoc object. From this point, the FDFDoc object can be referenced
by other methods in the Toolkit to set the values and actions in the form fields. After you have
set the values and actions, you can save the FDF data to a file or buffer and clean up and close
any open buffers.

The steps to create an FDF file are:

1. Initialize the library.

2. Call methods to create the FDF data.

3. Set the values of the individual fields (the /V key in the FDF data).

4. Set actions for fields.

5. Save the FDF data.

6. Close the FDF data buffers and free any resources used.

In addition, if the FDF data you generate requires a different PDF file than the one data was
received from, you must set the value of this new PDF file with the FDFSetFile method.

We will now detail the steps of generating FDF data with the FDF Toolkit.

Initializing the FDF Library

On UNIX systems, you must first call FDFInitialize to initialize the library before you can
create FDF. Other calls to methods in the API can be made only after the library has been
initialized.

IMPORTANT: Initializing the FDF library is only needed when using the C/C++ and Java
versions of the FDF Toolkits. It is not done when using the Perl or ActiveX versions of the
Toolkit.

When developing for Microsoft Windows systems, it is not necessary to make calls to initialize
and finalize the library. This takes place when the FDF data is created by your application.
Once the FDF data is created, you may make calls to the rest of the API and use FDFClose to
close any open FDF files.

Creating FDF with the Toolkit

To build FDF data to be used in a file or by a buffer, you use the FDFCreate method. One of
the parameters you pass is a pointer to an FDFDoc object. The FDFDoc object represents the
Forms Data Format data used in a form field. This object is referenced by other methods in the
library.

 In C, you would create an FDF object by calling the FDFCreate method like this:

FDFDoc FdfOutput = NULL;
errorCode = FDFCreate (&FdfOutput);

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 35

Setting Field Values

You must use FDFSetValue (or its language specific equivalent) to set values for any particular
field. When adding field data to a new FDFDoc object, if the field does not exist in the FDF —
such as when creating FDF data from scratch — a placeholder with the name of the field is
created in the FDF file. The FDF field is set with the specified value.

FDFSetValue takes as arguments:

■ A pointer to the FDFDoc object returned from FDFCreate.

■ A string representing the fully-qualified name of the field (for example
“customer.name.last”).

■ A string to use as the new value of the field.

For example, in C you would use FDFSetValue like this:

errorCode = FDFSetValue (FdfOutput, "Customer.Address", "12 Saratoga Ave",
false);

In this example, we set the field value of the text field “Customer.Address” to the value of “12
Saratoga Ave”.

The last parameter passed tells Acrobat viewers below Acrobat version 3.01 (and that do not
have the Acrobat Forms version 3.5 Update) to convert the new value of the field (in this case
“12 Saratoga Ave”) to a PDF string. If true was passed, it would be converted to a PDF name
before making it the value of the field. In previous versions of the Acrobat Forms plug-in,
radio buttons and check boxes took PDF names as values. For PDF names, the new value
passed for radio buttons or check boxes must be “Off” or a value that was entered as the
“Export Value” when defining the properties of the form field. The other field types, such as
text boxes, take PDF strings.

If the clients are running Acrobat 4.0, or Acrobat 3.01 or above with the Acrobat Forms 3.5
Update, then the application should just pass false in all cases, without regard to the field type.
However, if there is a possibility that some clients might run Acrobat 3.0 or 3.01 without the
Acrobat Forms 3.5 Update, then your application should pass the correct value (whether it be
true or false) for the last parameter.

Performing Actions and Additional Actions with FDF Data

In PDF 1.1, the presence of an /A key or /Dest key in an annotation or Outline entry denotes an
action that is to be performed when the mouse button is released after clicking inside the
annotation or Outline entry. PDF 1.2 provides a more general mechanism by defining other
“trigger points” (events) and associating actions with each one by means of an “additional
actions” dictionary, which is included in an annotation or Outline entry as the value of the /AA
key.

With the FDF Toolkit, you may use the /A and the /AA keys to set or change actions for a form
field. The PDF version 1.3 specification defines several subtypes of actions. The FDF Toolkit
takes advantage of the following actions:

■ GoTo — Changes the current page view to a specified page and zoom factor.

■ GoToR — Opens another PDF file (as specified by the F key) at a specified page and zoom
factor (“for example, GoTo Remote”).

■ URI — Resolves the specified Uniform Resource Identifier (URI).

■ Hide — Sets or clears the Hidden flag for an annotation.

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 36

■ SubmitForm — Send data to a URL.

■ ResetForm — Set field values to their defaults.

■ ImportData — Import field values from a file.

■ JavaScript — Execute a JavaScript script.

For example, to change the value of a submit button whose action was to submit the FDF data
from a Web server named “Alpha” to a Web server named “Beta”, you use the FDF Toolkit
method FDFSetSubmitFormAction:

errCode = FDFSetSubmitFormAction(FdfOutput, "Submit Button", FDFUp,
"http://beta/cgi-bin/myscript.exe#FDF", 4);

The data is now submitted to the Web server named “Beta”.

Other actions that can be performed include changing the current page view to a different page
with the GoTo action. You can also use these methods to change an action of a field to point to
other PDF files. For this you would use the GoToR action. You can even use the ResetForm
action to reset all or specific form fields.

Targeting FDF Data at a PDF File

Because FDF data is used to populate a PDF file, you also may use the FDF Toolkit to set the
file specification of the target PDF. This data could point to the same PDF file that the
submission came from, another PDF file on your Web server, or locally to the client.

To do this, you would use the FDFSetFile method that takes the relative pathname of the PDF
file. If you plan to have the PDF file on a remote server, you need to use the full path of the
PDF file.

For example, the user filled in a PDF file named “order-form.pdf” and you want to return
results of the order into a different form called “completed-order.pdf”. Use FDFSetFile like
this:

errCode = FDFSetFile(FdfOutput, "http://localhost/PDF/completed-
order.pdf");

This takes the newly-generated FDF data and points it to a new file called “completed-
order.pdf”. To complete the task, you must emit the correct MIME type and flush the FDF data
back to the server with the FDFSave method:

printf("Content-type: application/vnd.fdf\n\n");
fflush(stdout);
FDFSave (FdfOutput, "-");

In this example, FDFSave sends the data back to the Web client. You can also save the FDF
data to a file by specifying the full pathname to the file in place of the “-”.

Cleaning Up and Finalizing the Library

Use FDFClose to close any open FDFDocs and free resources used by the library. If you are
writing a C application for a UNIX system, you must call FDFFinalize to finalize the library.

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 37

Sample Application to Generate FDF Data

The following code is a sample application that shows how you may use the FDF Toolkit to
generate FDF data. This code was written on a Windows NT system with Visual C++ v5.0:

/**

 Copyright 1999 Adobe Systems, Inc.

generateFDF - A sample Windows NT Server application to generate
FDF data and send it to "stdout".

**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
The line below includes the standard FDF Toolkit Header file.

*/

#include "Fdftk.h"

/*
Main application

*/

void main()

{
FDFErc retCode;
FDFDoc FdfOutput = NULL;

/*
Create a new FDF. Parameter is the pointer to FDFDoc every call uses.

*/
retCode = FDFCreate (&FdfOutput);

/*
FDFSetValue.

*/

retCode = FDFSetValue (FdfOutput, "Date", "December 31 1999", false);
retCode = FDFSetValue (FdfOutput, "Name", "James Clay", false);
retCode = FDFSetValue (FdfOutput, "Address", "12 Saratoga Road",

false);
retCode = FDFSetValue (FdfOutput, "City", "Monte Sereno", false);

/*
Set the target PDF inside the outgoing FDF.

*/
retCode = FDFSetFile(FdfOutput,

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 38

"http://localhost/PDF/generateFDF.pdf");

/*
Next we'll do three things:

1) Set everything up to emit the correct HTTP header for the MIME
type.

In the case with FDF, the MIME needs to be set to
"application/vnd.fdf".

2) Emit the HTTP header
3) Write the FDF data to stdout

*/
 printf("Content-type: application/vnd.fdf\n\n");
 fflush(stdout);
 FDFSave (FdfOutput, "-");

/*
You don't have to make this next call. It just shows that after the
data is flushed to standard out you may want to save it locally.
you can then open the FDF by clicking on it or opening it with

Acrobat.
It's a lot easier than saving the whole PDF with the data.

We want a record of the transaction, so save the FDF data to a
specific

place on the hard drive.
*/
/*

FDFSave (FdfOutput,
"C:\\InetPub\\wwwroot\\Pdf\\generated-data.fdf");

*/

/*
Close the FDF File used to generate the output.

*/
retCode = FDFClose (FdfOutput);

}

Debugging Tip

You can emit the MIME type “plain/text” (instead of “application/vnd.fdf”) when sending the
FDF. For example:

printf ("Content-type: text/plain\n\n");
printf ("Generated FDF and sent it to the client. \n");

This displays the text “Generated FDF and sent it to the client” in the browser windows to aid
the debugging process.

Building Server Side Applications With FDF2 FDF AND WEB SERVER CONNECTIVITY

FDF Toolkit Overview 39

Handling Errors

The table below lists the error handling codes used by all versions of the FDF Toolkit.

Error Codes # Description

FDFErcOK 0 No error.

FDFErcInternalError 1 Internal FDF Library error.

FDFErcBadParameter 2 One or more of the parameters passed to the function are
invalid.

FDFErcFileSysErr 3 Error using the file system. Generally this includes “file
not found” errors.

FDFErcBadFDF 4 FDF file being opened or parsed contains invalid data.

FDFErcFieldNotFound 5 The fieldName parameter contained field name that does
not exist in the FDF.

FDFErcNoValue 6 A field with no value had its value requested.

FDFErcEnumStopped 7 Enumeration was stopped by FDFEnumValuesProc
returning false.

FDFErcCantInsertField 8 The field name in fieldName cannott be inserted into the
FDF file. This might happen if you try to insert “a.b” into
an FDF file that already has a field such as “a.b.c”. Or, if
you try to insert a fieldName of “a.b.c” into an FDF file
that already has “a.b”.

FDFErcNoOption 9 The requested element in a field’s /Opt key does not
exist, or the field has no /Opt key.

FDFErcNoFlags 10 The field has no /F or /Ff keys.

FDFErcBadPDF 11 The PDF passed as parameter to FDFSetAP is invalid, or
does not contain the page passed in parameter pageNum.

FDFErcBufTooShort 12 The buffer passed as parameter is not long enough for the
data that the function is returning. Increase the buffer
space allocated.

FDFErcNoAP 13 The field does not have an /AP key.

FDFErcIncompatibleFDF 14 Cannot mix classic and template-based FDF data.

Part II

Language Specific Overview

FDF Toolkit Overview 41

3 FDF Toolkit for C/C++

Introduction

This chapter describes the methods used with the C/C++ version of the Forms Data Format
(FDF) Toolkit. The FDF Toolkit gives any server running UNIX or Microsoft Windows NT
Server the capability to generate or parse FDF data for or from a form created by Acrobat
Forms Author plug-in.

The Acrobat Forms plug-in allows anyone using Acrobat to create forms on PDF files. A user
with the Acrobat viewer and the Acrobat Forms Fill-in plug-in can fill in and submit the form
to a server.

Once the user fills out the PDF-based form, the data is submitted to the server for processing.
The server application can then parse the data from the form fields using the FDF Toolkit for
FDF data. Once the data has been processed, you can use the FDF Toolkit to generate a return
response (for example, acknowledging some action has taken place) to the user.

Building Applications with the FDF Toolkit

To prepare your development environment for use with the FDF Toolkit, copy the C header
file, fdftk.h, into your project’s directory. Include the header file into your file:

#include “Fdftk.h”

This chapter contains a summary of each of the FDF Toolkit methods available for C/C++.
Descriptions of these methods are also provided.

UNIX Support

On UNIX systems, you must first call FDFInitialize to initialize the library. Other calls to
methods in the Toolkit can be made only after the library has been initialized. When done
making calls to the library, call FDFFinalize.

NOTE: Remember to place the shared libraries on Unix into the proper location so that the operating
system can find them.

Microsoft Windows Support

When developing on Microsoft Windows systems, it is not necessary to make calls to
FDFInitialize and FDFFinalize. Make calls to the rest of the API and use FDFClose to close
any open FDF files.

FDFTK.LIB is a Win32-specific import library. To link the library, add it to the project. Make
calls to the API using the examples provided at the end of each method.

FDF Toolkit Methods3 FDF TOOLKIT FOR C/C++

FDF Toolkit Overview 42

When running your application on the target Windows system, copy the FDFTK.DLL supplied
with this API into the same directory as your executable, or into the Windows system
directory. It can also be put in other directories as long as that directory is included in the
PATH statement in the AUTOEXEC.BAT.

FDF Toolkit Methods

This section is a brief description of the FDF Toolkit methods in the following categories:

■ General methods to manipulate FDF files

■ UNIX and Mac OS specific methods

■ Methods for parsing FDF data from a file or a buffer

■ Methods for generating FDF data from a file or a buffer

■ Cleaning up and closing FDF files

FDF Toolkit Methods3 FDF TOOLKIT FOR C/C++

FDF Toolkit Overview 43

General

UNIX and Macintosh Specific

Parsing FDF Data

Generating FDF Data

Method Description

FDFGetVersion Verifies the correct version of the library.

FDFOpen Opens existing FDF file or read stdin in C.

FDFRemoveItem Removes key-value pairs in the FDF file.

Method Description

FDFInitialize Initializes the library.

FDFFinalize Frees resources in the library.

FDFRegisterThreadsafeCallback Creates threadsafe callback.

Method Description

FDFEnumValues Enumerates field values in the FDF file.

FDFGetAP Gets the appearance of a field (/AP).

FDFGetEncoding Gets the value of the FDF /Encoding key as a string.

FDFGetFile Gets the value of the /F key.

FDFGetFlags Gets the /Ff or /F flag.

FDFGetOpt Gets the value of the /Opt key.

FDFGetStatus Gets the value of the /Status key.

FDFGetValue Gets the value of a specific field.

FDFNextFieldName Gets field names in the FDF file.

Method Description

FDFAddTemplate Adds a template to an FDF file.

FDFCreate Creates a new FDF file.

FDFSetAP Sets the appearance of a field (/AP).

FDFSetAPRef Sets the /APRef key.

FDF Toolkit Methods3 FDF TOOLKIT FOR C/C++

FDF Toolkit Overview 44

Cleaning Up and Closing FDF Files

FDFSetEncoding Sets the value of the /Encoding key.

FDFSetFile Sets the value of the /F key.

FDFSetFileEx Sets the value of the /F key.

FDFSetFlags Sets the /Ff or /F flag.

FDFSetGoToAction Sets /A or /AA key to type GoTo.

FDFSetGoToRAction Sets /A or /AA key to type GoToR.

FDFSetHideAction Sets /A or /AA key to type Hide.

FDFSetIF Sets the Icon Fit attribute.

FDFSetImportDataAction Sets /A or /AA key to type ImportData.

FDFSetJavaScriptAction Sets /A or /AA key to type JavaScript.

FDFSetNamedAction Sets /A or /AA key to type Named.

FDFSetOpt Sets the value of the /Opt key.

FDFSetResetByNameAction Sets /A or /AA key to type ResetForm.

FDFSetResetFormAction Sets /A or /AA key to type ResetForm.

FDFSetStatus Sets the value of the /Status key.

FDFSetSubmitByNameAction Sets /A or /AA key to type SubmitForm.

FDFSetSubmitFormAction Sets /A or /AA key to type SubmitForm.

FDFSetURIAction Sets /A or /AA key to type URI.

FDFSetValue Sets the value of a field.

Method Description

FDFClose Closes an FDF file.

FDFSave Saves FDF data.

Method Description

FDF Toolkit Overview 45

4 FDF Toolkit for ActiveX

Introduction

This chapter describes the methods used with the ActiveX version of the Forms Data Format
(FDF) Toolkit. The FDF Toolkit, of which the ActiveX component for Win32 is a part, allows
you to generate FDF data or parse FDF data for or from a form created by Acrobat Forms
Author plug-in.

The FDF Toolkit gives any server running UNIX or Microsoft Windows NT Server the
capability to generate or parse FDF data for or from a form created by Acrobat Forms Author
plug-in.

The Acrobat Forms Author plug-in allows anyone using Adobe Acrobat 4.0 or higher to create
forms on PDF files. A user with the viewer and the Acrobat Forms Fill-in plug-in can fill in
and submit the form to a server.

Once the user fills out the PDF-based form, the data is submitted to the server for processing.
The server application can then parse the data from the form fields using the FDF Toolkit for
FDF data. Once the data has been processed, you can use the FDF Toolkit to generate a return
response (for example, acknowledging some action has taken place) to the user.

Building Applications with the FDF Toolkit

FdfAcX.dll is a Win32 “in-process” ActiveX server component (formerly known as OLE
automation server) that can also be used in conjunction with Internet Information Server (IIS)
and Active Server Pages (ASP).

The examples used in this document are Microsoft Visual Basic or VBScript. In an ASP
environment, it is assumed you are using VBScript.

Installation

FdfAcX.dll should be installed in a directory that has “execute” permissions. In the case of
Microsoft’s Internet Information Server version 3 using ASP, a good location can be
\WINNT\system32\inetsrv\ASP\Cmpnts. In the case of IIS version 4, \WINNT\system32
can be used.

If you are running on an NTFS file system, the DLLs themselves need the proper execute
permissions. FdfAcX.dll uses FdfTk.dll. Both should be placed in the same directory, or in the
C:\WINNT\System32 directory.

FdfAcX.dll needs to be registered with Windows NT. This is accomplished by using the
Windows NT “regsvr32” Program. To register FdfAcX.dll, copy the file to
\WINNT\System32\Inetsrv\ASP\Cmpnts directory or a location you have chosen and type
the following command at Windows NT Command Prompt window:

C:\WINNT\> cd \WINNT\System32\Inetsrv\ASP\Cmpnts

Using the FDF Toolkit in Visual Basic4 FDF TOOLKIT FOR ACTIVEX

FDF Toolkit Overview 46

C:\WINNT\System32\Inetsrv\ASP\Cmpnts\> regsvr32 FdfAcX.dll

Using the FDF Toolkit in Visual Basic

FdfAcX.dll exposes one main object: FdfApp.FdfApp. From Visual Basic 5.0, you might use
the object like this:

Dim FdfAcX As FDFACXLib.FdfApp
Set FdfAcX = CreateObject("FdfApp.FdfApp")

You can now make other calls to the FDF Toolkit library to parse or generate FDF data.

Using the FDF Toolkit with Active Server Pages

This version also supports using the FDF Toolkit with Active Server Pages (ASP). From an
ASP document using VBScript, you would use the object like this:

<% Set FdfAcX = Server.CreateObject("FdfApp.FdfApp") %>

Use the methods the same as you would in VB.

Setting Up the NT Server to Handle FDF Data

When using the FDF Toolkit with ASP, you must make sure that when returning FDF to the
client browser you have application.vnd.fdf defined as a valid MIME type in the registry of the
Windows NT Server. If your Web site includes files that are in multiple formats, your
computer must have a Multipurpose Internet Mail Extension (MIME) mapping for each file
type. If MIME mapping on the server is not set up for a specific file type, browsers may not be
able to retrieve the file. See the Windows NT registry for the default MIME mappings.

If the MIME type is not defined, you will see a “Save file as ...” dialog box on Internet
Explorer Web browsers when opening FDF files. This indicates the MIME type is unknown by
the server (in this case, the unknown MIME type is "FDF"). When this happens, the MIME
type is specified by Windows NT as an asterisk (*). This is the default MIME type used in
Windows NT when a MIME mapping does not exist.

For example, to handle a request for the file myfile.foo when the file-name extension “.foo” is
not mapped to a MIME type, your computer will use the MIME type specified for the asterisk
extension, which is the type used for binary data. When this happens, this will cause the
Internet Explorer browser to save the file to disk.

To configure additional MIME mappings use a Registry Editor and open:

HKEY_LOCAL_MACHINE

Search through for the following key:

SYSTEM\CurrentControlSet\Services\InetInfo\Parameters\MimeMap

Once found, add a REG_SZ value for the MIME mapping required.

Using the FDF Toolkit with Active Server Pages4 FDF TOOLKIT FOR ACTIVEX

FDF Toolkit Overview 47

Using Regedt32.exe, the syntax is:

application/fdf,fdf,,5

Using Regedit.exe:

1. From the menu select Edit -> New -> String Value

2. Enter the value:
 application/fdf,fdf,,5

3. Reboot your system.

You should have Windows NT Server 4.0 with Service Pak 3 or later installed .

Using the FDF Toolkit with Active Server Pages4 FDF TOOLKIT FOR ACTIVEX

FDF Toolkit Overview 48

FDF Toolkit Methods

The methods for ActiveX are broken down into four groups:

■ General exposed by the FDFApp Object

■ Methods for parsing FDF data

■ Methods for generating FDF data

■ Methods for saving and close FDF files

The examples used in this document are written in Visual Basic or VBScript (the latter
assumes you are using an Active Server Pages (ASP) environment).

The following methods are available for the FdfApp.FdfApp object:

Of these methods, FDFCreate, FDFOpenFromFile, FDFOpenFromBuf, and
FDFOpenFromStr return an object of type FDFACXLib.FdfDoc which has 36 methods:

Method Name Description

FDFCreate Creates a new FDF file.

FDFGetVersion Returns the version of the ActiveX component.

FDFOpenFromFile Opens existing FDF file.

FDFOpenFromBuf Opens an FDF from a buffer.

FDFOpenFromStr Opens an FDF from a string.

Method Name Description

FDFAddTemplate Adds a template to an FDF.

FDFClose Closes an FDF file.

FDFGetAP Gets the appearance of a field (/AP).

FDFGetFile Gets the value of the /F key.

FDFGetFlags Gets the value of the /Ff or /F key.

FDFGetOpt Gets the value of the /Opt key.

FDFGetOptNumElem Gets the number of elements in the /Opt key.

FDFGetStatus Gets the value of the /Status key.

FDFGetValue Gets the value of a field.

FDFNextFieldName Gets field names in the FDF data.

FDFRemoveItem Removes key-value pairs in the FDF data.

FDFSaveToBuf Saves FDF data to a buffer.

FDFSaveToFile Saves FDF data to a file.

FDFSaveToStr Saves FDF data to a string.

Using the FDF Toolkit with Active Server Pages4 FDF TOOLKIT FOR ACTIVEX

FDF Toolkit Overview 49

FDFSetAP Sets the appearance of a field (/AP).

FDFSetAPRef Sets the appearance of a field (/APRef).

FDFSetFile Sets the value of the /F key.

FDFSetFlags Sets the value of the /Ff or /F key.

FDFSetGoToAction Sets /A or /AA key to type GoTo.

FDFSetGoToRAction Sets /A or /AA key to type GoToR.

FDFSetHideAction Sets /A or /AA key to type Hide.

FDFSetIF Sets the Icon-fit attribute.

FDFSetImportDataAction Sets /A or /AA key to type ImportData.

FDFSetJavaScriptAction Sets /A or /AA key to type JavaScript.

FDFSetNamedAction Sets /A or /AA key to the type named.

FDFSetOpt Sets the value of the /Opt key.

FDFSetResetFormAction Sets /A or /AA key to type ResetForm.

FDFSetStatus Sets the value of the /Status key.

FDFSetSubmitFormAction Sets /A or /AA key to type SubmitForm.

FDFSetURIAction Sets /A or /AA key to type URI.

FDFSetValue Sets the value of a field.

Method Name Description

FDF Toolkit Overview 50

5 FDF Toolkit for Java

Introduction

This chapter describes how to use the Java versions of the Forms Data Format (FDF) Toolkit.
This FDF Toolkit gives any server running a standard servlet environment the capability to
generate or parse FDF data for/from a form created by Acrobat Forms Author plug-in.

The Acrobat Forms Author plug-in allows anyone using Acrobat 4.0 or higher to create forms
on PDF files. A user with the Acrobat Reader and the Acrobat Forms Fill-in plug-in can fill in
and submit the form to a server.

Once the user fills out the PDF-based form, the data is submitted to the server for processing.
The server application can then parse the data from the form fields using the FDF Toolkit for
FDF data. Once the data has been processed, you can use the FDF Toolkit to generate a return
response (for example, acknowledging some action has taken place) to the user.

Differences Between Java Implementations

There are two Java toolkits implemented for FDF. There is a standard Java implementation and
an implementation based on ActiveX. The standard implementation runs on either a Windows-
based operating system or Solaris and uses a shared object library for implementing the native
calls needed to communicate with Acrobat. The ActiveX version only runs on the Windows
platform.

Building Applications with the FDF Toolkit

The requirements for each of the Java toolkits are:

■ The JNI version of the Java FDF Toolkit requires installation of FDFTK.jar and
FDFTK.dll. On Solaris, libjFdfTk.so should be installed. Follow the directions of your
servlet runner for installation procedures. When building your code, the FDFTK.jar file
needs to be added to the classpath for your development environment.

■ The ActiveX version of the Java FDF Toolkit is based on, and requires, the ActiveX
component of the FDF Toolkit. See the demo under Credit Card Demo for sample usage of
this toolkit.

To install the ActiveX Java toolkit: Copy FdfApp.class, FdfDoc.class, IFdfApp.class,
IFdfDoc.class, and summary.txt to a new folder: %windir%\Java\TrustLib\fdfacx (for
example, C:\WINNT\Java\TrustLib\fdfacx).

The ActiveX Java FDF Toolkit was tested in cgi-bin applications written using VJ++ 1.0 under
Internet Information Server (IIS). Use the following procedure.

1. Use Regedt32.exe to open
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\Scr
iptMap.

FDF JNI Based Java Toolkit Class Overview5 FDF TOOLKIT FOR JAVA

FDF Toolkit Overview 51

2. From the Edit menu, choose “Add Value”. Enter the value “.class” for the “REG_SZ” data
type.

3. Use the String editor to enter C:\WINNT\Jview.exe %s %s.

4. Restart the WWW service.

FDF JNI Based Java Toolkit Class Overview

This section is a brief description of the common FDF Toolkit classes:

■ FDFTK — for initializing and terminating the FDF toolkit.

■ FDFDoc — the main class for parsing and generating FDF files.

For the FDFTK Class

General Methods For the Creating and Opening FDFDoc Objects

FDFDoc Methods for Parsing FDF Data

Method Description

FdfTKInit Initializes the library.

FDFTKTerm Frees resources in the library.

Finalize Removes key-value pairs in the FDF file.

Method Description

FDFDoc Constructs a new FDFDoc.

FDFDoc Constructs a new FDFDoc from a existing String or from
stdin.

FDFOpen Reads an FDFFile into memory.

Method Description

GetAP Gets the appearance of a field (/AP).

GetFile Gets the value of the /F key.

GetFlags Gets the /Ff or /F flag.

GetOpt Gets the value of the /Opt key.

FDF JNI Based Java Toolkit Class Overview5 FDF TOOLKIT FOR JAVA

FDF Toolkit Overview 52

Methods for Generating FDF Data

GetStatus Gets the value of the /Status key.

GetValue Gets the value of a specific field.

NextFieldName Get field names in the FDF data.

Method Description

AddTemplate Adds a template to an FDF.

Create Creates a new FDF file .

SetAP Sets the appearance of a field (/AP).

SetAPRef Sets the /APRef key.

SetFile Sets the value of the /F key.

SetFileEx Sets the value of the /F key.

SetFlags Sets the /Ff or /F flag.

SetGoToAction Sets /A or /AA key to type GoTo.

SetGoToRAction Sets /A or /AA key to type GoToR.

SetHideAction Sets /A or /AA key to type Hide.

SetIF Sets the Icon-Fit attribute.

SetImportDataAction Sets /A or /AA key to type ImportData.

SetJavaScriptAction Sets /A or /AA key to type JavaScript.

SetNamedAction Sets /A or /AA key to the type named.

SetOpt Sets the value of the /Opt key.

SetResetByNameAction Sets /A or /AA key to type ResetForm.

SetResetFormAction Sets /A or /AA key to type ResetForm.

SetStatus Sets the value of the /Status key.

SetSubmitByNameAction Sets /A or /AA key to type SubmitForm.

SetSubmitFormAction Sets /A or /AA key to type SubmitForm.

SetURIAction Sets /A or /AA key to type URI.

SetValue Sets the value of a field.

Method Description

FDF ActiveX Based Java Toolkit Class Overview5 FDF TOOLKIT FOR JAVA

FDF Toolkit Overview 53

Cleaning Up and Closing FDF Files

FDF ActiveX Based Java Toolkit Class Overview

Most of the calls for ActiveX are supported, except for:

■ FDFOpenFromStr

■ FDFOpenFromBuf

NOTE: Instead, save the received data to a temporary file, and use FDFOpenFromFile

■ FDFSaveToStr

■ FDFSaveToBuf

NOTE: Use SaveToFile passing "-" as the filename in order to write to STDOUT

■ FDFSetSubmitFormAction

■ FDFSetResetFormAction

You cannot pass the last parameter (which is optional), representing the names of the fields to
submit (or reset), due to the lack of support in Java for the OLE type VARIANT holding an
array of strings.

Method Description

Close Closes an FDF file.

Save Saves FDF data.

FDF Toolkit Overview 54

6 FDF Toolkit for Perl

Perl FDF Toolkit Overview for Windows

The Windows version of the Perl FDF Toolkit is based on, and requires, the ActiveX
component of the FDF Toolkit. Most of the calls work as in the ActiveX FDF Toolkit, except
that they don’t have the “FDF” prefix (for example, use GetValue instead of FDFGetValue).

Calls Not Available in the Windows Perl FDF Toolkit

FDFCreate — use new instead. For example, $inFdf = new Acrobat::FDF;

FDFOpenFromFile — use new instead. For example, $inFDF = new
Acrobat::FDF(‘c:\temp\in.fdf’);

FDFOpenFromStr and FDFOpenFromBuf — use NewFromBuf. For example, $inFdf =
Acrobat::FDF::NewFromBuf($buf);

FDFSaveToStr and FDFSaveToBuf — se either SaveToBuf (print $outFdf->SaveToBuf();)
or SaveToFile (passing ‘-’ as the filename in order to write to stdout). For example, $outFdf->
SaveToFile(‘-’);

FDFClose — there is no Close function. FDF objects are destroyed when they are no longer
reachable by Perl.

FDFSetSubmitFormAction and FDFSetResetFormAction — you cannot pass the last parameter
(which is optional), representing the names of the fields to submit (or reset), due to the lack of
support in Perl for the OLE type VARIANT holding an array of strings.

Using the Perl FDF Toolkit

The library must be imported into Perl’s namespace via the use operator in this manner:

use Acrobat::FDF;

See the demo under EmployeeInfoDemo for sample usage of this toolkit.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

To install the Perl FDF Toolkit, a directory called Acrobat must be created in the lib folder of
the Perl installation. FDF.pm should be copied into the Acrobat directory. FDF.pm was tested
under Perl, version 5.003_07 http:www.ActiveState.com. This version assumes that OLE.pm
is in the lib folder.

NOTE: If you use a different version of Perl that expects ole.pm in the Win32 folder, then replace
FDF.pm references to “OLE” with “Win32::OLE”. For example, instead of “use OLE;” it should be
“use Win32::OLE;”.

Also, replace “CreateObject OLE FdfApp.FdfApp” with “new Win32::OLE FdfApp.FdfApp”.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

FDF Toolkit Methods6 FDF TOOLKIT FOR PERL

FDF Toolkit Overview 55

To write cgi-bin applications under Internet Information Server (IIS):

1. Use Regedt32.exe to open
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\Scr
iptMap.

2. From the Edit menu, choose “Add Value”.

3. Enter the value “.pl” for the “REG_SZ” data type.

4. Use the String Editor to enter d:\Perl\bin\Perl.exe %s %s (leave out the quotes and
substitute the correct path, of course).

5. Restart the Web browser.

Sample Usage of the Windows Perl FDF Toolkit

See the demo called “EmployeeInfoDemo” for sample usage of the Windows version of the
Perl FDF Toolkit.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

FDF Toolkit Methods

General Methods

Create a new FDF file-Example:

$inFdf = new Acrobat::FDF;

Open existing FDF file or read stdin-Example:

$inFDF = new Acrobat::FDF(‘in.fdf’);

or

$inFdf=new Acrobat::FDF(‘-’, $ENV{‘CONTENT_LENGTH’});

Method Description

GetVersion Verifies the correct version of the library.

Initialize Initializes the library.

Finalize Frees resources in the library.

RegisterThreadsafeCallback Creates a threadsafe callback.

RemoveItem Removes key-value pairs in the FDF file.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

FDF Toolkit Methods6 FDF TOOLKIT FOR PERL

FDF Toolkit Overview 56

Templates

Generating FDF Data

Parsing FDF Data

Method Description

AddTemplate Adds a template to an FDF file.

Method Description

SetValue Sets the value of a field.

SetStatus Sets the value of the /Status key.

SetFile Sets the value of the /F key.

SetFileEx Sets the value of the /F key.

SetOpt Sets the value of the /Opt key.

SetFlags Sets the /Ff or /F key.

SetAP Sets the appearance of a field (/AP).

SetAPRef Sets the /APRef key .

SetIF Sets the Icon-Fit attribute.

SetSubmitFormAction Sets /A or /AA key to type SubmitForm.

SetSubmitByNameAction Sets /A or /AA key to type SubmitForm.

SetResetFormAction Sets /A or /AA key to type ResetForm.

SetResetByNameAction Sets /A or /AA key to type ResetForm.

SetImportDataAction Sets /A or /AA key to type ImportData.

SetJavaScriptAction Sets /A or /AA key to type JavaScript.

SetGoToAction Sets /A or /AA key to type GoTo.

SetGoToRAction Sets /A or /AA key to type GoToR.

SetURIAction Sets /A or /AA key to type URI.

SetNamedAction Sets /A or /AA key to the type named.

SetHideAction Sets /A or /AA key to type Hide.

Method Description

NextFieldName Gets field names in the FDF file.

EnumValues Enumerates fields in the FDF file.

FDF Toolkit Methods6 FDF TOOLKIT FOR PERL

FDF Toolkit Overview 57

Cleaning Up and Closing FDF Files

GetValue Gets the value of a specific field.

GetStatus Gets the value of the /Status key.

GetFile Gets the value of the /F key.

GetOpt Gets the value of the /Opt key.

GetFlags Gets the /Ff or /F flag.

GetAP Gets the appearance of a field (/AP).

Method Description

Save Saves FDF data.

SaveToFile Saves an FDF to a file (VB VBScript).

SaveToBuf Saves an FDF to a buffer (VB VBScript).

SaveToStr Saves an FDF to a string (VB VBScript).

Method Description

FDF Toolkit Methods6 FDF TOOLKIT FOR PERL

FDF Toolkit Overview 58

Perl FDF Toolkit Overview for Unix

The UNIX version of the Perl FDF Toolkit is based on the C version of the FDF Toolkit. Most
of the calls are similar, except that they don’t have the “FDF” prefix. For example, use
GetValue instead of FDFGetValue.

See the demo under EmployeeInfoDemo for sample usage of this toolkit.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

Calls Not Available in the UNIX Perl FDF Toolkit

FDFCreate — use new instead. For example, $inFdf = new Acrobat::FDF;

FDFOpen — use new instead. For example, $inFDF = new Acrobat::FDF(‘in.fdf’);

or

$inFdf=new Acrobat::FDF(‘-’, $ENV{‘CONTENT_LENGTH’});

FDFClose — there is no Close function. FDF objects are destroyed when they are no longer
reachable by Perl.

Functions Only Available in the UNIX Perl FDF Toolkit

newFromBuf — For example, $inFdf = Acrobat::FDF::newFromBuf ($buf);

SaveToBuf — For example, print $outFdf->SaveToBuf();

Supported Platforms for the FDF Toolkit Libraries

The Perl version of the FDF Toolkit is supported under the same platforms as the C/C++ FDF
Toolkit for UNIX.

The FDF libraries were compiled and tested under Perl, version 5.003
http://www.ActiveState.com. The libraries are not upward compatible with later versions of
Perl.

Using the Perl FDF Toolkit

The library must be imported into Perl’s namespace via the use operator in this manner:

use Acrobat::FDF;

See the demo under EmployeeInfoDemo for sample usage of this toolkit.

To install the Perl toolkit, the script InstallAdvice.pl should be executed through Perl. It gives
further installation instructions based on the configuration of your system.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

http://partners.adobe.com/asn/developer/acrosdk/forms.html
http://partners.adobe.com/asn/developer/acrosdk/forms.html
http://www.ActiveState.com
http://www.ActiveState.com

FDF Toolkit methods6 FDF TOOLKIT FOR PERL

FDF Toolkit Overview 59

Sample Usage of the Perl FDF Toolkit for UNIX

For sample usage of the UNIX version of the Perl FDF Toolkit, see the demo called
“EmployeeInfoDemo” in the “Samples” folder of the SDK.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

FDF Toolkit methods

General Methods

Examples

Create a new FDF file-Example:

$inFdf = new Acrobat::FDF;

Open existing FDF file or read stdin-Example:

$inFDF = new Acrobat::FDF(‘in.fdf’);

or

$inFdf=new Acrobat::FDF(‘-’, $ENV{‘CONTENT_LENGTH’});

Method Description

GetVersion Verifies the correct version of the library.

Initialize Initializes the library.

Finalize Frees resources in the library.

RegisterThreadsafeCallback Creates a threadsafe callback.

RemoveItem Removes key-value pairs in the FDF file.

http://partners.adobe.com/asn/developer/acrosdk/forms.html
http://partners.adobe.com/asn/developer/acrosdk/forms.html

FDF Toolkit methods6 FDF TOOLKIT FOR PERL

FDF Toolkit Overview 60

Templates

Generating FDF Data

Parsing FDF Data

Method Description

AddTemplate Adds a template to an FDF file.

Method Description

SetValue Sets the value of a field.

SetStatus Sets the value of the /Status key.

SetFile Sets the value of the /F key.

SetFileEx Sets the value of the /F key.

SetOpt Sets the value of the /Opt key.

SetFlags Sets the /Ff or /F flag.

SetAP Sets the appearance of a field (/AP).

SetAPRef Sets the /APRef key.

SetIF Sets the Icon-Fit attribute.

SetSubmitFormAction Sets /A or /AA key to type SubmitForm.

SetSubmitByNameAction Sets /A or /AA key to type SubmitForm.

SetResetFormAction Sets /A or /AA key to type ResetForm.

SetResetByNameAction Sets /A or /AA key to type ResetForm.

SetImportDataAction Sets /A or /AA key to type ImportData.

SetJavaScriptAction Sets /A or /AA key to type JavaScript.

SetGoToAction Sets /A or /AA key to type GoTo.

SetGoToRAction Sets /A or /AA key to type GoToR.

SetURIAction Sets /A or /AA key to type URI.

SetNamedAction Sets /A or /AA key to the type named.

SetHideAction Sets /A or /AA key to type Hide.

Method Description

NextFieldName Gets field names in the FDF file.

EnumValues Enumerates fields in the FDF file.

FDF Toolkit methods6 FDF TOOLKIT FOR PERL

FDF Toolkit Overview 61

Cleaning Up and Closing FDF Files

GetValue Gets the value of a specific field.

GetStatus Gets the value of the /Status key.

GetFile Gets the value of the /F key.

GetOpt Gets the value of the /Opt key.

GetFlags Gets the /Ff or /F flag.

GetAP Gets the appearance of a field (/AP).

Method Description

Save Saves FDF data.

SaveToFile Saves an FDF to a file (VB VBScript).

SaveToBuf Saves an FDF to a buffer (VB VBScript).

SaveToStr Saves an FDF to a string (VB VBScript).

Method Description

	DocMap
	Preface
	What Is in This Tech Note
	Audience
	Conventions Used in This Book
	Other Useful Documentation
	Acrobat Forms Resources
	Prerequisites

	Introduction to FDF
	FDF Overview
	Acrobat Forms
	FDF Toolkit Functionality
	The Basics

	Description of the Forms Data Format
	File Structure
	Header
	Body
	Trailer

	The FDF Catalog Object
	FDF fields
	Icon-fit Dictionary
	FDF Pages Object
	FDF Annotation dictionaries

	Use of FDF
	Sample FDF
	FDF for Annotations

	Posting Form Data to a Web Server in HTML or FDF
	Choosing the Output Format
	Replacing an HTML Form with Acrobat Form

	Scenarios for Using FDF
	Acrobat Form with Results Returned in the Same Form
	Acrobat Form with Results Returned in a New Form
	HTML Form with Results Returned in an Acrobat Form

	Templates
	Encoding

	FDF and Web Server Connectivity
	Building Server Side Applications With FDF
	The FDF Toolkit

	Parsing FDF Data with the FDF Toolkit
	Initializing the FDF Toolkit
	Opening the FDF File
	Getting Values from the Field
	Cleaning Up and Finalizing the Library
	Sample Application
	Setting Up the Client Side PDF File
	Populating a PDF File

	Generating FDF Data with the FDF Toolkit
	Initializing the FDF Library
	Creating FDF with the Toolkit
	Setting Field Values
	Performing Actions and Additional Actions with FDF Data
	Targeting FDF Data at a PDF File
	Cleaning Up and Finalizing the Library
	Sample Application to Generate FDF Data
	Debugging Tip

	Handling Errors

	FDF Toolkit for C/C++
	Introduction
	Building Applications with the FDF Toolkit
	UNIX Support
	Microsoft Windows Support

	FDF Toolkit Methods
	General
	UNIX and Macintosh Specific
	Parsing FDF Data
	Generating FDF Data
	Cleaning Up and Closing FDF Files

	FDF Toolkit for ActiveX
	Introduction
	Building Applications with the FDF Toolkit
	Installation

	Using the FDF Toolkit in Visual Basic
	Using the FDF Toolkit with Active Server Pages
	Setting Up the NT Server to Handle FDF Data

	FDF Toolkit Methods

	FDF Toolkit for Java
	Introduction
	Differences Between Java Implementations
	Building Applications with the FDF Toolkit
	FDF JNI Based Java Toolkit Class Overview
	For the FDFTK Class
	General Methods For the Creating and Opening FDFDoc Objects
	FDFDoc Methods for Parsing FDF Data
	Methods for Generating FDF Data
	Cleaning Up and Closing FDF Files

	FDF ActiveX Based Java Toolkit Class Overview

	FDF Toolkit for Perl
	Perl FDF Toolkit Overview for Windows
	Calls Not Available in the Windows Perl FDF Toolkit
	Using the Perl FDF Toolkit
	Sample Usage of the Windows Perl FDF Toolkit

	FDF Toolkit Methods
	General Methods
	Templates
	Generating FDF Data
	Parsing FDF Data
	Cleaning Up and Closing FDF Files

	Perl FDF Toolkit Overview for Unix
	Calls Not Available in the UNIX Perl FDF Toolkit
	Functions Only Available in the UNIX Perl FDF Toolkit
	Supported Platforms for the FDF Toolkit Libraries
	Using the Perl FDF Toolkit
	Sample Usage of the Perl FDF Toolkit for UNIX

	FDF Toolkit methods
	General Methods
	Examples

	Templates
	Generating FDF Data
	Parsing FDF Data
	Cleaning Up and Closing FDF Files

