5. (**L-Tiling**) Consider C_n , a $2^n \times 2^n$ checkerboard with the upper right square removed. An *L-tiling* of C_n is a tiling of C_n with L-shaped tiles (composed of three squares) with no overlaps and no square of the checkerboard left uncovered. Prove or disprove: for every $n \in \mathbb{Z}^+$, there is an L-tiling of C_n . See Figure 1 for pictures of C_1 , C_2 , and C_3 , and Figure 2 for pictures of all possible L-shaped tiles.

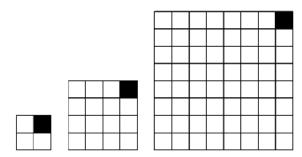


Figure 1: C_1 , C_2 , and C_3 : the black square has been removed from the board.

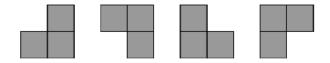
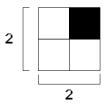
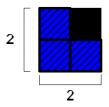
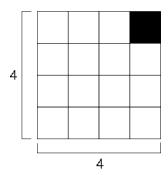
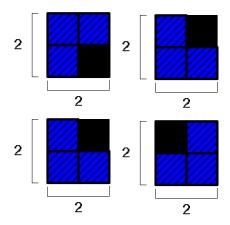




Figure 2: All possible L-tiles composed of three squares.

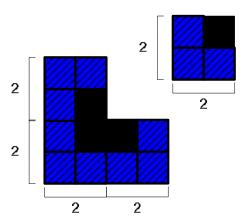
For n = 1, we have a 2x2 square.

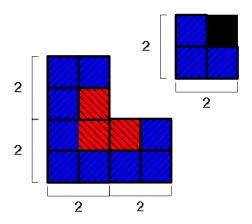


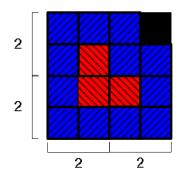
We can place 1 L-Tile on the open squares.

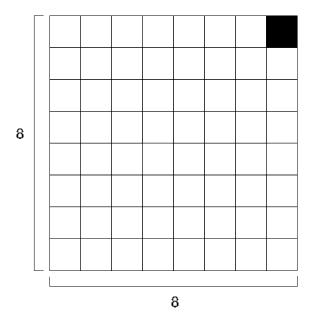


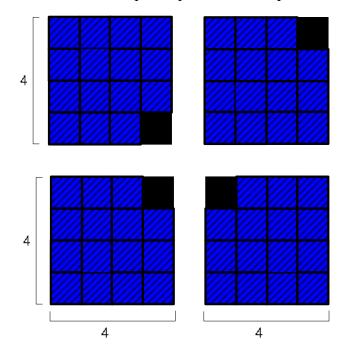
The solution is true for n = 1.

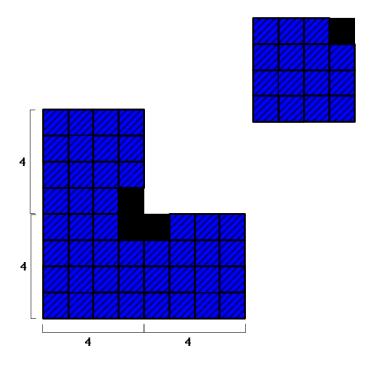

For n = 2, we have a 4x4 square.

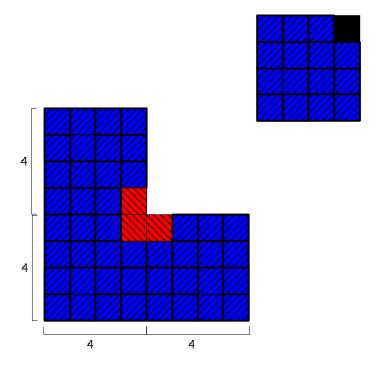

We can break this square up into 4, 2x2 squares.

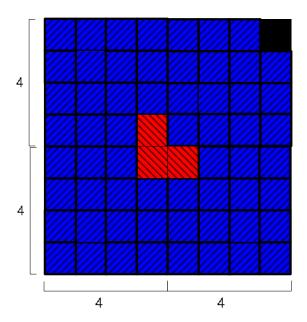

We know the solution is true for a 2x2. When we combine the 2x2's we have an open area where they had a square removed.


This open area can be filled by 1 L-tile.


The solution is true for n = 2.


For n = 3, we have a 8x8 square.


We can break this square up into 4, 4x4 squares.


We know the solution is true for a 4x4. When we combine the 4x4's we have an open area where they had a square removed.

This open area can be filled by 1 L-tile.

The solution is true for n = 3.

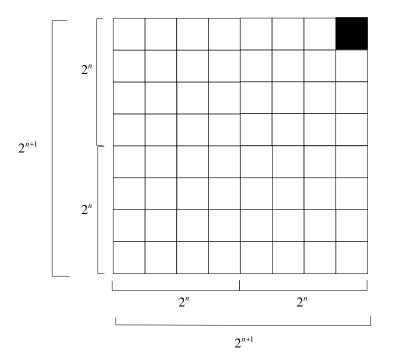
Prove: for every $n \in \mathbb{Z}^+$, there is an L-tiling of C_n .

Need Statement, P(n):

P(n): a $(2^n \times 2^n \ chec \ker board) - 1$ square can be covered with L Tiles

I want to prove P(n) is true for $\forall n \in \mathbb{Z}^+$.

-Check some base cases:


We've already verified P(1), P(2), P(3)

-Induction hypothesis:

There is some $n \in \mathbb{Z}^+$ such that P(n) is true.

-Prove P(n+1) is true.

A $2^{n+1} \times 2^{n+1}$ checkerboard with 1 square removed

NOTE: A $2^{n+1} \times 2^{n+1}$ checkerboard can be subdivided into 4, 2^n squares. These 2^n squares can be cut into 4 smaller squares, which are then cut into 4 smaller squares, and so on , and so on.

NOTE: The top right 2^n square with 1 square removed is solved by the induction hypothesis.

If we remove 1 square each from the remaining 2^n squares they are also solved by the induction hypothesis. The 3 squares removed is one L Tile.

Therefore this is true for P(n+1).

-Conclusion:

There is an L Tiling of C_n for every $n \in \mathbb{Z}^+$. Q.E.D.