5. (L-Tiling) Consider C_{n}, a $2^{n} \times 2^{n}$ checkerboard with the upper right square removed. An L tiling of C_{n} is a tiling of C_{n} with L-shaped tiles (composed of three squares) with no overlaps and no square of the checkerboard left uncovered. Prove or disprove: for every $n \in \mathbb{Z}^{+}$, there is an L-tiling of C_{n}. See Figure 1 for pictures of $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}, and Figure 2 for pictures of all possible L-shaped tiles.

Figure 1: $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} : the black square has been removed from the board.

Figure 2: All possible L-tiles composed of three squares.

For $n=1$, we have a 2×2 square.

We can place 1 L-Tile on the open squares.

The solution is true for $n=1$.

For $n=2$, we have a 4×4 square.

We can break this square up into $4,2 \times 2$ squares.

We know the solution is true for a 2×2. When we combine the 2×2 's we have an open area where they had a square removed.

This open area can be filled by 1 L-tile.

The solution is true for $n=2$.

For $n=3$, we have a 8 x 8 square.

We can break this square up into $4,4 \times 4$ squares.

We know the solution is true for a 4×4. When we combine the $4 x 4$'s we have an open area where they had a square removed.

This open area can be filled by 1 L-tile.

The solution is true for $n=3$.

Prove: for every $n \in \mathbb{Z}^{+}$, there is an L-tiling of C_{n}.
Need Statement, $P(n)$:
$P(n):$ a $\left(2^{n} \times 2^{n} \quad\right.$ chec ker board $)-1$ square can be covered with L Tiles

I want to prove $P(n)$ is true for $\forall n \in \mathbb{Z}^{+}$.
-Check some base cases:
We've already verified $P(1), P(2), P(3)$
-Induction hypothesis:
There is some $n \in \mathbb{Z}^{+}$such that $P(n)$ is true.
-Prove $P(n+1)$ is true.
A $2^{n+1} \times 2^{n+1}$ checkerboard with 1 square removed

NOTE: A $2^{n+1} \times 2^{n+1}$ checkerboard can be subdivided into $4,2^{n}$ squares. These 2^{n} squares can be cut into 4 smaller squares, which are then cut into 4 smaller squares, and so on, and so on.

NOTE: The top right 2^{n} square with 1 square removed is solved by the induction hypothesis.

If we remove 1 square each from the remaining 2^{n} squares they are also solved by the induction hypothesis. The 3 squares removed is one L Tile.

Therefore this is true for $P(n+1)$.

-Conclusion:

There is an L Tiling of C_{n} for every $n \in \mathbb{Z}^{+}$.
Q.E.D.

