Tapestry Contributor's Guide

by Howard Lewis Ship

Tapestry Contributor's Guide
by Howard Lewis Ship
Copyright © 2002, 2003 The A pache Software Foundation

Chapter 1. Introduction

This document is a guide to developers who want to go beyond merely developing applications using Tapestry,
and want to extend and improve Tapestry itself.

Tapestry has benefitted over the first two years of its development from having afocused vision and,
predominantly, asingle developer. At the time of thiswriting, May 2002, the Tapestry community is truly com
ing alive, with new developers contributing fixes, components and documentation.

The goal isto maintain the stability of Tapestry even asit shifts from a one-man-show to a true community
effort. Meanwhileit is vitally important to not to sacrifice quality in either code or documentation if Tapestry is

to stay on track.

Contributing to Tapestry requires acommitment to produce excellent code, examples and documentation. In
fact, proper documentation in JavaDoc and as updates to the tutorials and manual's represents the dominant

amount of effort when contributing to Tapestry.

Chapter 2. CVS Access

Using Eclipse, obtaining the source code takes only a few steps. Tapestry compiles using some libraries from
JBoss [http://www.jboss.org] 3.0.6 and Jetty [http://sf.net/projects/jetty] 4.x which must be downloaded first.

Eclipse must be configured with the location of JBoss, this is done from the preferences panel. A new entry for
JBOSS_DI R should be added.

Figure2.1. Eclipse: Java Classpath Preferences

http://www.jboss.org
http://sf.net/projects/jetty

¥
4= Preferences

--Install,-'Llpdate

=l Java
+-Appearance

- Classpath Variab
~Code Formatter
~Code Generation
- Compiler
+-Debug

! +Editor
~Installed JREs
~Javadoc

- New Project

- QOrganze Import
~Refactoring
~Task Tags
+-Plug-In Developmer
! SolarEclipse

s

Classpath Variables

A classpath variable can be added to a project's clas
used to define the location of a JAR fie that isn't pal
The reserved class path variables JRE_LIB, JRE_SRI
set internally depending on the JRE setting.

Defined dasspath variables:

= ECLIPSE_HOME - C:\edipse

= HIBERMNATE_DIR - C:\Work\hibernate-1.2

4 1BOSS_DIR - C:\Work\jboss-3.0.6

= JDK_DIR - C:\j2sdk1.4.1_01

= JETTY_DIR - C:\Work\Jetty-4.2.8

(8 JRE_LIB (reserved) - C:\j2sdk1.4.1_01\jre\lb\rt.
(8 JRE_SRC (reserved) - C:\j2sdk1.4.1_01\src.zip
= JRE_SRCROOT (reserved) - (empty)

= JYTHON_DIR - C:\Work\Jython21

= _ORG_ECLIPSE_IDT_SOURCE - C:\eclpse\plugin
= ORG_ECLIPSE_PDE_SOURCE - C:\eclpse\plugin
= ORG_ECLIPSE_PLATFORM_SOURCE - C:\eclips:

--Team ORG_ECLIPSE_PLATFORM_WIN32_SOURCE - ¢
- XML 3
< NE €3 |

Import... Export OK

Activate the CV S Repositories view and use the context menu to create anew CV S Repository location. This
raises a panel for defining connection information. Fill in your own Jakarta name and password:

Figure 2.2. Eclipse: New CVS Repository L ocation

4= Add CVS Repository

Add a new CVS Repository
Add a new CVS Repository to the CVS Repositories view

- Location
Host: cvs.apache.org
Repository path: | /home/cvs

- Authentication
User: hiship

Password: | ##*®#%%

~Connection

Connection type: [EeC

+ Use Default Port

™ Use Port: |

¥ Validate Connection on Finish

Finish

Next, open the new CV S Repository location. Expand the "HEAD" node, then scroll down to the "jakarta-
tapestry" module. Right click and select "Check Out As Project".

Figure 2.3. Eclipse: Check Out Project

b1 CVS Repositories

-
l[ﬁr

=

jakarta-taglbs.bu
jakarta-taglbs-sandbox

G conf New
g Znnt Check Out As Project

o ESI:;: Check Out As...

& exar Check QOut Into...

g ?rxt— Tag as Version...

: ar . R

T ith Existing...

@ imac ag with Existing

& Mg+ Compare With...

(= JEE Compare

g jll_Eﬂft 4% Add to Branch List...

I .
B
& pack 4% Configure Branches and Versions...

“& supr g5 Refresh View

(@ web
B .dasspath 1.31
l .cvsignore 1.4

Eclipse will checkout the latest versions of al the Tapestry code and compileit.

Y ou can access the

Tapestry repository using command line CVS or other tools, as well. Details for using com

mand line CV S are available at the Jakarta [http://jakarta.apache.org].

http://jakarta.apache.org

Build Targets

Build Targets

The following Ant build targets are available from the Tapestry root directory:

Root Targets

clean Cleans each sub-project and deletes derived files (such as the Tapestry framework JAR and examples).
clean- Aswith cl ean, but also deletes all documentation.

all

documBniidtieall documentation (see notes below).

install Performs afull build, by re-invoking i nstal | in each sub-project.

javadoC€reates Tapestry APl documentation.

junit Runsall JUnit [http://www.junit.org] tests.

clover Runs all JUnit [http://www.junit.org] tests and builds a code coverage report (using the Clover tool).

Documentation Setup

Tapestry documentation, including this manual, is also generated using Ant. Documentation sourceisin Doc

Book [http://docbook.sourceforge.net/] XML format, and uses XSL transformation to generate readable HTML.

Tapestry uses Saxon [http://sf.net/projects/saxon] to generate HTML documentation, and FOP [http://

xml.apache.org/fop] to generate PDF documentation.

. Download and unpack the Saxon [http://sf.net/projects/saxon] distribution, release 6.5.2 exactly (later
versions do not work).

. Obtain the latest copies of the two DocBook distributions and place the filesin the ext - di st directory.
Detailsareinthefile doc/ src/ conmon/ Readme. ht ni .

. Copy saxon. j ar intothe Ant1i b directory.

. Update your ANT_OPTS environment variable to add the following two system properties:

Djavax.xml.parsers.DocumentBuilderFactory=org.apache.crimson.jaxp.DocumentBuil derFactorylmpl

. -Djavax.xml.parsers.SA X ParserFactory=org.apache.crimson.jaxp.SA X ParserFactoryl mpl

. Download FOP [http://xml.apache.org/fop] 0.20.4 and unpack into a permanent directory.

. Update confi g/ bui | d. properties and add af op. di r entry, identifying the directory into which you un
packed FOP. Be sure to use an absolute path name, and only forward slashes.

. Get a copy of JMI [http://java.sun.com/products/jimi/] (an imaging package from Sun, needed by FOP to
process PNG image files), and unpack it to temporary directory.

. Copy Ji mi Prod asses. zi p into theror/ | i b directory.

Clover Setup

Clover [http://www.thecortex.net/clover] is a properietary tool that gathers code coverage information and gen
erates reports from it. They have kindly donated a license for Clover to the Tapestry project.

To configure for clover:

. Get a copy of the Clover distribution. Cortex eBusiness [http://www.thecortex.net/clover/] has donated a
copy of Clover to support Tapestry. The distribution is available from Howard M. Lewis Ship
[mailto:hlship@apache.org].

. Extract the Clover distribution to a non-temporary directory.

. Modify confi g/ bui | d. properti es and add an entry for cl over. di r. Asusual, provide the absolute

pathname to the Clover directory, using only forward slashes.

Copy cl over. jar totheant/1i b directory.

http://www.junit.org
http://www.junit.org
http://docbook.sourceforge.net/
http://docbook.sourceforge.net/
http://sf.net/projects/saxon
http://xml.apache.org/fop
http://sf.net/projects/saxon
http://xml.apache.org/fop
http://java.sun.com/products/jimi/
http://www.thecortex.net/clover
http://www.thecortex.net/clover/
mailto:hlship@apache.org

Chapter 3. Building Tapestry

Tapestry is built using Ant [http://jakarta.apache.org/ant] 1.5. In addition, Tapestry includes the necessary con
trol filesto allow development using the excellent open-source I DE, Eclipse [http://www.eclipse.org].

To perform afull build from the command line, you must have JDK 1.3 or better installed, as well as JBoss
[http://www.jboss.org] 3.0.6.

Y ou must create thefile confi g/ bui | d. properti es (under the Tapestry root directory). Thisfile defines a
property, j boss. di r that identifies the full pathname to the JBoss installation and the Jetty [http://sf.net/
projects/jetty] installation. A samplefileis provided.

Tip

Be sure to use forward slashes for the path name, even under Windows. Using backslashes, the escape character
in property files, will cause the build to fail, since Ant will be using incorrect paths to the libraries obtained from
the JBoss distribution.

Tapestry has some additional, external dependencies on libraries that (due to licensing conflicts) are not sup
plied in the distribution or stored in CVS. More details available shortly

Tapestry Subprojects

The Tapestry source tree contains multiple sub-projects, each in its own subdirectory, with its own Ant build
file and own source code tree. A root level build file (described in the next section) performs builds over al sub-
projects.

Tapestry Sub-Projects

f r amevio@ORtains the core framework, buildst apestry-x.x. j ar.

contriBuildst apestry-contrib-x.x.jar.

j uni t Builds and runs JUnit tests.

exanplBuilds wor kbench. war .

Wor kbench

exanplBaildsvl i bbeans. j ar, the EJBs used by the Virtual Library demonstration.
VI i bBeans

exanplBaildsvl i b. war , the presentation layer of the Virtual Library demonstration.
Vib

exanplBuildsvl i b. ear fromvl i bbeans.jar andvlib. war.

VI i bEAR

doc/ Buildsthe Tapestry Tutorial documentation.

src/

Tutori al

doc/ Buildsthe Tapestry Developer's Guide documentation. This guideis out of date, asis being replaced.
src/

Devel oper sCui de

doc/ Buildsthe Tapestry Users Guide (the replacement for the Developer's Guide). This document is still
src/ incomplete. See, you just can't win.

User sGui de

doc/ Buildsthis very documentation.

src/

Cont ri but or sGui de

doc/ Buildsthe component reference documentation.

src/

Conponent Ref er ence

http://jakarta.apache.org/ant
http://www.eclipse.org
http://www.jboss.org
http://sf.net/projects/jetty

The Clover report executes from thej uni t directory, using the Ant target cl over . It runs builds the clover-en
hanced version of the framework classes, and executs the JUnit test suite twice (with all logging enabled and all
logging disabled), then generates the HTML report into the web/ doc/ cl over directory.

Java Code Formatting

Collections (from packagej ava. uti |) should be documented to identify the type of object stored, and for Map
the type of key. Example: Li st of {@ink | Render},or Map of {@ink IBinding} keyed on String nane.

When a method returns a collection type, the documentation should indicate if it is safe for the caller to modify
the collection or not. In general, it is best to always return an immutable copy of a collection, but for efficiency
thisis not always reasonable.

And don't forget to make liberal use of JavaDoc links (@ i nk) which makes the documentation far eaiser to use.

Javadoc Formatting

The standard for formatting Javadoc comments in Tapestry isto close the comment with *+*/ . Y ou should at
tempt to follow this, especially when modifying existing code.

Java Code Formatting

Ah, areligousissue. The most important things are to be consistent (an editor that indents code for you is
helpful) and to conform to the existing style when editting someone else's code.

Tapestry is formatted using spaces (not tabs), and an indent of four.

All the code currently in the repository has been formatted using the Eclipse IDE. My personal preferenceisto
include a newline before opening braces. In addition, a maximum line-length of 100 characters has been used.
These preferences are easy to setup in Eclipse:

Figure4.2. Eclipse: Java Code For matting Preferences

10

Code Formatter

Options for the Java Code Formatter:
MNew Lines | Line SQIil:tingl Style]
v Insert a new line before an opening brace
v Insert new lines in control statements
I Clear all blank lines

¥ Insert new line between 'else if
¥ Insert a new line inside an empty block

Naming Conventic

if (2ize < currentiize)

try

}
catch [(ICException e)

¥
]-

el=se
if (size == currentSize)

Naming Conventions

sire = [(long) inStream.available():

Standard Java guidelines are expected to be followed. Class names are capitalized (example: Myd ass). Meth

odsstart with alower-case character (example: myMet hod).

Static final variables used as constants are in upper-case (example: My_CONSTANT).

Private member variables (both instance and static) are named with aleading underscore (example:

_nyVari abl e). Public member variables are to be avoided.

Naming in transition

I've resisted the leading underscore syntax for along time; the rationale behind it isto make it possible, at a
glance, to visually seperate instance variables from local variables and parameters. Previoudly, I've dways
maintained that the problem was methods that were too large; lately I've changed my mind ... the underscore
naming hel ps when debugging and helps avoid a humber of naming collisions.

At the time of thiswriting, 2.1-beta-1, very little of the code used the new naming. Over time, mixed in with
other bug fixes, renaming will occur (Eclipse [http://www.eclipse.org] helps with this greatly). New code will
be written to conform.

Interfaces in Tapestry are prefixed with the letter 'I' (example: | Request Cycl e). Implementations (oftenin a
different package) strip off the'l' (example: Request Cycl e). Interfaces related to JavaBean events do not start
with an'l' (example: PageDet achLi st ener).

Base classes, classes which are concrete and functional, but often extended, are prefixed with '‘Base’ (example:
BaseConponent). Abstract classes are prefixed with 'Abstract' (example: Abst r act Engi ne). Classes which are
functional and only rarely subclassed are often prefixed with 'Default’ (example: Def aul t Scri pt Sour ce).

The base package for the framework JAR (t apest ry-x. x. j ar) iSor g. apache. t apest ry. The base package for
the contrib JAR (t apestry-contrib-x.x. jar) iSorg. apache. t apestry. contri b.

12

http://www.eclipse.org

Chapter 5. Tapestry Release Number
Ing

Tapestry release numbering is relatively simple, aslong as you don't look back in time (the less managable
numbering system used through release 2.0.5 is described shortly).

Tapestry releases consist of amajor version, a minor version and aincremental version. The pattern ms;j or . ni nor
i ncrement al - i ndexiS Used, for example: 2. 1, 2. 2- al pha- 3 Or 2. 3- bet a- 1.

The major version represents large-scale changes in the framework ... short of trandating Tapestry to another
language (say, Python or Ruby), thisis not likely to happen again. Tapestry is currently in major release 2.

The minor version represents a milestone release, encompassing the introduction of new functionality and bug
fixesin astable manner. 2. 1 or 2. 2 would be examples of milestone releases.

Anincremental release represents a transition from one milestone release to the next. Incremental releases are al pha
bet a or rc (release candidate). Typically, after amilestone release there will be a series of apha, then beta, then

rc releases, leading up to the next milestone release. A possible sequenceis2. 1, 2. 2- al pha- 1, 2. 2-bet a- 1,
2.2-rc-1,2. 2.

Typicaly, there will be several incremental rel eases of the same type, numbered from 1 up. Alphareleases con
tain significant functionality changes, beta releases represent bug fixes to those changes (stabilizing the
changes), and rc (release chandidate) rel eases are expected to be stable versions of the next minor release
(though any problems can spur further release candidates).

Through Tapestry release 2.0.5, numbering was a bit different. Under the modern scheme, 2.0.1 would be
2.1-al pha-1, 2.0.2 would be 2. 1- al pha- 2, and 2.0.5 would be 2. 1- bet a- 1. Modern release numbering begins
2. 1- bet a- 2 (the release immediately following 2.0.5).

Chapter 6. Development Procedures

This chapter defines procedures for development of Tapestry. This includes many things not directly related to
coding, such as documentation and interacting with the CV S repository.

Deprecating methods and classes

Tapestry is being used by aincreasingly large community of developers and it is necessary that they have some
stability in their devel opment.

To that end, classes and methods must follow a devel oper-friendly lifecycle. If a method or class must be
deleted, it should be marked as deprecated in one minor release, and can be removed in the following minor
release.

For example, a method may be marked as deprecated in release 2.2-alpha-1. This changeisn't considered "real”
until release 2.2. The method can be removed any time after that, say in release 2.3-alpha-3, and the removal be
comes "real" in release 2.3.

Don't ssimply mark a method as deprecated, give the end-devel oper the information needed adapt their code.
Use the following template as part of the Javadoc comment:

@leprecated To be renoved in Version.
Use { @i nk Somed ass#soneMethod(...)} i nstead.

It isalso important for the changer to make the transition as simple as possible for the end-developer. Base
classes and default implementations should be changed to make use of the new API in such asway that, at most,
arecompile of the end-developer's classesis required.

Sometimes, changes require alack of backwards compatibility. If a method has to change and the old signature
can't be maintained, then simply changeit ... but be sure to document the change in the Tapestry release notes
(web/ new. ht m).

JuUnit Tests

Tapestry has an excellent JUnit test suite, with code coverage figures over 80% at the time of this writing (2.4-
alpha-4). It isrequired that changes to the framework be accompanied by additional JUnit tests (typically, mock
tests; see below) to validate the changes. In addition, there is an ongoing effort to fill in the gapsin the existing
suite; the suite should reach over 90% code coverage.

Some of the JUnit tests now require Jython [http://www.jython.org]. Y ou must download and install Jython 2.1,
then configurej yt hon. di r inconfi g/ bui | d. properti es to point to the install directory. Asusual, use an ab
solute path and forward slashes only. To run the JUnit test suite within Eclipse, you must set the JYTHON_DI R
classpath variable.

JUnit test source code is placed into the j uni t / sr ¢ source tree. The package name for JUnit testsis
org. apache. tapestry.junit.

Lessthan half of Tapestry istested using traditional JUnit tests. The magjority of JUnit testing occurs using a
system of mock unit tests. Mock testing involves replacing the key classes of the Servliet API (Ht t pSer vl et Request
Ht t pSessi on, €tc.) with out own implementations, with extensions that allow for checks and validations. Instead
of processing a series of requests over HTTP, the requests are driven by an XML script file, which includes out
put checks.

http://www.jython.org

Generally, each bit of functionality can be tested using its own mini-application. Create the application as
j uni t/ cont ext x. Thisismuch easier now, using Tapestry 3.0 features such as dynamic lookup of specifications
and implicit components.

The Mock Unit Test Suite is driven by scripts (whose structure is described below). The suite searches the di
rectory j uni t/ mock- scri pt s for fileswith the ".xml" extension. Each of these is expected to be atest script.
The order in which scripts are executed is arbitrary; scripts (and JUnit testsin general) should never rely on any
order of execution.

Test scripts are named Test Nane. xm .

Note

The XML script is not validated, and invalid elements are generally ignored. The class MockTest er performs
the test, and its capabilities are in fluxx, with new capabilities being added as needed.

A test script consists of an <mock- t est > element. Within it, the virtual context and servlet are defined.

<nock-t est >
<cont ext nane="c6" root="context6"/>

<servl et nane="app" cl ass="org. apache.tapestry. ApplicationServlet">
<init-paranmeter name="org.apache.tapestry. engi ne-cl ass"

val ue="org. apache. tapestry.junit. nock. c6. C6Engi ne"/ >

</ servl et>

The name for the context becomes the leading term in any generated URLs. Likewise, the servlet name be
comes the second term. The above example will generate URL s that reference/ c6/ app. Specifying ar oot for a
context identifies the root context directory (beneath the top level j uni t directory). In this example, HTML
templates go in cont ext 6 and specifications go in cont ext 6/ WEB- | NF.

Following the <ser vI et > and <cont ext > elements, a series of <r equest > elements. Each such element simu
lates arequest. A request specifies any query parameters passed as part of the request, and contains a number of
assertions that test either the results, generally in terms of searching for strings or regular expressions within the
HTML response.

<request >
<par anet er name="service" val ue="direct"/>
<par anmet er nane="context" val ue="0/Hone/ $Di r ect Li nk"/ >

<assert-output name="Page Title">
<! [CDATA[
<titl e>Persistant Page Property</title>

11>

</ assert - out put >

Warning

Asin the above example, it is very important that HTML tags be properly escaped with the XML CDATA
construct.

Adding f ai | over ="t rue" tothe <r equest > simulates afailover. The contents of the Ht t pSessi on are
serialized, then deserialized. This ensures that all the data stored into the Ht t pSessi on will survive afailover to
anew server within acluster.

16

All of the assertion elements expect anane attribute, which isincorporated into any error message if the asser
tion fails (that is, if the expected output is not present).

The <assert - out put > element checks for the presence of the contained literal output, contained within the
element. Leading and trailing whitespace is trimmed before the check is made.

<assert name="Session Attribute">
request . session. get Attri but e("app/ Hone/ nessage") . equal s(" Changed")
</ assert>

The <assert > element checks that the provided OGNL expression evaluates to true.

<assert-regexp name="Error Message">
<! [CDATA[
\s*You nust enter a value for Last Nanme\.\s*

11>

</ assert-regexp>

The<assert - regexp> looks for aregular expression in the result, instead of asimple literal string.

<assert - out put - mat ches nane="Sel ect ed Radi 0" subgroup="1">
<! [CDATA[
<input type="radi 0" nanme="input Sex" checked="checked" val ue="(.*?)"/>

11>
<mat ch>1</ mat ch>
</ assert - out put - nat ches>

The<assert - out put - mat ches> isthe most complicated assertion. It contains aregular expression which is
evaluated. For each match, the subgroup value is extracted, and compared to the next <mat ch> value. Also, the
count of matches (vs. the number of match elements) is checked.

<assert-out put - stream nane="Asset Content"
content-type="image/ gi f"
pat h="f oo/ bar/ baz. gi f"/>

The <assert - out put - st r eam> element is used to compare the entire response to a static file (thisis normally
associated with private assets). A content type must be specified, as well as arelative path to afile to compare
against. The path is relative to the junit directory. The response must match the specified content type and actual
content.

<assert-exception nane="Exception">
File foo not found
</ assert-exception>

The<assert - except i on> element is used to check when an request fails entirely (is unable to send back a
response). This only occurs when the application specification contains invalid data (such as an incorrect class
for the engine), or when the Exception page is unable to execute. The body of the element is matched against the
exception's message property.

Force afailure, then check for correctness

Sometimes the tests themselves have bugs. A useful techniqueisto purposely break the test to ensure that it is
checking for what it should check, then fix the test. For example, adding Xxx into a<assert - out put >. Run the
test suite and expect afailure, then remove the xxx and re-run the test, which should succeed.

Documentation

Documentation is much harder than coding, but the ongoing success of Tapestry depends on maintaining the
quality of documentation. Tapestry documentation is written using DocBook [http://docbook.sourceforge.net/]
XML format, using XSL stylesheets to convert to final documentation.

Changes to the framework usually require a change in documentation to the Tapestry Developer's Guide.

Component Documentation
Warning

This section is out of date. In general, each component should include alink to the Component Reference page
for the component. The Component Reference page has aformat and content similar to what's listed here.

Although there is limited documentation about components in their component specification file, that documen
tation is designed to be a short reminder, not the complete documentation. Full documentation goes into the
component's Javafile, as part of its type comment JavaDaoc.

Component documentation consists of atable, identifying all the formal parameters of the component. In
addition, a note indicating whether informal parameters are allowed, and if the component may have a body
(that is, wrap other components) is supplied at the end.

Figure 6.1. Component Documentation Template

18

http://docbook.sourceforge.net/

-~
*
*

Type comment docunentation ...

<p><t abl e border=1>
<tr>
<t h>Par anet er </ t h>
<t h>Type</t h>
<th>Direction</th>
<t h>Requi r ed</t h>
<th>Default</th>
<t h>Descri ption</th>
</tr>

<tr>
<t d>name</t d>
<td>{@ink Type}</td>
<td>in|out|in-out</td> O
<t d>yes| no</t d>
<t d>Default value</td> [
<t d>Ful | description</td>
</tr>

<p>I nformal paraneters are [not] allowed. The conponent
may [not] contain a body.

o T T T R EE R U RN N

*
~

O

This describes how the component usesits binding. i n indicates the binding is read, but never updated,
which is the most common case. out indicates the binding is updated, but not read; thisis rare, but does
apply to some parameters of For each [../ComponentReference/Foreach.html], for example. i n-out is
common used with certain form parameters.

O If the parameter is required, then thisis usually specified as & nbsp; (non-breaking space).

Recently, seperate HTML component documentation [../ComponentReference/index.html] has been created.
Thiswill be the standard location for Framework component documentation. Javadoc for the component should
simply have alink to the correct Component Reference page.

The component referenceis simply HTML (at least, for the time being). There are many examples and atem
plate available, for creating new reference pages.

Checkin Procedures

Run JUnit tests before doing a checkin. Y ou should always have a SourceForge bug or feature request. When
checking code in, use the SourceForge regquest as the checkin comment.

Example 6.1. Example checkin comment

[553310] Set properties from paraneter bindings

In addition, update the Tapestry release notes, the file web/ new. ht m , to identify the feature request.

Be very careful when checking filesin that they are checked in with the correct keyword substitution type. Files
should be either binary or text; text should be checked in with keyword expansion turned on (thisisthe - kkv
option).

../ComponentReference/Foreach.html
../ComponentReference/index.html

List of Examples

6.1. Example checkin comment ***19

When new files are added using Eclipse, it must decide whether they are binary or text. Eclipse always assumes
binary unless specifically informed that afileistext. Use the Team preferences panel to set this.

Figure 6.2. Eclipse: Team Preferences

¥
1= Preferences

A/, SSTT

+-Appearance ~ | File Content
Elsj:plfgrm\;?z? File extensions with known content:
- Code Generation Extension Contents
- Compiler brmp Binary
+-Debug class Binary
+-Editor ::las_spath ASCII
-~ Instaled JREs cvsignore ASEII
- Javadoc dll E!narh_.-f
- JUnit doc Binary
New Project emsd ‘;‘_SEH
- Organize Import E:EE E!ﬂar‘r’
- Refactoring gl Inary
 Task Tags Etrﬂ| ASCII
t AS5CII
+-Plug-In Developmer i::nm Binary
+ SolarEdlpse jar Binary
= Team java ASCII
QS jpage ASCII
File Content — |ipeg Binary
~~Ignored Resourc o, | |jpg Binary
i 5| |launch ASCIT

Import... Export...

2((.)‘,reating Examples

OK

List of Figures

2.1. Eclipse: Java Classpath Preferences --+-1

2.2. Eclipse: New CV'S Repository Location -2
2.3. Eclipse: Check Out Project -***3

4.1. Type Comment -**-9

4.2. Eclipse: Java Code Formatting Preferences **--10
6.1. Component Documentation Template ***-18

6.2. Eclipse: Team Preferences -*--20

Extending the Workbench application to demonstrate new features or components is expected for any signifi
cant changes or additions to the framework, or to the contrib library.

Updating Copyrights

All source code stored in the repository must contain the standard A pache copyright and license. A copy of the
license, as acomment block, is stored assupport/|icense. t xt

The contents of thisfile can be pasted in directly before the package statement of a Java source file.

Alternately, a Python [http://www.python.org] script is provided which can locate all Java source files within a
directory tree and ensure that the leading comment block is correct. It modifies any source files where the lead
ing comment doesn't match, but does not modify any files where the leading comment matches.

To use the script, execute the command python support/update-copyrights.py LI CENSE.txt di rect ory

Y ou may specify any number of directories, though the script is fast enough that just using "." (for current
directory) is easiest.

Cygwin Python

On my computer (running Windows XP and/or 2000), when using the Cygwin [http://sources.redhat.com/
cygwin] version of Python, it is necessary to execute the script from the Bash shell, not the standard Windows
command line.

http://www.python.org
http://sources.redhat.com/cygwin

Table of Contents

1. Introduction *-**?
2.CVSAccess?

3. Building Tapestry *-*-?
Tapestry Subprojects **'5

Build Targets -6
Documentation Setup ****6
Clover Setup =***6

4. Development Standards *-*?
Use of $1d$ Symbol -9

Type Comment -**-9

JavaDoc -*+*9

Java Code Formatting **--10
Naming Conventions -*--11

5. Tapestry Release Numbering *--?
6. Development Procedures *--?
Deprecating methods and classes ****15
JUnit Tests -+ 15

Documentation ----18

Component Documentation --*-18
Checkin Procedures **-+19
Creating Examples -*--20
Updating Copyrights --+-21

Chapter 4. Development Standards

This chapter covers a number of standards, both in code and in procedure, expected by Tapestry contributors.

Use of Id Symbol

Every file checked into the CV S repository should have the Id symbol inside a comment, near the top of the
file. The $1 d$ token is expanded by CV Sinto a useful header, identifying the revision of thefile, date last
changed, and name of last user to change thefile.

For example, the $1d$ for this document is$1 d: Contri but or sGui de. xm , v 1.20 2003/ 04/ 21 15: 39: 20
hl ship Exp.$

Type Comment

Each Javafile must have a complete and useful type comment. Type comments must come after al i nport
statements, and before the start of the class.

Figure4.1. Type Comment

* %

A useful description of the class or interface, especially covering
how it is used, and what other classes or interfaces it interacts with.

@ut hor Your Name
@ersion Id
@i nce Version

* Ok %k ok %k Ok S~

The ver si on should be replaced with the numeric version number of the Tapestry release the type will first ap
pear in. Thisisthe minor release number; for example, a change introduced in release 2. 3- bet a- 3 would be
identified as 2. 3.

JavaDoc

All methods should be commented, with the following exceptions:
. Simple accessor methods with no side-effects.
. Methods that are fully described by an interface and don't add any additional behaviors.

Parameters and return values should be identified. @ hr ows should identify when any checked exceptions are
thrown; additional @ hr ows entries should describe any runtime exceptions that may also be thrown.

Methods should always include a @i nce entry, unless the method was added as part of a new Java class or
interface, in which case the @i nce for the containing type is sufficient. Use the same version number as type
comments when adding individual methods.

Try not to skimp on the comment (it is often best to write the comment before writing any code). Tapestry has
some of the best documentation of any open source project and that should be maintained. Remember to try and
answer the question why?, which is always much more interesting and useful than how? or what?.

It is appropriate to create JavaDoc comments for variables, even private variables (to at least provide an @i nce
value).

